blob: d01b75de7e3bdbce0bf023f405d636664fc647cf [file] [log] [blame]
/*
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved.
* Copyright (C) 2009 Google Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef UString_h
#define UString_h
#include "Collector.h"
#include <stdint.h>
#include <string.h>
#include <wtf/Assertions.h>
#include <wtf/CrossThreadRefCounted.h>
#include <wtf/OwnFastMallocPtr.h>
#include <wtf/PassRefPtr.h>
#include <wtf/PtrAndFlags.h>
#include <wtf/RefPtr.h>
#include <wtf/Vector.h>
#include <wtf/unicode/Unicode.h>
namespace JSC {
using WTF::PlacementNewAdoptType;
using WTF::PlacementNewAdopt;
class IdentifierTable;
class CString {
public:
CString()
: m_length(0)
, m_data(0)
{
}
CString(const char*);
CString(const char*, size_t);
CString(const CString&);
~CString();
static CString adopt(char*, size_t); // buffer should be allocated with new[].
CString& append(const CString&);
CString& operator=(const char* c);
CString& operator=(const CString&);
CString& operator+=(const CString& c) { return append(c); }
size_t size() const { return m_length; }
const char* c_str() const { return m_data; }
private:
size_t m_length;
char* m_data;
};
typedef Vector<char, 32> CStringBuffer;
class UString {
friend class JIT;
public:
typedef CrossThreadRefCounted<OwnFastMallocPtr<UChar> > SharedUChar;
struct BaseString;
struct Rep : Noncopyable {
friend class JIT;
static PassRefPtr<Rep> create(UChar* buffer, int length)
{
return adoptRef(new BaseString(buffer, length));
}
static PassRefPtr<Rep> createEmptyBuffer(size_t size)
{
// Guard against integer overflow
if (size < (std::numeric_limits<size_t>::max() / sizeof(UChar))) {
if (void * buf = tryFastMalloc(size * sizeof(UChar)))
return adoptRef(new BaseString(static_cast<UChar*>(buf), 0, size));
}
return adoptRef(new BaseString(0, 0, 0));
}
static PassRefPtr<Rep> createCopying(const UChar*, int);
static PassRefPtr<Rep> create(PassRefPtr<Rep> base, int offset, int length);
// Constructs a string from a UTF-8 string, using strict conversion (see comments in UTF8.h).
// Returns UString::Rep::null for null input or conversion failure.
static PassRefPtr<Rep> createFromUTF8(const char*);
// Uses SharedUChar to have joint ownership over the UChar*.
static PassRefPtr<Rep> create(UChar*, int, PassRefPtr<SharedUChar>);
SharedUChar* sharedBuffer();
void destroy();
bool baseIsSelf() const { return m_identifierTableAndFlags.isFlagSet(BaseStringFlag); }
UChar* data() const;
int size() const { return len; }
unsigned hash() const { if (_hash == 0) _hash = computeHash(data(), len); return _hash; }
unsigned computedHash() const { ASSERT(_hash); return _hash; } // fast path for Identifiers
static unsigned computeHash(const UChar*, int length);
static unsigned computeHash(const char*, int length);
static unsigned computeHash(const char* s) { return computeHash(s, strlen(s)); }
IdentifierTable* identifierTable() const { return m_identifierTableAndFlags.get(); }
void setIdentifierTable(IdentifierTable* table) { ASSERT(!isStatic()); m_identifierTableAndFlags.set(table); }
bool isStatic() const { return m_identifierTableAndFlags.isFlagSet(StaticFlag); }
void setStatic(bool);
void setBaseString(PassRefPtr<BaseString>);
BaseString* baseString();
const BaseString* baseString() const;
Rep* ref() { ++rc; return this; }
ALWAYS_INLINE void deref() { if (--rc == 0) destroy(); }
void checkConsistency() const;
enum UStringFlags {
StaticFlag,
BaseStringFlag
};
// unshared data
int offset;
int len;
int rc; // For null and empty static strings, this field does not reflect a correct count, because ref/deref are not thread-safe. A special case in destroy() guarantees that these do not get deleted.
mutable unsigned _hash;
PtrAndFlags<IdentifierTable, UStringFlags> m_identifierTableAndFlags;
static BaseString& null() { return *nullBaseString; }
static BaseString& empty() { return *emptyBaseString; }
bool reserveCapacity(int capacity);
protected:
// Constructor for use by BaseString subclass; they use the union with m_baseString for another purpose.
