blob: 85997c2de308bc34bebb0e56621ad58f04064a26 [file] [log] [blame]
/*
* Copyright (C) 2009 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "JIT.h"
#if ENABLE(JIT)
#include "JITInlineMethods.h"
#include "JITStubCall.h"
#include "JSArray.h"
#include "JSCell.h"
#include "JSFunction.h"
#include "LinkBuffer.h"
namespace JSC {
#if USE(JSVALUE32_64)
void JIT::privateCompileCTIMachineTrampolines(RefPtr<ExecutablePool>* executablePool, JSGlobalData* globalData, CodePtr* ctiStringLengthTrampoline, CodePtr* ctiVirtualCallPreLink, CodePtr* ctiVirtualCallLink, CodePtr* ctiVirtualCall, CodePtr* ctiNativeCallThunk)
{
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
// (1) This function provides fast property access for string length
Label stringLengthBegin = align();
// regT0 holds payload, regT1 holds tag
Jump string_failureCases1 = branch32(NotEqual, regT1, Imm32(JSValue::CellTag));
Jump string_failureCases2 = branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr));
// Checks out okay! - get the length from the Ustring.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSString, m_value) + OBJECT_OFFSETOF(UString, m_rep)), regT2);
load32(Address(regT2, OBJECT_OFFSETOF(UString::Rep, len)), regT2);
Jump string_failureCases3 = branch32(Above, regT2, Imm32(INT_MAX));
move(regT2, regT0);
move(Imm32(JSValue::Int32Tag), regT1);
ret();
#endif
// (2) Trampolines for the slow cases of op_call / op_call_eval / op_construct.
#if ENABLE(JIT_OPTIMIZE_CALL)
/* VirtualCallPreLink Trampoline */
Label virtualCallPreLinkBegin = align();
// regT0 holds callee, regT1 holds argCount.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_body)), regT2);
loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT2);
Jump hasCodeBlock1 = branchTestPtr(NonZero, regT2);
// Lazily generate a CodeBlock.
preserveReturnAddressAfterCall(regT3); // return address
restoreArgumentReference();
Call callJSFunction1 = call();
move(regT0, regT2);
emitGetJITStubArg(1, regT0); // callee
emitGetJITStubArg(5, regT1); // argCount
restoreReturnAddressBeforeReturn(regT3); // return address
hasCodeBlock1.link(this);
// regT2 holds codeBlock.
Jump isNativeFunc1 = branch32(Equal, Address(regT2, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode));
// Check argCount matches callee arity.
Jump arityCheckOkay1 = branch32(Equal, Address(regT2, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1);
preserveReturnAddressAfterCall(regT3);
emitPutJITStubArg(regT3, 3); // return address
emitPutJITStubArg(regT2, 7); // codeBlock
restoreArgumentReference();
Call callArityCheck1 = call();
move(regT1, callFrameRegister);
emitGetJITStubArg(1, regT0); // callee
emitGetJITStubArg(5, regT1); // argCount
restoreReturnAddressBeforeReturn(regT3); // return address
arityCheckOkay1.link(this);
isNativeFunc1.link(this);
compileOpCallInitializeCallFrame();
preserveReturnAddressAfterCall(regT3);
emitPutJITStubArg(regT3, 3);
restoreArgumentReference();
Call callDontLazyLinkCall = call();
restoreReturnAddressBeforeReturn(regT3);
jump(regT0);
/* VirtualCallLink Trampoline */
Label virtualCallLinkBegin = align();
// regT0 holds callee, regT1 holds argCount.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_body)), regT2);
loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT2);
Jump hasCodeBlock2 = branchTestPtr(NonZero, regT2);
// Lazily generate a CodeBlock.
preserveReturnAddressAfterCall(regT3); // return address
restoreArgumentReference();
Call callJSFunction2 = call();
move(regT0, regT2);
emitGetJITStubArg(1, regT0); // callee
emitGetJITStubArg(5, regT1); // argCount
restoreReturnAddressBeforeReturn(regT3); // return address
hasCodeBlock2.link(this);
// regT2 holds codeBlock.
Jump isNativeFunc2 = branch32(Equal, Address(regT2, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode));
// Check argCount matches callee arity.
Jump arityCheckOkay2 = branch32(Equal, Address(regT2, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1);
preserveReturnAddressAfterCall(regT3);
emitPutJITStubArg(regT3, 3); // return address
emitPutJITStubArg(regT2, 7); // codeBlock
restoreArgumentReference();
Call callArityCheck2 = call();
move(regT1, callFrameRegister);
emitGetJITStubArg(1, regT0); // callee
emitGetJITStubArg(5, regT1); // argCount
restoreReturnAddressBeforeReturn(regT3); // return address
arityCheckOkay2.link(this);
isNativeFunc2.link(this);
compileOpCallInitializeCallFrame();
preserveReturnAddressAfterCall(regT3);
emitPutJITStubArg(regT3, 3);
restoreArgumentReference();
Call callLazyLinkCall = call();
restoreReturnAddressBeforeReturn(regT3);
jump(regT0);
#endif // ENABLE(JIT_OPTIMIZE_CALL)
/* VirtualCall Trampoline */
Label virtualCallBegin = align();
// regT0 holds callee, regT1 holds argCount.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_body)), regT2);
loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT2);
Jump hasCodeBlock3 = branchTestPtr(NonZero, regT2);
// Lazily generate a CodeBlock.
preserveReturnAddressAfterCall(regT3); // return address
restoreArgumentReference();
Call callJSFunction3 = call();
move(regT0, regT2);
emitGetJITStubArg(1, regT0); // callee
emitGetJITStubArg(5, regT1); // argCount
restoreReturnAddressBeforeReturn(regT3); // return address
hasCodeBlock3.link(this);
// regT2 holds codeBlock.
Jump isNativeFunc3 = branch32(Equal, Address(regT2, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode));
// Check argCount matches callee.
Jump arityCheckOkay3 = branch32(Equal, Address(regT2, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1);
preserveReturnAddressAfterCall(regT3);
emitPutJITStubArg(regT3, 3); // return address
emitPutJITStubArg(regT2, 7); // codeBlock
restoreArgumentReference();
Call callArityCheck3 = call();
move(regT1, callFrameRegister);
emitGetJITStubArg(1, regT0); // callee
emitGetJITStubArg(5, regT1); // argCount
restoreReturnAddressBeforeReturn(regT3); // return address
arityCheckOkay3.link(this);
isNativeFunc3.link(this);
compileOpCallInitializeCallFrame();
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_body)), regT0);
loadPtr(Address(regT0, OBJECT_OFFSETOF(FunctionBodyNode, m_jitCode)), regT0);
jump(regT0);
#if PLATFORM(X86)
Label nativeCallThunk = align();
preserveReturnAddressAfterCall(regT0);
emitPutToCallFrameHeader(regT0, RegisterFile::ReturnPC); // Push return address
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT1);
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT1);
emitPutToCallFrameHeader(regT1, RegisterFile::ScopeChain);
emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT0);
/* We have two structs that we use to describe the stackframe we set up for our
* call to native code. NativeCallFrameStructure describes the how we set up the stack
* in advance of the call. NativeFunctionCalleeSignature describes the callframe
* as the native code expects it. We do this as we are using the fastcall calling
* convention which results in the callee popping its arguments off the stack, but
* not the rest of the callframe so we need a nice way to ensure we increment the
* stack pointer by the right amount after the call.
*/
#if COMPILER(MSVC) || PLATFORM(LINUX)
#if COMPILER(MSVC)
#pragma pack(push)
#pragma pack(4)
#endif // COMPILER(MSVC)
struct NativeCallFrameStructure {
// CallFrame* callFrame; // passed in EDX
JSObject* callee;
JSValue thisValue;
ArgList* argPointer;
ArgList args;
JSValue result;
};
struct NativeFunctionCalleeSignature {
JSObject* callee;
JSValue thisValue;
ArgList* argPointer;
};
#if COMPILER(MSVC)
#pragma pack(pop)
#endif // COMPILER(MSVC)
#else
struct NativeCallFrameStructure {
// CallFrame* callFrame; // passed in ECX
// JSObject* callee; // passed in EDX
JSValue thisValue;
ArgList* argPointer;
ArgList args;
};
struct NativeFunctionCalleeSignature {
JSValue thisValue;
ArgList* argPointer;
};
#endif
const int NativeCallFrameSize = (sizeof(NativeCallFrameStructure) + 15) & ~15;
// Allocate system stack frame
subPtr(Imm32(NativeCallFrameSize), stackPointerRegister);
// Set up arguments
subPtr(Imm32(1), regT0); // Don't include 'this' in argcount
// push argcount
storePtr(regT0, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, args) + OBJECT_OFFSETOF(ArgList, m_argCount)));
// Calculate the start of the callframe header, and store in regT1
addPtr(Imm32(-RegisterFile::CallFrameHeaderSize * (int)sizeof(Register)), callFrameRegister, regT1);
// Calculate start of arguments as callframe header - sizeof(Register) * argcount (regT0)
mul32(Imm32(sizeof(Register)), regT0, regT0);
subPtr(regT0, regT1);
storePtr(regT1, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, args) + OBJECT_OFFSETOF(ArgList, m_args)));
// ArgList is passed by reference so is stackPointerRegister + 4 * sizeof(Register)
addPtr(Imm32(OBJECT_OFFSETOF(NativeCallFrameStructure, args)), stackPointerRegister, regT0);
storePtr(regT0, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, argPointer)));
// regT1 currently points to the first argument, regT1 - sizeof(Register) points to 'this'
loadPtr(Address(regT1, -(int)sizeof(Register) + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT2);
loadPtr(Address(regT1, -(int)sizeof(Register) + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT3);
storePtr(regT2, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, thisValue) + OBJECT_OFFSETOF(JSValue, u.asBits.payload)));
storePtr(regT3, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, thisValue) + OBJECT_OFFSETOF(JSValue, u.asBits.tag)));
#if COMPILER(MSVC) || PLATFORM(LINUX)
// ArgList is passed by reference so is stackPointerRegister + 4 * sizeof(Register)
addPtr(Imm32(OBJECT_OFFSETOF(NativeCallFrameStructure, result)), stackPointerRegister, X86::ecx);
// Plant callee
emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::eax);
storePtr(X86::eax, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, callee)));
// Plant callframe
move(callFrameRegister, X86::edx);
call(Address(X86::eax, OBJECT_OFFSETOF(JSFunction, m_data)));
// JSValue is a non-POD type, so eax points to it
emitLoad(0, regT1, regT0, X86::eax);
#else
emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::edx); // callee
move(callFrameRegister, X86::ecx); // callFrame
call(Address(X86::edx, OBJECT_OFFSETOF(JSFunction, m_data)));
#endif
// We've put a few temporaries on the stack in addition to the actual arguments
// so pull them off now
addPtr(Imm32(NativeCallFrameSize - sizeof(NativeFunctionCalleeSignature)), stackPointerRegister);
// Check for an exception
// FIXME: Maybe we can optimize this comparison to JSValue().
move(ImmPtr(&globalData->exception), regT2);
Jump sawException1 = branch32(NotEqual, tagFor(0, regT2), Imm32(JSValue::CellTag));
Jump sawException2 = branch32(NonZero, payloadFor(0, regT2), Imm32(0));
// Grab the return address.
emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT3);
// Restore our caller's "r".
