blob: 0643de6a3b0b024d4c28320cf71267a292102e8d [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2001 Dirk Mueller ( mueller@kde.org )
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 Apple Inc. All rights reserved.
* Copyright (C) 2006 Andrew Wellington (proton@wiretapped.net)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "StringImpl.h"
#include "AtomicString.h"
#include "CString.h"
#include "CharacterNames.h"
#include "DeprecatedString.h"
#include "FloatConversion.h"
#include "Length.h"
#include "StringBuffer.h"
#include "StringHash.h"
#include "TextBreakIterator.h"
#include "TextEncoding.h"
#include <kjs/dtoa.h>
#include <kjs/identifier.h>
#include <wtf/Assertions.h>
#include <wtf/unicode/Unicode.h>
using namespace WTF;
using namespace Unicode;
using KJS::Identifier;
using KJS::UString;
namespace WebCore {
static inline UChar* newUCharVector(unsigned n)
{
return static_cast<UChar*>(fastMalloc(sizeof(UChar) * n));
}
static inline void deleteUCharVector(const UChar* p)
{
fastFree(const_cast<UChar*>(p));
}
// This constructor is used only to create the empty string.
StringImpl::StringImpl()
: RefCounted<StringImpl>(1)
, m_length(0)
, m_data(0)
, m_hash(0)
, m_inTable(false)
, m_hasTerminatingNullCharacter(false)
{
}
// This is one of the most common constructors, but it's also used for the copy()
// operation. Because of that, it's the one constructor that doesn't assert the
// length is non-zero, since we support copying the empty string.
inline StringImpl::StringImpl(const UChar* characters, unsigned length)
: RefCounted<StringImpl>(1)
, m_length(length)
, m_hash(0)
, m_inTable(false)
, m_hasTerminatingNullCharacter(false)
{
UChar* data = newUCharVector(length);
memcpy(data, characters, length * sizeof(UChar));
m_data = data;
}
inline StringImpl::StringImpl(const StringImpl& str, WithTerminatingNullCharacter)
: RefCounted<StringImpl>(1)
, m_length(str.m_length)
, m_hash(str.m_hash)
, m_inTable(false)
, m_hasTerminatingNullCharacter(true)
{
UChar* data = newUCharVector(str.m_length + 1);
memcpy(data, str.m_data, str.m_length * sizeof(UChar));
data[str.m_length] = 0;
m_data = data;
}
inline StringImpl::StringImpl(const char* characters, unsigned length)
: RefCounted<StringImpl>(1)
, m_length(length)
, m_hash(0)
, m_inTable(false)
, m_hasTerminatingNullCharacter(false)
{
ASSERT(characters);
ASSERT(length);
UChar* data = newUCharVector(length);
for (unsigned i = 0; i != length; ++i) {
unsigned char c = characters[i];
data[i] = c;
}
m_data = data;
}
inline StringImpl::StringImpl(UChar* characters, unsigned length, AdoptBuffer)
: RefCounted<StringImpl>(1)
, m_length(length)
, m_data(characters)
, m_hash(0)
, m_inTable(false)
, m_hasTerminatingNullCharacter(false)
{
ASSERT(characters);
ASSERT(length);
}
// FIXME: These AtomicString constructors return objects with a refCount of 0,
// even though the others return objects with a refCount of 1. That preserves
// the historical behavior for the hash map translator call sites inside the
// AtomicString code, but is it correct?
// This constructor is only for use by AtomicString.
StringImpl::StringImpl(const UChar* characters, unsigned length, unsigned hash)
: RefCounted<StringImpl>(0)
, m_length(length)
, m_hash(hash)
, m_inTable(true)
, m_hasTerminatingNullCharacter(false)
{
ASSERT(hash);
ASSERT(characters);
ASSERT(length);
UChar* data = newUCharVector(length);
memcpy(data, characters, length * sizeof(UChar));
m_data = data;
}
// This constructor is only for use by AtomicString.
