| // |
| // Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| // |
| |
| // Program.cpp: Implements the gl::Program class. Implements GL program objects |
| // and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28. |
| |
| #include "libGLESv2/Program.h" |
| |
| #include "common/debug.h" |
| |
| #include "libGLESv2/main.h" |
| #include "libGLESv2/Shader.h" |
| #include "libGLESv2/utilities.h" |
| |
| #include <string> |
| |
| #if !defined(ANGLE_COMPILE_OPTIMIZATION_LEVEL) |
| #define ANGLE_COMPILE_OPTIMIZATION_LEVEL D3DCOMPILE_OPTIMIZATION_LEVEL3 |
| #endif |
| |
| namespace gl |
| { |
| unsigned int Program::mCurrentSerial = 1; |
| const char *fakepath = "C:\\fakepath"; |
| |
| std::string str(int i) |
| { |
| char buffer[20]; |
| sprintf(buffer, "%d", i); |
| return buffer; |
| } |
| |
| Uniform::Uniform(GLenum type, const std::string &_name, unsigned int arraySize) |
| : type(type), _name(_name), name(Program::undecorateUniform(_name)), arraySize(arraySize) |
| { |
| int bytes = UniformInternalSize(type) * arraySize; |
| data = new unsigned char[bytes]; |
| memset(data, 0, bytes); |
| dirty = true; |
| } |
| |
| Uniform::~Uniform() |
| { |
| delete[] data; |
| } |
| |
| bool Uniform::isArray() |
| { |
| return _name.compare(0, 3, "ar_") == 0; |
| } |
| |
| UniformLocation::UniformLocation(const std::string &_name, unsigned int element, unsigned int index) |
| : name(Program::undecorateUniform(_name)), element(element), index(index) |
| { |
| } |
| |
| Program::Program(ResourceManager *manager, GLuint handle) : mResourceManager(manager), mHandle(handle), mSerial(issueSerial()) |
| { |
| mDevice = getDevice(); |
| mFragmentShader = NULL; |
| mVertexShader = NULL; |
| |
| mPixelExecutable = NULL; |
| mVertexExecutable = NULL; |
| mConstantTablePS = NULL; |
| mConstantTableVS = NULL; |
| |
| mInfoLog = NULL; |
| mValidated = false; |
| |
| unlink(); |
| |
| mDeleteStatus = false; |
| |
| mRefCount = 0; |
| } |
| |
| Program::~Program() |
| { |
| unlink(true); |
| |
| if (mVertexShader != NULL) |
| { |
| mVertexShader->release(); |
| } |
| |
| if (mFragmentShader != NULL) |
| { |
| mFragmentShader->release(); |
| } |
| } |
| |
| bool Program::attachShader(Shader *shader) |
| { |
| if (shader->getType() == GL_VERTEX_SHADER) |
| { |
| if (mVertexShader) |
| { |
| return false; |
| } |
| |
| mVertexShader = (VertexShader*)shader; |
| mVertexShader->addRef(); |
| } |
| else if (shader->getType() == GL_FRAGMENT_SHADER) |
| { |
| if (mFragmentShader) |
| { |
| return false; |
| } |
| |
| mFragmentShader = (FragmentShader*)shader; |
| mFragmentShader->addRef(); |
| } |
| else UNREACHABLE(); |
| |
| return true; |
| } |
| |
| bool Program::detachShader(Shader *shader) |
| { |
| if (shader->getType() == GL_VERTEX_SHADER) |
| { |
| if (mVertexShader != shader) |
| { |
| return false; |
| } |
| |
| mVertexShader->release(); |
| mVertexShader = NULL; |
| } |
| else if (shader->getType() == GL_FRAGMENT_SHADER) |
| { |
| if (mFragmentShader != shader) |
| { |
| return false; |
| } |
| |
| mFragmentShader->release(); |
| mFragmentShader = NULL; |
| } |
| else UNREACHABLE(); |
| |
| return true; |
| } |
| |
| int Program::getAttachedShadersCount() const |
| { |
| return (mVertexShader ? 1 : 0) + (mFragmentShader ? 1 : 0); |
| } |
| |
| IDirect3DPixelShader9 *Program::getPixelShader() |
| { |
| return mPixelExecutable; |
| } |
| |
| IDirect3DVertexShader9 *Program::getVertexShader() |
| { |
| return mVertexExecutable; |
| } |
| |
| void Program::bindAttributeLocation(GLuint index, const char *name) |
| { |
| if (index < MAX_VERTEX_ATTRIBS) |
| { |
| for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) |
| { |
| mAttributeBinding[i].erase(name); |
| } |
| |
| mAttributeBinding[index].insert(name); |
| } |
| } |
| |
| GLuint Program::getAttributeLocation(const char *name) |
| { |
| if (name) |
| { |
| for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) |
| { |
| if (mLinkedAttribute[index].name == std::string(name)) |
| { |
| return index; |
| } |
| } |
| } |
| |
| return -1; |
| } |
| |
| int Program::getSemanticIndex(int attributeIndex) |
| { |
| ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS); |
| |
| return mSemanticIndex[attributeIndex]; |
| } |
| |
| // Returns one more than the highest sampler index used. |
| GLint Program::getUsedSamplerRange(SamplerType type) |
| { |
| switch (type) |
| { |
| case SAMPLER_PIXEL: |
| return mUsedPixelSamplerRange; |
| case SAMPLER_VERTEX: |
| return mUsedVertexSamplerRange; |
| default: |
| UNREACHABLE(); |
| return 0; |
| } |
| } |
| |
| // Returns the index of the texture image unit (0-19) corresponding to a Direct3D 9 sampler |
| // index (0-15 for the pixel shader and 0-3 for the vertex shader). |
| GLint Program::getSamplerMapping(SamplerType type, unsigned int samplerIndex) |
| { |
| GLint logicalTextureUnit = -1; |
| |
| switch (type) |
| { |
| case SAMPLER_PIXEL: |
| ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0])); |
| |
| if (mSamplersPS[samplerIndex].active) |
| { |
| logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit; |
| } |
| break; |
| case SAMPLER_VERTEX: |
| ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0])); |
| |
| if (mSamplersVS[samplerIndex].active) |
| { |
| logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit; |
| } |
| break; |
| default: UNREACHABLE(); |
| } |
| |
| if (logicalTextureUnit >= 0 && logicalTextureUnit < (GLint)getContext()->getMaximumCombinedTextureImageUnits()) |
| { |
| return logicalTextureUnit; |
| } |
| |
| return -1; |
| } |
| |
| // Returns the texture type for a given Direct3D 9 sampler type and |
| // index (0-15 for the pixel shader and 0-3 for the vertex shader). |
| TextureType Program::getSamplerTextureType(SamplerType type, unsigned int samplerIndex) |
| { |
| switch (type) |
| { |
| case SAMPLER_PIXEL: |
| ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0])); |
| ASSERT(mSamplersPS[samplerIndex].active); |
| return mSamplersPS[samplerIndex].textureType; |
| case SAMPLER_VERTEX: |
| ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0])); |
| ASSERT(mSamplersVS[samplerIndex].active); |
| return mSamplersVS[samplerIndex].textureType; |
| default: UNREACHABLE(); |
| } |
| |
| return TEXTURE_2D; |
| } |
| |
| GLint Program::getUniformLocation(std::string name) |
| { |
| unsigned int subscript = 0; |
| |
| // Strip any trailing array operator and retrieve the subscript |
| size_t open = name.find_last_of('['); |
| size_t close = name.find_last_of(']'); |
| if (open != std::string::npos && close == name.length() - 1) |
| { |
| subscript = atoi(name.substr(open + 1).c_str()); |
| name.erase(open); |
| } |
| |
| unsigned int numUniforms = mUniformIndex.size(); |
| for (unsigned int location = 0; location < numUniforms; location++) |
| { |
| if (mUniformIndex[location].name == name && |
| mUniformIndex[location].element == subscript) |
| { |
| return location; |
| } |
| } |
| |
| return -1; |
| } |
| |
| bool Program::setUniform1fv(GLint location, GLsizei count, const GLfloat* v) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if (targetUniform->type == GL_FLOAT) |
| { |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| |
| GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| target[0] = v[0]; |
| target[1] = 0; |
| target[2] = 0; |
| target[3] = 0; |
| target += 4; |
| v += 1; |
| } |
| } |
| else if (targetUniform->type == GL_BOOL) |
| { |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element; |
| |
| for (int i = 0; i < count; ++i) |
| { |
| if (v[i] == 0.0f) |
| { |
| boolParams[i] = GL_FALSE; |
| } |
| else |
| { |
| boolParams[i] = GL_TRUE; |
| } |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if (targetUniform->type == GL_FLOAT_VEC2) |
| { |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| |
| GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| target[0] = v[0]; |
| target[1] = v[1]; |
| target[2] = 0; |
| target[3] = 0; |
| target += 4; |