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister);
// Return.
restoreReturnAddressBeforeReturn(regT3);
ret();
// Handle an exception
sawException1.link(this);
sawException2.link(this);
// Grab the return address.
emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1);
move(ImmPtr(&globalData->exceptionLocation), regT2);
storePtr(regT1, regT2);
move(ImmPtr(reinterpret_cast<void*>(ctiVMThrowTrampoline)), regT2);
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister);
poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof (void*));
restoreReturnAddressBeforeReturn(regT2);
ret();
#elif ENABLE(JIT_OPTIMIZE_NATIVE_CALL)
#error "JIT_OPTIMIZE_NATIVE_CALL not yet supported on this platform."
#else
breakpoint();
#endif
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
Call string_failureCases1Call = makeTailRecursiveCall(string_failureCases1);
Call string_failureCases2Call = makeTailRecursiveCall(string_failureCases2);
Call string_failureCases3Call = makeTailRecursiveCall(string_failureCases3);
#endif
// All trampolines constructed! copy the code, link up calls, and set the pointers on the Machine object.
LinkBuffer patchBuffer(this, m_globalData->executableAllocator.poolForSize(m_assembler.size()));
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
patchBuffer.link(string_failureCases1Call, FunctionPtr(cti_op_get_by_id_string_fail));
patchBuffer.link(string_failureCases2Call, FunctionPtr(cti_op_get_by_id_string_fail));
patchBuffer.link(string_failureCases3Call, FunctionPtr(cti_op_get_by_id_string_fail));
#endif
#if ENABLE(JIT_OPTIMIZE_CALL)
patchBuffer.link(callArityCheck1, FunctionPtr(cti_op_call_arityCheck));
patchBuffer.link(callJSFunction1, FunctionPtr(cti_op_call_JSFunction));
patchBuffer.link(callArityCheck2, FunctionPtr(cti_op_call_arityCheck));
patchBuffer.link(callJSFunction2, FunctionPtr(cti_op_call_JSFunction));
patchBuffer.link(callDontLazyLinkCall, FunctionPtr(cti_vm_dontLazyLinkCall));
patchBuffer.link(callLazyLinkCall, FunctionPtr(cti_vm_lazyLinkCall));
#endif
patchBuffer.link(callArityCheck3, FunctionPtr(cti_op_call_arityCheck));
patchBuffer.link(callJSFunction3, FunctionPtr(cti_op_call_JSFunction));
CodeRef finalCode = patchBuffer.finalizeCode();
*executablePool = finalCode.m_executablePool;
*ctiVirtualCall = trampolineAt(finalCode, virtualCallBegin);
*ctiNativeCallThunk = trampolineAt(finalCode, nativeCallThunk);
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
*ctiStringLengthTrampoline = trampolineAt(finalCode, stringLengthBegin);
#else
UNUSED_PARAM(ctiStringLengthTrampoline);
#endif
#if ENABLE(JIT_OPTIMIZE_CALL)
*ctiVirtualCallPreLink = trampolineAt(finalCode, virtualCallPreLinkBegin);
*ctiVirtualCallLink = trampolineAt(finalCode, virtualCallLinkBegin);
#else
UNUSED_PARAM(ctiVirtualCallPreLink);
UNUSED_PARAM(ctiVirtualCallLink);
#endif
}
void JIT::emit_op_mov(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src = currentInstruction[2].u.operand;
if (m_codeBlock->isConstantRegisterIndex(src))
emitStore(dst, getConstantOperand(src));
else {
emitLoad(src, regT1, regT0);
emitStore(dst, regT1, regT0);
map(m_bytecodeIndex + OPCODE_LENGTH(op_mov), dst, regT1, regT0);
}
}
void JIT::emit_op_end(Instruction* currentInstruction)
{
if (m_codeBlock->needsFullScopeChain())
JITStubCall(this, cti_op_end).call();
ASSERT(returnValueRegister != callFrameRegister);
emitLoad(currentInstruction[1].u.operand, regT1, regT0);
restoreReturnAddressBeforeReturn(Address(callFrameRegister, RegisterFile::ReturnPC * static_cast<int>(sizeof(Register))));
ret();
}
void JIT::emit_op_jmp(Instruction* currentInstruction)
{
unsigned target = currentInstruction[1].u.operand;
addJump(jump(), target + 1);
}
void JIT::emit_op_loop(Instruction* currentInstruction)
{
unsigned target = currentInstruction[1].u.operand;
emitTimeoutCheck();
addJump(jump(), target + 1);
}
void JIT::emit_op_loop_if_less(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emitTimeoutCheck();
if (isOperandConstantImmediateInt(op1)) {
emitLoad(op2, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addJump(branch32(GreaterThan, regT0, Imm32(getConstantOperand(op1).asInt32())), target + 3);
return;
}
if (isOperandConstantImmediateInt(op2)) {
emitLoad(op1, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addJump(branch32(LessThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target + 3);
return;
}
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
addJump(branch32(LessThan, regT0, regT2), target + 3);
}
void JIT::emitSlow_op_loop_if_less(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
JITStubCall stubCall(this, cti_op_loop_if_less);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3);
}
void JIT::emit_op_loop_if_lesseq(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emitTimeoutCheck();
if (isOperandConstantImmediateInt(op1)) {
emitLoad(op2, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addJump(branch32(GreaterThanOrEqual, regT0, Imm32(getConstantOperand(op1).asInt32())), target + 3);
return;
}
if (isOperandConstantImmediateInt(op2)) {
emitLoad(op1, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addJump(branch32(LessThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target + 3);
return;
}
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
addJump(branch32(LessThanOrEqual, regT0, regT2), target + 3);
}
void JIT::emitSlow_op_loop_if_lesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
JITStubCall stubCall(this, cti_op_loop_if_lesseq);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3);
}
void JIT::emit_op_new_object(Instruction* currentInstruction)
{
JITStubCall(this, cti_op_new_object).call(currentInstruction[1].u.operand);
}
void JIT::emit_op_instanceof(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned value = currentInstruction[2].u.operand;
unsigned baseVal = currentInstruction[3].u.operand;
unsigned proto = currentInstruction[4].u.operand;
// Load the operands (baseVal, proto, and value respectively) into registers.
// We use regT0 for baseVal since we will be done with this first, and we can then use it for the result.
emitLoadPayload(proto, regT1);
emitLoadPayload(baseVal, regT0);
emitLoadPayload(value, regT2);
// Check that baseVal & proto are cells.
emitJumpSlowCaseIfNotJSCell(proto);
emitJumpSlowCaseIfNotJSCell(baseVal);
// Check that baseVal is an object, that it 'ImplementsHasInstance' but that it does not 'OverridesHasInstance'.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT0);
addSlowCase(branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType))); // FIXME: Maybe remove this test.
addSlowCase(branchTest32(Zero, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(ImplementsHasInstance))); // FIXME: TOT checks ImplementsDefaultHasInstance.
// If value is not an Object, return false.
emitLoadTag(value, regT0);
Jump valueIsImmediate = branch32(NotEqual, regT0, Imm32(JSValue::CellTag));
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSCell, m_structure)), regT0);
Jump valueIsNotObject = branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType)); // FIXME: Maybe remove this test.
// Check proto is object.
loadPtr(Address(regT1, OBJECT_OFFSETOF(JSCell, m_structure)), regT0);
addSlowCase(branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType)));
// Optimistically load the result true, and start looping.
// Initially, regT1 still contains proto and regT2 still contains value.
// As we loop regT2 will be updated with its prototype, recursively walking the prototype chain.
move(Imm32(JSValue::TrueTag), regT0);
Label loop(this);
// Load the prototype of the object in regT2. If this is equal to regT1 - WIN!
// Otherwise, check if we've hit null - if we have then drop out of the loop, if not go again.
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSCell, m_structure)), regT2);
load32(Address(regT2, OBJECT_OFFSETOF(Structure, m_prototype) + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT2);
Jump isInstance = branchPtr(Equal, regT2, regT1);
branch32(NotEqual, regT2, Imm32(0), loop);
// We get here either by dropping out of the loop, or if value was not an Object. Result is false.
valueIsImmediate.link(this);
valueIsNotObject.link(this);
move(Imm32(JSValue::FalseTag), regT0);
// isInstance jumps right down to here, to skip setting the result to false (it has already set true).