StringImpl::StringImpl(const char* characters, unsigned length, unsigned hash)
: RefCounted<StringImpl>(0)
, m_length(length)
, m_hash(hash)
, m_inTable(true)
, m_hasTerminatingNullCharacter(false)
{
ASSERT(hash);
ASSERT(characters);
ASSERT(length);
UChar* data = newUCharVector(length);
for (unsigned i = 0; i != length; ++i) {
unsigned char c = characters[i];
data[i] = c;
}
m_data = data;
}
StringImpl::~StringImpl()
{
if (m_inTable)
AtomicString::remove(this);
deleteUCharVector(m_data);
}
StringImpl* StringImpl::empty()
{
static StringImpl e;
return &e;
}
bool StringImpl::containsOnlyWhitespace()
{
// FIXME: The definition of whitespace here includes a number of characters
// that are not whitespace from the point of view of RenderText; I wonder if
// that's a problem in practice.
for (unsigned i = 0; i < m_length; i++)
if (!isASCIISpace(m_data[i]))
return false;
return true;
}
PassRefPtr<StringImpl> StringImpl::substring(unsigned pos, unsigned len)
{
if (pos >= m_length)
return empty();
if (len > m_length - pos)
len = m_length - pos;
return create(m_data + pos, len);
}
UChar32 StringImpl::characterStartingAt(unsigned i)
{
if (U16_IS_SINGLE(m_data[i]))
return m_data[i];
if (i + 1 < m_length && U16_IS_LEAD(m_data[i]) && U16_IS_TRAIL(m_data[i + 1]))
return U16_GET_SUPPLEMENTARY(m_data[i], m_data[i + 1]);
return 0;
}
static Length parseLength(const UChar* data, unsigned length)
{
if (length == 0)
return Length(1, Relative);
unsigned i = 0;
while (i < length && isSpaceOrNewline(data[i]))
++i;
if (i < length && (data[i] == '+' || data[i] == '-'))
++i;
while (i < length && Unicode::isDigit(data[i]))
++i;
bool ok;
int r = DeprecatedConstString(reinterpret_cast<const DeprecatedChar*>(data), i).string().toInt(&ok);
/* Skip over any remaining digits, we are not that accurate (5.5% => 5%) */
while (i < length && (Unicode::isDigit(data[i]) || data[i] == '.'))
++i;
/* IE Quirk: Skip any whitespace (20 % => 20%) */
while (i < length && isSpaceOrNewline(data[i]))
++i;
if (ok) {
if (i < length) {
UChar next = data[i];
if (next == '%')
return Length(static_cast<double>(r), Percent);
if (next == '*')
return Length(r, Relative);
}
return Length(r, Fixed);
} else {
if (i < length) {
UChar next = data[i];
if (next == '*')
return Length(1, Relative);
if (next == '%')
return Length(1, Relative);
}
}
return Length(0, Relative);
}
Length StringImpl::toLength()
{
return parseLength(m_data, m_length);
}
static int countCharacter(StringImpl* string, UChar character)
{
int count = 0;
int length = string->length();
for (int i = 0; i < length; ++i)
count += (*string)[i] == character;
return count;
}
Length* StringImpl::toCoordsArray(int& len)
{
StringBuffer spacified(m_length);
for (unsigned i = 0; i < m_length; i++) {
UChar cc = m_data[i];
if (cc > '9' || (cc < '0' && cc != '-' && cc != '*' && cc != '.'))
spacified[i] = ' ';
else
spacified[i] = cc;
}
RefPtr<StringImpl> str = adopt(spacified);
str = str->simplifyWhiteSpace();
len = countCharacter(str.get(), ' ') + 1;
Length* r = new Length[len];
int i = 0;
int pos = 0;
int pos2;
while ((pos2 = str->find(' ', pos)) != -1) {
r[i++] = parseLength(str->characters() + pos, pos2 - pos);
pos = pos2+1;
}
r[i] = parseLength(str->characters() + pos, str->length() - pos);
ASSERT(i == len - 1);
return r;
}
Length* StringImpl::toLengthArray(int& len)
{
RefPtr<StringImpl> str = simplifyWhiteSpace();
if (!str->length()) {
len = 1;
return 0;
}
len = countCharacter(str.get(), ',') + 1;
Length* r = new Length[len];
int i = 0;
int pos = 0;
int pos2;
while ((pos2 = str->find(',', pos)) != -1) {
r[i++] = parseLength(str->characters() + pos, pos2 - pos);
pos = pos2+1;
}
ASSERT(i == len - 1);
/* IE Quirk: If the last comma is the last char skip it and reduce len by one */
if (str->length()-pos > 0)
r[i] = parseLength(str->characters() + pos, str->length() - pos);
else
len--;
return r;
}
bool StringImpl::isLower()
{
// Do a faster loop for the case where all the characters are ASCII.
