blob: 7682b9c6421a6b4518f4eea92f599db02af37574 [file] [log] [blame]
/*
* Copyright (C) 2009 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "ExecutableAllocator.h"
#include <errno.h>
#if ENABLE(ASSEMBLER) && PLATFORM(MAC) && PLATFORM(X86_64)
#include "TCSpinLock.h"
#include <mach/mach_init.h>
#include <mach/vm_map.h>
#include <sys/mman.h>
#include <unistd.h>
#include <wtf/AVLTree.h>
#include <wtf/VMTags.h>
using namespace WTF;
namespace JSC {
#define TWO_GB (2u * 1024u * 1024u * 1024u)
#define SIXTEEN_MB (16u * 1024u * 1024u)
// FreeListEntry describes a free chunk of memory, stored in the freeList.
struct FreeListEntry {
FreeListEntry(void* pointer, size_t size)
: pointer(pointer)
, size(size)
, nextEntry(0)
, less(0)
, greater(0)
, balanceFactor(0)
{
}
// All entries of the same size share a single entry
// in the AVLTree, and are linked together in a linked
// list, using nextEntry.
void* pointer;
size_t size;
FreeListEntry* nextEntry;
// These fields are used by AVLTree.
FreeListEntry* less;
FreeListEntry* greater;
int balanceFactor;
};
// Abstractor class for use in AVLTree.
// Nodes in the AVLTree are of type FreeListEntry, keyed on
// (and thus sorted by) their size.
struct AVLTreeAbstractorForFreeList {
typedef FreeListEntry* handle;
typedef int32_t size;
typedef size_t key;
handle get_less(handle h) { return h->less; }
void set_less(handle h, handle lh) { h->less = lh; }
handle get_greater(handle h) { return h->greater; }
void set_greater(handle h, handle gh) { h->greater = gh; }
int get_balance_factor(handle h) { return h->balanceFactor; }
void set_balance_factor(handle h, int bf) { h->balanceFactor = bf; }
static handle null() { return 0; }
int compare_key_key(key va, key vb) { return va - vb; }
int compare_key_node(key k, handle h) { return compare_key_key(k, h->size); }
int compare_node_node(handle h1, handle h2) { return compare_key_key(h1->size, h2->size); }
};
// Used to reverse sort an array of FreeListEntry pointers.
static int reverseSortFreeListEntriesByPointer(const void* leftPtr, const void* rightPtr)
{
FreeListEntry* left = *(FreeListEntry**)leftPtr;
FreeListEntry* right = *(FreeListEntry**)rightPtr;
return (intptr_t)(right->pointer) - (intptr_t)(left->pointer);
}
// Used to reverse sort an array of pointers.
static int reverseSortCommonSizedAllocations(const void* leftPtr, const void* rightPtr)
{
void* left = *(void**)leftPtr;
void* right = *(void**)rightPtr;
return (intptr_t)right - (intptr_t)left;
}
class FixedVMPoolAllocator
{
// The free list is stored in a sorted tree.
typedef AVLTree<AVLTreeAbstractorForFreeList, 40> SizeSortedFreeTree;
// Use madvise as apropriate to prevent freed pages from being spilled,
// and to attempt to ensure that used memory is reported correctly.
#if HAVE(MADV_FREE_REUSE)
void release(void* position, size_t size)
{
while (madvise(position, size, MADV_FREE_REUSABLE) == -1 && errno == EAGAIN) { }
}
void reuse(void* position, size_t size)
{
while (madvise(position, size, MADV_FREE_REUSE) == -1 && errno == EAGAIN) { }
}
#elif HAVE(MADV_DONTNEED)
void release(void* position, size_t size)
{
while (madvise(position, size, MADV_DONTNEED) == -1 && errno == EAGAIN) { }
}
void reuse(void*, size_t) {}
#else
void release(void*, size_t) {}
void reuse(void*, size_t) {}
#endif
// All addition to the free list should go through this method, rather than
// calling insert directly, to avoid multiple entries beging added with the
// same key. All nodes being added should be singletons, they should not
// already be a part of a chain.