Rep(int length)
: offset(0)
, len(length)
, rc(1)
, _hash(0)
, m_baseString(0)
{
}
Rep(PassRefPtr<BaseString> base, int offsetInBase, int length)
: offset(offsetInBase)
, len(length)
, rc(1)
, _hash(0)
, m_baseString(base.releaseRef())
{
checkConsistency();
}
union {
// If !baseIsSelf()
BaseString* m_baseString;
// If baseIsSelf()
SharedUChar* m_sharedBuffer;
};
private:
// For SmallStringStorage which allocates an array and does initialization manually.
Rep() { }
friend class SmallStringsStorage;
friend void initializeUString();
JS_EXPORTDATA static BaseString* nullBaseString;
JS_EXPORTDATA static BaseString* emptyBaseString;
};
struct BaseString : public Rep {
bool isShared() { return rc != 1 || isBufferReadOnly(); }
void setSharedBuffer(PassRefPtr<SharedUChar>);
bool isBufferReadOnly()
{
if (!m_sharedBuffer)
return false;
return slowIsBufferReadOnly();
}
// potentially shared data.
UChar* buf;
int preCapacity;
int usedPreCapacity;
int capacity;
int usedCapacity;
size_t reportedCost;
private:
BaseString(UChar* buffer, int length, int additionalCapacity = 0)
: Rep(length)
, buf(buffer)
, preCapacity(0)
, usedPreCapacity(0)
, capacity(length + additionalCapacity)
, usedCapacity(length)
, reportedCost(0)
{
m_identifierTableAndFlags.setFlag(BaseStringFlag);
checkConsistency();
}
SharedUChar* sharedBuffer();
bool slowIsBufferReadOnly();
friend struct Rep;
friend class SmallStringsStorage;
friend void initializeUString();
};
public:
UString();
UString(const char*);
UString(const UChar*, int length);
UString(UChar*, int length, bool copy);
UString(const UString& s)
: m_rep(s.m_rep)
{
}
UString(const Vector<UChar>& buffer);
~UString()
{
}
// Special constructor for cases where we overwrite an object in place.
UString(PlacementNewAdoptType)
: m_rep(PlacementNewAdopt)
{
}
static UString from(int);
static UString from(unsigned int);
static UString from(long);
static UString from(double);
struct Range {
public:
Range(int pos, int len)
: position(pos)
, length(len)
{
}
Range()
{
}
int position;
int length;
};
UString spliceSubstringsWithSeparators(const Range* substringRanges, int rangeCount, const UString* separators, int separatorCount) const;
UString replaceRange(int rangeStart, int RangeEnd, const UString& replacement) const;
UString& append(const UString&);
UString& append(const char*);
UString& append(UChar);
UString& append(char c) { return append(static_cast<UChar>(static_cast<unsigned char>(c))); }
UString& append(const UChar*, int size);
UString& appendNumeric(int);
UString& appendNumeric(double);
bool getCString(CStringBuffer&) const;
// NOTE: This method should only be used for *debugging* purposes as it
// is neither Unicode safe nor free from side effects nor thread-safe.
char* ascii() const;
/**
* Convert the string to UTF-8, assuming it is UTF-16 encoded.
* In non-strict mode, this function is tolerant of badly formed UTF-16, it
* can create UTF-8 strings that are invalid because they have characters in
* the range U+D800-U+DDFF, U+FFFE, or U+FFFF, but the UTF-8 string is
* guaranteed to be otherwise valid.
* In strict mode, error is returned as null CString.