bool allLower = true;
UChar ored = 0;
for (unsigned i = 0; i < m_length; i++) {
UChar c = m_data[i];
allLower = allLower && isASCIILower(c);
ored |= c;
}
if (!(ored & ~0x7F))
return allLower;
// Do a slower check for cases that include non-ASCII characters.
allLower = true;
unsigned i = 0;
while (i < m_length) {
UChar32 character;
U16_NEXT(m_data, i, m_length, character)
allLower = allLower && Unicode::isLower(character);
}
return allLower;
}
PassRefPtr<StringImpl> StringImpl::lower()
{
StringBuffer data(m_length);
int32_t length = m_length;
// Do a faster loop for the case where all the characters are ASCII.
UChar ored = 0;
for (int i = 0; i < length; i++) {
UChar c = m_data[i];
ored |= c;
data[i] = toASCIILower(c);
}
if (!(ored & ~0x7F))
return adopt(data);
// Do a slower implementation for cases that include non-ASCII characters.
bool error;
int32_t realLength = Unicode::toLower(data.characters(), length, m_data, m_length, &error);
if (!error && realLength == length)
return adopt(data);
data.resize(realLength);
Unicode::toLower(data.characters(), length, m_data, m_length, &error);
if (error)
return this;
return adopt(data);
}
PassRefPtr<StringImpl> StringImpl::upper()
{
bool error;
int32_t length = Unicode::toUpper(0, 0, m_data, m_length, &error);
StringBuffer data(length);
Unicode::toUpper(data.characters(), length, m_data, m_length, &error);
if (error)
return this;
return adopt(data);
}
PassRefPtr<StringImpl> StringImpl::secure(UChar aChar)
{
int length = m_length;
StringBuffer data(length);
for (int i = 0; i < length; ++i)
data[i] = aChar;
return adopt(data);
}
PassRefPtr<StringImpl> StringImpl::foldCase()
{
StringBuffer data(m_length);
int32_t length = m_length;
// Do a faster loop for the case where all the characters are ASCII.
UChar ored = 0;
for (int i = 0; i < length; i++) {
UChar c = m_data[i];
ored |= c;
data[i] = toASCIILower(c);
}
if (!(ored & ~0x7F))
return adopt(data);
// Do a slower implementation for cases that include non-ASCII characters.
bool error;
int32_t realLength = Unicode::foldCase(data.characters(), length, m_data, m_length, &error);
if (!error && realLength == length)
return adopt(data);
data.resize(realLength);
Unicode::foldCase(data.characters(), length, m_data, m_length, &error);
if (error)
return this;
return adopt(data);
}
PassRefPtr<StringImpl> StringImpl::stripWhiteSpace()
{
if (!m_length)
return empty();
unsigned start = 0;
unsigned end = m_length - 1;
// skip white space from start
while (start <= end && isSpaceOrNewline(m_data[start]))
start++;
// only white space
if (start > end)
return empty();
// skip white space from end
while (end && isSpaceOrNewline(m_data[end]))
end--;
return create(m_data + start, end + 1 - start);
}
PassRefPtr<StringImpl> StringImpl::simplifyWhiteSpace()
{
StringBuffer data(m_length);
const UChar* from = m_data;
const UChar* fromend = from + m_length;
int outc = 0;
UChar* to = data.characters();
while (true) {
while (from != fromend && isSpaceOrNewline(*from))
from++;
while (from != fromend && !isSpaceOrNewline(*from))
to[outc++] = *from++;
if (from != fromend)
to[outc++] = ' ';
else
break;
}
if (outc > 0 && to[outc - 1] == ' ')
outc--;
data.shrink(outc);
return adopt(data);
}
PassRefPtr<StringImpl> StringImpl::capitalize(UChar previous)
{
StringBuffer stringWithPrevious(m_length + 1);
stringWithPrevious[0] = previous == noBreakSpace ? ' ' : previous;
for (unsigned i = 1; i < m_length + 1; i++) {
// Replace &nbsp with a real space since ICU no longer treats &nbsp as a word separator.