void addToFreeList(FreeListEntry* entry)
{
ASSERT(!entry->nextEntry);
if (entry->size == m_commonSize) {
m_commonSizedAllocations.append(entry->pointer);
delete entry;
} else if (FreeListEntry* entryInFreeList = m_freeList.search(entry->size, m_freeList.EQUAL)) {
// m_freeList already contain an entry for this size - insert this node into the chain.
entry->nextEntry = entryInFreeList->nextEntry;
entryInFreeList->nextEntry = entry;
} else
m_freeList.insert(entry);
}
// We do not attempt to coalesce addition, which may lead to fragmentation;
// instead we periodically perform a sweep to try to coalesce neigboring
// entries in m_freeList. Presently this is triggered at the point 16MB
// of memory has been released.
void coalesceFreeSpace()
{
Vector<FreeListEntry*> freeListEntries;
SizeSortedFreeTree::Iterator iter;
iter.start_iter_least(m_freeList);
// Empty m_freeList into a Vector.
for (FreeListEntry* entry; (entry = *iter); ++iter) {
// Each entry in m_freeList might correspond to multiple
// free chunks of memory (of the same size). Walk the chain
// (this is likely of couse only be one entry long!) adding
// each entry to the Vector (at reseting the next in chain
// pointer to separate each node out).
FreeListEntry* next;
do {
next = entry->nextEntry;
entry->nextEntry = 0;
freeListEntries.append(entry);
} while ((entry = next));
}
// All entries are now in the Vector; purge the tree.
m_freeList.purge();
// Reverse-sort the freeListEntries and m_commonSizedAllocations Vectors.
// We reverse-sort so that we can logically work forwards through memory,
// whilst popping items off the end of the Vectors using last() and removeLast().
qsort(freeListEntries.begin(), freeListEntries.size(), sizeof(FreeListEntry*), reverseSortFreeListEntriesByPointer);
qsort(m_commonSizedAllocations.begin(), m_commonSizedAllocations.size(), sizeof(void*), reverseSortCommonSizedAllocations);
// The entries from m_commonSizedAllocations that cannot be
// coalesced into larger chunks will be temporarily stored here.
Vector<void*> newCommonSizedAllocations;
// Keep processing so long as entries remain in either of the vectors.
while (freeListEntries.size() || m_commonSizedAllocations.size()) {
// We're going to try to find a FreeListEntry node that we can coalesce onto.
FreeListEntry* coalescionEntry = 0;
// Is the lowest addressed chunk of free memory of common-size, or is it in the free list?
if (m_commonSizedAllocations.size() && (!freeListEntries.size() || (m_commonSizedAllocations.last() < freeListEntries.last()->pointer))) {
// Pop an item from the m_commonSizedAllocations vector - this is the lowest
// addressed free chunk. Find out the begin and end addresses of the memory chunk.
void* begin = m_commonSizedAllocations.last();
void* end = (void*)((intptr_t)begin + m_commonSize);
m_commonSizedAllocations.removeLast();
// Try to find another free chunk abutting onto the end of the one we have already found.
if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
// There is an existing FreeListEntry for the next chunk of memory!
// we can reuse this. Pop it off the end of m_freeList.
coalescionEntry = freeListEntries.last();
freeListEntries.removeLast();
// Update the existing node to include the common-sized chunk that we also found.
coalescionEntry->pointer = (void*)((intptr_t)coalescionEntry->pointer - m_commonSize);
coalescionEntry->size += m_commonSize;
} else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
// There is a second common-sized chunk that can be coalesced.