| v += 2; |
| } |
| } |
| else if (targetUniform->type == GL_BOOL_VEC2) |
| { |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| |
| GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 2; |
| |
| for (int i = 0; i < count * 2; ++i) |
| { |
| if (v[i] == 0.0f) |
| { |
| boolParams[i] = GL_FALSE; |
| } |
| else |
| { |
| boolParams[i] = GL_TRUE; |
| } |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if (targetUniform->type == GL_FLOAT_VEC3) |
| { |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| |
| GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| target[0] = v[0]; |
| target[1] = v[1]; |
| target[2] = v[2]; |
| target[3] = 0; |
| target += 4; |
| v += 3; |
| } |
| } |
| else if (targetUniform->type == GL_BOOL_VEC3) |
| { |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 3; |
| |
| for (int i = 0; i < count * 3; ++i) |
| { |
| if (v[i] == 0.0f) |
| { |
| boolParams[i] = GL_FALSE; |
| } |
| else |
| { |
| boolParams[i] = GL_TRUE; |
| } |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if (targetUniform->type == GL_FLOAT_VEC4) |
| { |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| |
| memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 4, |
| v, 4 * sizeof(GLfloat) * count); |
| } |
| else if (targetUniform->type == GL_BOOL_VEC4) |
| { |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count * 4; ++i) |
| { |
| if (v[i] == 0.0f) |
| { |
| boolParams[i] = GL_FALSE; |
| } |
| else |
| { |
| boolParams[i] = GL_TRUE; |
| } |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| template<typename T, int targetWidth, int targetHeight, int srcWidth, int srcHeight> |
| void transposeMatrix(T *target, const GLfloat *value) |
| { |
| int copyWidth = std::min(targetWidth, srcWidth); |
| int copyHeight = std::min(targetHeight, srcHeight); |
| |
| for (int x = 0; x < copyWidth; x++) |
| { |
| for (int y = 0; y < copyHeight; y++) |
| { |
| target[x * targetWidth + y] = (T)value[y * srcWidth + x]; |
| } |
| } |
| // clear unfilled right side |
| for (int y = 0; y < copyHeight; y++) |
| { |
| for (int x = srcWidth; x < targetWidth; x++) |
| { |
| target[y * targetWidth + x] = (T)0; |
| } |
| } |
| // clear unfilled bottom. |
| for (int y = srcHeight; y < targetHeight; y++) |
| { |
| for (int x = 0; x < targetWidth; x++) |
| { |
| target[y * targetWidth + x] = (T)0; |
| } |
| } |
| } |
| |
| bool Program::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if (targetUniform->type != GL_FLOAT_MAT2) |
| { |
| return false; |
| } |
| |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| |
| GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8; |
| for (int i = 0; i < count; i++) |
| { |
| transposeMatrix<GLfloat,4,2,2,2>(target, value); |
| target += 8; |
| value += 4; |
| } |
| |
| return true; |
| } |
| |
| bool Program::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if (targetUniform->type != GL_FLOAT_MAT3) |
| { |
| return false; |
| } |
| |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| |
| GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12; |
| for (int i = 0; i < count; i++) |
| { |
| transposeMatrix<GLfloat,4,3,3,3>(target, value); |
| target += 12; |
| value += 9; |
| } |
| |
| return true; |
| } |
| |
| |
| bool Program::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if (targetUniform->type != GL_FLOAT_MAT4) |
| { |
| return false; |
| } |
| |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| |
| GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16); |
| for (int i = 0; i < count; i++) |
| { |
| transposeMatrix<GLfloat,4,4,4,4>(target, value); |
| target += 16; |
| value += 16; |
| } |
| |
| return true; |
| } |
| |
| bool Program::setUniform1iv(GLint location, GLsizei count, const GLint *v) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if (targetUniform->type == GL_INT || |
| targetUniform->type == GL_SAMPLER_2D || |
| targetUniform->type == GL_SAMPLER_CUBE) |
| { |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| |
| memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint), |
| v, sizeof(GLint) * count); |
| } |
| else if (targetUniform->type == GL_BOOL) |
| { |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element; |
| |
| for (int i = 0; i < count; ++i) |
| { |
| if (v[i] == 0) |
| { |
| boolParams[i] = GL_FALSE; |
| } |
| else |
| { |
| boolParams[i] = GL_TRUE; |
| } |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Program::setUniform2iv(GLint location, GLsizei count, const GLint *v) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if (targetUniform->type == GL_INT_VEC2) |
| { |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| |
| memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 2, |
| v, 2 * sizeof(GLint) * count); |
| } |
| else if (targetUniform->type == GL_BOOL_VEC2) |
| { |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 2; |
| |
| for (int i = 0; i < count * 2; ++i) |
| { |
| if (v[i] == 0) |
| { |
| boolParams[i] = GL_FALSE; |
| } |
| else |
| { |
| boolParams[i] = GL_TRUE; |
| } |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Program::setUniform3iv(GLint location, GLsizei count, const GLint *v) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if (targetUniform->type == GL_INT_VEC3) |
| { |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| |
| memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 3, |
| v, 3 * sizeof(GLint) * count); |
| } |
| else if (targetUniform->type == GL_BOOL_VEC3) |
| { |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 3; |
| |
| for (int i = 0; i < count * 3; ++i) |
| { |
| if (v[i] == 0) |
| { |
| boolParams[i] = GL_FALSE; |
| } |
| else |
| { |
| boolParams[i] = GL_TRUE; |
| } |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Program::setUniform4iv(GLint location, GLsizei count, const GLint *v) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if (targetUniform->type == GL_INT_VEC4) |
| { |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| |
| memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 4, |
| v, 4 * sizeof(GLint) * count); |
| } |
| else if (targetUniform->type == GL_BOOL_VEC4) |
| { |
| int arraySize = targetUniform->arraySize; |
| |
| if (arraySize == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(arraySize - (int)mUniformIndex[location].element, count); |
| GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count * 4; ++i) |
| { |
| if (v[i] == 0) |
| { |
| boolParams[i] = GL_FALSE; |
| } |
| else |
| { |
| boolParams[i] = GL_TRUE; |
| } |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Program::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| |
| // sized queries -- ensure the provided buffer is large enough |
| if (bufSize) |
| { |
| int requiredBytes = UniformExternalSize(targetUniform->type); |
| if (*bufSize < requiredBytes) |
| { |
| return false; |
| } |
| } |
| |
| switch (targetUniform->type) |
| { |
| case GL_FLOAT_MAT2: |
| transposeMatrix<GLfloat,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8); |
| break; |
| case GL_FLOAT_MAT3: |
| transposeMatrix<GLfloat,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12); |
| break; |
| case GL_FLOAT_MAT4: |
| transposeMatrix<GLfloat,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16); |
| break; |
| default: |
| { |
| unsigned int count = UniformExternalComponentCount(targetUniform->type); |
| unsigned int internalCount = UniformInternalComponentCount(targetUniform->type); |
| |
| switch (UniformComponentType(targetUniform->type)) |
| { |
| case GL_BOOL: |
| { |
| GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * internalCount; |
| |
| for (unsigned int i = 0; i < count; ++i) |
| { |
| params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f; |
| } |
| } |
| break; |
| case GL_FLOAT: |
| memcpy(params, targetUniform->data + mUniformIndex[location].element * internalCount * sizeof(GLfloat), |
| count * sizeof(GLfloat)); |
| break; |
| case GL_INT: |
| { |
| GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * internalCount; |