if (m_data[i - 1] == noBreakSpace)
stringWithPrevious[i] = ' ';
else
stringWithPrevious[i] = m_data[i - 1];
}
TextBreakIterator* boundary = wordBreakIterator(stringWithPrevious.characters(), m_length + 1);
if (!boundary)
return this;
StringBuffer data(m_length);
int32_t endOfWord;
int32_t startOfWord = textBreakFirst(boundary);
for (endOfWord = textBreakNext(boundary); endOfWord != TextBreakDone; startOfWord = endOfWord, endOfWord = textBreakNext(boundary)) {
if (startOfWord != 0) // Ignore first char of previous string
data[startOfWord - 1] = m_data[startOfWord - 1] == noBreakSpace ? noBreakSpace : toTitleCase(stringWithPrevious[startOfWord]);
for (int i = startOfWord + 1; i < endOfWord; i++)
data[i - 1] = m_data[i - 1];
}
return adopt(data);
}
int StringImpl::toInt(bool* ok)
{
unsigned i = 0;
// Allow leading spaces.
for (; i != m_length; ++i)
if (!isSpaceOrNewline(m_data[i]))
break;
// Allow sign.
if (i != m_length && (m_data[i] == '+' || m_data[i] == '-'))
++i;
// Allow digits.
for (; i != m_length; ++i)
if (!Unicode::isDigit(m_data[i]))
break;
return DeprecatedConstString(reinterpret_cast<const DeprecatedChar*>(m_data), i).string().toInt(ok);
}
int64_t StringImpl::toInt64(bool* ok)
{
unsigned i = 0;
// Allow leading spaces.
for (; i != m_length; ++i)
if (!isSpaceOrNewline(m_data[i]))
break;
// Allow sign.
if (i != m_length && (m_data[i] == '+' || m_data[i] == '-'))
++i;
// Allow digits.
for (; i != m_length; ++i)
if (!Unicode::isDigit(m_data[i]))
break;
return DeprecatedConstString(reinterpret_cast<const DeprecatedChar*>(m_data), i).string().toInt64(ok);
}
uint64_t StringImpl::toUInt64(bool* ok)
{
unsigned i = 0;
// Allow leading spaces.
for (; i != m_length; ++i)
if (!isSpaceOrNewline(m_data[i]))
break;
// Allow digits.
for (; i != m_length; ++i)
if (!Unicode::isDigit(m_data[i]))
break;
return DeprecatedConstString(reinterpret_cast<const DeprecatedChar*>(m_data), i).string().toUInt64(ok);
}
double StringImpl::toDouble(bool* ok)
{
if (!m_length) {
if (ok)
*ok = false;
return 0;
}
char *end;
CString latin1String = Latin1Encoding().encode(characters(), length());
double val = kjs_strtod(latin1String.data(), &end);
if (ok)
*ok = end == 0 || *end == '\0';
return val;
}
float StringImpl::toFloat(bool* ok)
{
// FIXME: This will return ok even when the string fits into a double but not a float.
return narrowPrecisionToFloat(toDouble(ok));
}
static bool equal(const UChar* a, const char* b, int length)
{
ASSERT(length >= 0);
while (length--) {
unsigned char bc = *b++;
if (*a++ != bc)
return false;
}
return true;
}
static bool equalIgnoringCase(const UChar* a, const char* b, int length)
{
ASSERT(length >= 0);
while (length--) {
unsigned char bc = *b++;
if (foldCase(*a++) != foldCase(bc))
return false;
}
return true;
}
static inline bool equalIgnoringCase(const UChar* a, const UChar* b, int length)
{
ASSERT(length >= 0);
return umemcasecmp(a, b, length) == 0;
}
int StringImpl::find(const char* chs, int index, bool caseSensitive)
{
if (!chs || index < 0)
return -1;
int chsLength = strlen(chs);
int n = m_length - index;
if (n < 0)
return -1;
n -= chsLength - 1;
if (n <= 0)
return -1;
const char* chsPlusOne = chs + 1;
int chsLengthMinusOne = chsLength - 1;
const UChar* ptr = m_data + index - 1;
if (caseSensitive) {
UChar c = *chs;
do {
if (*++ptr == c && equal(ptr + 1, chsPlusOne, chsLengthMinusOne))
return m_length - chsLength - n + 1;
} while (--n);
} else {
UChar lc = Unicode::foldCase(*chs);
do {
if (Unicode::foldCase(*++ptr) == lc && equalIgnoringCase(ptr + 1, chsPlusOne, chsLengthMinusOne))
return m_length - chsLength - n + 1;
} while (--n);
}
return -1;
}
int StringImpl::find(UChar c, int start)
{
unsigned index = start;
if (index >= m_length )
return -1;
while(index < m_length) {
if (m_data[index] == c)
return index;
index++;
}
return -1;
}
int StringImpl::find(StringImpl* str, int index, bool caseSensitive)
{
/*
We use a simple trick for efficiency's sake. Instead of
comparing strings, we compare the sum of str with that of
a part of this string. Only if that matches, we call memcmp
or ucstrnicmp.