// Allocate a new node.
m_commonSizedAllocations.removeLast();
coalescionEntry = new FreeListEntry(begin, 2 * m_commonSize);
} else {
// Nope - this poor little guy is all on his own. :-(
// Add him into the newCommonSizedAllocations vector for now, we're
// going to end up adding him back into the m_commonSizedAllocations
// list when we're done.
newCommonSizedAllocations.append(begin);
continue;
}
} else {
ASSERT(freeListEntries.size());
ASSERT(!m_commonSizedAllocations.size() || (freeListEntries.last()->pointer < m_commonSizedAllocations.last()));
// The lowest addressed item is from m_freeList; pop it from the Vector.
coalescionEntry = freeListEntries.last();
freeListEntries.removeLast();
}
// Right, we have a FreeListEntry, we just need check if there is anything else
// to coalesce onto the end.
ASSERT(coalescionEntry);
while (true) {
// Calculate the end address of the chunk we have found so far.
void* end = (void*)((intptr_t)coalescionEntry->pointer - coalescionEntry->size);
// Is there another chunk adjacent to the one we already have?
if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
// Yes - another FreeListEntry -pop it from the list.
FreeListEntry* coalescee = freeListEntries.last();
freeListEntries.removeLast();
// Add it's size onto our existing node.
coalescionEntry->size += coalescee->size;
delete coalescee;
} else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
// We can coalesce the next common-sized chunk.
m_commonSizedAllocations.removeLast();
coalescionEntry->size += m_commonSize;
} else
break; // Nope, nothing to be added - stop here.
}
// We've coalesced everything we can onto the current chunk.
// Add it back into m_freeList.
addToFreeList(coalescionEntry);
}
// All chunks of free memory larger than m_commonSize should be
// back in m_freeList by now. All that remains to be done is to
// copy the contents on the newCommonSizedAllocations back into
// the m_commonSizedAllocations Vector.
ASSERT(m_commonSizedAllocations.size() == 0);
m_commonSizedAllocations.append(newCommonSizedAllocations);
}
public:
FixedVMPoolAllocator(size_t commonSize, size_t totalHeapSize)
: m_commonSize(commonSize)
, m_countFreedSinceLastCoalesce(0)
, m_totalHeapSize(totalHeapSize)
{
// Cook up an address to allocate at, using the following recipe:
// 17 bits of zero, stay in userspace kids.
// 26 bits of randomness for ASLR.
// 21 bits of zero, at least stay aligned within one level of the pagetables.
//
// But! - as a temporary workaround for some plugin problems (rdar://problem/6812854),
// for now instead of 2^26 bits of ASLR lets stick with 25 bits of randomization plus
// 2^24, which should put up somewhere in the middle of usespace (in the address range
// 0x200000000000 .. 0x5fffffffffff).
intptr_t randomLocation = arc4random() & ((1 << 25) - 1);
randomLocation += (1 << 24);
randomLocation <<= 21;
m_base = mmap(reinterpret_cast<void*>(randomLocation), m_totalHeapSize, INITIAL_PROTECTION_FLAGS, MAP_PRIVATE | MAP_ANON, VM_TAG_FOR_EXECUTABLEALLOCATOR_MEMORY, 0);
if (!m_base)
CRASH();
// For simplicity, we keep all memory in m_freeList in a 'released' state.
// This means that we can simply reuse all memory when allocating, without
// worrying about it's previous state, and also makes coalescing m_freeList
// simpler since we need not worry about the possibility of coalescing released
// chunks with non-released ones.
release(m_base, m_totalHeapSize);
m_freeList.insert(new FreeListEntry(m_base, m_totalHeapSize));
}
void* alloc(size_t size)
{
void* result;
// Freed allocations of the common size are not stored back into the main
// m_freeList, but are instead stored in a separate vector. If the request
// is for a common sized allocation, check this list.
if ((size == m_commonSize) && m_commonSizedAllocations.size()) {
result = m_commonSizedAllocations.last();
m_commonSizedAllocations.removeLast();
} else {
// Serach m_freeList for a suitable sized chunk to allocate memory from.
