blob: 098b1a39a6c576e4f1429d3275ae81137386a903 [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2007 David Smith (catfish.man@gmail.com)
* Copyright (C) 2003, 2004, 2005, 2006, 2007 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "RenderBlock.h"
#include "Document.h"
#include "Element.h"
#include "Frame.h"
#include "FrameView.h"
#include "GraphicsContext.h"
#include "HTMLNames.h"
#include "HitTestResult.h"
#include "InlineTextBox.h"
#include "RenderImage.h"
#include "RenderTableCell.h"
#include "RenderTextFragment.h"
#include "RenderTheme.h"
#include "RenderView.h"
#include "SelectionController.h"
#include "TextStream.h"
using namespace std;
using namespace WTF;
using namespace Unicode;
namespace WebCore {
// Number of pixels to allow as a fudge factor when clicking above or below a line.
// clicking up to verticalLineClickFudgeFactor pixels above a line will correspond to the closest point on the line.
const int verticalLineClickFudgeFactor= 3;
using namespace HTMLNames;
struct ColumnInfo {
ColumnInfo()
: m_desiredColumnWidth(0)
, m_desiredColumnCount(1)
{ }
int m_desiredColumnWidth;
unsigned m_desiredColumnCount;
Vector<IntRect> m_columnRects;
};
typedef WTF::HashMap<const RenderBox*, ColumnInfo*> ColumnInfoMap;
static ColumnInfoMap* gColumnInfoMap = 0;
// Our MarginInfo state used when laying out block children.
RenderBlock::MarginInfo::MarginInfo(RenderBlock* block, int top, int bottom)
{
// Whether or not we can collapse our own margins with our children. We don't do this
// if we had any border/padding (obviously), if we're the root or HTML elements, or if
// we're positioned, floating, a table cell.
m_canCollapseWithChildren = !block->isRenderView() && !block->isRoot() && !block->isPositioned() &&
!block->isFloating() && !block->isTableCell() && !block->hasOverflowClip() && !block->isInlineBlockOrInlineTable();
m_canCollapseTopWithChildren = m_canCollapseWithChildren && (top == 0) && block->style()->marginTopCollapse() != MSEPARATE;
// If any height other than auto is specified in CSS, then we don't collapse our bottom
// margins with our children's margins. To do otherwise would be to risk odd visual
// effects when the children overflow out of the parent block and yet still collapse
// with it. We also don't collapse if we have any bottom border/padding.
m_canCollapseBottomWithChildren = m_canCollapseWithChildren && (bottom == 0) &&
(block->style()->height().isAuto() && block->style()->height().value() == 0) && block->style()->marginBottomCollapse() != MSEPARATE;
m_quirkContainer = block->isTableCell() || block->isBody() || block->style()->marginTopCollapse() == MDISCARD ||
block->style()->marginBottomCollapse() == MDISCARD;
m_atTopOfBlock = true;
m_atBottomOfBlock = false;
m_posMargin = m_canCollapseTopWithChildren ? block->maxTopMargin(true) : 0;
m_negMargin = m_canCollapseTopWithChildren ? block->maxTopMargin(false) : 0;
m_selfCollapsingBlockClearedFloat = false;
m_topQuirk = m_bottomQuirk = m_determinedTopQuirk = false;
}
// -------------------------------------------------------------------------------------------------------
RenderBlock::RenderBlock(Node* node)
: RenderFlow(node)
, m_floatingObjects(0)
, m_positionedObjects(0)
, m_maxMargin(0)
, m_overflowHeight(0)
, m_overflowWidth(0)
, m_overflowLeft(0)
, m_overflowTop(0)
{
}
RenderBlock::~RenderBlock()
{
delete m_floatingObjects;
delete m_positionedObjects;
delete m_maxMargin;
if (m_hasColumns)
delete gColumnInfoMap->take(this);
}
void RenderBlock::setStyle(RenderStyle* _style)
{
setReplaced(_style->isDisplayReplacedType());
RenderFlow::setStyle(_style);
// FIXME: We could save this call when the change only affected non-inherited properties
for (RenderObject* child = firstChild(); child; child = child->nextSibling()) {
if (child->isAnonymousBlock()) {
RenderStyle* newStyle = new (renderArena()) RenderStyle();
newStyle->inheritFrom(style());
newStyle->setDisplay(BLOCK);
child->setStyle(newStyle);
}
}
m_lineHeight = -1;
// Update pseudos for :before and :after now.
if (!isAnonymous() && canHaveChildren()) {
updateBeforeAfterContent(RenderStyle::BEFORE);
updateBeforeAfterContent(RenderStyle::AFTER);
}
updateFirstLetter();
}
void RenderBlock::addChildToFlow(RenderObject* newChild, RenderObject* beforeChild)
{
// Make sure we don't append things after :after-generated content if we have it.
if (!beforeChild && isAfterContent(lastChild()))
beforeChild = lastChild();
bool madeBoxesNonInline = false;
// If the requested beforeChild is not one of our children, then this is most likely because
// there is an anonymous block box within this object that contains the beforeChild. So
// just insert the child into the anonymous block box instead of here.
if (beforeChild && beforeChild->parent() != this) {
ASSERT(beforeChild->parent());
ASSERT(beforeChild->parent()->isAnonymousBlock());
if (newChild->isInline()) {
beforeChild->parent()->addChild(newChild,beforeChild);
return;
}
else if (beforeChild->parent()->firstChild() != beforeChild)
return beforeChild->parent()->addChild(newChild, beforeChild);
else
return addChildToFlow(newChild, beforeChild->parent());
}
// A block has to either have all of its children inline, or all of its children as blocks.