*/
ASSERT(str);
if (index < 0)
index += m_length;
int lstr = str->m_length;
int lthis = m_length - index;
if ((unsigned)lthis > m_length)
return -1;
int delta = lthis - lstr;
if (delta < 0)
return -1;
const UChar* uthis = m_data + index;
const UChar* ustr = str->m_data;
unsigned hthis = 0;
unsigned hstr = 0;
if (caseSensitive) {
for (int i = 0; i < lstr; i++) {
hthis += uthis[i];
hstr += ustr[i];
}
int i = 0;
while (1) {
if (hthis == hstr && memcmp(uthis + i, ustr, lstr * sizeof(UChar)) == 0)
return index + i;
if (i == delta)
return -1;
hthis += uthis[i + lstr];
hthis -= uthis[i];
i++;
}
} else {
for (int i = 0; i < lstr; i++ ) {
hthis += toASCIILower(uthis[i]);
hstr += toASCIILower(ustr[i]);
}
int i = 0;
while (1) {
if (hthis == hstr && equalIgnoringCase(uthis + i, ustr, lstr))
return index + i;
if (i == delta)
return -1;
hthis += toASCIILower(uthis[i + lstr]);
hthis -= toASCIILower(uthis[i]);
i++;
}
}
}
int StringImpl::reverseFind(UChar c, int index)
{
if (index >= (int)m_length || m_length == 0)
return -1;
if (index < 0)
index += m_length;
while (1) {
if (m_data[index] == c)
return index;
if (index == 0)
return -1;
index--;
}
}
int StringImpl::reverseFind(StringImpl* str, int index, bool caseSensitive)
{
/*
See StringImpl::find() for explanations.
*/
ASSERT(str);
int lthis = m_length;
if (index < 0)
index += lthis;
int lstr = str->m_length;
int delta = lthis - lstr;
if ( index < 0 || index > lthis || delta < 0 )
return -1;
if ( index > delta )
index = delta;
const UChar *uthis = m_data;
const UChar *ustr = str->m_data;
unsigned hthis = 0;
unsigned hstr = 0;
int i;
if (caseSensitive) {
for ( i = 0; i < lstr; i++ ) {
hthis += uthis[index + i];
hstr += ustr[i];
}
i = index;
while (1) {
if (hthis == hstr && memcmp(uthis + i, ustr, lstr * sizeof(UChar)) == 0)
return i;
if (i == 0)
return -1;
i--;
hthis -= uthis[i + lstr];
hthis += uthis[i];
}
} else {
for (i = 0; i < lstr; i++) {
hthis += toASCIILower(uthis[index + i]);
hstr += toASCIILower(ustr[i]);
}
i = index;
while (1) {
if (hthis == hstr && equalIgnoringCase(uthis + i, ustr, lstr) )
return i;
if (i == 0)
return -1;
i--;
hthis -= toASCIILower(uthis[i + lstr]);
hthis += toASCIILower(uthis[i]);
}
}
// Should never get here.