FreeListEntry* entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
// This would be bad news.
if (!entry) {
// Errk! Lets take a last-ditch desparation attempt at defragmentation...
coalesceFreeSpace();
// Did that free up a large enough chunk?
entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
// No?... *BOOM!*
if (!entry)
CRASH();
}
ASSERT(entry->size != m_commonSize);
// Remove the entry from m_freeList. But! -
// Each entry in the tree may represent a chain of multiple chunks of the
// same size, and we only want to remove one on them. So, if this entry
// does have a chain, just remove the first-but-one item from the chain.
if (FreeListEntry* next = entry->nextEntry) {
// We're going to leave 'entry' in the tree; remove 'next' from its chain.
entry->nextEntry = next->nextEntry;
next->nextEntry = 0;
entry = next;
} else
m_freeList.remove(entry->size);
// Whoo!, we have a result!
ASSERT(entry->size >= size);
result = entry->pointer;
// If the allocation exactly fits the chunk we found in the,
// m_freeList then the FreeListEntry node is no longer needed.
if (entry->size == size)
delete entry;
else {
// There is memory left over, and it is not of the common size.
// We can reuse the existing FreeListEntry node to add this back
// into m_freeList.
entry->pointer = (void*)((intptr_t)entry->pointer + size);
entry->size -= size;
addToFreeList(entry);
}
}
// Call reuse to report to the operating system that this memory is in use.
ASSERT(isWithinVMPool(result, size));
reuse(result, size);
return result;
}
void free(void* pointer, size_t size)
{
// Call release to report to the operating system that this
// memory is no longer in use, and need not be paged out.
ASSERT(isWithinVMPool(pointer, size));
release(pointer, size);
// Common-sized allocations are stored in the m_commonSizedAllocations
// vector; all other freed chunks are added to m_freeList.
if (size == m_commonSize)
m_commonSizedAllocations.append(pointer);
else
addToFreeList(new FreeListEntry(pointer, size));
// Do some housekeeping. Every time we reach a point that
// 16MB of allocations have been freed, sweep m_freeList
// coalescing any neighboring fragments.
m_countFreedSinceLastCoalesce += size;
if (m_countFreedSinceLastCoalesce >= SIXTEEN_MB) {
m_countFreedSinceLastCoalesce = 0;
coalesceFreeSpace();
}
}
private:
#ifndef NDEBUG
bool isWithinVMPool(void* pointer, size_t size)
{
return pointer >= m_base && (reinterpret_cast<char*>(pointer) + size <= reinterpret_cast<char*>(m_base) + m_totalHeapSize);
}
#endif
// Freed space from the most common sized allocations will be held in this list, ...
const size_t m_commonSize;
Vector<void*> m_commonSizedAllocations;
// ... and all other freed allocations are held in m_freeList.
SizeSortedFreeTree m_freeList;
// This is used for housekeeping, to trigger defragmentation of the freed lists.
size_t m_countFreedSinceLastCoalesce;
void* m_base;
size_t m_totalHeapSize;
};
void ExecutableAllocator::intializePageSize()
{
ExecutableAllocator::pageSize = getpagesize();
}
static FixedVMPoolAllocator* allocator = 0;
static SpinLock spinlock = SPINLOCK_INITIALIZER;
ExecutablePool::Allocation ExecutablePool::systemAlloc(size_t size)
{
SpinLockHolder lock_holder(&spinlock);
if (!allocator)
allocator = new FixedVMPoolAllocator(JIT_ALLOCATOR_LARGE_ALLOC_SIZE, TWO_GB);
ExecutablePool::Allocation alloc = {reinterpret_cast<char*>(allocator->alloc(size)), size};
return alloc;
}
void ExecutablePool::systemRelease(const ExecutablePool::Allocation& allocation)
{
SpinLockHolder lock_holder(&spinlock);
ASSERT(allocator);
allocator->free(allocation.pages, allocation.size);
}
}
#endif // HAVE(ASSEMBLER)