// So, if our children are currently inline and a block child has to be inserted, we move all our
// inline children into anonymous block boxes
if ( m_childrenInline && !newChild->isInline() && !newChild->isFloatingOrPositioned() )
{
// This is a block with inline content. Wrap the inline content in anonymous blocks.
makeChildrenNonInline(beforeChild);
madeBoxesNonInline = true;
if (beforeChild && beforeChild->parent() != this) {
beforeChild = beforeChild->parent();
ASSERT(beforeChild->isAnonymousBlock());
ASSERT(beforeChild->parent() == this);
}
}
else if (!m_childrenInline && !newChild->isFloatingOrPositioned())
{
// If we're inserting an inline child but all of our children are blocks, then we have to make sure
// it is put into an anomyous block box. We try to use an existing anonymous box if possible, otherwise
// a new one is created and inserted into our list of children in the appropriate position.
if (newChild->isInline()) {
if (beforeChild) {
if (beforeChild->previousSibling() && beforeChild->previousSibling()->isAnonymousBlock()) {
beforeChild->previousSibling()->addChild(newChild);
return;
}
}
else {
if (lastChild() && lastChild()->isAnonymousBlock()) {
lastChild()->addChild(newChild);
return;
}
}
// no suitable existing anonymous box - create a new one
RenderBlock* newBox = createAnonymousBlock();
RenderContainer::addChild(newBox,beforeChild);
newBox->addChild(newChild);
return;
}
}
RenderContainer::addChild(newChild,beforeChild);
// ### care about aligned stuff
if (madeBoxesNonInline && parent() && isAnonymousBlock())
parent()->removeLeftoverAnonymousBlock(this);
// this object may be dead here
}
static void getInlineRun(RenderObject* start, RenderObject* boundary,
RenderObject*& inlineRunStart,
RenderObject*& inlineRunEnd)
{
// Beginning at |start| we find the largest contiguous run of inlines that
// we can. We denote the run with start and end points, |inlineRunStart|
// and |inlineRunEnd|. Note that these two values may be the same if
// we encounter only one inline.
//
// We skip any non-inlines we encounter as long as we haven't found any
// inlines yet.
//
// |boundary| indicates a non-inclusive boundary point. Regardless of whether |boundary|
// is inline or not, we will not include it in a run with inlines before it. It's as though we encountered
// a non-inline.
// Start by skipping as many non-inlines as we can.
RenderObject * curr = start;
bool sawInline;
do {
while (curr && !(curr->isInline() || curr->isFloatingOrPositioned()))
curr = curr->nextSibling();
inlineRunStart = inlineRunEnd = curr;
if (!curr)
return; // No more inline children to be found.
sawInline = curr->isInline();
curr = curr->nextSibling();
while (curr && (curr->isInline() || curr->isFloatingOrPositioned()) && (curr != boundary)) {
inlineRunEnd = curr;
if (curr->isInline())
sawInline = true;
curr = curr->nextSibling();
}
} while (!sawInline);
}
void RenderBlock::deleteLineBoxTree()
{
InlineFlowBox* line = m_firstLineBox;
InlineFlowBox* nextLine;
while (line) {
nextLine = line->nextFlowBox();
line->deleteLine(renderArena());
line = nextLine;
}
m_firstLineBox = m_lastLineBox = 0;
}
void RenderBlock::makeChildrenNonInline(RenderObject *insertionPoint)
{
// makeChildrenNonInline takes a block whose children are *all* inline and it
// makes sure that inline children are coalesced under anonymous
// blocks. If |insertionPoint| is defined, then it represents the insertion point for
// the new block child that is causing us to have to wrap all the inlines. This
// means that we cannot coalesce inlines before |insertionPoint| with inlines following
// |insertionPoint|, because the new child is going to be inserted in between the inlines,
// splitting them.
ASSERT(isInlineBlockOrInlineTable() || !isInline());
ASSERT(!insertionPoint || insertionPoint->parent() == this);
m_childrenInline = false;
RenderObject *child = firstChild();
if (!child)
return;
deleteLineBoxTree();
while (child) {
RenderObject *inlineRunStart, *inlineRunEnd;
getInlineRun(child, insertionPoint, inlineRunStart, inlineRunEnd);
if (!inlineRunStart)
break;
child = inlineRunEnd->nextSibling();
RenderBlock* box = createAnonymousBlock();
insertChildNode(box, inlineRunStart);
RenderObject* o = inlineRunStart;
while(o != inlineRunEnd)
{
RenderObject* no = o;
o = no->nextSibling();
box->moveChildNode(no);
}
box->moveChildNode(inlineRunEnd);
}
#ifndef NDEBUG
for (RenderObject *c = firstChild(); c; c = c->nextSibling())
ASSERT(!c->isInline());
#endif
repaint();
}
void RenderBlock::removeChild(RenderObject *oldChild)
{
// If this child is a block, and if our previous and next siblings are
// both anonymous blocks with inline content, then we can go ahead and
// fold the inline content back together.
RenderObject* prev = oldChild->previousSibling();
RenderObject* next = oldChild->nextSibling();
bool canDeleteAnonymousBlocks = !documentBeingDestroyed() && !isInline() && !oldChild->isInline() &&
!oldChild->continuation() &&
(!prev || (prev->isAnonymousBlock() && prev->childrenInline())) &&
(!next || (next->isAnonymousBlock() && next->childrenInline()));
if (canDeleteAnonymousBlocks && prev && next) {
// Take all the children out of the |next| block and put them in
// the |prev| block.
prev->setNeedsLayoutAndPrefWidthsRecalc();
RenderObject* o = next->firstChild();
while (o) {
RenderObject* no = o;
o = no->nextSibling();
prev->moveChildNode(no);
}
RenderBlock* nextBlock = static_cast<RenderBlock*>(next);
nextBlock->deleteLineBoxTree();
// Nuke the now-empty block.
next->destroy();
}
RenderFlow::removeChild(oldChild);
RenderObject* child = prev ? prev : next;
if (canDeleteAnonymousBlocks && child && !child->previousSibling() && !child->nextSibling() && !isFlexibleBox()) {
// The removal has knocked us down to containing only a single anonymous
// box. We can go ahead and pull the content right back up into our
// box.
setNeedsLayoutAndPrefWidthsRecalc();
RenderBlock* anonBlock = static_cast<RenderBlock*>(removeChildNode(child, false));
m_childrenInline = true;
RenderObject* o = anonBlock->firstChild();
while (o) {
RenderObject* no = o;
o = no->nextSibling();
moveChildNode(no);
}
// Delete the now-empty block's lines and nuke it.