| |
| for (unsigned int i = 0; i < count; ++i) |
| { |
| params[i] = (float)intParams[i]; |
| } |
| } |
| break; |
| default: UNREACHABLE(); |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Program::getUniformiv(GLint location, GLsizei *bufSize, GLint *params) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| |
| // sized queries -- ensure the provided buffer is large enough |
| if (bufSize) |
| { |
| int requiredBytes = UniformExternalSize(targetUniform->type); |
| if (*bufSize < requiredBytes) |
| { |
| return false; |
| } |
| } |
| |
| switch (targetUniform->type) |
| { |
| case GL_FLOAT_MAT2: |
| { |
| transposeMatrix<GLint,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8); |
| } |
| break; |
| case GL_FLOAT_MAT3: |
| { |
| transposeMatrix<GLint,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12); |
| } |
| break; |
| case GL_FLOAT_MAT4: |
| { |
| transposeMatrix<GLint,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16); |
| } |
| break; |
| default: |
| { |
| unsigned int count = UniformExternalComponentCount(targetUniform->type); |
| unsigned int internalCount = UniformInternalComponentCount(targetUniform->type); |
| |
| switch (UniformComponentType(targetUniform->type)) |
| { |
| case GL_BOOL: |
| { |
| GLboolean *boolParams = targetUniform->data + mUniformIndex[location].element * internalCount; |
| |
| for (unsigned int i = 0; i < count; ++i) |
| { |
| params[i] = (GLint)boolParams[i]; |
| } |
| } |
| break; |
| case GL_FLOAT: |
| { |
| GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * internalCount; |
| |
| for (unsigned int i = 0; i < count; ++i) |
| { |
| params[i] = (GLint)floatParams[i]; |
| } |
| } |
| break; |
| case GL_INT: |
| memcpy(params, targetUniform->data + mUniformIndex[location].element * internalCount * sizeof(GLint), |
| count * sizeof(GLint)); |
| break; |
| default: UNREACHABLE(); |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| void Program::dirtyAllUniforms() |
| { |
| unsigned int numUniforms = mUniforms.size(); |
| for (unsigned int index = 0; index < numUniforms; index++) |
| { |
| mUniforms[index]->dirty = true; |
| } |
| } |
| |
| // Applies all the uniforms set for this program object to the Direct3D 9 device |
| void Program::applyUniforms() |
| { |
| for (std::vector<Uniform*>::iterator ub = mUniforms.begin(), ue = mUniforms.end(); ub != ue; ++ub) { |
| Uniform *targetUniform = *ub; |
| |
| if (targetUniform->dirty) |
| { |
| int arraySize = targetUniform->arraySize; |
| GLfloat *f = (GLfloat*)targetUniform->data; |
| GLint *i = (GLint*)targetUniform->data; |
| GLboolean *b = (GLboolean*)targetUniform->data; |
| |
| switch (targetUniform->type) |
| { |
| case GL_BOOL: applyUniformnbv(targetUniform, arraySize, 1, b); break; |
| case GL_BOOL_VEC2: applyUniformnbv(targetUniform, arraySize, 2, b); break; |
| case GL_BOOL_VEC3: applyUniformnbv(targetUniform, arraySize, 3, b); break; |
| case GL_BOOL_VEC4: applyUniformnbv(targetUniform, arraySize, 4, b); break; |
| case GL_FLOAT: |
| case GL_FLOAT_VEC2: |
| case GL_FLOAT_VEC3: |
| case GL_FLOAT_VEC4: |
| case GL_FLOAT_MAT2: |
| case GL_FLOAT_MAT3: |
| case GL_FLOAT_MAT4: applyUniformnfv(targetUniform, f); break; |
| case GL_SAMPLER_2D: |
| case GL_SAMPLER_CUBE: |
| case GL_INT: applyUniform1iv(targetUniform, arraySize, i); break; |
| case GL_INT_VEC2: applyUniform2iv(targetUniform, arraySize, i); break; |
| case GL_INT_VEC3: applyUniform3iv(targetUniform, arraySize, i); break; |
| case GL_INT_VEC4: applyUniform4iv(targetUniform, arraySize, i); break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| targetUniform->dirty = false; |
| } |
| } |
| } |
| |
| // Compiles the HLSL code of the attached shaders into executable binaries |
| ID3D10Blob *Program::compileToBinary(const char *hlsl, const char *profile, ID3DXConstantTable **constantTable) |
| { |
| if (!hlsl) |
| { |
| return NULL; |
| } |
| |
| DWORD result; |
| UINT flags = 0; |
| std::string sourceText; |
| if (perfActive()) |
| { |
| flags |= D3DCOMPILE_DEBUG; |
| #ifdef NDEBUG |
| flags |= ANGLE_COMPILE_OPTIMIZATION_LEVEL; |
| #else |
| flags |= D3DCOMPILE_SKIP_OPTIMIZATION; |
| #endif |
| |
| std::string sourcePath = getTempPath(); |
| sourceText = std::string("#line 2 \"") + sourcePath + std::string("\"\n\n") + std::string(hlsl); |
| writeFile(sourcePath.c_str(), sourceText.c_str(), sourceText.size()); |
| } |
| else |
| { |
| flags |= ANGLE_COMPILE_OPTIMIZATION_LEVEL; |
| sourceText = hlsl; |
| } |
| |
| ID3D10Blob *binary = NULL; |
| ID3D10Blob *errorMessage = NULL; |
| result = D3DCompile(hlsl, strlen(hlsl), fakepath, NULL, NULL, "main", profile, flags, 0, &binary, &errorMessage); |
| |
| if (errorMessage) |
| { |
| const char *message = (const char*)errorMessage->GetBufferPointer(); |
| |
| appendToInfoLogSanitized(message); |
| TRACE("\n%s", hlsl); |
| TRACE("\n%s", message); |
| |
| errorMessage->Release(); |
| errorMessage = NULL; |
| } |
| |
| if (FAILED(result)) |
| { |
| if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY) |
| { |
| error(GL_OUT_OF_MEMORY); |
| } |
| |
| return NULL; |
| } |
| |
| result = D3DXGetShaderConstantTable(static_cast<const DWORD*>(binary->GetBufferPointer()), constantTable); |
| |
| if (FAILED(result)) |
| { |
| if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY) |
| { |
| error(GL_OUT_OF_MEMORY); |
| } |
| |
| binary->Release(); |
| |
| return NULL; |
| } |
| |
| return binary; |
| } |
| |
| // Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111 |
| // Returns the number of used varying registers, or -1 if unsuccesful |
| int Program::packVaryings(const Varying *packing[][4]) |
| { |
| Context *context = getContext(); |
| const int maxVaryingVectors = context->getMaximumVaryingVectors(); |
| |
| for (VaryingList::iterator varying = mFragmentShader->mVaryings.begin(); varying != mFragmentShader->mVaryings.end(); varying++) |
| { |
| int n = VariableRowCount(varying->type) * varying->size; |
| int m = VariableColumnCount(varying->type); |
| bool success = false; |
| |
| if (m == 2 || m == 3 || m == 4) |
| { |
| for (int r = 0; r <= maxVaryingVectors - n && !success; r++) |
| { |
| bool available = true; |
| |
| for (int y = 0; y < n && available; y++) |
| { |
| for (int x = 0; x < m && available; x++) |
| { |
| if (packing[r + y][x]) |
| { |
| available = false; |
| } |
| } |
| } |
| |
| if (available) |
| { |
| varying->reg = r; |
| varying->col = 0; |
| |
| for (int y = 0; y < n; y++) |
| { |
| for (int x = 0; x < m; x++) |
| { |
| packing[r + y][x] = &*varying; |
| } |
| } |
| |
| success = true; |
| } |
| } |
| |
| if (!success && m == 2) |
| { |
| for (int r = maxVaryingVectors - n; r >= 0 && !success; r--) |
| { |
| bool available = true; |
| |
| for (int y = 0; y < n && available; y++) |
| { |
| for (int x = 2; x < 4 && available; x++) |
| { |
| if (packing[r + y][x]) |
| { |
| available = false; |
| } |
| } |
| } |
| |
| if (available) |
| { |
| varying->reg = r; |
| varying->col = 2; |
| |
| for (int y = 0; y < n; y++) |
| { |
| for (int x = 2; x < 4; x++) |
| { |
| packing[r + y][x] = &*varying; |
| } |
| } |
| |
| success = true; |
| } |
| } |
| } |
| } |
| else if (m == 1) |
| { |
| int space[4] = {0}; |
| |
| for (int y = 0; y < maxVaryingVectors; y++) |
| { |
| for (int x = 0; x < 4; x++) |
| { |
| space[x] += packing[y][x] ? 0 : 1; |
| } |
| } |
| |
| int column = 0; |
| |
| for (int x = 0; x < 4; x++) |
| { |
| if (space[x] >= n && space[x] < space[column]) |
| { |
| column = x; |
| } |
| } |
| |
| if (space[column] >= n) |
| { |
| for (int r = 0; r < maxVaryingVectors; r++) |
| { |
| if (!packing[r][column]) |
| { |
| varying->reg = r; |
| |
| for (int y = r; y < r + n; y++) |
| { |
| packing[y][column] = &*varying; |
| } |
| |
| break; |
| } |
| } |
| |
| varying->col = column; |
| |
| success = true; |
| } |
| } |
| else UNREACHABLE(); |
| |
| if (!success) |
| { |
| appendToInfoLog("Could not pack varying %s", varying->name.c_str()); |