isInstance.link(this);
emitStoreBool(dst, regT0);
}
void JIT::emitSlow_op_instanceof(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned value = currentInstruction[2].u.operand;
unsigned baseVal = currentInstruction[3].u.operand;
unsigned proto = currentInstruction[4].u.operand;
linkSlowCaseIfNotJSCell(iter, baseVal);
linkSlowCaseIfNotJSCell(iter, proto);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_instanceof);
stubCall.addArgument(value);
stubCall.addArgument(baseVal);
stubCall.addArgument(proto);
stubCall.call(dst);
}
void JIT::emit_op_new_func(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_new_func);
stubCall.addArgument(ImmPtr(m_codeBlock->function(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_get_global_var(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
JSGlobalObject* globalObject = static_cast<JSGlobalObject*>(currentInstruction[2].u.jsCell);
ASSERT(globalObject->isGlobalObject());
int index = currentInstruction[3].u.operand;
loadPtr(&globalObject->d()->registers, regT2);
emitLoad(index, regT1, regT0, regT2);
emitStore(dst, regT1, regT0);
map(m_bytecodeIndex + OPCODE_LENGTH(op_get_global_var), dst, regT1, regT0);
}
void JIT::emit_op_put_global_var(Instruction* currentInstruction)
{
JSGlobalObject* globalObject = static_cast<JSGlobalObject*>(currentInstruction[1].u.jsCell);
ASSERT(globalObject->isGlobalObject());
int index = currentInstruction[2].u.operand;
int value = currentInstruction[3].u.operand;
emitLoad(value, regT1, regT0);
loadPtr(&globalObject->d()->registers, regT2);
emitStore(index, regT1, regT0, regT2);
map(m_bytecodeIndex + OPCODE_LENGTH(op_put_global_var), value, regT1, regT0);
}
void JIT::emit_op_get_scoped_var(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int index = currentInstruction[2].u.operand;
int skip = currentInstruction[3].u.operand + m_codeBlock->needsFullScopeChain();
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT2);
while (skip--)
loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, next)), regT2);
loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, object)), regT2);
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSVariableObject, d)), regT2);
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSVariableObject::JSVariableObjectData, registers)), regT2);
emitLoad(index, regT1, regT0, regT2);
emitStore(dst, regT1, regT0);
map(m_bytecodeIndex + OPCODE_LENGTH(op_get_scoped_var), dst, regT1, regT0);
}
void JIT::emit_op_put_scoped_var(Instruction* currentInstruction)
{
int index = currentInstruction[1].u.operand;
int skip = currentInstruction[2].u.operand + m_codeBlock->needsFullScopeChain();
int value = currentInstruction[3].u.operand;
emitLoad(value, regT1, regT0);
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT2);
while (skip--)
loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, next)), regT2);
loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, object)), regT2);
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSVariableObject, d)), regT2);
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSVariableObject::JSVariableObjectData, registers)), regT2);
emitStore(index, regT1, regT0, regT2);
map(m_bytecodeIndex + OPCODE_LENGTH(op_put_scoped_var), value, regT1, regT0);
}
void JIT::emit_op_tear_off_activation(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_tear_off_activation);
stubCall.addArgument(currentInstruction[1].u.operand);
stubCall.call();
}
void JIT::emit_op_tear_off_arguments(Instruction*)
{
JITStubCall(this, cti_op_tear_off_arguments).call();
}
void JIT::emit_op_new_array(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_new_array);
stubCall.addArgument(Imm32(currentInstruction[2].u.operand));
stubCall.addArgument(Imm32(currentInstruction[3].u.operand));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_resolve(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_resolve);
stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_to_primitive(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isImm = branch32(NotEqual, regT1, Imm32(JSValue::CellTag));
addSlowCase(branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr)));
isImm.link(this);
if (dst != src)
emitStore(dst, regT1, regT0);
map(m_bytecodeIndex + OPCODE_LENGTH(op_to_primitive), dst, regT1, regT0);
}
void JIT::emitSlow_op_to_primitive(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
int dst = currentInstruction[1].u.operand;
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_to_primitive);
stubCall.addArgument(regT1, regT0);
stubCall.call(dst);
}
void JIT::emit_op_strcat(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_strcat);
stubCall.addArgument(Imm32(currentInstruction[2].u.operand));
stubCall.addArgument(Imm32(currentInstruction[3].u.operand));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_loop_if_true(Instruction* currentInstruction)
{
unsigned cond = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitTimeoutCheck();
emitLoad(cond, regT1, regT0);
Jump isNotInteger = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag));
addJump(branch32(NotEqual, regT0, Imm32(0)), target + 2);
Jump isNotZero = jump();
isNotInteger.link(this);
addJump(branch32(Equal, regT1, Imm32(JSValue::TrueTag)), target + 2);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::FalseTag)));
isNotZero.link(this);
}
void JIT::emitSlow_op_loop_if_true(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned cond = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_jtrue);
stubCall.addArgument(cond);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 2);
}
void JIT::emit_op_resolve_base(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_resolve_base);
stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_resolve_skip(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_resolve_skip);
stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand)));
stubCall.addArgument(Imm32(currentInstruction[3].u.operand + m_codeBlock->needsFullScopeChain()));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_resolve_global(Instruction* currentInstruction)
{
// FIXME: Optimize to use patching instead of so many memory accesses.
unsigned dst = currentInstruction[1].u.operand;
void* globalObject = currentInstruction[2].u.jsCell;
unsigned currentIndex = m_globalResolveInfoIndex++;
void* structureAddress = &(m_codeBlock->globalResolveInfo(currentIndex).structure);
void* offsetAddr = &(m_codeBlock->globalResolveInfo(currentIndex).offset);
// Verify structure.
move(ImmPtr(globalObject), regT0);
loadPtr(structureAddress, regT1);
addSlowCase(branchPtr(NotEqual, regT1, Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure))));
// Load property.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSGlobalObject, m_externalStorage)), regT2);
load32(offsetAddr, regT3);
load32(BaseIndex(regT2, regT3, TimesEight), regT0); // payload
load32(BaseIndex(regT2, regT3, TimesEight, 4), regT1); // tag
emitStore(dst, regT1, regT0);
map(m_bytecodeIndex + OPCODE_LENGTH(op_resolve_global), dst, regT1, regT0);
}
void JIT::emitSlow_op_resolve_global(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
void* globalObject = currentInstruction[2].u.jsCell;
Identifier* ident = &m_codeBlock->identifier(currentInstruction[3].u.operand);
unsigned currentIndex = m_globalResolveInfoIndex++;
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_resolve_global);
stubCall.addArgument(ImmPtr(globalObject));
stubCall.addArgument(ImmPtr(ident));
stubCall.addArgument(Imm32(currentIndex));
stubCall.call(dst);
}
void JIT::emit_op_not(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src = currentInstruction[2].u.operand;
emitLoadTag(src, regT0);
xor32(Imm32(JSValue::FalseTag), regT0);
addSlowCase(branchTest32(NonZero, regT0, Imm32(~1)));
xor32(Imm32(JSValue::TrueTag), regT0);
emitStoreBool(dst, regT0, (dst == src));
}
void JIT::emitSlow_op_not(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src = currentInstruction[2].u.operand;
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_not);
stubCall.addArgument(src);
stubCall.call(dst);
}
void JIT::emit_op_jfalse(Instruction* currentInstruction)
{
unsigned cond = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitLoad(cond, regT1, regT0);
Jump isTrue = branch32(Equal, regT1, Imm32(JSValue::TrueTag));
addJump(branch32(Equal, regT1, Imm32(JSValue::FalseTag)), target + 2);
Jump isNotInteger = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag));
Jump isTrue2 = branch32(NotEqual, regT0, Imm32(0));
addJump(jump(), target + 2);
if (supportsFloatingPoint()) {
isNotInteger.link(this);
addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
zeroDouble(fpRegT0);
emitLoadDouble(cond, fpRegT1);
addJump(branchDouble(DoubleEqual, fpRegT0, fpRegT1), target + 2);
} else
addSlowCase(isNotInteger);
isTrue.link(this);
isTrue2.link(this);
}
void JIT::emitSlow_op_jfalse(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned cond = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_jtrue);
stubCall.addArgument(cond);
stubCall.call();
emitJumpSlowToHot(branchTest32(Zero, regT0), target + 2); // Inverted.
}
void JIT::emit_op_jtrue(Instruction* currentInstruction)
{
unsigned cond = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitLoad(cond, regT1, regT0);
Jump isFalse = branch32(Equal, regT1, Imm32(JSValue::FalseTag));
addJump(branch32(Equal, regT1, Imm32(JSValue::TrueTag)), target + 2);
Jump isNotInteger = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag));
Jump isFalse2 = branch32(Equal, regT0, Imm32(0));
addJump(jump(), target + 2);
if (supportsFloatingPoint()) {
isNotInteger.link(this);
addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
zeroDouble(fpRegT0);
emitLoadDouble(cond, fpRegT1);
addJump(branchDouble(DoubleNotEqual, fpRegT0, fpRegT1), target + 2);
} else
addSlowCase(isNotInteger);
isFalse.link(this);
isFalse2.link(this);
}
void JIT::emitSlow_op_jtrue(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned cond = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_jtrue);
stubCall.addArgument(cond);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 2);
}
void JIT::emit_op_jeq_null(Instruction* currentInstruction)
{
unsigned src = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isImmediate = branch32(NotEqual, regT1, Imm32(JSValue::CellTag));
// First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2);
addJump(branchTest32(NonZero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined)), target + 2);
Jump wasNotImmediate = jump();
// Now handle the immediate cases - undefined & null
isImmediate.link(this);
set32(Equal, regT1, Imm32(JSValue::NullTag), regT2);
set32(Equal, regT1, Imm32(JSValue::UndefinedTag), regT1);
or32(regT2, regT1);
addJump(branchTest32(NonZero, regT1), target + 2);
wasNotImmediate.link(this);
}
void JIT::emit_op_jneq_null(Instruction* currentInstruction)
{
unsigned src = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isImmediate = branch32(NotEqual, regT1, Imm32(JSValue::CellTag));
// First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2);
addJump(branchTest32(Zero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined)), target + 2);
Jump wasNotImmediate = jump();
// Now handle the immediate cases - undefined & null
isImmediate.link(this);
set32(Equal, regT1, Imm32(JSValue::NullTag), regT2);
set32(Equal, regT1, Imm32(JSValue::UndefinedTag), regT1);
or32(regT2, regT1);
addJump(branchTest32(Zero, regT1), target + 2);
wasNotImmediate.link(this);
}
void JIT::emit_op_jneq_ptr(Instruction* currentInstruction)
{
unsigned src = currentInstruction[1].u.operand;
JSCell* ptr = currentInstruction[2].u.jsCell;
unsigned target = currentInstruction[3].u.operand;
emitLoad(src, regT1, regT0);
addJump(branch32(NotEqual, regT1, Imm32(JSValue::CellTag)), target + 3);
addJump(branchPtr(NotEqual, regT0, ImmPtr(ptr)), target + 3);
}
void JIT::emit_op_jsr(Instruction* currentInstruction)
{
int retAddrDst = currentInstruction[1].u.operand;
int target = currentInstruction[2].u.operand;
DataLabelPtr storeLocation = storePtrWithPatch(ImmPtr(0), Address(callFrameRegister, sizeof(Register) * retAddrDst));
addJump(jump(), target + 2);
m_jsrSites.append(JSRInfo(storeLocation, label()));
}
void JIT::emit_op_sret(Instruction* currentInstruction)
{
jump(Address(callFrameRegister, sizeof(Register) * currentInstruction[1].u.operand));
}
void JIT::emit_op_eq(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
unsigned src2 = currentInstruction[3].u.operand;
emitLoad2(src1, regT1, regT0, src2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, regT3));
addSlowCase(branch32(Equal, regT1, Imm32(JSValue::CellTag)));
addSlowCase(branch32(Below, regT1, Imm32(JSValue::LowestTag)));
set8(Equal, regT0, regT2, regT0);
or32(Imm32(JSValue::FalseTag), regT0);
emitStoreBool(dst, regT0);
}
void JIT::emitSlow_op_eq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
JumpList storeResult;
JumpList genericCase;
genericCase.append(getSlowCase(iter)); // tags not equal
linkSlowCase(iter); // tags equal and JSCell
genericCase.append(branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr)));
genericCase.append(branchPtr(NotEqual, Address(regT2), ImmPtr(m_globalData->jsStringVPtr)));
// String case.
JITStubCall stubCallEqStrings(this, cti_op_eq_strings);
stubCallEqStrings.addArgument(regT0);
stubCallEqStrings.addArgument(regT2);
stubCallEqStrings.call();
storeResult.append(jump());
// Generic case.
genericCase.append(getSlowCase(iter)); // doubles
genericCase.link(this);
JITStubCall stubCallEq(this, cti_op_eq);
stubCallEq.addArgument(op1);
stubCallEq.addArgument(op2);
stubCallEq.call(regT0);
storeResult.link(this);
or32(Imm32(JSValue::FalseTag), regT0);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_neq(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
unsigned src2 = currentInstruction[3].u.operand;
emitLoad2(src1, regT1, regT0, src2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, regT3));
addSlowCase(branch32(Equal, regT1, Imm32(JSValue::CellTag)));
addSlowCase(branch32(Below, regT1, Imm32(JSValue::LowestTag)));
set8(NotEqual, regT0, regT2, regT0);
or32(Imm32(JSValue::FalseTag), regT0);
emitStoreBool(dst, regT0);
}
void JIT::emitSlow_op_neq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
JumpList storeResult;
JumpList genericCase;
genericCase.append(getSlowCase(iter)); // tags not equal
linkSlowCase(iter); // tags equal and JSCell
genericCase.append(branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr)));
genericCase.append(branchPtr(NotEqual, Address(regT2), ImmPtr(m_globalData->jsStringVPtr)));
// String case.