anonBlock->deleteLineBoxTree();
anonBlock->destroy();
}
}
int RenderBlock::overflowHeight(bool includeInterior) const
{
if (!includeInterior && hasOverflowClip()) {
if (ShadowData* boxShadow = style()->boxShadow())
return m_height + max(boxShadow->y + boxShadow->blur, 0);
return m_height;
}
return m_overflowHeight;
}
int RenderBlock::overflowWidth(bool includeInterior) const
{
if (!includeInterior && hasOverflowClip()) {
if (ShadowData* boxShadow = style()->boxShadow())
return m_width + max(boxShadow->x + boxShadow->blur, 0);
return m_width;
}
return m_overflowWidth;
}
int RenderBlock::overflowLeft(bool includeInterior) const
{
if (!includeInterior && hasOverflowClip()) {
if (ShadowData* boxShadow = style()->boxShadow())
return min(boxShadow->x - boxShadow->blur, 0);
return 0;
}
return m_overflowLeft;
}
int RenderBlock::overflowTop(bool includeInterior) const
{
if (!includeInterior && hasOverflowClip()) {
if (ShadowData* boxShadow = style()->boxShadow())
return min(boxShadow->y - boxShadow->blur, 0);
return 0;
}
return m_overflowTop;
}
IntRect RenderBlock::overflowRect(bool includeInterior) const
{
if (!includeInterior && hasOverflowClip()) {
IntRect box = borderBox();
if (ShadowData* boxShadow = style()->boxShadow()) {
int shadowLeft = min(boxShadow->x - boxShadow->blur, 0);
int shadowRight = max(boxShadow->x + boxShadow->blur, 0);
int shadowTop = min(boxShadow->y - boxShadow->blur, 0);
int shadowBottom = max(boxShadow->y + boxShadow->blur, 0);
box.move(shadowLeft, shadowTop);
box.setWidth(box.width() - shadowLeft + shadowRight);
box.setHeight(box.height() - shadowTop + shadowBottom);
}
return box;
}
if (!includeInterior && hasOverflowClip())
return borderBox();
int l = overflowLeft(includeInterior);
int t = min(overflowTop(includeInterior), -borderTopExtra());
return IntRect(l, t, overflowWidth(includeInterior) - l, max(overflowHeight(includeInterior), height() + borderBottomExtra()) - t);
}
bool RenderBlock::isSelfCollapsingBlock() const
{
// We are not self-collapsing if we
// (a) have a non-zero height according to layout (an optimization to avoid wasting time)
// (b) are a table,
// (c) have border/padding,
// (d) have a min-height
// (e) have specified that one of our margins can't collapse using a CSS extension
if (m_height > 0 ||
isTable() || (borderBottom() + paddingBottom() + borderTop() + paddingTop()) != 0 ||
style()->minHeight().isPositive() ||
style()->marginTopCollapse() == MSEPARATE || style()->marginBottomCollapse() == MSEPARATE)
return false;
bool hasAutoHeight = style()->height().isAuto();
if (style()->height().isPercent() && !style()->htmlHacks()) {
hasAutoHeight = true;
for (RenderBlock* cb = containingBlock(); !cb->isRenderView(); cb = cb->containingBlock()) {
if (cb->style()->height().isFixed() || cb->isTableCell())
hasAutoHeight = false;
}
}
// If the height is 0 or auto, then whether or not we are a self-collapsing block depends
// on whether we have content that is all self-collapsing or not.
if (hasAutoHeight || ((style()->height().isFixed() || style()->height().isPercent()) && style()->height().isZero())) {
// If the block has inline children, see if we generated any line boxes. If we have any
// line boxes, then we can't be self-collapsing, since we have content.
if (childrenInline())
return !firstLineBox();
// Whether or not we collapse is dependent on whether all our normal flow children
// are also self-collapsing.
for (RenderObject* child = firstChild(); child; child = child->nextSibling()) {
if (child->isFloatingOrPositioned())
continue;
if (!child->isSelfCollapsingBlock())
return false;
}
return true;
}
return false;
}
void RenderBlock::layout()
{
// Update our first letter info now.
updateFirstLetter();
// Table cells call layoutBlock directly, so don't add any logic here. Put code into
// layoutBlock().
layoutBlock(false);
// It's safe to check for control clip here, since controls can never be table cells.
if (hasControlClip()) {
// Because of the lightweight clip, there can never be any overflow from children.
m_overflowWidth = m_width;
m_overflowHeight = m_height;
m_overflowLeft = 0;
m_overflowTop = 0;
}
}
void RenderBlock::layoutBlock(bool relayoutChildren)
{
ASSERT(needsLayout());
if (isInline() && !isInlineBlockOrInlineTable()) // Inline <form>s inside various table elements can
return; // cause us to come in here. Just bail.
if (!relayoutChildren && layoutOnlyPositionedObjects())
return;
IntRect oldBounds;
IntRect oldOutlineBox;
bool checkForRepaint = checkForRepaintDuringLayout();
if (checkForRepaint) {
oldBounds = absoluteClippedOverflowRect();
oldOutlineBox = absoluteOutlineBox();
}
bool hadColumns = m_hasColumns;
if (!hadColumns)
view()->pushLayoutState(this, IntSize(xPos(), yPos()));
else
view()->disableLayoutState();
int oldWidth = m_width;
int oldColumnWidth = desiredColumnWidth();
calcWidth();
calcColumnWidth();
m_overflowWidth = m_width;
m_overflowLeft = 0;
if (oldWidth != m_width || oldColumnWidth != desiredColumnWidth())
relayoutChildren = true;
clearFloats();
int previousHeight = m_height;
m_height = 0;
m_overflowHeight = 0;
m_clearStatus = CNONE;
// We use four values, maxTopPos, maxPosNeg, maxBottomPos, and maxBottomNeg, to track
// our current maximal positive and negative margins. These values are used when we
// are collapsed with adjacent blocks, so for example, if you have block A and B
// collapsing together, then you'd take the maximal positive margin from both A and B
// and subtract it from the maximal negative margin from both A and B to get the
// true collapsed margin. This algorithm is recursive, so when we finish layout()
// our block knows its current maximal positive/negative values.
//
// Start out by setting our margin values to our current margins. Table cells have
// no margins, so we don't fill in the values for table cells.
bool isCell = isTableCell();
if (!isCell) {
initMaxMarginValues();
m_topMarginQuirk = style()->marginTop().quirk();
m_bottomMarginQuirk = style()->marginBottom().quirk();
if (element() && element()->hasTagName(formTag) && element()->isMalformed())
// See if this form is malformed (i.e., unclosed). If so, don't give the form
// a bottom margin.
setMaxBottomMargins(0, 0);
}
// For overflow:scroll blocks, ensure we have both scrollbars in place always.
if (scrollsOverflow()) {
if (style()->overflowX() == OSCROLL)
m_layer->setHasHorizontalScrollbar(true);
if (style()->overflowY() == OSCROLL)
m_layer->setHasVerticalScrollbar(true);
}
int repaintTop = 0;
int repaintBottom = 0;
int maxFloatBottom = 0;
if (childrenInline())
layoutInlineChildren(relayoutChildren, repaintTop, repaintBottom);
else
layoutBlockChildren(relayoutChildren, maxFloatBottom);
// Expand our intrinsic height to encompass floats.