| |
| return -1; |
| } |
| } |
| |
| // Return the number of used registers |
| int registers = 0; |
| |
| for (int r = 0; r < maxVaryingVectors; r++) |
| { |
| if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3]) |
| { |
| registers++; |
| } |
| } |
| |
| return registers; |
| } |
| |
| bool Program::linkVaryings() |
| { |
| if (mPixelHLSL.empty() || mVertexHLSL.empty()) |
| { |
| return false; |
| } |
| |
| // Reset the varying register assignments |
| for (VaryingList::iterator fragVar = mFragmentShader->mVaryings.begin(); fragVar != mFragmentShader->mVaryings.end(); fragVar++) |
| { |
| fragVar->reg = -1; |
| fragVar->col = -1; |
| } |
| |
| for (VaryingList::iterator vtxVar = mVertexShader->mVaryings.begin(); vtxVar != mVertexShader->mVaryings.end(); vtxVar++) |
| { |
| vtxVar->reg = -1; |
| vtxVar->col = -1; |
| } |
| |
| // Map the varyings to the register file |
| const Varying *packing[MAX_VARYING_VECTORS_SM3][4] = {NULL}; |
| int registers = packVaryings(packing); |
| |
| if (registers < 0) |
| { |
| return false; |
| } |
| |
| // Write the HLSL input/output declarations |
| Context *context = getContext(); |
| const bool sm3 = context->supportsShaderModel3(); |
| const int maxVaryingVectors = context->getMaximumVaryingVectors(); |
| |
| if (registers == maxVaryingVectors && mFragmentShader->mUsesFragCoord) |
| { |
| appendToInfoLog("No varying registers left to support gl_FragCoord"); |
| |
| return false; |
| } |
| |
| for (VaryingList::iterator input = mFragmentShader->mVaryings.begin(); input != mFragmentShader->mVaryings.end(); input++) |
| { |
| bool matched = false; |
| |
| for (VaryingList::iterator output = mVertexShader->mVaryings.begin(); output != mVertexShader->mVaryings.end(); output++) |
| { |
| if (output->name == input->name) |
| { |
| if (output->type != input->type || output->size != input->size) |
| { |
| appendToInfoLog("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str()); |
| |
| return false; |
| } |
| |
| output->reg = input->reg; |
| output->col = input->col; |
| |
| matched = true; |
| break; |
| } |
| } |
| |
| if (!matched) |
| { |
| appendToInfoLog("Fragment varying %s does not match any vertex varying", input->name.c_str()); |
| |
| return false; |
| } |
| } |
| |
| std::string varyingSemantic = (sm3 ? "COLOR" : "TEXCOORD"); |
| |
| mVertexHLSL += "struct VS_INPUT\n" |
| "{\n"; |
| |
| int semanticIndex = 0; |
| for (AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++) |
| { |
| switch (attribute->type) |
| { |
| case GL_FLOAT: mVertexHLSL += " float "; break; |
| case GL_FLOAT_VEC2: mVertexHLSL += " float2 "; break; |
| case GL_FLOAT_VEC3: mVertexHLSL += " float3 "; break; |
| case GL_FLOAT_VEC4: mVertexHLSL += " float4 "; break; |
| case GL_FLOAT_MAT2: mVertexHLSL += " float2x2 "; break; |
| case GL_FLOAT_MAT3: mVertexHLSL += " float3x3 "; break; |
| case GL_FLOAT_MAT4: mVertexHLSL += " float4x4 "; break; |
| default: UNREACHABLE(); |
| } |
| |
| mVertexHLSL += decorateAttribute(attribute->name) + " : TEXCOORD" + str(semanticIndex) + ";\n"; |
| |
| semanticIndex += VariableRowCount(attribute->type); |
| } |
| |
| mVertexHLSL += "};\n" |
| "\n" |
| "struct VS_OUTPUT\n" |
| "{\n" |
| " float4 gl_Position : POSITION;\n"; |
| |
| for (int r = 0; r < registers; r++) |
| { |
| int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1)); |
| |
| mVertexHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n"; |
| } |
| |
| if (mFragmentShader->mUsesFragCoord) |
| { |
| mVertexHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n"; |
| } |
| |
| if (mVertexShader->mUsesPointSize && sm3) |
| { |
| mVertexHLSL += " float gl_PointSize : PSIZE;\n"; |
| } |
| |
| mVertexHLSL += "};\n" |
| "\n" |
| "VS_OUTPUT main(VS_INPUT input)\n" |
| "{\n"; |
| |
| for (AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++) |
| { |
| mVertexHLSL += " " + decorateAttribute(attribute->name) + " = "; |
| |
| if (VariableRowCount(attribute->type) > 1) // Matrix |
| { |
| mVertexHLSL += "transpose"; |
| } |
| |
| mVertexHLSL += "(input." + decorateAttribute(attribute->name) + ");\n"; |
| } |
| |
| mVertexHLSL += "\n" |
| " gl_main();\n" |
| "\n" |
| " VS_OUTPUT output;\n" |
| " output.gl_Position.x = gl_Position.x - dx_HalfPixelSize.x * gl_Position.w;\n" |
| " output.gl_Position.y = gl_Position.y - dx_HalfPixelSize.y * gl_Position.w;\n" |
| " output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n" |
| " output.gl_Position.w = gl_Position.w;\n"; |
| |
| if (mVertexShader->mUsesPointSize && sm3) |
| { |
| mVertexHLSL += " output.gl_PointSize = clamp(gl_PointSize, 1.0, " + str((int)ALIASED_POINT_SIZE_RANGE_MAX_SM3) + ");\n"; |
| } |
| |
| if (mFragmentShader->mUsesFragCoord) |
| { |
| mVertexHLSL += " output.gl_FragCoord = gl_Position;\n"; |
| } |
| |
| for (VaryingList::iterator varying = mVertexShader->mVaryings.begin(); varying != mVertexShader->mVaryings.end(); varying++) |
| { |
| if (varying->reg >= 0) |
| { |
| for (int i = 0; i < varying->size; i++) |
| { |
| int rows = VariableRowCount(varying->type); |
| |
| for (int j = 0; j < rows; j++) |
| { |
| int r = varying->reg + i * rows + j; |
| mVertexHLSL += " output.v" + str(r); |
| |
| bool sharedRegister = false; // Register used by multiple varyings |
| |
| for (int x = 0; x < 4; x++) |
| { |
| if (packing[r][x] && packing[r][x] != packing[r][0]) |
| { |
| sharedRegister = true; |
| break; |
| } |
| } |
| |
| if(sharedRegister) |
| { |
| mVertexHLSL += "."; |
| |
| for (int x = 0; x < 4; x++) |
| { |
| if (packing[r][x] == &*varying) |
| { |
| switch(x) |
| { |
| case 0: mVertexHLSL += "x"; break; |
| case 1: mVertexHLSL += "y"; break; |
| case 2: mVertexHLSL += "z"; break; |
| case 3: mVertexHLSL += "w"; break; |
| } |
| } |
| } |
| } |
| |
| mVertexHLSL += " = " + varying->name; |
| |
| if (varying->array) |
| { |
| mVertexHLSL += "[" + str(i) + "]"; |
| } |
| |
| if (rows > 1) |
| { |
| mVertexHLSL += "[" + str(j) + "]"; |
| } |
| |
| mVertexHLSL += ";\n"; |
| } |
| } |
| } |
| } |
| |
| mVertexHLSL += "\n" |
| " return output;\n" |
| "}\n"; |
| |
| mPixelHLSL += "struct PS_INPUT\n" |
| "{\n"; |
| |
| for (VaryingList::iterator varying = mFragmentShader->mVaryings.begin(); varying != mFragmentShader->mVaryings.end(); varying++) |
| { |
| if (varying->reg >= 0) |
| { |
| for (int i = 0; i < varying->size; i++) |
| { |
| int rows = VariableRowCount(varying->type); |
| for (int j = 0; j < rows; j++) |
| { |
| std::string n = str(varying->reg + i * rows + j); |
| mPixelHLSL += " float4 v" + n + " : " + varyingSemantic + n + ";\n"; |
| } |
| } |
| } |
| else UNREACHABLE(); |
| } |
| |
| if (mFragmentShader->mUsesFragCoord) |
| { |
| mPixelHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n"; |
| if (sm3) { |
| mPixelHLSL += " float2 dx_VPos : VPOS;\n"; |
| } |
| } |
| |
| if (mFragmentShader->mUsesPointCoord && sm3) |
| { |
| mPixelHLSL += " float2 gl_PointCoord : TEXCOORD0;\n"; |
| } |
| |
| if (mFragmentShader->mUsesFrontFacing) |
| { |
| mPixelHLSL += " float vFace : VFACE;\n"; |
| } |
| |
| mPixelHLSL += "};\n" |
| "\n" |
| "struct PS_OUTPUT\n" |
| "{\n" |
| " float4 gl_Color[1] : COLOR;\n" |
| "};\n" |
| "\n" |
| "PS_OUTPUT main(PS_INPUT input)\n" |
| "{\n"; |
| |
| if (mFragmentShader->mUsesFragCoord) |
| { |
| mPixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n"; |
| |
| if (sm3) |
| { |
| // dx_Coord.y contains the render target height. See Context::applyRenderTarget() |
| mPixelHLSL += " gl_FragCoord.x = input.dx_VPos.x + 0.5;\n" |
| " gl_FragCoord.y = dx_Coord.y - input.dx_VPos.y - 0.5;\n"; |
| } |
| else |
| { |
| // dx_Coord contains the viewport width/2, height/2, center.x and center.y. See Context::applyRenderTarget() |
| mPixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_Coord.x + dx_Coord.z;\n" |
| " gl_FragCoord.y = -(input.gl_FragCoord.y * rhw) * dx_Coord.y + dx_Coord.w;\n"; |
| } |
| |
| mPixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_Depth.x + dx_Depth.y;\n" |