JITStubCall stubCallEqStrings(this, cti_op_eq_strings);
stubCallEqStrings.addArgument(regT0);
stubCallEqStrings.addArgument(regT2);
stubCallEqStrings.call(regT0);
storeResult.append(jump());
// Generic case.
genericCase.append(getSlowCase(iter)); // doubles
genericCase.link(this);
JITStubCall stubCallEq(this, cti_op_eq);
stubCallEq.addArgument(regT1, regT0);
stubCallEq.addArgument(regT3, regT2);
stubCallEq.call(regT0);
storeResult.link(this);
xor32(Imm32(0x1), regT0);
or32(Imm32(JSValue::FalseTag), regT0);
emitStoreBool(dst, regT0);
}
void JIT::compileOpStrictEq(Instruction* currentInstruction, CompileOpStrictEqType type)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
unsigned src2 = currentInstruction[3].u.operand;
emitLoadTag(src1, regT0);
emitLoadTag(src2, regT1);
// Jump to a slow case if either operand is double, or if both operands are
// cells and/or Int32s.
move(regT0, regT2);
and32(regT1, regT2);
addSlowCase(branch32(Below, regT2, Imm32(JSValue::LowestTag)));
addSlowCase(branch32(AboveOrEqual, regT2, Imm32(JSValue::CellTag)));
if (type == OpStrictEq)
set8(Equal, regT0, regT1, regT0);
else
set8(NotEqual, regT0, regT1, regT0);
or32(Imm32(JSValue::FalseTag), regT0);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_stricteq(Instruction* currentInstruction)
{
compileOpStrictEq(currentInstruction, OpStrictEq);
}
void JIT::emitSlow_op_stricteq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
unsigned src2 = currentInstruction[3].u.operand;
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_stricteq);
stubCall.addArgument(src1);
stubCall.addArgument(src2);
stubCall.call(dst);
}
void JIT::emit_op_nstricteq(Instruction* currentInstruction)
{
compileOpStrictEq(currentInstruction, OpNStrictEq);
}
void JIT::emitSlow_op_nstricteq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
unsigned src2 = currentInstruction[3].u.operand;
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_nstricteq);
stubCall.addArgument(src1);
stubCall.addArgument(src2);
stubCall.call(dst);
}
void JIT::emit_op_eq_null(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isImmediate = branch32(NotEqual, regT1, Imm32(JSValue::CellTag));
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT1);
setTest8(NonZero, Address(regT1, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined), regT1);
Jump wasNotImmediate = jump();
isImmediate.link(this);
set8(Equal, regT1, Imm32(JSValue::NullTag), regT2);
set8(Equal, regT1, Imm32(JSValue::UndefinedTag), regT1);
or32(regT2, regT1);
wasNotImmediate.link(this);
or32(Imm32(JSValue::FalseTag), regT1);
emitStoreBool(dst, regT1);
}
void JIT::emit_op_neq_null(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isImmediate = branch32(NotEqual, regT1, Imm32(JSValue::CellTag));
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT1);
setTest8(Zero, Address(regT1, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined), regT1);
Jump wasNotImmediate = jump();
isImmediate.link(this);
set8(NotEqual, regT1, Imm32(JSValue::NullTag), regT2);
set8(NotEqual, regT1, Imm32(JSValue::UndefinedTag), regT1);
and32(regT2, regT1);
wasNotImmediate.link(this);
or32(Imm32(JSValue::FalseTag), regT1);
emitStoreBool(dst, regT1);
}
void JIT::emit_op_resolve_with_base(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_resolve_with_base);
stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[3].u.operand)));
stubCall.addArgument(Imm32(currentInstruction[1].u.operand));
stubCall.call(currentInstruction[2].u.operand);
}
void JIT::emit_op_new_func_exp(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_new_func_exp);
stubCall.addArgument(ImmPtr(m_codeBlock->functionExpression(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_new_regexp(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_new_regexp);
stubCall.addArgument(ImmPtr(m_codeBlock->regexp(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_throw(Instruction* currentInstruction)
{
unsigned exception = currentInstruction[1].u.operand;
JITStubCall stubCall(this, cti_op_throw);
stubCall.addArgument(exception);
stubCall.call();
#ifndef NDEBUG
// cti_op_throw always changes it's return address,
// this point in the code should never be reached.
breakpoint();
#endif
}
void JIT::emit_op_next_pname(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int iter = currentInstruction[2].u.operand;
int target = currentInstruction[3].u.operand;
load32(Address(callFrameRegister, (iter * sizeof(Register))), regT0);
JITStubCall stubCall(this, cti_op_next_pname);
stubCall.addArgument(regT0);
stubCall.call();
Jump endOfIter = branchTestPtr(Zero, regT0);
emitStore(dst, regT1, regT0);
map(m_bytecodeIndex + OPCODE_LENGTH(op_next_pname), dst, regT1, regT0);
addJump(jump(), target + 3);
endOfIter.link(this);
}
void JIT::emit_op_push_scope(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_push_scope);
stubCall.addArgument(currentInstruction[1].u.operand);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_pop_scope(Instruction*)
{
JITStubCall(this, cti_op_pop_scope).call();
}
void JIT::emit_op_to_jsnumber(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isInt32 = branch32(Equal, regT1, Imm32(JSValue::Int32Tag));
addSlowCase(branch32(AboveOrEqual, regT1, Imm32(JSValue::DeletedValueTag)));
isInt32.link(this);
if (src != dst)
emitStore(dst, regT1, regT0);
map(m_bytecodeIndex + OPCODE_LENGTH(op_to_jsnumber), dst, regT1, regT0);
}
void JIT::emitSlow_op_to_jsnumber(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
int dst = currentInstruction[1].u.operand;
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_to_jsnumber);
stubCall.addArgument(regT1, regT0);
stubCall.call(dst);
}
void JIT::emit_op_push_new_scope(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_push_new_scope);
stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand)));
stubCall.addArgument(currentInstruction[3].u.operand);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_catch(Instruction* currentInstruction)
{
unsigned exception = currentInstruction[1].u.operand;
// This opcode only executes after a return from cti_op_throw.
// cti_op_throw may have taken us to a call frame further up the stack; reload
// the call frame pointer to adjust.
peek(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof (void*));
// Now store the exception returned by cti_op_throw.
emitStore(exception, regT1, regT0);
map(m_bytecodeIndex + OPCODE_LENGTH(op_catch), exception, regT1, regT0);
}
void JIT::emit_op_jmp_scopes(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_jmp_scopes);
stubCall.addArgument(Imm32(currentInstruction[1].u.operand));
stubCall.call();
addJump(jump(), currentInstruction[2].u.operand + 2);
}
void JIT::emit_op_switch_imm(Instruction* currentInstruction)
{
unsigned tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
SimpleJumpTable* jumpTable = &m_codeBlock->immediateSwitchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset, SwitchRecord::Immediate));
jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size());
JITStubCall stubCall(this, cti_op_switch_imm);
stubCall.addArgument(scrutinee);
stubCall.addArgument(Imm32(tableIndex));
stubCall.call();
jump(regT0);
}
void JIT::emit_op_switch_char(Instruction* currentInstruction)
{
unsigned tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
SimpleJumpTable* jumpTable = &m_codeBlock->characterSwitchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset, SwitchRecord::Character));
jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size());
JITStubCall stubCall(this, cti_op_switch_char);
stubCall.addArgument(scrutinee);
stubCall.addArgument(Imm32(tableIndex));
stubCall.call();
jump(regT0);
}
void JIT::emit_op_switch_string(Instruction* currentInstruction)
{
unsigned tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset));
JITStubCall stubCall(this, cti_op_switch_string);
stubCall.addArgument(scrutinee);
stubCall.addArgument(Imm32(tableIndex));
stubCall.call();
jump(regT0);
}
void JIT::emit_op_new_error(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned type = currentInstruction[2].u.operand;
unsigned message = currentInstruction[3].u.operand;
JITStubCall stubCall(this, cti_op_new_error);
stubCall.addArgument(Imm32(type));
stubCall.addArgument(m_codeBlock->getConstant(message));
stubCall.addArgument(Imm32(m_bytecodeIndex));
stubCall.call(dst);
}
void JIT::emit_op_debug(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_debug);
stubCall.addArgument(Imm32(currentInstruction[1].u.operand));
stubCall.addArgument(Imm32(currentInstruction[2].u.operand));
stubCall.addArgument(Imm32(currentInstruction[3].u.operand));
stubCall.call();
}
void JIT::emit_op_enter(Instruction*)
{
// Even though JIT code doesn't use them, we initialize our constant
// registers to zap stale pointers, to avoid unnecessarily prolonging
// object lifetime and increasing GC pressure.
for (int i = 0; i < m_codeBlock->m_numVars; ++i)
emitStore(i, jsUndefined());
}
void JIT::emit_op_enter_with_activation(Instruction* currentInstruction)
{
emit_op_enter(currentInstruction);
JITStubCall(this, cti_op_push_activation).call(currentInstruction[1].u.operand);
}
void JIT::emit_op_create_arguments(Instruction*)
{
Jump argsNotCell = branch32(NotEqual, tagFor(RegisterFile::ArgumentsRegister, callFrameRegister), Imm32(JSValue::CellTag));
Jump argsNotNull = branchTestPtr(NonZero, payloadFor(RegisterFile::ArgumentsRegister, callFrameRegister));
// If we get here the arguments pointer is a null cell - i.e. arguments need lazy creation.