int toAdd = borderBottom() + paddingBottom() + horizontalScrollbarHeight();
if (floatBottom() > (m_height - toAdd) && (isInlineBlockOrInlineTable() || isFloatingOrPositioned() || hasOverflowClip() ||
(parent() && parent()->isFlexibleBox() || m_hasColumns)))
m_height = floatBottom() + toAdd;
// Now lay out our columns within this intrinsic height, since they can slightly affect the intrinsic height as
// we adjust for clean column breaks.
int singleColumnBottom = layoutColumns();
// Calculate our new height.
int oldHeight = m_height;
calcHeight();
if (oldHeight != m_height) {
if (oldHeight > m_height && maxFloatBottom > m_height && !childrenInline()) {
// One of our children's floats may have become an overhanging float for us. We need to look for it.
for (RenderObject* child = firstChild(); child; child = child->nextSibling()) {
if (child->isBlockFlow() && !child->isFloatingOrPositioned()) {
RenderBlock* block = static_cast<RenderBlock*>(child);
if (block->floatBottom() + block->yPos() > m_height)
addOverhangingFloats(block, -block->xPos(), -block->yPos(), false);
}
}
}
// We have to rebalance columns to the new height.
layoutColumns(singleColumnBottom);
// If the block got expanded in size, then increase our overflowheight to match.
if (m_overflowHeight > m_height)
m_overflowHeight -= toAdd;
if (m_overflowHeight < m_height)
m_overflowHeight = m_height;
}
if (previousHeight != m_height)
relayoutChildren = true;
// Some classes of objects (floats and fieldsets with no specified heights and table cells) expand to encompass
// overhanging floats.
if (hasOverhangingFloats() && expandsToEncloseOverhangingFloats()) {
m_height = floatBottom();
m_height += borderBottom() + paddingBottom();
}
if ((isCell || isInline() || isFloatingOrPositioned() || isRoot()) && !hasOverflowClip() && !hasControlClip())
addVisualOverflow(floatRect());
layoutPositionedObjects(relayoutChildren || isRoot());
positionListMarker();
// Always ensure our overflow width/height are at least as large as our width/height.
m_overflowWidth = max(m_overflowWidth, m_width);
m_overflowHeight = max(m_overflowHeight, m_height);
if (!hasOverflowClip()) {
if (ShadowData* boxShadow = style()->boxShadow()) {
m_overflowLeft = min(m_overflowLeft, boxShadow->x - boxShadow->blur);
m_overflowWidth = max(m_overflowWidth, m_width + boxShadow->x + boxShadow->blur);
m_overflowTop = min(m_overflowTop, boxShadow->y - boxShadow->blur);
m_overflowHeight = max(m_overflowHeight, m_height + boxShadow->y + boxShadow->blur);
}
}
if (!hadColumns)
view()->popLayoutState();
else
view()->enableLayoutState();
// Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
// we overflow or not.
if (hasOverflowClip())
m_layer->updateScrollInfoAfterLayout();
// Repaint with our new bounds if they are different from our old bounds.
bool didFullRepaint = false;
if (checkForRepaint)
didFullRepaint = repaintAfterLayoutIfNeeded(oldBounds, oldOutlineBox);
if (!didFullRepaint && repaintTop != repaintBottom && (style()->visibility() == VISIBLE || enclosingLayer()->hasVisibleContent())) {
IntRect repaintRect(m_overflowLeft, repaintTop, m_overflowWidth - m_overflowLeft, repaintBottom - repaintTop);
// FIXME: Deal with multiple column repainting. We have to split the repaint
// rect up into multiple rects if it spans columns.
repaintRect.inflate(maximalOutlineSize(PaintPhaseOutline));
if (hasOverflowClip()) {
// Adjust repaint rect for scroll offset
int x = repaintRect.x();
int y = repaintRect.y();
layer()->subtractScrollOffset(x, y);
repaintRect.setX(x);
repaintRect.setY(y);
// Don't allow this rect to spill out of our overflow box.
repaintRect.intersect(IntRect(0, 0, m_width, m_height));
}
RenderView* v = view();
// Make sure the rect is still non-empty after intersecting for overflow above
if (!repaintRect.isEmpty() && v && v->frameView())
v->frameView()->addRepaintInfo(this, repaintRect); // We need to do a partial repaint of our content.
}
setNeedsLayout(false);
}
void RenderBlock::adjustPositionedBlock(RenderObject* child, const MarginInfo& marginInfo)
{
if (child->hasStaticX()) {
if (style()->direction() == LTR)
child->setStaticX(borderLeft() + paddingLeft());
else
child->setStaticX(borderRight() + paddingRight());
}
if (child->hasStaticY()) {
int y = m_height;
if (!marginInfo.canCollapseWithTop()) {
child->calcVerticalMargins();
int marginTop = child->marginTop();
int collapsedTopPos = marginInfo.posMargin();
int collapsedTopNeg = marginInfo.negMargin();
if (marginTop > 0) {
if (marginTop > collapsedTopPos)
collapsedTopPos = marginTop;
} else {
if (-marginTop > collapsedTopNeg)
collapsedTopNeg = -marginTop;
}
y += (collapsedTopPos - collapsedTopNeg) - marginTop;
}
child->setStaticY(y);
}
}
void RenderBlock::adjustFloatingBlock(const MarginInfo& marginInfo)
{
// The float should be positioned taking into account the bottom margin
// of the previous flow. We add that margin into the height, get the
// float positioned properly, and then subtract the margin out of the
// height again. In the case of self-collapsing blocks, we always just
// use the top margins, since the self-collapsing block collapsed its
// own bottom margin into its top margin.
//
// Note also that the previous flow may collapse its margin into the top of
// our block. If this is the case, then we do not add the margin in to our
// height when computing the position of the float. This condition can be tested
// for by simply calling canCollapseWithTop. See
// http://www.hixie.ch/tests/adhoc/css/box/block/margin-collapse/046.html for
// an example of this scenario.
int marginOffset = marginInfo.canCollapseWithTop() ? 0 : marginInfo.margin();
m_height += marginOffset;
positionNewFloats();
m_height -= marginOffset;
}
RenderObject* RenderBlock::handleSpecialChild(RenderObject* child, const MarginInfo& marginInfo, CompactInfo& compactInfo, bool& handled)
{
// Handle positioned children first.