| " gl_FragCoord.w = rhw;\n"; |
| } |
| |
| if (mFragmentShader->mUsesPointCoord && sm3) |
| { |
| mPixelHLSL += " gl_PointCoord = input.gl_PointCoord;\n"; |
| } |
| |
| if (mFragmentShader->mUsesFrontFacing) |
| { |
| mPixelHLSL += " gl_FrontFacing = dx_PointsOrLines || (dx_FrontCCW ? (input.vFace >= 0.0) : (input.vFace <= 0.0));\n"; |
| } |
| |
| for (VaryingList::iterator varying = mFragmentShader->mVaryings.begin(); varying != mFragmentShader->mVaryings.end(); varying++) |
| { |
| if (varying->reg >= 0) |
| { |
| for (int i = 0; i < varying->size; i++) |
| { |
| int rows = VariableRowCount(varying->type); |
| for (int j = 0; j < rows; j++) |
| { |
| std::string n = str(varying->reg + i * rows + j); |
| mPixelHLSL += " " + varying->name; |
| |
| if (varying->array) |
| { |
| mPixelHLSL += "[" + str(i) + "]"; |
| } |
| |
| if (rows > 1) |
| { |
| mPixelHLSL += "[" + str(j) + "]"; |
| } |
| |
| mPixelHLSL += " = input.v" + n + ";\n"; |
| } |
| } |
| } |
| else UNREACHABLE(); |
| } |
| |
| mPixelHLSL += "\n" |
| " gl_main();\n" |
| "\n" |
| " PS_OUTPUT output;\n" |
| " output.gl_Color[0] = gl_Color[0];\n" |
| "\n" |
| " return output;\n" |
| "}\n"; |
| |
| return true; |
| } |
| |
| // Links the HLSL code of the vertex and pixel shader by matching up their varyings, |
| // compiling them into binaries, determining the attribute mappings, and collecting |
| // a list of uniforms |
| void Program::link() |
| { |
| unlink(); |
| |
| if (!mFragmentShader || !mFragmentShader->isCompiled()) |
| { |
| return; |
| } |
| |
| if (!mVertexShader || !mVertexShader->isCompiled()) |
| { |
| return; |
| } |
| |
| mPixelHLSL = mFragmentShader->getHLSL(); |
| mVertexHLSL = mVertexShader->getHLSL(); |
| |
| if (!linkVaryings()) |
| { |
| return; |
| } |
| |
| Context *context = getContext(); |
| const char *vertexProfile = context->supportsShaderModel3() ? "vs_3_0" : "vs_2_0"; |
| const char *pixelProfile = context->supportsShaderModel3() ? "ps_3_0" : "ps_2_0"; |
| |
| ID3D10Blob *vertexBinary = compileToBinary(mVertexHLSL.c_str(), vertexProfile, &mConstantTableVS); |
| ID3D10Blob *pixelBinary = compileToBinary(mPixelHLSL.c_str(), pixelProfile, &mConstantTablePS); |
| |
| if (vertexBinary && pixelBinary) |
| { |
| HRESULT vertexResult = mDevice->CreateVertexShader((DWORD*)vertexBinary->GetBufferPointer(), &mVertexExecutable); |
| HRESULT pixelResult = mDevice->CreatePixelShader((DWORD*)pixelBinary->GetBufferPointer(), &mPixelExecutable); |
| |
| if (vertexResult == D3DERR_OUTOFVIDEOMEMORY || vertexResult == E_OUTOFMEMORY || pixelResult == D3DERR_OUTOFVIDEOMEMORY || pixelResult == E_OUTOFMEMORY) |
| { |
| return error(GL_OUT_OF_MEMORY); |
| } |
| |
| ASSERT(SUCCEEDED(vertexResult) && SUCCEEDED(pixelResult)); |
| |
| vertexBinary->Release(); |
| pixelBinary->Release(); |
| vertexBinary = NULL; |
| pixelBinary = NULL; |
| |
| if (mVertexExecutable && mPixelExecutable) |
| { |
| if (!linkAttributes()) |
| { |
| return; |
| } |
| |
| if (!linkUniforms(mConstantTablePS)) |
| { |
| return; |
| } |
| |
| if (!linkUniforms(mConstantTableVS)) |
| { |
| return; |
| } |
| |
| // these uniforms are searched as already-decorated because gl_ and dx_ |
| // are reserved prefixes, and do not receive additional decoration |
| mDxDepthRangeLocation = getUniformLocation("dx_DepthRange"); |
| mDxDepthLocation = getUniformLocation("dx_Depth"); |
| mDxCoordLocation = getUniformLocation("dx_Coord"); |
| mDxHalfPixelSizeLocation = getUniformLocation("dx_HalfPixelSize"); |
| mDxFrontCCWLocation = getUniformLocation("dx_FrontCCW"); |
| mDxPointsOrLinesLocation = getUniformLocation("dx_PointsOrLines"); |
| |
| mLinked = true; // Success |
| } |
| } |
| } |
| |
| // Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices |
| bool Program::linkAttributes() |
| { |
| unsigned int usedLocations = 0; |
| |
| // Link attributes that have a binding location |
| for (AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++) |
| { |
| int location = getAttributeBinding(attribute->name); |
| |
| if (location != -1) // Set by glBindAttribLocation |
| { |
| if (!mLinkedAttribute[location].name.empty()) |
| { |
| // Multiple active attributes bound to the same location; not an error |
| } |
| |
| mLinkedAttribute[location] = *attribute; |
| |
| int rows = VariableRowCount(attribute->type); |
| |
| if (rows + location > MAX_VERTEX_ATTRIBS) |
| { |
| appendToInfoLog("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location); |
| |
| return false; |
| } |
| |
| for (int i = 0; i < rows; i++) |
| { |
| usedLocations |= 1 << (location + i); |
| } |
| } |
| } |
| |
| // Link attributes that don't have a binding location |
| for (AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++) |
| { |
| int location = getAttributeBinding(attribute->name); |
| |
| if (location == -1) // Not set by glBindAttribLocation |
| { |
| int rows = VariableRowCount(attribute->type); |
| int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS); |
| |
| if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS) |
| { |
| appendToInfoLog("Too many active attributes (%s)", attribute->name.c_str()); |
| |
| return false; // Fail to link |
| } |
| |
| mLinkedAttribute[availableIndex] = *attribute; |
| } |
| } |
| |
| for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; ) |
| { |
| int index = mVertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name); |
| int rows = std::max(VariableRowCount(mLinkedAttribute[attributeIndex].type), 1); |
| |
| for (int r = 0; r < rows; r++) |
| { |
| mSemanticIndex[attributeIndex++] = index++; |
| } |
| } |
| |
| return true; |
| } |
| |
| int Program::getAttributeBinding(const std::string &name) |
| { |
| for (int location = 0; location < MAX_VERTEX_ATTRIBS; location++) |
| { |
| if (mAttributeBinding[location].find(name) != mAttributeBinding[location].end()) |
| { |
| return location; |
| } |
| } |
| |
| return -1; |
| } |
| |
| bool Program::linkUniforms(ID3DXConstantTable *constantTable) |
| { |
| D3DXCONSTANTTABLE_DESC constantTableDescription; |
| D3DXCONSTANT_DESC constantDescription; |
| UINT descriptionCount = 1; |
| |
| constantTable->GetDesc(&constantTableDescription); |
| |
| for (unsigned int constantIndex = 0; constantIndex < constantTableDescription.Constants; constantIndex++) |
| { |
| D3DXHANDLE constantHandle = constantTable->GetConstant(0, constantIndex); |
| HRESULT result = constantTable->GetConstantDesc(constantHandle, &constantDescription, &descriptionCount); |
| ASSERT(SUCCEEDED(result)); |
| |
| if (!defineUniform(constantHandle, constantDescription)) |
| { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Adds the description of a constant found in the binary shader to the list of uniforms |
| // Returns true if succesful (uniform not already defined) |
| bool Program::defineUniform(const D3DXHANDLE &constantHandle, const D3DXCONSTANT_DESC &constantDescription, std::string name) |
| { |
| if (constantDescription.RegisterSet == D3DXRS_SAMPLER) |
| { |
| for (unsigned int i = 0; i < constantDescription.RegisterCount; i++) |
| { |
| D3DXHANDLE psConstant = mConstantTablePS->GetConstantByName(NULL, constantDescription.Name); |
| D3DXHANDLE vsConstant = mConstantTableVS->GetConstantByName(NULL, constantDescription.Name); |
| |
| if (psConstant) |
| { |
| unsigned int samplerIndex = mConstantTablePS->GetSamplerIndex(psConstant) + i; |
| |
| if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS) |
| { |
| mSamplersPS[samplerIndex].active = true; |
| mSamplersPS[samplerIndex].textureType = (constantDescription.Type == D3DXPT_SAMPLERCUBE) ? TEXTURE_CUBE : TEXTURE_2D; |
| mSamplersPS[samplerIndex].logicalTextureUnit = 0; |
| mUsedPixelSamplerRange = std::max(samplerIndex + 1, mUsedPixelSamplerRange); |
| } |
| else |
| { |
| appendToInfoLog("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS); |
| return false; |
| } |
| } |
| |
| if (vsConstant) |
| { |
| unsigned int samplerIndex = mConstantTableVS->GetSamplerIndex(vsConstant) + i; |