if (m_codeBlock->m_numParameters == 1)
JITStubCall(this, cti_op_create_arguments_no_params).call();
else
JITStubCall(this, cti_op_create_arguments).call();
argsNotCell.link(this);
argsNotNull.link(this);
}
void JIT::emit_op_init_arguments(Instruction*)
{
emitStore(RegisterFile::ArgumentsRegister, JSValue(), callFrameRegister);
}
void JIT::emit_op_convert_this(Instruction* currentInstruction)
{
unsigned thisRegister = currentInstruction[1].u.operand;
emitLoad(thisRegister, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::CellTag)));
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2);
addSlowCase(branchTest32(NonZero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(NeedsThisConversion)));
map(m_bytecodeIndex + OPCODE_LENGTH(op_convert_this), thisRegister, regT1, regT0);
}
void JIT::emitSlow_op_convert_this(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned thisRegister = currentInstruction[1].u.operand;
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_convert_this);
stubCall.addArgument(regT1, regT0);
stubCall.call(thisRegister);
}
void JIT::emit_op_profile_will_call(Instruction* currentInstruction)
{
peek(regT2, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof (void*));
Jump noProfiler = branchTestPtr(Zero, Address(regT2));
JITStubCall stubCall(this, cti_op_profile_will_call);
stubCall.addArgument(currentInstruction[1].u.operand);
stubCall.call();
noProfiler.link(this);
}
void JIT::emit_op_profile_did_call(Instruction* currentInstruction)
{
peek(regT2, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof (void*));
Jump noProfiler = branchTestPtr(Zero, Address(regT2));
JITStubCall stubCall(this, cti_op_profile_did_call);
stubCall.addArgument(currentInstruction[1].u.operand);
stubCall.call();
noProfiler.link(this);
}
#else // USE(JSVALUE32_64)
#define RECORD_JUMP_TARGET(targetOffset) \
do { m_labels[m_bytecodeIndex + (targetOffset)].used(); } while (false)
void JIT::privateCompileCTIMachineTrampolines(RefPtr<ExecutablePool>* executablePool, JSGlobalData* globalData, CodePtr* ctiStringLengthTrampoline, CodePtr* ctiVirtualCallPreLink, CodePtr* ctiVirtualCallLink, CodePtr* ctiVirtualCall, CodePtr* ctiNativeCallThunk)
{
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
// (2) The second function provides fast property access for string length
Label stringLengthBegin = align();
// Check eax is a string
Jump string_failureCases1 = emitJumpIfNotJSCell(regT0);
Jump string_failureCases2 = branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr));
// Checks out okay! - get the length from the Ustring.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSString, m_value) + OBJECT_OFFSETOF(UString, m_rep)), regT0);
load32(Address(regT0, OBJECT_OFFSETOF(UString::Rep, len)), regT0);
Jump string_failureCases3 = branch32(Above, regT0, Imm32(JSImmediate::maxImmediateInt));
// regT0 contains a 64 bit value (is positive, is zero extended) so we don't need sign extend here.
emitFastArithIntToImmNoCheck(regT0, regT0);
ret();
#endif
// (3) Trampolines for the slow cases of op_call / op_call_eval / op_construct.
COMPILE_ASSERT(sizeof(CodeType) == 4, CodeTypeEnumMustBe32Bit);
Label virtualCallPreLinkBegin = align();
// Load the callee CodeBlock* into eax
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3);
loadPtr(Address(regT3, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT0);
Jump hasCodeBlock1 = branchTestPtr(NonZero, regT0);
preserveReturnAddressAfterCall(regT3);
restoreArgumentReference();
Call callJSFunction1 = call();
emitGetJITStubArg(1, regT2);
emitGetJITStubArg(3, regT1);
restoreReturnAddressBeforeReturn(regT3);
hasCodeBlock1.link(this);
Jump isNativeFunc1 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode));
// Check argCount matches callee arity.
Jump arityCheckOkay1 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1);
preserveReturnAddressAfterCall(regT3);
emitPutJITStubArg(regT3, 2);
emitPutJITStubArg(regT0, 4);
restoreArgumentReference();
Call callArityCheck1 = call();
move(regT1, callFrameRegister);
emitGetJITStubArg(1, regT2);
emitGetJITStubArg(3, regT1);
restoreReturnAddressBeforeReturn(regT3);
arityCheckOkay1.link(this);
isNativeFunc1.link(this);
compileOpCallInitializeCallFrame();
preserveReturnAddressAfterCall(regT3);
emitPutJITStubArg(regT3, 2);
restoreArgumentReference();
Call callDontLazyLinkCall = call();
emitGetJITStubArg(1, regT2);
restoreReturnAddressBeforeReturn(regT3);
jump(regT0);
Label virtualCallLinkBegin = align();
// Load the callee CodeBlock* into eax
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3);
loadPtr(Address(regT3, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT0);
Jump hasCodeBlock2 = branchTestPtr(NonZero, regT0);
preserveReturnAddressAfterCall(regT3);
restoreArgumentReference();
Call callJSFunction2 = call();
emitGetJITStubArg(1, regT2);
emitGetJITStubArg(3, regT1);
restoreReturnAddressBeforeReturn(regT3);
hasCodeBlock2.link(this);
Jump isNativeFunc2 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode));
// Check argCount matches callee arity.
Jump arityCheckOkay2 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1);
preserveReturnAddressAfterCall(regT3);
emitPutJITStubArg(regT3, 2);
emitPutJITStubArg(regT0, 4);
restoreArgumentReference();
Call callArityCheck2 = call();
move(regT1, callFrameRegister);
emitGetJITStubArg(1, regT2);
emitGetJITStubArg(3, regT1);
restoreReturnAddressBeforeReturn(regT3);
arityCheckOkay2.link(this);
isNativeFunc2.link(this);
compileOpCallInitializeCallFrame();
preserveReturnAddressAfterCall(regT3);
emitPutJITStubArg(regT3, 2);
restoreArgumentReference();
Call callLazyLinkCall = call();
restoreReturnAddressBeforeReturn(regT3);
jump(regT0);
Label virtualCallBegin = align();
// Load the callee CodeBlock* into eax
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3);
loadPtr(Address(regT3, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT0);
Jump hasCodeBlock3 = branchTestPtr(NonZero, regT0);
preserveReturnAddressAfterCall(regT3);
restoreArgumentReference();
Call callJSFunction3 = call();
emitGetJITStubArg(1, regT2);
emitGetJITStubArg(3, regT1);
restoreReturnAddressBeforeReturn(regT3);
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3); // reload the function body nody, so we can reload the code pointer.
hasCodeBlock3.link(this);
Jump isNativeFunc3 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode));
// Check argCount matches callee arity.
Jump arityCheckOkay3 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1);
preserveReturnAddressAfterCall(regT3);
emitPutJITStubArg(regT3, 2);
emitPutJITStubArg(regT0, 4);
restoreArgumentReference();
Call callArityCheck3 = call();
move(regT1, callFrameRegister);
emitGetJITStubArg(1, regT2);
emitGetJITStubArg(3, regT1);
restoreReturnAddressBeforeReturn(regT3);
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3); // reload the function body nody, so we can reload the code pointer.
arityCheckOkay3.link(this);
isNativeFunc3.link(this);
// load ctiCode from the new codeBlock.
loadPtr(Address(regT3, OBJECT_OFFSETOF(FunctionBodyNode, m_jitCode)), regT0);
compileOpCallInitializeCallFrame();
jump(regT0);
Label nativeCallThunk = align();
preserveReturnAddressAfterCall(regT0);
emitPutToCallFrameHeader(regT0, RegisterFile::ReturnPC); // Push return address
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT1);
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT1);
emitPutToCallFrameHeader(regT1, RegisterFile::ScopeChain);
#if PLATFORM(X86_64)
emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, X86::ecx);
// Allocate stack space for our arglist
subPtr(Imm32(sizeof(ArgList)), stackPointerRegister);
COMPILE_ASSERT((sizeof(ArgList) & 0xf) == 0, ArgList_should_by_16byte_aligned);
// Set up arguments
subPtr(Imm32(1), X86::ecx); // Don't include 'this' in argcount
// Push argcount
storePtr(X86::ecx, Address(stackPointerRegister, OBJECT_OFFSETOF(ArgList, m_argCount)));
// Calculate the start of the callframe header, and store in edx
addPtr(Imm32(-RegisterFile::CallFrameHeaderSize * (int32_t)sizeof(Register)), callFrameRegister, X86::edx);
// Calculate start of arguments as callframe header - sizeof(Register) * argcount (ecx)
mul32(Imm32(sizeof(Register)), X86::ecx, X86::ecx);
subPtr(X86::ecx, X86::edx);
// push pointer to arguments
storePtr(X86::edx, Address(stackPointerRegister, OBJECT_OFFSETOF(ArgList, m_args)));
// ArgList is passed by reference so is stackPointerRegister
move(stackPointerRegister, X86::ecx);
// edx currently points to the first argument, edx-sizeof(Register) points to 'this'
loadPtr(Address(X86::edx, -(int32_t)sizeof(Register)), X86::edx);
emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::esi);
move(callFrameRegister, X86::edi);
call(Address(X86::esi, OBJECT_OFFSETOF(JSFunction, m_data)));
addPtr(Imm32(sizeof(ArgList)), stackPointerRegister);
#elif PLATFORM(X86)
emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT0);
/* We have two structs that we use to describe the stackframe we set up for our
* call to native code. NativeCallFrameStructure describes the how we set up the stack
* in advance of the call. NativeFunctionCalleeSignature describes the callframe
* as the native code expects it. We do this as we are using the fastcall calling
* convention which results in the callee popping its arguments off the stack, but
* not the rest of the callframe so we need a nice way to ensure we increment the
* stack pointer by the right amount after the call.
*/
#if COMPILER(MSVC) || PLATFORM(LINUX)
struct NativeCallFrameStructure {
// CallFrame* callFrame; // passed in EDX
JSObject* callee;
JSValue thisValue;
ArgList* argPointer;
ArgList args;
JSValue result;
};
struct NativeFunctionCalleeSignature {
JSObject* callee;
JSValue thisValue;
ArgList* argPointer;
};
#else
struct NativeCallFrameStructure {
// CallFrame* callFrame; // passed in ECX
// JSObject* callee; // passed in EDX
JSValue thisValue;
ArgList* argPointer;
ArgList args;
};
struct NativeFunctionCalleeSignature {
JSValue thisValue;
ArgList* argPointer;
};
#endif
const int NativeCallFrameSize = (sizeof(NativeCallFrameStructure) + 15) & ~15;
// Allocate system stack frame
subPtr(Imm32(NativeCallFrameSize), stackPointerRegister);
// Set up arguments
subPtr(Imm32(1), regT0); // Don't include 'this' in argcount
// push argcount
storePtr(regT0, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, args) + OBJECT_OFFSETOF(ArgList, m_argCount)));
// Calculate the start of the callframe header, and store in regT1
addPtr(Imm32(-RegisterFile::CallFrameHeaderSize * (int)sizeof(Register)), callFrameRegister, regT1);
// Calculate start of arguments as callframe header - sizeof(Register) * argcount (regT0)
mul32(Imm32(sizeof(Register)), regT0, regT0);
subPtr(regT0, regT1);
storePtr(regT1, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, args) + OBJECT_OFFSETOF(ArgList, m_args)));
// ArgList is passed by reference so is stackPointerRegister + 4 * sizeof(Register)
addPtr(Imm32(OBJECT_OFFSETOF(NativeCallFrameStructure, args)), stackPointerRegister, regT0);
storePtr(regT0, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, argPointer)));
// regT1 currently points to the first argument, regT1 - sizeof(Register) points to 'this'
loadPtr(Address(regT1, -(int)sizeof(Register)), regT1);
storePtr(regT1, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, thisValue)));
#if COMPILER(MSVC) || PLATFORM(LINUX)
// ArgList is passed by reference so is stackPointerRegister + 4 * sizeof(Register)
addPtr(Imm32(OBJECT_OFFSETOF(NativeCallFrameStructure, result)), stackPointerRegister, X86::ecx);
// Plant callee
emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::eax);
storePtr(X86::eax, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, callee)));
// Plant callframe
move(callFrameRegister, X86::edx);
call(Address(X86::eax, OBJECT_OFFSETOF(JSFunction, m_data)));
// JSValue is a non-POD type
loadPtr(Address(X86::eax), X86::eax);
#else
// Plant callee
emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::edx);
// Plant callframe
move(callFrameRegister, X86::ecx);
call(Address(X86::edx, OBJECT_OFFSETOF(JSFunction, m_data)));
#endif
// We've put a few temporaries on the stack in addition to the actual arguments
// so pull them off now
addPtr(Imm32(NativeCallFrameSize - sizeof(NativeFunctionCalleeSignature)), stackPointerRegister);
#elif ENABLE(JIT_OPTIMIZE_NATIVE_CALL)
#error "JIT_OPTIMIZE_NATIVE_CALL not yet supported on this platform."