*/
CString UTF8String(bool strict = false) const;
UString& operator=(const char*c);
UString& operator+=(const UString& s) { return append(s); }
UString& operator+=(const char* s) { return append(s); }
const UChar* data() const { return m_rep->data(); }
bool isNull() const { return (m_rep == &Rep::null()); }
bool isEmpty() const { return (!m_rep->len); }
bool is8Bit() const;
int size() const { return m_rep->size(); }
UChar operator[](int pos) const;
double toDouble(bool tolerateTrailingJunk, bool tolerateEmptyString) const;
double toDouble(bool tolerateTrailingJunk) const;
double toDouble() const;
uint32_t toUInt32(bool* ok = 0) const;
uint32_t toUInt32(bool* ok, bool tolerateEmptyString) const;
uint32_t toStrictUInt32(bool* ok = 0) const;
unsigned toArrayIndex(bool* ok = 0) const;
int find(const UString& f, int pos = 0) const;
int find(UChar, int pos = 0) const;
int rfind(const UString& f, int pos) const;
int rfind(UChar, int pos) const;
UString substr(int pos = 0, int len = -1) const;
static const UString& null() { return *nullUString; }
Rep* rep() const { return m_rep.get(); }
static Rep* nullRep();
UString(PassRefPtr<Rep> r)
: m_rep(r)
{
ASSERT(m_rep);
}
size_t cost() const;
// Attempt to grow this string such that it can grow to a total length of 'capacity'
// without reallocation. This may fail a number of reasons - if the BasicString is
// shared and another string is using part of the capacity beyond our end point, if
// the realloc fails, or if this string is empty and has no storage.
//
// This method returns a boolean indicating success.
bool reserveCapacity(int capacity)
{
return m_rep->reserveCapacity(capacity);
}
private:
void expandCapacity(int requiredLength);
void expandPreCapacity(int requiredPreCap);
void makeNull();
RefPtr<Rep> m_rep;
static UString* nullUString;
friend void initializeUString();
friend bool operator==(const UString&, const UString&);
friend PassRefPtr<Rep> concatenate(Rep*, Rep*); // returns 0 if out of memory
};
PassRefPtr<UString::Rep> concatenate(UString::Rep*, UString::Rep*);
PassRefPtr<UString::Rep> concatenate(UString::Rep*, int);
PassRefPtr<UString::Rep> concatenate(UString::Rep*, double);
inline bool operator==(const UString& s1, const UString& s2)
{
int size = s1.size();
switch (size) {
case 0:
return !s2.size();
case 1:
return s2.size() == 1 && s1.data()[0] == s2.data()[0];
case 2: {
if (s2.size() != 2)
return false;
const UChar* d1 = s1.data();
const UChar* d2 = s2.data();
return (d1[0] == d2[0]) & (d1[1] == d2[1]);
}
default:
return s2.size() == size && memcmp(s1.data(), s2.data(), size * sizeof(UChar)) == 0;
}
}
inline bool operator!=(const UString& s1, const UString& s2)
{
return !JSC::operator==(s1, s2);
}
bool operator<(const UString& s1, const UString& s2);
bool operator>(const UString& s1, const UString& s2);
bool operator==(const UString& s1, const char* s2);
inline bool operator!=(const UString& s1, const char* s2)
{
return !JSC::operator==(s1, s2);
}
inline bool operator==(const char *s1, const UString& s2)
{
return operator==(s2, s1);
}
inline bool operator!=(const char *s1, const UString& s2)
{
return !JSC::operator==(s1, s2);
}
bool operator==(const CString&, const CString&);
inline UString operator+(const UString& s1, const UString& s2)
{
RefPtr<UString::Rep> result = concatenate(s1.rep(), s2.rep());
return UString(result ? result.release() : UString::nullRep());
}
int compare(const UString&, const UString&);
bool equal(const UString::Rep*, const UString::Rep*);
inline PassRefPtr<UString::Rep> UString::Rep::create(PassRefPtr<UString::Rep> rep, int offset, int length)
{
ASSERT(rep);
rep->checkConsistency();
int repOffset = rep->offset;
PassRefPtr<BaseString> base = rep->baseString();
ASSERT(-(offset + repOffset) <= base->usedPreCapacity);
ASSERT(offset + repOffset + length <= base->usedCapacity);
// Steal the single reference this Rep was created with.