| |
| if (samplerIndex < getContext()->getMaximumVertexTextureImageUnits()) |
| { |
| mSamplersVS[samplerIndex].active = true; |
| mSamplersVS[samplerIndex].textureType = (constantDescription.Type == D3DXPT_SAMPLERCUBE) ? TEXTURE_CUBE : TEXTURE_2D; |
| mSamplersVS[samplerIndex].logicalTextureUnit = 0; |
| mUsedVertexSamplerRange = std::max(samplerIndex + 1, mUsedVertexSamplerRange); |
| } |
| else |
| { |
| appendToInfoLog("Vertex shader sampler count exceeds MAX_VERTEX_TEXTURE_IMAGE_UNITS (%d).", getContext()->getMaximumVertexTextureImageUnits()); |
| return false; |
| } |
| } |
| } |
| } |
| |
| switch(constantDescription.Class) |
| { |
| case D3DXPC_STRUCT: |
| { |
| for (unsigned int arrayIndex = 0; arrayIndex < constantDescription.Elements; arrayIndex++) |
| { |
| for (unsigned int field = 0; field < constantDescription.StructMembers; field++) |
| { |
| D3DXHANDLE fieldHandle = mConstantTablePS->GetConstant(constantHandle, field); |
| |
| D3DXCONSTANT_DESC fieldDescription; |
| UINT descriptionCount = 1; |
| |
| HRESULT result = mConstantTablePS->GetConstantDesc(fieldHandle, &fieldDescription, &descriptionCount); |
| ASSERT(SUCCEEDED(result)); |
| |
| std::string structIndex = (constantDescription.Elements > 1) ? ("[" + str(arrayIndex) + "]") : ""; |
| |
| if (!defineUniform(fieldHandle, fieldDescription, name + constantDescription.Name + structIndex + ".")) |
| { |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| case D3DXPC_SCALAR: |
| case D3DXPC_VECTOR: |
| case D3DXPC_MATRIX_COLUMNS: |
| case D3DXPC_OBJECT: |
| return defineUniform(constantDescription, name + constantDescription.Name); |
| default: |
| UNREACHABLE(); |
| return false; |
| } |
| } |
| |
| bool Program::defineUniform(const D3DXCONSTANT_DESC &constantDescription, const std::string &_name) |
| { |
| Uniform *uniform = createUniform(constantDescription, _name); |
| |
| if(!uniform) |
| { |
| return false; |
| } |
| |
| // Check if already defined |
| GLint location = getUniformLocation(uniform->name); |
| GLenum type = uniform->type; |
| |
| if (location >= 0) |
| { |
| delete uniform; |
| |
| if (mUniforms[mUniformIndex[location].index]->type != type) |
| { |
| return false; |
| } |
| else |
| { |
| return true; |
| } |
| } |
| |
| initializeConstantHandles(uniform, &uniform->ps, mConstantTablePS); |
| initializeConstantHandles(uniform, &uniform->vs, mConstantTableVS); |
| |
| mUniforms.push_back(uniform); |
| unsigned int uniformIndex = mUniforms.size() - 1; |
| |
| for (unsigned int i = 0; i < uniform->arraySize; ++i) |
| { |
| mUniformIndex.push_back(UniformLocation(_name, i, uniformIndex)); |
| } |
| |
| return true; |
| } |
| |
| Uniform *Program::createUniform(const D3DXCONSTANT_DESC &constantDescription, const std::string &_name) |
| { |
| if (constantDescription.Rows == 1) // Vectors and scalars |
| { |
| switch (constantDescription.Type) |
| { |
| case D3DXPT_SAMPLER2D: |
| switch (constantDescription.Columns) |
| { |
| case 1: return new Uniform(GL_SAMPLER_2D, _name, constantDescription.Elements); |
| default: UNREACHABLE(); |
| } |
| break; |
| case D3DXPT_SAMPLERCUBE: |
| switch (constantDescription.Columns) |
| { |
| case 1: return new Uniform(GL_SAMPLER_CUBE, _name, constantDescription.Elements); |
| default: UNREACHABLE(); |
| } |
| break; |
| case D3DXPT_BOOL: |
| switch (constantDescription.Columns) |
| { |
| case 1: return new Uniform(GL_BOOL, _name, constantDescription.Elements); |
| case 2: return new Uniform(GL_BOOL_VEC2, _name, constantDescription.Elements); |
| case 3: return new Uniform(GL_BOOL_VEC3, _name, constantDescription.Elements); |
| case 4: return new Uniform(GL_BOOL_VEC4, _name, constantDescription.Elements); |
| default: UNREACHABLE(); |
| } |
| break; |
| case D3DXPT_INT: |
| switch (constantDescription.Columns) |
| { |
| case 1: return new Uniform(GL_INT, _name, constantDescription.Elements); |
| case 2: return new Uniform(GL_INT_VEC2, _name, constantDescription.Elements); |
| case 3: return new Uniform(GL_INT_VEC3, _name, constantDescription.Elements); |
| case 4: return new Uniform(GL_INT_VEC4, _name, constantDescription.Elements); |
| default: UNREACHABLE(); |
| } |
| break; |
| case D3DXPT_FLOAT: |
| switch (constantDescription.Columns) |
| { |
| case 1: return new Uniform(GL_FLOAT, _name, constantDescription.Elements); |
| case 2: return new Uniform(GL_FLOAT_VEC2, _name, constantDescription.Elements); |
| case 3: return new Uniform(GL_FLOAT_VEC3, _name, constantDescription.Elements); |
| case 4: return new Uniform(GL_FLOAT_VEC4, _name, constantDescription.Elements); |
| default: UNREACHABLE(); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| else if (constantDescription.Rows == constantDescription.Columns) // Square matrices |
| { |
| switch (constantDescription.Type) |
| { |
| case D3DXPT_FLOAT: |
| switch (constantDescription.Rows) |
| { |
| case 2: return new Uniform(GL_FLOAT_MAT2, _name, constantDescription.Elements); |
| case 3: return new Uniform(GL_FLOAT_MAT3, _name, constantDescription.Elements); |
| case 4: return new Uniform(GL_FLOAT_MAT4, _name, constantDescription.Elements); |
| default: UNREACHABLE(); |
| } |
| break; |
| default: UNREACHABLE(); |
| } |
| } |
| else UNREACHABLE(); |
| |
| return 0; |
| } |
| |
| // This method needs to match OutputHLSL::decorate |
| std::string Program::decorateAttribute(const std::string &name) |
| { |
| if (name.compare(0, 3, "gl_") != 0 && name.compare(0, 3, "dx_") != 0) |
| { |
| return "_" + name; |
| } |
| |
| return name; |
| } |
| |
| std::string Program::undecorateUniform(const std::string &_name) |
| { |
| if (_name[0] == '_') |
| { |
| return _name.substr(1); |
| } |
| else if (_name.compare(0, 3, "ar_") == 0) |
| { |
| return _name.substr(3); |
| } |
| |
| return _name; |
| } |
| |
| void Program::applyUniformnbv(Uniform *targetUniform, GLsizei count, int width, const GLboolean *v) |
| { |
| float vector[D3D9_MAX_FLOAT_CONSTANTS * 4]; |
| BOOL boolVector[D3D9_MAX_BOOL_CONSTANTS]; |
| |
| if (targetUniform->ps.registerCount && targetUniform->ps.registerSet == D3DXRS_FLOAT4 || |
| targetUniform->vs.registerCount && targetUniform->vs.registerSet == D3DXRS_FLOAT4) |
| { |
| ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); |
| for (int i = 0; i < count; i++) |
| { |
| for (int j = 0; j < 4; j++) |
| { |
| if (j < width) |
| { |
| vector[i * 4 + j] = (v[i * width + j] == GL_FALSE) ? 0.0f : 1.0f; |
| } |
| else |
| { |
| vector[i * 4 + j] = 0.0f; |
| } |
| } |
| } |
| } |
| |
| if (targetUniform->ps.registerCount && targetUniform->ps.registerSet == D3DXRS_BOOL || |
| targetUniform->vs.registerCount && targetUniform->vs.registerSet == D3DXRS_BOOL) |
| { |
| int psCount = targetUniform->ps.registerSet == D3DXRS_BOOL ? targetUniform->ps.registerCount : 0; |
| int vsCount = targetUniform->vs.registerSet == D3DXRS_BOOL ? targetUniform->vs.registerCount : 0; |
| int copyCount = std::min(count * width, std::max(psCount, vsCount)); |
| ASSERT(copyCount <= D3D9_MAX_BOOL_CONSTANTS); |
| for (int i = 0; i < copyCount; i++) |
| { |
| boolVector[i] = v[i] != GL_FALSE; |
| } |
| } |
| |
| if (targetUniform->ps.registerCount) |
| { |
| if (targetUniform->ps.registerSet == D3DXRS_FLOAT4) |
| { |
| mDevice->SetPixelShaderConstantF(targetUniform->ps.registerIndex, vector, targetUniform->ps.registerCount); |
| } |
| else if (targetUniform->ps.registerSet == D3DXRS_BOOL) |
| { |
| mDevice->SetPixelShaderConstantB(targetUniform->ps.registerIndex, boolVector, targetUniform->ps.registerCount); |
| } |
| else UNREACHABLE(); |
| } |
| |
| if (targetUniform->vs.registerCount) |
| { |
| if (targetUniform->vs.registerSet == D3DXRS_FLOAT4) |
| { |
| mDevice->SetVertexShaderConstantF(targetUniform->vs.registerIndex, vector, targetUniform->vs.registerCount); |
| } |
| else if (targetUniform->vs.registerSet == D3DXRS_BOOL) |
| { |
| mDevice->SetVertexShaderConstantB(targetUniform->vs.registerIndex, boolVector, targetUniform->vs.registerCount); |