#else
breakpoint();
#endif
// Check for an exception
loadPtr(&(globalData->exception), regT2);
Jump exceptionHandler = branchTestPtr(NonZero, regT2);
// Grab the return address.
emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1);
// Restore our caller's "r".
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister);
// Return.
restoreReturnAddressBeforeReturn(regT1);
ret();
// Handle an exception
exceptionHandler.link(this);
// Grab the return address.
emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1);
move(ImmPtr(&globalData->exceptionLocation), regT2);
storePtr(regT1, regT2);
move(ImmPtr(reinterpret_cast<void*>(ctiVMThrowTrampoline)), regT2);
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister);
poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof (void*));
restoreReturnAddressBeforeReturn(regT2);
ret();
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
Call string_failureCases1Call = makeTailRecursiveCall(string_failureCases1);
Call string_failureCases2Call = makeTailRecursiveCall(string_failureCases2);
Call string_failureCases3Call = makeTailRecursiveCall(string_failureCases3);
#endif
// All trampolines constructed! copy the code, link up calls, and set the pointers on the Machine object.
LinkBuffer patchBuffer(this, m_globalData->executableAllocator.poolForSize(m_assembler.size()));
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
patchBuffer.link(string_failureCases1Call, FunctionPtr(cti_op_get_by_id_string_fail));
patchBuffer.link(string_failureCases2Call, FunctionPtr(cti_op_get_by_id_string_fail));
patchBuffer.link(string_failureCases3Call, FunctionPtr(cti_op_get_by_id_string_fail));
#endif
patchBuffer.link(callArityCheck1, FunctionPtr(cti_op_call_arityCheck));
patchBuffer.link(callArityCheck2, FunctionPtr(cti_op_call_arityCheck));
patchBuffer.link(callArityCheck3, FunctionPtr(cti_op_call_arityCheck));
patchBuffer.link(callJSFunction1, FunctionPtr(cti_op_call_JSFunction));
patchBuffer.link(callJSFunction2, FunctionPtr(cti_op_call_JSFunction));
patchBuffer.link(callJSFunction3, FunctionPtr(cti_op_call_JSFunction));
patchBuffer.link(callDontLazyLinkCall, FunctionPtr(cti_vm_dontLazyLinkCall));
patchBuffer.link(callLazyLinkCall, FunctionPtr(cti_vm_lazyLinkCall));
CodeRef finalCode = patchBuffer.finalizeCode();
*executablePool = finalCode.m_executablePool;
*ctiVirtualCallPreLink = trampolineAt(finalCode, virtualCallPreLinkBegin);
*ctiVirtualCallLink = trampolineAt(finalCode, virtualCallLinkBegin);
*ctiVirtualCall = trampolineAt(finalCode, virtualCallBegin);
*ctiNativeCallThunk = trampolineAt(finalCode, nativeCallThunk);
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
*ctiStringLengthTrampoline = trampolineAt(finalCode, stringLengthBegin);
#else
UNUSED_PARAM(ctiStringLengthTrampoline);
#endif
}
void JIT::emit_op_mov(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
if (m_codeBlock->isConstantRegisterIndex(src)) {
storePtr(ImmPtr(JSValue::encode(getConstantOperand(src))), Address(callFrameRegister, dst * sizeof(Register)));
if (dst == m_lastResultBytecodeRegister)
killLastResultRegister();
} else if ((src == m_lastResultBytecodeRegister) || (dst == m_lastResultBytecodeRegister)) {
// If either the src or dst is the cached register go though
// get/put registers to make sure we track this correctly.
emitGetVirtualRegister(src, regT0);
emitPutVirtualRegister(dst);
} else {
// Perform the copy via regT1; do not disturb any mapping in regT0.
loadPtr(Address(callFrameRegister, src * sizeof(Register)), regT1);
storePtr(regT1, Address(callFrameRegister, dst * sizeof(Register)));
}
}
void JIT::emit_op_end(Instruction* currentInstruction)
{
if (m_codeBlock->needsFullScopeChain())
JITStubCall(this, cti_op_end).call();
ASSERT(returnValueRegister != callFrameRegister);
emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister);
restoreReturnAddressBeforeReturn(Address(callFrameRegister, RegisterFile::ReturnPC * static_cast<int>(sizeof(Register))));
ret();
}
void JIT::emit_op_jmp(Instruction* currentInstruction)
{
unsigned target = currentInstruction[1].u.operand;
addJump(jump(), target + 1);
RECORD_JUMP_TARGET(target + 1);
}
void JIT::emit_op_loop(Instruction* currentInstruction)
{
emitTimeoutCheck();
unsigned target = currentInstruction[1].u.operand;
addJump(jump(), target + 1);
}
void JIT::emit_op_loop_if_less(Instruction* currentInstruction)
{
emitTimeoutCheck();
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
#if USE(JSVALUE64)
int32_t op2imm = getConstantOperandImmediateInt(op2);
#else
int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
#endif
addJump(branch32(LessThan, regT0, Imm32(op2imm)), target + 3);
} else if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
#if USE(JSVALUE64)
int32_t op1imm = getConstantOperandImmediateInt(op1);
#else
int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
#endif
addJump(branch32(GreaterThan, regT0, Imm32(op1imm)), target + 3);
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
addJump(branch32(LessThan, regT0, regT1), target + 3);
}
}
void JIT::emit_op_loop_if_lesseq(Instruction* currentInstruction)
{
emitTimeoutCheck();
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
#if USE(JSVALUE64)
int32_t op2imm = getConstantOperandImmediateInt(op2);
#else
int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
#endif
addJump(branch32(LessThanOrEqual, regT0, Imm32(op2imm)), target + 3);
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
addJump(branch32(LessThanOrEqual, regT0, regT1), target + 3);
}
}
void JIT::emit_op_new_object(Instruction* currentInstruction)
{
JITStubCall(this, cti_op_new_object).call(currentInstruction[1].u.operand);
}
void JIT::emit_op_instanceof(Instruction* currentInstruction)
{
// Load the operands (baseVal, proto, and value respectively) into registers.
// We use regT0 for baseVal since we will be done with this first, and we can then use it for the result.
emitGetVirtualRegister(currentInstruction[3].u.operand, regT0);
emitGetVirtualRegister(currentInstruction[4].u.operand, regT1);
emitGetVirtualRegister(currentInstruction[2].u.operand, regT2);
// Check that baseVal & proto are cells.
emitJumpSlowCaseIfNotJSCell(regT0);
emitJumpSlowCaseIfNotJSCell(regT1);
// Check that baseVal is an object, that it 'ImplementsHasInstance' but that it does not 'OverridesHasInstance'.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT0);
addSlowCase(branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType)));
addSlowCase(branchTest32(Zero, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(ImplementsDefaultHasInstance)));
// If value is not an Object, return false.
Jump valueIsImmediate = emitJumpIfNotJSCell(regT2);
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSCell, m_structure)), regT0);
Jump valueIsNotObject = branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType));
// Check proto is object.
loadPtr(Address(regT1, OBJECT_OFFSETOF(JSCell, m_structure)), regT0);
addSlowCase(branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType)));
// Optimistically load the result true, and start looping.
// Initially, regT1 still contains proto and regT2 still contains value.
// As we loop regT2 will be updated with its prototype, recursively walking the prototype chain.
move(ImmPtr(JSValue::encode(jsBoolean(true))), regT0);
Label loop(this);
// Load the prototype of the object in regT2. If this is equal to regT1 - WIN!
// Otherwise, check if we've hit null - if we have then drop out of the loop, if not go again.
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSCell, m_structure)), regT2);
loadPtr(Address(regT2, OBJECT_OFFSETOF(Structure, m_prototype)), regT2);
Jump isInstance = branchPtr(Equal, regT2, regT1);
branchPtr(NotEqual, regT2, ImmPtr(JSValue::encode(jsNull())), loop);
// We get here either by dropping out of the loop, or if value was not an Object. Result is false.
valueIsImmediate.link(this);
valueIsNotObject.link(this);
move(ImmPtr(JSValue::encode(jsBoolean(false))), regT0);
// isInstance jumps right down to here, to skip setting the result to false (it has already set true).
isInstance.link(this);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_new_func(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_new_func);
stubCall.addArgument(ImmPtr(m_codeBlock->function(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_call(Instruction* currentInstruction)
{
compileOpCall(op_call, currentInstruction, m_callLinkInfoIndex++);
}
void JIT::emit_op_call_eval(Instruction* currentInstruction)
{
compileOpCall(op_call_eval, currentInstruction, m_callLinkInfoIndex++);
}
void JIT::emit_op_load_varargs(Instruction* currentInstruction)
{
int argCountDst = currentInstruction[1].u.operand;
int argsOffset = currentInstruction[2].u.operand;
JITStubCall stubCall(this, cti_op_load_varargs);
stubCall.addArgument(Imm32(argsOffset));
stubCall.call();
// Stores a naked int32 in the register file.
store32(returnValueRegister, Address(callFrameRegister, argCountDst * sizeof(Register)));
}
void JIT::emit_op_call_varargs(Instruction* currentInstruction)
{
compileOpCallVarargs(currentInstruction);
}
void JIT::emit_op_construct(Instruction* currentInstruction)
{
compileOpCall(op_construct, currentInstruction, m_callLinkInfoIndex++);
}
void JIT::emit_op_get_global_var(Instruction* currentInstruction)
{
JSVariableObject* globalObject = static_cast<JSVariableObject*>(currentInstruction[2].u.jsCell);
move(ImmPtr(globalObject), regT0);
emitGetVariableObjectRegister(regT0, currentInstruction[3].u.operand, regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_put_global_var(Instruction* currentInstruction)
{
emitGetVirtualRegister(currentInstruction[3].u.operand, regT1);
JSVariableObject* globalObject = static_cast<JSVariableObject*>(currentInstruction[1].u.jsCell);
move(ImmPtr(globalObject), regT0);
emitPutVariableObjectRegister(regT1, regT0, currentInstruction[2].u.operand);
}
void JIT::emit_op_get_scoped_var(Instruction* currentInstruction)
{
int skip = currentInstruction[3].u.operand + m_codeBlock->needsFullScopeChain();
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT0);
while (skip--)
loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, next)), regT0);
loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, object)), regT0);
emitGetVariableObjectRegister(regT0, currentInstruction[2].u.operand, regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_put_scoped_var(Instruction* currentInstruction)
{
int skip = currentInstruction[2].u.operand + m_codeBlock->needsFullScopeChain();
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1);
emitGetVirtualRegister(currentInstruction[3].u.operand, regT0);
while (skip--)
loadPtr(Address(regT1, OBJECT_OFFSETOF(ScopeChainNode, next)), regT1);
loadPtr(Address(regT1, OBJECT_OFFSETOF(ScopeChainNode, object)), regT1);
emitPutVariableObjectRegister(regT0, regT1, currentInstruction[1].u.operand);
}
void JIT::emit_op_tear_off_activation(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_tear_off_activation);
stubCall.addArgument(currentInstruction[1].u.operand, regT2);
stubCall.call();
}
void JIT::emit_op_tear_off_arguments(Instruction*)
{
JITStubCall(this, cti_op_tear_off_arguments).call();
}
void JIT::emit_op_ret(Instruction* currentInstruction)
{
// We could JIT generate the deref, only calling out to C when the refcount hits zero.
if (m_codeBlock->needsFullScopeChain())
JITStubCall(this, cti_op_ret_scopeChain).call();
ASSERT(callFrameRegister != regT1);
ASSERT(regT1 != returnValueRegister);
ASSERT(returnValueRegister != callFrameRegister);
// Return the result in %eax.
emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister);
// Grab the return address.
emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1);
// Restore our caller's "r".