RenderObject* next = handlePositionedChild(child, marginInfo, handled);
if (handled) return next;
// Handle floating children next.
next = handleFloatingChild(child, marginInfo, handled);
if (handled) return next;
// See if we have a compact element. If we do, then try to tuck the compact element into the margin space of the next block.
next = handleCompactChild(child, compactInfo, handled);
if (handled) return next;
// Finally, see if we have a run-in element.
return handleRunInChild(child, handled);
}
RenderObject* RenderBlock::handlePositionedChild(RenderObject* child, const MarginInfo& marginInfo, bool& handled)
{
if (child->isPositioned()) {
handled = true;
child->containingBlock()->insertPositionedObject(child);
adjustPositionedBlock(child, marginInfo);
return child->nextSibling();
}
return 0;
}
RenderObject* RenderBlock::handleFloatingChild(RenderObject* child, const MarginInfo& marginInfo, bool& handled)
{
if (child->isFloating()) {
handled = true;
insertFloatingObject(child);
adjustFloatingBlock(marginInfo);
return child->nextSibling();
}
return 0;
}
RenderObject* RenderBlock::handleCompactChild(RenderObject* child, CompactInfo& compactInfo, bool& handled)
{
// FIXME: We only deal with one compact at a time. It is unclear what should be
// done if multiple contiguous compacts are encountered. For now we assume that
// compact A followed by another compact B should simply be treated as block A.
if (child->isCompact() && !compactInfo.compact() && (child->childrenInline() || child->isReplaced())) {
// Get the next non-positioned/non-floating RenderBlock.
RenderObject* next = child->nextSibling();
RenderObject* curr = next;
while (curr && curr->isFloatingOrPositioned())
curr = curr->nextSibling();
if (curr && curr->isRenderBlock() && !curr->isCompact() && !curr->isRunIn()) {
curr->calcWidth(); // So that horizontal margins are correct.
child->setInline(true); // Need to compute the margins/width for the child as though it is an inline, so that it won't try to puff up the margins to
// fill the containing block width.
child->calcWidth();
int childMargins = child->marginLeft() + child->marginRight();
int margin = style()->direction() == LTR ? curr->marginLeft() : curr->marginRight();
if (margin >= (childMargins + child->maxPrefWidth())) {
// The compact will fit in the margin.
handled = true;
compactInfo.set(child, curr);
child->setPos(0,0); // This position will be updated to reflect the compact's
// desired position and the line box for the compact will
// pick that position up.
// Remove the child.
RenderObject* next = child->nextSibling();
removeChildNode(child);
// Now insert the child under |curr|.
curr->insertChildNode(child, curr->firstChild());
return next;
}
else
child->setInline(false); // We didn't fit, so we remain a block-level element.
}
}
return 0;
}
void RenderBlock::insertCompactIfNeeded(RenderObject* child, CompactInfo& compactInfo)
{
if (compactInfo.matches(child)) {
// We have a compact child to squeeze in.
RenderObject* compactChild = compactInfo.compact();
int compactXPos = borderLeft() + paddingLeft() + compactChild->marginLeft();
if (style()->direction() == RTL) {
compactChild->calcWidth(); // have to do this because of the capped maxwidth
compactXPos = width() - borderRight() - paddingRight() - marginRight() -
compactChild->width() - compactChild->marginRight();
}
compactXPos -= child->xPos(); // Put compactXPos into the child's coordinate space.
compactChild->setPos(compactXPos, compactChild->yPos()); // Set the x position.
compactInfo.clear();
}
}
RenderObject* RenderBlock::handleRunInChild(RenderObject* child, bool& handled)
{
// See if we have a run-in element with inline children. If the
// children aren't inline, then just treat the run-in as a normal
// block.
if (child->isRunIn() && (child->childrenInline() || child->isReplaced())) {
// Get the next non-positioned/non-floating RenderBlock.
RenderObject* curr = child->nextSibling();
while (curr && curr->isFloatingOrPositioned())
curr = curr->nextSibling();
if (curr && (curr->isRenderBlock() && curr->childrenInline() && !curr->isCompact() && !curr->isRunIn())) {
// The block acts like an inline, so just null out its
// position.
handled = true;
child->setInline(true);
child->setPos(0,0);
// Remove the child.
RenderObject* next = child->nextSibling();
removeChildNode(child);
// Now insert the child under |curr|.
curr->insertChildNode(child, curr->firstChild());
return next;
}
}
return 0;
}
void RenderBlock::collapseMargins(RenderObject* child, MarginInfo& marginInfo, int yPosEstimate)
{
// Get our max pos and neg top margins.
int posTop = child->maxTopMargin(true);
int negTop = child->maxTopMargin(false);
// For self-collapsing blocks, collapse our bottom margins into our
// top to get new posTop and negTop values.
if (child->isSelfCollapsingBlock()) {
posTop = max(posTop, child->maxBottomMargin(true));
negTop = max(negTop, child->maxBottomMargin(false));
}
// See if the top margin is quirky. We only care if this child has
// margins that will collapse with us.
bool topQuirk = child->isTopMarginQuirk() || style()->marginTopCollapse() == MDISCARD;
if (marginInfo.canCollapseWithTop()) {
// This child is collapsing with the top of the
// block. If it has larger margin values, then we need to update
// our own maximal values.
if (!style()->htmlHacks() || !marginInfo.quirkContainer() || !topQuirk)
setMaxTopMargins(max(posTop, maxTopPosMargin()), max(negTop, maxTopNegMargin()));
// The minute any of the margins involved isn't a quirk, don't
// collapse it away, even if the margin is smaller (www.webreference.com
// has an example of this, a <dt> with 0.8em author-specified inside
// a <dl> inside a <td>.
if (!marginInfo.determinedTopQuirk() && !topQuirk && (posTop-negTop)) {
m_topMarginQuirk = false;
marginInfo.setDeterminedTopQuirk(true);
}
if (!marginInfo.determinedTopQuirk() && topQuirk && marginTop() == 0)
// We have no top margin and our top child has a quirky margin.
// We will pick up this quirky margin and pass it through.
// This deals with the <td><div><p> case.