| } |
| else UNREACHABLE(); |
| } |
| } |
| |
| bool Program::applyUniformnfv(Uniform *targetUniform, const GLfloat *v) |
| { |
| if (targetUniform->ps.registerCount) |
| { |
| mDevice->SetPixelShaderConstantF(targetUniform->ps.registerIndex, v, targetUniform->ps.registerCount); |
| } |
| |
| if (targetUniform->vs.registerCount) |
| { |
| mDevice->SetVertexShaderConstantF(targetUniform->vs.registerIndex, v, targetUniform->vs.registerCount); |
| } |
| |
| return true; |
| } |
| |
| bool Program::applyUniform1iv(Uniform *targetUniform, GLsizei count, const GLint *v) |
| { |
| ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); |
| D3DXVECTOR4 vector[D3D9_MAX_FLOAT_CONSTANTS]; |
| |
| for (int i = 0; i < count; i++) |
| { |
| vector[i] = D3DXVECTOR4((float)v[i], 0, 0, 0); |
| } |
| |
| if (targetUniform->ps.registerCount) |
| { |
| if (targetUniform->ps.registerSet == D3DXRS_SAMPLER) |
| { |
| unsigned int firstIndex = targetUniform->ps.registerIndex; |
| |
| for (int i = 0; i < count; i++) |
| { |
| unsigned int samplerIndex = firstIndex + i; |
| |
| if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS) |
| { |
| ASSERT(mSamplersPS[samplerIndex].active); |
| mSamplersPS[samplerIndex].logicalTextureUnit = v[i]; |
| } |
| } |
| } |
| else |
| { |
| ASSERT(targetUniform->ps.registerSet == D3DXRS_FLOAT4); |
| mDevice->SetPixelShaderConstantF(targetUniform->ps.registerIndex, (const float*)vector, targetUniform->ps.registerCount); |
| } |
| } |
| |
| if (targetUniform->vs.registerCount) |
| { |
| if (targetUniform->vs.registerSet == D3DXRS_SAMPLER) |
| { |
| unsigned int firstIndex = targetUniform->vs.registerIndex; |
| |
| for (int i = 0; i < count; i++) |
| { |
| unsigned int samplerIndex = firstIndex + i; |
| |
| if (samplerIndex < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF) |
| { |
| ASSERT(mSamplersVS[samplerIndex].active); |
| mSamplersVS[samplerIndex].logicalTextureUnit = v[i]; |
| } |
| } |
| } |
| else |
| { |
| ASSERT(targetUniform->vs.registerSet == D3DXRS_FLOAT4); |
| mDevice->SetVertexShaderConstantF(targetUniform->vs.registerIndex, (const float *)vector, targetUniform->vs.registerCount); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Program::applyUniform2iv(Uniform *targetUniform, GLsizei count, const GLint *v) |
| { |
| ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); |
| D3DXVECTOR4 vector[D3D9_MAX_FLOAT_CONSTANTS]; |
| |
| for (int i = 0; i < count; i++) |
| { |
| vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], 0, 0); |
| |
| v += 2; |
| } |
| |
| applyUniformniv(targetUniform, count, vector); |
| |
| return true; |
| } |
| |
| bool Program::applyUniform3iv(Uniform *targetUniform, GLsizei count, const GLint *v) |
| { |
| ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); |
| D3DXVECTOR4 vector[D3D9_MAX_FLOAT_CONSTANTS]; |
| |
| for (int i = 0; i < count; i++) |
| { |
| vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], (float)v[2], 0); |
| |
| v += 3; |
| } |
| |
| applyUniformniv(targetUniform, count, vector); |
| |
| return true; |
| } |
| |
| bool Program::applyUniform4iv(Uniform *targetUniform, GLsizei count, const GLint *v) |
| { |
| ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); |
| D3DXVECTOR4 vector[D3D9_MAX_FLOAT_CONSTANTS]; |
| |
| for (int i = 0; i < count; i++) |
| { |
| vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], (float)v[2], (float)v[3]); |
| |
| v += 4; |
| } |
| |
| applyUniformniv(targetUniform, count, vector); |
| |
| return true; |
| } |
| |
| void Program::applyUniformniv(Uniform *targetUniform, GLsizei count, const D3DXVECTOR4 *vector) |
| { |
| if (targetUniform->ps.registerCount) |
| { |
| ASSERT(targetUniform->ps.registerSet == D3DXRS_FLOAT4); |
| mDevice->SetPixelShaderConstantF(targetUniform->ps.registerIndex, (const float *)vector, targetUniform->ps.registerCount); |
| } |
| |
| if (targetUniform->vs.registerCount) |
| { |
| ASSERT(targetUniform->vs.registerSet == D3DXRS_FLOAT4); |
| mDevice->SetVertexShaderConstantF(targetUniform->vs.registerIndex, (const float *)vector, targetUniform->vs.registerCount); |
| } |
| } |
| |
| // append a santized message to the program info log. |
| // The D3D compiler includes a fake file path in some of the warning or error |
| // messages, so lets remove all occurrences of this fake file path from the log. |
| void Program::appendToInfoLogSanitized(const char *message) |
| { |
| std::string msg(message); |
| |
| size_t found; |
| do |
| { |
| found = msg.find(fakepath); |
| if (found != std::string::npos) |
| { |
| msg.erase(found, strlen(fakepath)); |
| } |
| } |
| while (found != std::string::npos); |
| |
| appendToInfoLog("%s\n", msg.c_str()); |
| } |
| |
| void Program::appendToInfoLog(const char *format, ...) |
| { |
| if (!format) |
| { |
| return; |
| } |
| |
| char info[1024]; |
| |
| va_list vararg; |
| va_start(vararg, format); |
| vsnprintf(info, sizeof(info), format, vararg); |
| va_end(vararg); |
| |
| size_t infoLength = strlen(info); |
| |
| if (!mInfoLog) |
| { |
| mInfoLog = new char[infoLength + 1]; |
| strcpy(mInfoLog, info); |
| } |
| else |
| { |
| size_t logLength = strlen(mInfoLog); |
| char *newLog = new char[logLength + infoLength + 1]; |
| strcpy(newLog, mInfoLog); |
| strcpy(newLog + logLength, info); |
| |
| delete[] mInfoLog; |
| mInfoLog = newLog; |
| } |
| } |
| |
| void Program::resetInfoLog() |
| { |
| if (mInfoLog) |
| { |
| delete [] mInfoLog; |
| mInfoLog = NULL; |
| } |
| } |
| |
| // Returns the program object to an unlinked state, before re-linking, or at destruction |
| void Program::unlink(bool destroy) |
| { |
| if (destroy) // Object being destructed |
| { |
| if (mFragmentShader) |
| { |
| mFragmentShader->release(); |
| mFragmentShader = NULL; |
| } |
| |
| if (mVertexShader) |
| { |
| mVertexShader->release(); |
| mVertexShader = NULL; |
| } |
| } |
| |
| if (mPixelExecutable) |
| { |
| mPixelExecutable->Release(); |
| mPixelExecutable = NULL; |
| } |
| |
| if (mVertexExecutable) |
| { |
| mVertexExecutable->Release(); |
| mVertexExecutable = NULL; |
| } |
| |
| if (mConstantTablePS) |
| { |
| mConstantTablePS->Release(); |
| mConstantTablePS = NULL; |
| } |
| |
| if (mConstantTableVS) |
| { |
| mConstantTableVS->Release(); |
| mConstantTableVS = NULL; |
| } |
| |
| for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) |
| { |
| mLinkedAttribute[index].name.clear(); |
| mSemanticIndex[index] = -1; |
| } |
| |
| for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++) |
| { |
| mSamplersPS[index].active = false; |
| } |
| |
| for (int index = 0; index < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF; index++) |
| { |
| mSamplersVS[index].active = false; |
| } |
| |
| mUsedVertexSamplerRange = 0; |
| mUsedPixelSamplerRange = 0; |
| |
| while (!mUniforms.empty()) |
| { |
| delete mUniforms.back(); |
| mUniforms.pop_back(); |
| } |
| |
| mDxDepthRangeLocation = -1; |
| mDxDepthLocation = -1; |
| mDxCoordLocation = -1; |
| mDxHalfPixelSizeLocation = -1; |
| mDxFrontCCWLocation = -1; |
| mDxPointsOrLinesLocation = -1; |
| |
| mUniformIndex.clear(); |
| |
| mPixelHLSL.clear(); |
| mVertexHLSL.clear(); |
| |
| delete[] mInfoLog; |
| mInfoLog = NULL; |
| |
| mLinked = false; |
| } |
| |
| bool Program::isLinked() |
| { |
| return mLinked; |
| } |
| |
| bool Program::isValidated() const |
| { |
| return mValidated; |
| } |
| |
| void Program::release() |
| { |
| mRefCount--; |
| |
| if (mRefCount == 0 && mDeleteStatus) |
| { |
| mResourceManager->deleteProgram(mHandle); |
| } |
| } |
| |
| void Program::addRef() |
| { |
| mRefCount++; |
| } |
| |
| unsigned int Program::getRefCount() const |
| { |
| return mRefCount; |
| } |
| |
| unsigned int Program::getSerial() const |
| { |
| return mSerial; |
| } |
| |
| unsigned int Program::issueSerial() |
| { |
| return mCurrentSerial++; |
| } |
| |
| int Program::getInfoLogLength() const |
| { |
| if (!mInfoLog) |
| { |
| return 0; |
| } |
| else |
| { |