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister);
// Return.
restoreReturnAddressBeforeReturn(regT1);
ret();
}
void JIT::emit_op_new_array(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_new_array);
stubCall.addArgument(Imm32(currentInstruction[2].u.operand));
stubCall.addArgument(Imm32(currentInstruction[3].u.operand));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_resolve(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_resolve);
stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_construct_verify(Instruction* currentInstruction)
{
emitGetVirtualRegister(currentInstruction[1].u.operand, regT0);
emitJumpSlowCaseIfNotJSCell(regT0);
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2);
addSlowCase(branch32(NotEqual, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo) + OBJECT_OFFSETOF(TypeInfo, m_type)), Imm32(ObjectType)));
}
void JIT::emit_op_to_primitive(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
emitGetVirtualRegister(src, regT0);
Jump isImm = emitJumpIfNotJSCell(regT0);
addSlowCase(branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr)));
isImm.link(this);
if (dst != src)
emitPutVirtualRegister(dst);
}
void JIT::emit_op_strcat(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_strcat);
stubCall.addArgument(Imm32(currentInstruction[2].u.operand));
stubCall.addArgument(Imm32(currentInstruction[3].u.operand));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_loop_if_true(Instruction* currentInstruction)
{
emitTimeoutCheck();
unsigned target = currentInstruction[2].u.operand;
emitGetVirtualRegister(currentInstruction[1].u.operand, regT0);
Jump isZero = branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0))));
addJump(emitJumpIfImmediateInteger(regT0), target + 2);
addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsBoolean(true)))), target + 2);
addSlowCase(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsBoolean(false)))));
isZero.link(this);
};
void JIT::emit_op_resolve_base(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_resolve_base);
stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_resolve_skip(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_resolve_skip);
stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand)));
stubCall.addArgument(Imm32(currentInstruction[3].u.operand + m_codeBlock->needsFullScopeChain()));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_resolve_global(Instruction* currentInstruction)
{
// Fast case
void* globalObject = currentInstruction[2].u.jsCell;
Identifier* ident = &m_codeBlock->identifier(currentInstruction[3].u.operand);
unsigned currentIndex = m_globalResolveInfoIndex++;
void* structureAddress = &(m_codeBlock->globalResolveInfo(currentIndex).structure);
void* offsetAddr = &(m_codeBlock->globalResolveInfo(currentIndex).offset);
// Check Structure of global object
move(ImmPtr(globalObject), regT0);
loadPtr(structureAddress, regT1);
Jump noMatch = branchPtr(NotEqual, regT1, Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure))); // Structures don't match
// Load cached property
// Assume that the global object always uses external storage.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSGlobalObject, m_externalStorage)), regT0);
load32(offsetAddr, regT1);
loadPtr(BaseIndex(regT0, regT1, ScalePtr), regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
Jump end = jump();
// Slow case
noMatch.link(this);
JITStubCall stubCall(this, cti_op_resolve_global);
stubCall.addArgument(ImmPtr(globalObject));
stubCall.addArgument(ImmPtr(ident));
stubCall.addArgument(Imm32(currentIndex));
stubCall.call(currentInstruction[1].u.operand);
end.link(this);
}
void JIT::emit_op_not(Instruction* currentInstruction)
{
emitGetVirtualRegister(currentInstruction[2].u.operand, regT0);
xorPtr(Imm32(static_cast<int32_t>(JSImmediate::FullTagTypeBool)), regT0);
addSlowCase(branchTestPtr(NonZero, regT0, Imm32(static_cast<int32_t>(~JSImmediate::ExtendedPayloadBitBoolValue))));
xorPtr(Imm32(static_cast<int32_t>(JSImmediate::FullTagTypeBool | JSImmediate::ExtendedPayloadBitBoolValue)), regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_jfalse(Instruction* currentInstruction)
{
unsigned target = currentInstruction[2].u.operand;
emitGetVirtualRegister(currentInstruction[1].u.operand, regT0);
addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))), target + 2);
Jump isNonZero = emitJumpIfImmediateInteger(regT0);
addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsBoolean(false)))), target + 2);
addSlowCase(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsBoolean(true)))));
isNonZero.link(this);
RECORD_JUMP_TARGET(target + 2);
};
void JIT::emit_op_jeq_null(Instruction* currentInstruction)
{
unsigned src = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitGetVirtualRegister(src, regT0);
Jump isImmediate = emitJumpIfNotJSCell(regT0);
// First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2);
addJump(branchTest32(NonZero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined)), target + 2);
Jump wasNotImmediate = jump();
// Now handle the immediate cases - undefined & null
isImmediate.link(this);
andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0);
addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNull()))), target + 2);
wasNotImmediate.link(this);
RECORD_JUMP_TARGET(target + 2);
};
void JIT::emit_op_jneq_null(Instruction* currentInstruction)
{
unsigned src = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitGetVirtualRegister(src, regT0);
Jump isImmediate = emitJumpIfNotJSCell(regT0);
// First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2);
addJump(branchTest32(Zero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined)), target + 2);
Jump wasNotImmediate = jump();
// Now handle the immediate cases - undefined & null
isImmediate.link(this);
andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0);
addJump(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsNull()))), target + 2);
wasNotImmediate.link(this);
RECORD_JUMP_TARGET(target + 2);
}
void JIT::emit_op_jneq_ptr(Instruction* currentInstruction)
{
unsigned src = currentInstruction[1].u.operand;
JSCell* ptr = currentInstruction[2].u.jsCell;
unsigned target = currentInstruction[3].u.operand;
emitGetVirtualRegister(src, regT0);
addJump(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(JSValue(ptr)))), target + 3);
RECORD_JUMP_TARGET(target + 3);
}
void JIT::emit_op_jsr(Instruction* currentInstruction)
{
int retAddrDst = currentInstruction[1].u.operand;
int target = currentInstruction[2].u.operand;
DataLabelPtr storeLocation = storePtrWithPatch(ImmPtr(0), Address(callFrameRegister, sizeof(Register) * retAddrDst));
addJump(jump(), target + 2);
m_jsrSites.append(JSRInfo(storeLocation, label()));
killLastResultRegister();
RECORD_JUMP_TARGET(target + 2);
}
void JIT::emit_op_sret(Instruction* currentInstruction)
{
jump(Address(callFrameRegister, sizeof(Register) * currentInstruction[1].u.operand));
killLastResultRegister();
}
void JIT::emit_op_eq(Instruction* currentInstruction)
{
emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1);
emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2);
set32(Equal, regT1, regT0, regT0);
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_bitnot(Instruction* currentInstruction)
{
emitGetVirtualRegister(currentInstruction[2].u.operand, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
#if USE(JSVALUE64)
not32(regT0);
emitFastArithIntToImmNoCheck(regT0, regT0);
#else
xorPtr(Imm32(~JSImmediate::TagTypeNumber), regT0);
#endif
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_resolve_with_base(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_resolve_with_base);
stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[3].u.operand)));
stubCall.addArgument(Imm32(currentInstruction[1].u.operand));
stubCall.call(currentInstruction[2].u.operand);
}
void JIT::emit_op_new_func_exp(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_new_func_exp);
stubCall.addArgument(ImmPtr(m_codeBlock->functionExpression(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_jtrue(Instruction* currentInstruction)
{
unsigned target = currentInstruction[2].u.operand;
emitGetVirtualRegister(currentInstruction[1].u.operand, regT0);
Jump isZero = branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0))));
addJump(emitJumpIfImmediateInteger(regT0), target + 2);
addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsBoolean(true)))), target + 2);
addSlowCase(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsBoolean(false)))));
isZero.link(this);
RECORD_JUMP_TARGET(target + 2);
}
void JIT::emit_op_neq(Instruction* currentInstruction)
{
emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1);
emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2);
set32(NotEqual, regT1, regT0, regT0);
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_bitxor(Instruction* currentInstruction)
{
emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1);
emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2);
xorPtr(regT1, regT0);
emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_new_regexp(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_new_regexp);
stubCall.addArgument(ImmPtr(m_codeBlock->regexp(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_bitor(Instruction* currentInstruction)
{
emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1);
emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2);
orPtr(regT1, regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_throw(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_throw);
stubCall.addArgument(currentInstruction[1].u.operand, regT2);
stubCall.call();
ASSERT(regT0 == returnValueRegister);
#ifndef NDEBUG
// cti_op_throw always changes it's return address,
// this point in the code should never be reached.
breakpoint();
#endif
}
void JIT::emit_op_next_pname(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_next_pname);
stubCall.addArgument(currentInstruction[2].u.operand, regT2);
stubCall.call();
Jump endOfIter = branchTestPtr(Zero, regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
addJump(jump(), currentInstruction[3].u.operand + 3);
endOfIter.link(this);
}
void JIT::emit_op_push_scope(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_push_scope);
stubCall.addArgument(currentInstruction[1].u.operand, regT2);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_pop_scope(Instruction*)
{
JITStubCall(this, cti_op_pop_scope).call();
}
void JIT::compileOpStrictEq(Instruction* currentInstruction, CompileOpStrictEqType type)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
unsigned src2 = currentInstruction[3].u.operand;
emitGetVirtualRegisters(src1, regT0, src2, regT1);
// Jump to a slow case if either operand is a number, or if both are JSCell*s.