return adoptRef(new Rep(base, repOffset + offset, length));
}
inline UChar* UString::Rep::data() const
{
const BaseString* base = baseString();
return base->buf + base->preCapacity + offset;
}
inline void UString::Rep::setStatic(bool v)
{
ASSERT(!identifierTable());
if (v)
m_identifierTableAndFlags.setFlag(StaticFlag);
else
m_identifierTableAndFlags.clearFlag(StaticFlag);
}
inline void UString::Rep::setBaseString(PassRefPtr<BaseString> base)
{
ASSERT(base != this);
ASSERT(!baseIsSelf());
m_baseString = base.releaseRef();
}
inline UString::BaseString* UString::Rep::baseString()
{
return !baseIsSelf() ? m_baseString : reinterpret_cast<BaseString*>(this) ;
}
inline const UString::BaseString* UString::Rep::baseString() const
{
return const_cast<Rep*>(this)->baseString();
}
#ifdef NDEBUG
inline void UString::Rep::checkConsistency() const
{
}
#endif
inline UString::UString()
: m_rep(&Rep::null())
{
}
// Rule from ECMA 15.2 about what an array index is.
// Must exactly match string form of an unsigned integer, and be less than 2^32 - 1.
inline unsigned UString::toArrayIndex(bool* ok) const
{
unsigned i = toStrictUInt32(ok);
if (ok && i >= 0xFFFFFFFFU)
*ok = false;
return i;
}
// We'd rather not do shared substring append for small strings, since
// this runs too much risk of a tiny initial string holding down a
// huge buffer.
// FIXME: this should be size_t but that would cause warnings until we
// fix UString sizes to be size_t instead of int
static const int minShareSize = Heap::minExtraCostSize / sizeof(UChar);
inline size_t UString::cost() const
{
BaseString* base = m_rep->baseString();
size_t capacity = (base->capacity + base->preCapacity) * sizeof(UChar);
size_t reportedCost = base->reportedCost;
ASSERT(capacity >= reportedCost);
size_t capacityDelta = capacity - reportedCost;
if (capacityDelta < static_cast<size_t>(minShareSize))
return 0;
base->reportedCost = capacity;
return capacityDelta;
}
struct IdentifierRepHash : PtrHash<RefPtr<JSC::UString::Rep> > {
static unsigned hash(const RefPtr<JSC::UString::Rep>& key) { return key->computedHash(); }
static unsigned hash(JSC::UString::Rep* key) { return key->computedHash(); }
};
void initializeUString();
} // namespace JSC
namespace WTF {
template<typename T> struct DefaultHash;
template<typename T> struct StrHash;
template<> struct StrHash<JSC::UString::Rep*> {
static unsigned hash(const JSC::UString::Rep* key) { return key->hash(); }
static bool equal(const JSC::UString::Rep* a, const JSC::UString::Rep* b) { return JSC::equal(a, b); }
static const bool safeToCompareToEmptyOrDeleted = false;
};
template<> struct StrHash<RefPtr<JSC::UString::Rep> > : public StrHash<JSC::UString::Rep*> {
using StrHash<JSC::UString::Rep*>::hash;
static unsigned hash(const RefPtr<JSC::UString::Rep>& key) { return key->hash(); }
using StrHash<JSC::UString::Rep*>::equal;
static bool equal(const RefPtr<JSC::UString::Rep>& a, const RefPtr<JSC::UString::Rep>& b) { return JSC::equal(a.get(), b.get()); }
static bool equal(const JSC::UString::Rep* a, const RefPtr<JSC::UString::Rep>& b) { return JSC::equal(a, b.get()); }
static bool equal(const RefPtr<JSC::UString::Rep>& a, const JSC::UString::Rep* b) { return JSC::equal(a.get(), b); }
static const bool safeToCompareToEmptyOrDeleted = false;
};
template<> struct DefaultHash<JSC::UString::Rep*> {
typedef StrHash<JSC::UString::Rep*> Hash;
};
template<> struct DefaultHash<RefPtr<JSC::UString::Rep> > {
typedef StrHash<RefPtr<JSC::UString::Rep> > Hash;
};
} // namespace WTF
#endif