return -1;
}
bool StringImpl::endsWith(StringImpl* m_data, bool caseSensitive)
{
ASSERT(m_data);
int start = m_length - m_data->m_length;
if (start >= 0)
return (find(m_data, start, caseSensitive) == start);
return false;
}
PassRefPtr<StringImpl> StringImpl::replace(UChar oldC, UChar newC)
{
if (oldC == newC)
return this;
unsigned i;
for (i = 0; i != m_length; ++i)
if (m_data[i] == oldC)
break;
if (i == m_length)
return this;
StringBuffer data(m_length);
for (i = 0; i != m_length; ++i) {
UChar ch = m_data[i];
if (ch == oldC)
ch = newC;
data[i] = ch;
}
return adopt(data);
}
PassRefPtr<StringImpl> StringImpl::replace(unsigned position, unsigned lengthToReplace, StringImpl* str)
{
position = min(position, length());
lengthToReplace = min(lengthToReplace, length() - position);
unsigned lengthToInsert = str ? str->length() : 0;
if (!lengthToReplace && !lengthToInsert)
return this;
StringBuffer buffer(length() - lengthToReplace + lengthToInsert);
memcpy(buffer.characters(), characters(), position * sizeof(UChar));
if (str)
memcpy(buffer.characters() + position, str->characters(), lengthToInsert * sizeof(UChar));
memcpy(buffer.characters() + position + lengthToInsert, characters() + position + lengthToReplace,
(length() - position - lengthToReplace) * sizeof(UChar));
return adopt(buffer);
}
PassRefPtr<StringImpl> StringImpl::replace(UChar pattern, StringImpl* replacement)
{
if (!replacement)
return this;
int repStrLength = replacement->length();
int srcSegmentStart = 0;
int matchCount = 0;
// Count the matches
while ((srcSegmentStart = find(pattern, srcSegmentStart)) >= 0) {
++matchCount;
++srcSegmentStart;
}
// If we have 0 matches, we don't have to do any more work
if (!matchCount)
return this;
StringBuffer data(m_length - matchCount + (matchCount * repStrLength));
// Construct the new data
int srcSegmentEnd;
int srcSegmentLength;
srcSegmentStart = 0;
int dstOffset = 0;
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) >= 0) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(data.characters() + dstOffset, m_data + srcSegmentStart, srcSegmentLength * sizeof(UChar));
dstOffset += srcSegmentLength;
memcpy(data.characters() + dstOffset, replacement->m_data, repStrLength * sizeof(UChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + 1;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(data.characters() + dstOffset, m_data + srcSegmentStart, srcSegmentLength * sizeof(UChar));
ASSERT(dstOffset + srcSegmentLength == static_cast<int>(data.length()));
return adopt(data);
}
PassRefPtr<StringImpl> StringImpl::replace(StringImpl* pattern, StringImpl* replacement)
{
if (!pattern || !replacement)
return this;
int patternLength = pattern->length();
if (!patternLength)
return this;
int repStrLength = replacement->length();
int srcSegmentStart = 0;
int matchCount = 0;
// Count the matches
while ((srcSegmentStart = find(pattern, srcSegmentStart)) >= 0) {
++matchCount;
srcSegmentStart += patternLength;
}
// If we have 0 matches, we don't have to do any more work
if (!matchCount)
return this;
StringBuffer data(m_length + matchCount * (repStrLength - patternLength));
// Construct the new data
int srcSegmentEnd;
int srcSegmentLength;
srcSegmentStart = 0;
int dstOffset = 0;
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) >= 0) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(data.characters() + dstOffset, m_data + srcSegmentStart, srcSegmentLength * sizeof(UChar));
dstOffset += srcSegmentLength;
memcpy(data.characters() + dstOffset, replacement->m_data, repStrLength * sizeof(UChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + patternLength;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(data.characters() + dstOffset, m_data + srcSegmentStart, srcSegmentLength * sizeof(UChar));
ASSERT(dstOffset + srcSegmentLength == static_cast<int>(data.length()));
return adopt(data);
}
bool equal(StringImpl* a, StringImpl* b)
{
return StringHash::equal(a, b);
}
bool equal(StringImpl* a, const char* b)
{
if (!a)
return !b;
if (!b)
return !a;
unsigned length = a->length();
const UChar* as = a->characters();
for (unsigned i = 0; i != length; ++i) {
unsigned char bc = b[i];
if (!bc)
return false;
if (as[i] != bc)
return false;
}
return !b[length];
}
bool equalIgnoringCase(StringImpl* a, StringImpl* b)
{
return CaseFoldingHash::equal(a, b);
}
bool equalIgnoringCase(StringImpl* a, const char* b)
{
if (!a)
return !b;
if (!b)
return !a;
unsigned length = a->length();
const UChar* as = a->characters();
// Do a faster loop for the case where all the characters are ASCII.