// Don't do this for a block that split two inlines though. You do
// still apply margins in this case.
m_topMarginQuirk = true;
}
if (marginInfo.quirkContainer() && marginInfo.atTopOfBlock() && (posTop - negTop))
marginInfo.setTopQuirk(topQuirk);
int ypos = m_height;
if (child->isSelfCollapsingBlock()) {
// This child has no height. We need to compute our
// position before we collapse the child's margins together,
// so that we can get an accurate position for the zero-height block.
int collapsedTopPos = max(marginInfo.posMargin(), child->maxTopMargin(true));
int collapsedTopNeg = max(marginInfo.negMargin(), child->maxTopMargin(false));
marginInfo.setMargin(collapsedTopPos, collapsedTopNeg);
// Now collapse the child's margins together, which means examining our
// bottom margin values as well.
marginInfo.setPosMarginIfLarger(child->maxBottomMargin(true));
marginInfo.setNegMarginIfLarger(child->maxBottomMargin(false));
if (!marginInfo.canCollapseWithTop())
// We need to make sure that the position of the self-collapsing block
// is correct, since it could have overflowing content
// that needs to be positioned correctly (e.g., a block that
// had a specified height of 0 but that actually had subcontent).
ypos = m_height + collapsedTopPos - collapsedTopNeg;
}
else {
if (child->style()->marginTopCollapse() == MSEPARATE) {
m_height += marginInfo.margin() + child->marginTop();
ypos = m_height;
}
else if (!marginInfo.atTopOfBlock() ||
(!marginInfo.canCollapseTopWithChildren()
&& (!style()->htmlHacks() || !marginInfo.quirkContainer() || !marginInfo.topQuirk()))) {
// We're collapsing with a previous sibling's margins and not
// with the top of the block.
m_height += max(marginInfo.posMargin(), posTop) - max(marginInfo.negMargin(), negTop);
ypos = m_height;
}
marginInfo.setPosMargin(child->maxBottomMargin(true));
marginInfo.setNegMargin(child->maxBottomMargin(false));
if (marginInfo.margin())
marginInfo.setBottomQuirk(child->isBottomMarginQuirk() || style()->marginBottomCollapse() == MDISCARD);
marginInfo.setSelfCollapsingBlockClearedFloat(false);
}
view()->addLayoutDelta(IntSize(0, yPosEstimate - ypos));
child->setPos(child->xPos(), ypos);
if (ypos != yPosEstimate) {
if (child->shrinkToAvoidFloats())
// The child's width depends on the line width.
// When the child shifts to clear an item, its width can
// change (because it has more available line width).
// So go ahead and mark the item as dirty.
child->setChildNeedsLayout(true, false);
if (!child->avoidsFloats() && child->containsFloats())
child->markAllDescendantsWithFloatsForLayout();
// Our guess was wrong. Make the child lay itself out again.
child->layoutIfNeeded();
}
}
void RenderBlock::clearFloatsIfNeeded(RenderObject* child, MarginInfo& marginInfo, int oldTopPosMargin, int oldTopNegMargin)
{
int heightIncrease = getClearDelta(child);
if (heightIncrease) {
// The child needs to be lowered. Move the child so that it just clears the float.
view()->addLayoutDelta(IntSize(0, -heightIncrease));
child->setPos(child->xPos(), child->yPos() + heightIncrease);
if (child->isSelfCollapsingBlock()) {
// For self-collapsing blocks that clear, they can still collapse their
// margins with following siblings. Reset the current margins to represent
// the self-collapsing block's margins only.
marginInfo.setPosMargin(max(child->maxTopMargin(true), child->maxBottomMargin(true)));
marginInfo.setNegMargin(max(child->maxTopMargin(false), child->maxBottomMargin(false)));
// Adjust our height such that we are ready to be collapsed with subsequent siblings.
m_height = child->yPos() - max(0, marginInfo.margin());
// Set a flag that we cleared a float so that we know both to increase the height of the block
// to compensate for the clear and to avoid collapsing our margins with the parent block's
// bottom margin.
marginInfo.setSelfCollapsingBlockClearedFloat(true);
} else
// Increase our height by the amount we had to clear.
m_height += heightIncrease;
if (marginInfo.canCollapseWithTop()) {
// We can no longer collapse with the top of the block since a clear
// occurred. The empty blocks collapse into the cleared block.
// FIXME: This isn't quite correct. Need clarification for what to do
// if the height the cleared block is offset by is smaller than the
// margins involved.
setMaxTopMargins(oldTopPosMargin, oldTopNegMargin);
marginInfo.setAtTopOfBlock(false);
}
// If our value of clear caused us to be repositioned vertically to be
// underneath a float, we might have to do another layout to take into account
// the extra space we now have available.
if (child->shrinkToAvoidFloats())
// The child's width depends on the line width.
// When the child shifts to clear an item, its width can
// change (because it has more available line width).
// So go ahead and mark the item as dirty.
child->setChildNeedsLayout(true, false);
if (!child->avoidsFloats() && child->containsFloats())
child->markAllDescendantsWithFloatsForLayout();
child->layoutIfNeeded();
}
}
int RenderBlock::estimateVerticalPosition(RenderObject* child, const MarginInfo& marginInfo)
{
// FIXME: We need to eliminate the estimation of vertical position, because when it's wrong we sometimes trigger a pathological
// relayout if there are intruding floats.
int yPosEstimate = m_height;
if (!marginInfo.canCollapseWithTop()) {
int childMarginTop = child->selfNeedsLayout() ? child->marginTop() : child->collapsedMarginTop();
yPosEstimate += max(marginInfo.margin(), childMarginTop);
}
return yPosEstimate;
}
void RenderBlock::determineHorizontalPosition(RenderObject* child)
{
if (style()->direction() == LTR) {
int xPos = borderLeft() + paddingLeft();
// Add in our left margin.
int chPos = xPos + child->marginLeft();
// Some objects (e.g., tables, horizontal rules, overflow:auto blocks) avoid floats. They need
// to shift over as necessary to dodge any floats that might get in the way.
if (child->avoidsFloats()) {
int leftOff = leftOffset(m_height);
if (style()->textAlign() != WEBKIT_CENTER && child->style()->marginLeft().type() != Auto) {
if (child->marginLeft() < 0)
leftOff += child->marginLeft();
chPos = max(chPos, leftOff); // Let the float sit in the child's margin if it can fit.
}
else if (leftOff != xPos) {
// The object is shifting right. The object might be centered, so we need to
// recalculate our horizontal margins. Note that the containing block content
// width computation will take into account the delta between |leftOff| and |xPos|
// so that we can just pass the content width in directly to the |calcHorizontalMargins|
// function.
static_cast<RenderBox*>(child)->calcHorizontalMargins(child->style()->marginLeft(), child->style()->marginRight(), lineWidth(child->yPos()));
chPos = leftOff + child->marginLeft();
}
}
view()->addLayoutDelta(IntSize(child->xPos() - chPos, 0));
child->setPos(chPos, child->yPos());
} else {
int xPos = m_width - borderRight() - paddingRight() - verticalScrollbarWidth();
int chPos = xPos - (child->width() + child->marginRight());
if (child->avoidsFloats()) {
int rightOff = rightOffset(m_height);
if (style()->textAlign() != WEBKIT_CENTER && child->style()->marginRight().type() != Auto) {
if (child->marginRight() < 0)
rightOff -= child->marginRight();
chPos = min(chPos, rightOff - child->width()); // Let the float sit in the child's margin if it can fit.