| return strlen(mInfoLog) + 1; |
| } |
| } |
| |
| void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog) |
| { |
| int index = 0; |
| |
| if (mInfoLog) |
| { |
| index = std::min(bufSize - 1, (int)strlen(mInfoLog)); |
| memcpy(infoLog, mInfoLog, index); |
| } |
| |
| if (bufSize) |
| { |
| infoLog[index] = '\0'; |
| } |
| |
| if (length) |
| { |
| *length = index; |
| } |
| } |
| |
| void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders) |
| { |
| int total = 0; |
| |
| if (mVertexShader) |
| { |
| if (total < maxCount) |
| { |
| shaders[total] = mVertexShader->getHandle(); |
| } |
| |
| total++; |
| } |
| |
| if (mFragmentShader) |
| { |
| if (total < maxCount) |
| { |
| shaders[total] = mFragmentShader->getHandle(); |
| } |
| |
| total++; |
| } |
| |
| if (count) |
| { |
| *count = total; |
| } |
| } |
| |
| void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) |
| { |
| // Skip over inactive attributes |
| unsigned int activeAttribute = 0; |
| unsigned int attribute; |
| for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) |
| { |
| if (mLinkedAttribute[attribute].name.empty()) |
| { |
| continue; |
| } |
| |
| if (activeAttribute == index) |
| { |
| break; |
| } |
| |
| activeAttribute++; |
| } |
| |
| if (bufsize > 0) |
| { |
| const char *string = mLinkedAttribute[attribute].name.c_str(); |
| |
| strncpy(name, string, bufsize); |
| name[bufsize - 1] = '\0'; |
| |
| if (length) |
| { |
| *length = strlen(name); |
| } |
| } |
| |
| *size = 1; // Always a single 'type' instance |
| |
| *type = mLinkedAttribute[attribute].type; |
| } |
| |
| GLint Program::getActiveAttributeCount() |
| { |
| int count = 0; |
| |
| for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) |
| { |
| if (!mLinkedAttribute[attributeIndex].name.empty()) |
| { |
| count++; |
| } |
| } |
| |
| return count; |
| } |
| |
| GLint Program::getActiveAttributeMaxLength() |
| { |
| int maxLength = 0; |
| |
| for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) |
| { |
| if (!mLinkedAttribute[attributeIndex].name.empty()) |
| { |
| maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength); |
| } |
| } |
| |
| return maxLength; |
| } |
| |
| void Program::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) |
| { |
| // Skip over internal uniforms |
| unsigned int activeUniform = 0; |
| unsigned int uniform; |
| for (uniform = 0; uniform < mUniforms.size(); uniform++) |
| { |
| if (mUniforms[uniform]->name.compare(0, 3, "dx_") == 0) |
| { |
| continue; |
| } |
| |
| if (activeUniform == index) |
| { |
| break; |
| } |
| |
| activeUniform++; |
| } |
| |
| ASSERT(uniform < mUniforms.size()); // index must be smaller than getActiveUniformCount() |
| |
| if (bufsize > 0) |
| { |
| std::string string = mUniforms[uniform]->name; |
| |
| if (mUniforms[uniform]->isArray()) |
| { |
| string += "[0]"; |
| } |
| |
| strncpy(name, string.c_str(), bufsize); |
| name[bufsize - 1] = '\0'; |
| |
| if (length) |
| { |
| *length = strlen(name); |
| } |
| } |
| |
| *size = mUniforms[uniform]->arraySize; |
| |
| *type = mUniforms[uniform]->type; |
| } |
| |
| GLint Program::getActiveUniformCount() |
| { |
| int count = 0; |
| |
| unsigned int numUniforms = mUniforms.size(); |
| for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) |
| { |
| if (mUniforms[uniformIndex]->name.compare(0, 3, "dx_") != 0) |
| { |
| count++; |
| } |
| } |
| |
| return count; |
| } |
| |
| GLint Program::getActiveUniformMaxLength() |
| { |
| int maxLength = 0; |
| |
| unsigned int numUniforms = mUniforms.size(); |
| for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) |
| { |
| if (!mUniforms[uniformIndex]->name.empty() && mUniforms[uniformIndex]->name.compare(0, 3, "dx_") != 0) |
| { |
| int length = (int)(mUniforms[uniformIndex]->name.length() + 1); |
| if (mUniforms[uniformIndex]->isArray()) |
| { |
| length += 3; // Counting in "[0]". |
| } |
| maxLength = std::max(length, maxLength); |
| } |
| } |
| |
| return maxLength; |
| } |
| |
| void Program::flagForDeletion() |
| { |
| mDeleteStatus = true; |
| } |
| |
| bool Program::isFlaggedForDeletion() const |
| { |
| return mDeleteStatus; |
| } |
| |
| void Program::validate() |
| { |
| resetInfoLog(); |
| |
| if (!isLinked()) |
| { |
| appendToInfoLog("Program has not been successfully linked."); |
| mValidated = false; |
| } |
| else |
| { |
| applyUniforms(); |
| if (!validateSamplers(true)) |
| { |
| mValidated = false; |
| } |
| else |
| { |
| mValidated = true; |
| } |
| } |
| } |
| |
| bool Program::validateSamplers(bool logErrors) |
| { |
| // if any two active samplers in a program are of different types, but refer to the same |
| // texture image unit, and this is the current program, then ValidateProgram will fail, and |
| // DrawArrays and DrawElements will issue the INVALID_OPERATION error. |
| |
| const unsigned int maxCombinedTextureImageUnits = getContext()->getMaximumCombinedTextureImageUnits(); |
| TextureType textureUnitType[MAX_COMBINED_TEXTURE_IMAGE_UNITS_VTF]; |
| |
| for (unsigned int i = 0; i < MAX_COMBINED_TEXTURE_IMAGE_UNITS_VTF; ++i) |
| { |
| textureUnitType[i] = TEXTURE_UNKNOWN; |
| } |
| |
| for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i) |
| { |
| if (mSamplersPS[i].active) |
| { |
| unsigned int unit = mSamplersPS[i].logicalTextureUnit; |
| |
| if (unit >= maxCombinedTextureImageUnits) |
| { |
| if (logErrors) |
| { |
| appendToInfoLog("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits); |
| } |
| |
| return false; |
| } |
| |
| if (textureUnitType[unit] != TEXTURE_UNKNOWN) |
| { |
| if (mSamplersPS[i].textureType != textureUnitType[unit]) |
| { |
| if (logErrors) |
| { |
| appendToInfoLog("Samplers of conflicting types refer to the same texture image unit (%d).", unit); |
| } |
| |
| return false; |
| } |
| } |
| else |
| { |
| textureUnitType[unit] = mSamplersPS[i].textureType; |
| } |
| } |
| } |
| |
| for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i) |
| { |
| if (mSamplersVS[i].active) |
| { |
| unsigned int unit = mSamplersVS[i].logicalTextureUnit; |
| |
| if (unit >= maxCombinedTextureImageUnits) |
| { |
| if (logErrors) |
| { |
| appendToInfoLog("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits); |
| } |
| |
| return false; |
| } |
| |
| if (textureUnitType[unit] != TEXTURE_UNKNOWN) |
| { |
| if (mSamplersVS[i].textureType != textureUnitType[unit]) |
| { |
| if (logErrors) |
| { |
| appendToInfoLog("Samplers of conflicting types refer to the same texture image unit (%d).", unit); |
| } |
| |
| return false; |
| } |
| } |
| else |
| { |
| textureUnitType[unit] = mSamplersVS[i].textureType; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| void Program::initializeConstantHandles(Uniform *targetUniform, Uniform::RegisterInfo *ri, ID3DXConstantTable *constantTable) |
| { |
| D3DXHANDLE handle = constantTable->GetConstantByName(0, targetUniform->_name.c_str()); |
| if (handle) |
| { |
| UINT descriptionCount = 1; |
| D3DXCONSTANT_DESC constantDescription; |
| HRESULT result = constantTable->GetConstantDesc(handle, &constantDescription, &descriptionCount); |
| ASSERT(SUCCEEDED(result)); |
| ri->registerIndex = constantDescription.RegisterIndex; |
| ri->registerCount = constantDescription.RegisterCount; |
| ri->registerSet = constantDescription.RegisterSet; |
| } |
| else |
| { |
| ri->registerCount = 0; |
| } |
| } |
| |
| GLint Program::getDxDepthRangeLocation() const |
| { |
| return mDxDepthRangeLocation; |
| } |
| |
| GLint Program::getDxDepthLocation() const |
| { |
| return mDxDepthLocation; |
| } |
| |
| GLint Program::getDxCoordLocation() const |
| { |
| return mDxCoordLocation; |
| } |
| |
| GLint Program::getDxHalfPixelSizeLocation() const |
| { |
| return mDxHalfPixelSizeLocation; |
| } |
| |
| GLint Program::getDxFrontCCWLocation() const |
| { |
| return mDxFrontCCWLocation; |
| } |
| |
| GLint Program::getDxPointsOrLinesLocation() const |
| { |
| return mDxPointsOrLinesLocation; |
| } |
| |
| } |