UChar ored = 0;
bool equal = true;
for (unsigned i = 0; i != length; ++i) {
char bc = b[i];
if (!bc)
return false;
UChar ac = as[i];
ored |= ac;
equal = equal && (toASCIILower(ac) == toASCIILower(bc));
}
// Do a slower implementation for cases that include non-ASCII characters.
if (ored & ~0x7F) {
equal = true;
for (unsigned i = 0; i != length; ++i) {
unsigned char bc = b[i];
equal = equal && (foldCase(as[i]) == foldCase(bc));
}
}
return equal && !b[length];
}
Vector<char> StringImpl::ascii()
{
Vector<char> buffer(m_length + 1);
for (unsigned i = 0; i != m_length; ++i) {
UChar c = m_data[i];
if ((c >= 0x20 && c < 0x7F) || c == 0x00)
buffer[i] = c;
else
buffer[i] = '?';
}
buffer[m_length] = '\0';
return buffer;
}
WTF::Unicode::Direction StringImpl::defaultWritingDirection()
{
for (unsigned i = 0; i < m_length; ++i) {
WTF::Unicode::Direction charDirection = WTF::Unicode::direction(m_data[i]);
if (charDirection == WTF::Unicode::LeftToRight)
return WTF::Unicode::LeftToRight;
if (charDirection == WTF::Unicode::RightToLeft || charDirection == WTF::Unicode::RightToLeftArabic)
return WTF::Unicode::RightToLeft;
}
return WTF::Unicode::LeftToRight;
}
// This is a hot function because it's used when parsing HTML.
PassRefPtr<StringImpl> StringImpl::createStrippingNullCharacters(const UChar* characters, unsigned length)
{
ASSERT(characters);
ASSERT(length);
StringBuffer strippedCopy(length);
int foundNull = 0;
for (unsigned i = 0; i < length; i++) {
int c = characters[i]; // more efficient than using UChar here (at least on Intel Mac OS)
strippedCopy[i] = c;
foundNull |= ~c;
}
if (!foundNull)
return adoptRef(new StringImpl(strippedCopy.release(), length, AdoptBuffer()));
unsigned strippedLength = 0;
for (unsigned i = 0; i < length; i++) {
if (int c = characters[i])
strippedCopy[strippedLength++] = c;
}
strippedCopy.shrink(strippedLength);
return adopt(strippedCopy);
}
PassRefPtr<StringImpl> StringImpl::adopt(StringBuffer& buffer)
{
unsigned length = buffer.length();
if (length == 0)
return empty();
return adoptRef(new StringImpl(buffer.release(), length, AdoptBuffer()));
}
PassRefPtr<StringImpl> StringImpl::adopt(Vector<UChar>& vector)
{
size_t size = vector.size();
if (size == 0)
return empty();
return adoptRef(new StringImpl(vector.releaseBuffer(), size, AdoptBuffer()));
}
PassRefPtr<StringImpl> StringImpl::create(const UChar* characters, unsigned length)
{
if (!characters || !length)
return empty();
return adoptRef(new StringImpl(characters, length));
}
PassRefPtr<StringImpl> StringImpl::create(const char* characters, unsigned length)
{
if (!characters || !length)
return empty();
return adoptRef(new StringImpl(characters, length));
}
PassRefPtr<StringImpl> StringImpl::create(const char* string)
{
if (!string)
return empty();
unsigned length = strlen(string);
if (!length)
return empty();
return adoptRef(new StringImpl(string, length));
}
PassRefPtr<StringImpl> StringImpl::createWithTerminatingNullCharacter(const StringImpl& string)
{
return adoptRef(new StringImpl(string, WithTerminatingNullCharacter()));
}
PassRefPtr<StringImpl> StringImpl::copy()
{
return adoptRef(new StringImpl(m_data, m_length));
}
} // namespace WebCore