} else if (rightOff != xPos) {
// The object is shifting left. The object might be centered, so we need to
// recalculate our horizontal margins. Note that the containing block content
// width computation will take into account the delta between |rightOff| and |xPos|
// so that we can just pass the content width in directly to the |calcHorizontalMargins|
// function.
static_cast<RenderBox*>(child)->calcHorizontalMargins(child->style()->marginLeft(), child->style()->marginRight(), lineWidth(child->yPos()));
chPos = rightOff - child->marginRight() - child->width();
}
}
view()->addLayoutDelta(IntSize(child->xPos() - chPos, 0));
child->setPos(chPos, child->yPos());
}
}
void RenderBlock::setCollapsedBottomMargin(const MarginInfo& marginInfo)
{
if (marginInfo.canCollapseWithBottom() && !marginInfo.canCollapseWithTop()) {
// Update our max pos/neg bottom margins, since we collapsed our bottom margins
// with our children.
setMaxBottomMargins(max(maxBottomPosMargin(), marginInfo.posMargin()), max(maxBottomNegMargin(), marginInfo.negMargin()));
if (!marginInfo.bottomQuirk())
m_bottomMarginQuirk = false;
if (marginInfo.bottomQuirk() && marginBottom() == 0)
// We have no bottom margin and our last child has a quirky margin.
// We will pick up this quirky margin and pass it through.
// This deals with the <td><div><p> case.
m_bottomMarginQuirk = true;
}
}
void RenderBlock::handleBottomOfBlock(int top, int bottom, MarginInfo& marginInfo)
{
// If our last flow was a self-collapsing block that cleared a float, then we don't
// collapse it with the bottom of the block.
if (!marginInfo.selfCollapsingBlockClearedFloat())
marginInfo.setAtBottomOfBlock(true);
else {
// We have to special case the negative margin situation (where the collapsed
// margin of the self-collapsing block is negative), since there's no need
// to make an adjustment in that case.
if (marginInfo.margin() < 0)
marginInfo.clearMargin();
}
// If we can't collapse with children then go ahead and add in the bottom margin.
if (!marginInfo.canCollapseWithBottom() && !marginInfo.canCollapseWithTop()
&& (!style()->htmlHacks() || !marginInfo.quirkContainer() || !marginInfo.bottomQuirk()))
m_height += marginInfo.margin();
// Now add in our bottom border/padding.
m_height += bottom;
// Negative margins can cause our height to shrink below our minimal height (border/padding).
// If this happens, ensure that the computed height is increased to the minimal height.
m_height = max(m_height, top + bottom);
// Always make sure our overflow height is at least our height.
m_overflowHeight = max(m_height, m_overflowHeight);
// Update our bottom collapsed margin info.
setCollapsedBottomMargin(marginInfo);
}
void RenderBlock::layoutBlockChildren(bool relayoutChildren, int& maxFloatBottom)
{
int top = borderTop() + paddingTop();
int bottom = borderBottom() + paddingBottom() + horizontalScrollbarHeight();
m_height = m_overflowHeight = top;
// The margin struct caches all our current margin collapsing state. The compact struct caches state when we encounter compacts,
MarginInfo marginInfo(this, top, bottom);
CompactInfo compactInfo;
// Fieldsets need to find their legend and position it inside the border of the object.
// The legend then gets skipped during normal layout.
RenderObject* legend = layoutLegend(relayoutChildren);
int previousFloatBottom = 0;
maxFloatBottom = 0;
RenderObject* child = firstChild();
while (child) {
if (legend == child) {
child = child->nextSibling();
continue; // Skip the legend, since it has already been positioned up in the fieldset's border.
}
int oldTopPosMargin = maxTopPosMargin();
int oldTopNegMargin = maxTopNegMargin();
// Make sure we layout children if they need it.
// FIXME: Technically percentage height objects only need a relayout if their percentage isn't going to be turned into
// an auto value. Add a method to determine this, so that we can avoid the relayout.
if (relayoutChildren || (child->style()->height().isPercent() || child->style()->minHeight().isPercent() || child->style()->maxHeight().isPercent()))
child->setChildNeedsLayout(true, false);
// If relayoutChildren is set and we have percentage padding, we also need to invalidate the child's pref widths.
if (relayoutChildren && (child->style()->paddingLeft().isPercent() || child->style()->paddingRight().isPercent()))
child->setPrefWidthsDirty(true, false);
// Handle the four types of special elements first. These include positioned content, floating content, compacts and
// run-ins. When we encounter these four types of objects, we don't actually lay them out as normal flow blocks.
bool handled = false;
RenderObject* next = handleSpecialChild(child, marginInfo, compactInfo, handled);
if (handled) { child = next; continue; }
// The child is a normal flow object. Compute its vertical margins now.
child->calcVerticalMargins();
// Do not allow a collapse if the margin top collapse style is set to SEPARATE.
if (child->style()->marginTopCollapse() == MSEPARATE) {
marginInfo.setAtTopOfBlock(false);
marginInfo.clearMargin();
}
// Try to guess our correct y position. In most cases this guess will
// be correct. Only if we're wrong (when we compute the real y position)
// will we have to potentially relayout.
int yPosEstimate = estimateVerticalPosition(child, marginInfo);
// Cache our old rect so that we can dirty the proper repaint rects if the child moves.
IntRect oldRect(child->xPos(), child->yPos() , child->width(), child->height());
// Go ahead and position the child as though it didn't collapse with the top.
view()->addLayoutDelta(IntSize(0, child->yPos() - yPosEstimate));
child->setPos(child->xPos(), yPosEstimate);
bool markDescendantsWithFloats = false;
if (yPosEstimate != oldRect.y() && !child->avoidsFloats() && child->containsFloats())
markDescendantsWithFloats = true;
else if (!child->avoidsFloats() || child->shrinkToAvoidFloats()) {
// If an element might be affected by the presence of floats, then always mark it for
// layout.
int fb = max(previousFloatBottom, floatBottom());
if (fb > m_height || fb > yPosEstimate)
markDescendantsWithFloats = true;
}
if (markDescendantsWithFloats)
child->markAllDescendantsWithFloatsForLayout();
if (child->isRenderBlock())
previousFloatBottom = max(previousFloatBottom, oldRect.y() + static_cast<RenderBlock*>(child)->floatBottom());
bool childNeededLayout = child->needsLayout();
if (childNeededLayout)
child->layout();
// Now determine the correct ypos based off examination of collapsing margin
// values.
collapseMargins(child, marginInfo, yPosEstimate);
int postCollapseChildY = child->yPos();
// Now check for clear.
clearFloatsIfNeeded(child, marginInfo, oldTopPosMargin, oldTopNegMargin);
// We are no longer at the top of the block if we encounter a non-empty child.