move(regT0, regT2);
orPtr(regT1, regT2);
addSlowCase(emitJumpIfJSCell(regT2));
addSlowCase(emitJumpIfImmediateNumber(regT2));
if (type == OpStrictEq)
set32(Equal, regT1, regT0, regT0);
else
set32(NotEqual, regT1, regT0, regT0);
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_stricteq(Instruction* currentInstruction)
{
compileOpStrictEq(currentInstruction, OpStrictEq);
}
void JIT::emit_op_nstricteq(Instruction* currentInstruction)
{
compileOpStrictEq(currentInstruction, OpNStrictEq);
}
void JIT::emit_op_to_jsnumber(Instruction* currentInstruction)
{
int srcVReg = currentInstruction[2].u.operand;
emitGetVirtualRegister(srcVReg, regT0);
Jump wasImmediate = emitJumpIfImmediateInteger(regT0);
emitJumpSlowCaseIfNotJSCell(regT0, srcVReg);
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2);
addSlowCase(branch32(NotEqual, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(NumberType)));
wasImmediate.link(this);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_push_new_scope(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_push_new_scope);
stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand)));
stubCall.addArgument(currentInstruction[3].u.operand, regT2);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_catch(Instruction* currentInstruction)
{
killLastResultRegister(); // FIXME: Implicitly treat op_catch as a labeled statement, and remove this line of code.
peek(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof (void*));
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_jmp_scopes(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_jmp_scopes);
stubCall.addArgument(Imm32(currentInstruction[1].u.operand));
stubCall.call();
addJump(jump(), currentInstruction[2].u.operand + 2);
RECORD_JUMP_TARGET(currentInstruction[2].u.operand + 2);
}
void JIT::emit_op_switch_imm(Instruction* currentInstruction)
{
unsigned tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
SimpleJumpTable* jumpTable = &m_codeBlock->immediateSwitchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset, SwitchRecord::Immediate));
jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size());
JITStubCall stubCall(this, cti_op_switch_imm);
stubCall.addArgument(scrutinee, regT2);
stubCall.addArgument(Imm32(tableIndex));
stubCall.call();
jump(regT0);
}
void JIT::emit_op_switch_char(Instruction* currentInstruction)
{
unsigned tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
SimpleJumpTable* jumpTable = &m_codeBlock->characterSwitchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset, SwitchRecord::Character));
jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size());
JITStubCall stubCall(this, cti_op_switch_char);
stubCall.addArgument(scrutinee, regT2);
stubCall.addArgument(Imm32(tableIndex));
stubCall.call();
jump(regT0);
}
void JIT::emit_op_switch_string(Instruction* currentInstruction)
{
unsigned tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset));
JITStubCall stubCall(this, cti_op_switch_string);
stubCall.addArgument(scrutinee, regT2);
stubCall.addArgument(Imm32(tableIndex));
stubCall.call();
jump(regT0);
}
void JIT::emit_op_new_error(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_new_error);
stubCall.addArgument(Imm32(currentInstruction[2].u.operand));
stubCall.addArgument(ImmPtr(JSValue::encode(m_codeBlock->getConstant(currentInstruction[3].u.operand))));
stubCall.addArgument(Imm32(m_bytecodeIndex));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_debug(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_debug);
stubCall.addArgument(Imm32(currentInstruction[1].u.operand));
stubCall.addArgument(Imm32(currentInstruction[2].u.operand));
stubCall.addArgument(Imm32(currentInstruction[3].u.operand));
stubCall.call();
}
void JIT::emit_op_eq_null(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
emitGetVirtualRegister(src1, regT0);
Jump isImmediate = emitJumpIfNotJSCell(regT0);
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2);
setTest32(NonZero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined), regT0);
Jump wasNotImmediate = jump();
isImmediate.link(this);
andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0);
setPtr(Equal, regT0, Imm32(JSImmediate::FullTagTypeNull), regT0);
wasNotImmediate.link(this);
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_neq_null(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
emitGetVirtualRegister(src1, regT0);
Jump isImmediate = emitJumpIfNotJSCell(regT0);
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2);
setTest32(Zero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined), regT0);
Jump wasNotImmediate = jump();
isImmediate.link(this);
andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0);
setPtr(NotEqual, regT0, Imm32(JSImmediate::FullTagTypeNull), regT0);
wasNotImmediate.link(this);
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_enter(Instruction*)
{
// Even though CTI doesn't use them, we initialize our constant
// registers to zap stale pointers, to avoid unnecessarily prolonging
// object lifetime and increasing GC pressure.
size_t count = m_codeBlock->m_numVars;
for (size_t j = 0; j < count; ++j)
emitInitRegister(j);
}
void JIT::emit_op_enter_with_activation(Instruction* currentInstruction)
{
// Even though CTI doesn't use them, we initialize our constant
// registers to zap stale pointers, to avoid unnecessarily prolonging
// object lifetime and increasing GC pressure.
size_t count = m_codeBlock->m_numVars;
for (size_t j = 0; j < count; ++j)
emitInitRegister(j);
JITStubCall(this, cti_op_push_activation).call(currentInstruction[1].u.operand);
}
void JIT::emit_op_create_arguments(Instruction*)
{
Jump argsCreated = branchTestPtr(NonZero, Address(callFrameRegister, sizeof(Register) * RegisterFile::ArgumentsRegister));
if (m_codeBlock->m_numParameters == 1)
JITStubCall(this, cti_op_create_arguments_no_params).call();
else
JITStubCall(this, cti_op_create_arguments).call();
argsCreated.link(this);
}
void JIT::emit_op_init_arguments(Instruction*)
{
storePtr(ImmPtr(0), Address(callFrameRegister, sizeof(Register) * RegisterFile::ArgumentsRegister));
}
void JIT::emit_op_convert_this(Instruction* currentInstruction)
{
emitGetVirtualRegister(currentInstruction[1].u.operand, regT0);
emitJumpSlowCaseIfNotJSCell(regT0);
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT1);
addSlowCase(branchTest32(NonZero, Address(regT1, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(NeedsThisConversion)));
}
void JIT::emit_op_profile_will_call(Instruction* currentInstruction)
{
peek(regT1, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof (void*));
Jump noProfiler = branchTestPtr(Zero, Address(regT1));
JITStubCall stubCall(this, cti_op_profile_will_call);
stubCall.addArgument(currentInstruction[1].u.operand, regT1);
stubCall.call();
noProfiler.link(this);
}
void JIT::emit_op_profile_did_call(Instruction* currentInstruction)
{
peek(regT1, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof (void*));
Jump noProfiler = branchTestPtr(Zero, Address(regT1));
JITStubCall stubCall(this, cti_op_profile_did_call);
stubCall.addArgument(currentInstruction[1].u.operand, regT1);
stubCall.call();
noProfiler.link(this);
}
// Slow cases
void JIT::emitSlow_op_convert_this(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_convert_this);
stubCall.addArgument(regT0);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_construct_verify(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
emitGetVirtualRegister(currentInstruction[2].u.operand, regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_to_primitive(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_to_primitive);
stubCall.addArgument(regT0);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_get_by_val(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
// The slow void JIT::emitSlow_that handles accesses to arrays (below) may jump back up to here.
Label beginGetByValSlow(this);
Jump notImm = getSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
emitFastArithIntToImmNoCheck(regT1, regT1);
notImm.link(this);
JITStubCall stubCall(this, cti_op_get_by_val);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call(currentInstruction[1].u.operand);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_get_by_val));
// This is slow void JIT::emitSlow_that handles accesses to arrays above the fast cut-off.
// First, check if this is an access to the vector
linkSlowCase(iter);
branch32(AboveOrEqual, regT1, Address(regT2, OBJECT_OFFSETOF(ArrayStorage, m_vectorLength)), beginGetByValSlow);
// okay, missed the fast region, but it is still in the vector. Get the value.
loadPtr(BaseIndex(regT2, regT1, ScalePtr, OBJECT_OFFSETOF(ArrayStorage, m_vector[0])), regT2);
// Check whether the value loaded is zero; if so we need to return undefined.
branchTestPtr(Zero, regT2, beginGetByValSlow);
move(regT2, regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand, regT0);
}
void JIT::emitSlow_op_loop_if_less(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2)) {
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_loop_if_less);
stubCall.addArgument(regT0);
stubCall.addArgument(op2, regT2);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3);
} else if (isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_loop_if_less);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(regT0);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3);
} else {
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_loop_if_less);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3);
}
}
void JIT::emitSlow_op_loop_if_lesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2)) {
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_loop_if_lesseq);
stubCall.addArgument(regT0);
stubCall.addArgument(currentInstruction[2].u.operand, regT2);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3);
} else {
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_loop_if_lesseq);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3);
}
}
void JIT::emitSlow_op_put_by_val(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
// Normal slow cases - either is not an immediate imm, or is an array.
Jump notImm = getSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
emitFastArithIntToImmNoCheck(regT1, regT1);
notImm.link(this); {
JITStubCall stubCall(this, cti_op_put_by_val);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.addArgument(currentInstruction[3].u.operand, regT2);
stubCall.call();
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_put_by_val));
}
// slow cases for immediate int accesses to arrays
linkSlowCase(iter);
linkSlowCase(iter); {
JITStubCall stubCall(this, cti_op_put_by_val_array);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.addArgument(currentInstruction[3].u.operand, regT2);
stubCall.call();
}
}
void JIT::emitSlow_op_loop_if_true(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_jtrue);
stubCall.addArgument(regT0);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), currentInstruction[2].u.operand + 2);
}
void JIT::emitSlow_op_not(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
xorPtr(Imm32(static_cast<int32_t>(JSImmediate::FullTagTypeBool)), regT0);
JITStubCall stubCall(this, cti_op_not);
stubCall.addArgument(regT0);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_jfalse(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_jtrue);
stubCall.addArgument(regT0);
stubCall.call();
emitJumpSlowToHot(branchTest32(Zero, regT0), currentInstruction[2].u.operand + 2); // inverted!
}
void JIT::emitSlow_op_bitnot(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_bitnot);
stubCall.addArgument(regT0);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_jtrue(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_jtrue);
stubCall.addArgument(regT0);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), currentInstruction[2].u.operand + 2);
}
void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_bitxor);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_bitor);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_eq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_eq);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call();
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_neq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_eq);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call();
xor32(Imm32(0x1), regT0);
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_stricteq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_stricteq);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_nstricteq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_nstricteq);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_instanceof(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_instanceof);
stubCall.addArgument(currentInstruction[2].u.operand, regT2);
stubCall.addArgument(currentInstruction[3].u.operand, regT2);
stubCall.addArgument(currentInstruction[4].u.operand, regT2);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_call(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_call);
}
void JIT::emitSlow_op_call_eval(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_call_eval);
}
void JIT::emitSlow_op_call_varargs(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
compileOpCallVarargsSlowCase(currentInstruction, iter);
}
void JIT::emitSlow_op_construct(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_construct);
}
void JIT::emitSlow_op_to_jsnumber(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCaseIfNotJSCell(iter, currentInstruction[2].u.operand);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_to_jsnumber);
stubCall.addArgument(regT0);
stubCall.call(currentInstruction[1].u.operand);
}
#endif // USE(JSVALUE32_64)
} // namespace JSC
#endif // ENABLE(JIT)