// This has to be done after checking for clear, so that margins can be reset if a clear occurred.
if (marginInfo.atTopOfBlock() && !child->isSelfCollapsingBlock())
marginInfo.setAtTopOfBlock(false);
// Now place the child in the correct horizontal position
determineHorizontalPosition(child);
// Update our height now that the child has been placed in the correct position.
m_height += child->height();
if (child->style()->marginBottomCollapse() == MSEPARATE) {
m_height += child->marginBottom();
marginInfo.clearMargin();
}
// If the child has overhanging floats that intrude into following siblings (or possibly out
// of this block), then the parent gets notified of the floats now.
maxFloatBottom = max(maxFloatBottom, addOverhangingFloats(static_cast<RenderBlock *>(child), -child->xPos(), -child->yPos(), !childNeededLayout));
// Update our overflow in case the child spills out the block.
m_overflowTop = min(m_overflowTop, child->yPos() + child->overflowTop(false));
m_overflowHeight = max(m_overflowHeight, m_height + child->overflowHeight(false) - child->height());
m_overflowWidth = max(child->xPos() + child->overflowWidth(false), m_overflowWidth);
m_overflowLeft = min(child->xPos() + child->overflowLeft(false), m_overflowLeft);
// Insert our compact into the block margin if we have one.
insertCompactIfNeeded(child, compactInfo);
view()->addLayoutDelta(IntSize(child->xPos() - oldRect.x(), child->yPos() - oldRect.y()));
// If the child moved, we have to repaint it as well as any floating/positioned
// descendants. An exception is if we need a layout. In this case, we know we're going to
// repaint ourselves (and the child) anyway.
if (!selfNeedsLayout() && child->checkForRepaintDuringLayout()) {
int finalChildX = child->xPos();
int finalChildY = child->yPos();
if (finalChildX != oldRect.x() || finalChildY != oldRect.y())
child->repaintDuringLayoutIfMoved(oldRect);
else if (finalChildY != yPosEstimate || finalChildY != postCollapseChildY) {
// The child invalidated itself during layout at an intermediate position,
// but not at its final position. Take care of it now.
child->repaint();
child->repaintOverhangingFloats();
}
}
child = child->nextSibling();
}
// Now do the handling of the bottom of the block, adding in our bottom border/padding and
// determining the correct collapsed bottom margin information.
handleBottomOfBlock(top, bottom, marginInfo);
}
bool RenderBlock::layoutOnlyPositionedObjects()
{
if (!posChildNeedsLayout() || normalChildNeedsLayout() || selfNeedsLayout())
return false;
if (!m_hasColumns)
view()->pushLayoutState(this, IntSize(xPos(), yPos()));
else
view()->disableLayoutState();
// All we have to is lay out our positioned objects.
layoutPositionedObjects(false);
if (!m_hasColumns)
view()->popLayoutState();
else
view()->enableLayoutState();
if (hasOverflowClip())
m_layer->updateScrollInfoAfterLayout();
setNeedsLayout(false);
return true;
}
void RenderBlock::layoutPositionedObjects(bool relayoutChildren)
{
if (m_positionedObjects) {
RenderObject* r;
Iterator end = m_positionedObjects->end();
for (Iterator it = m_positionedObjects->begin(); it != end; ++it) {
r = *it;
// When a non-positioned block element moves, it may have positioned children that are implicitly positioned relative to the
// non-positioned block. Rather than trying to detect all of these movement cases, we just always lay out positioned
// objects that are positioned implicitly like this. Such objects are rare, and so in typical DHTML menu usage (where everything is
// positioned explicitly) this should not incur a performance penalty.
if (relayoutChildren || (r->hasStaticY() && r->parent() != this && r->parent()->isBlockFlow()))
r->setChildNeedsLayout(true, false);
// If relayoutChildren is set and we have percentage padding, we also need to invalidate the child's pref widths.
if (relayoutChildren && (r->style()->paddingLeft().isPercent() || r->style()->paddingRight().isPercent()))
r->setPrefWidthsDirty(true, false);
r->layoutIfNeeded();
}
}
}
void RenderBlock::markPositionedObjectsForLayout()
{
if (m_positionedObjects) {
RenderObject* r;
Iterator end = m_positionedObjects->end();
for (Iterator it = m_positionedObjects->begin(); it != end; ++it) {
r = *it;
r->setChildNeedsLayout(true);
}
}
}
void RenderBlock::repaintOverhangingFloats(bool paintAllDescendants)
{
// Repaint any overhanging floats (if we know we're the one to paint them).
if (hasOverhangingFloats()) {
// We think that we must be in a bad state if m_floatingObjects is nil at this point, so
// we assert on Debug builds and nil-check Release builds.
ASSERT(m_floatingObjects);
if (!m_floatingObjects)
return;
FloatingObject* r;
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
// FIXME: Avoid disabling LayoutState. At the very least, don't disable it for floats originating
// in this block. Better yet would be to push extra state for the containers of other floats.
view()->disableLayoutState();
for ( ; (r = it.current()); ++it) {
// Only repaint the object if it is overhanging, is not in its own layer, and
// is our responsibility to paint (noPaint isn't set). When paintAllDescendants is true, the latter
// condition is replaced with being a descendant of us.
if (r->endY > m_height && (paintAllDescendants && r->node->isDescendantOf(this) || !r->noPaint) && !r->node->hasLayer()) {
r->node->repaint();
r->node->repaintOverhangingFloats();
}
}
view()->enableLayoutState();
}
}
void RenderBlock::paint(PaintInfo& paintInfo, int tx, int ty)
{
tx += m_x;
ty += m_y;
PaintPhase phase = paintInfo.phase;
// Check if we need to do anything at all.
// FIXME: Could eliminate the isRoot() check if we fix background painting so that the RenderView
// paints the root's background.
if (!isInlineFlow() && !isRoot()) {
IntRect overflowBox = overflowRect(false);
overflowBox.inflate(maximalOutlineSize(paintInfo.phase));
overflowBox.move(tx, ty);
if (!overflowBox.intersects(paintInfo.rect))
return;
}
bool useControlClip = phase != PaintPhaseBlockBackground && phase != PaintPhaseSelfOutline && hasControlClip();
// Push a clip.
if (useControlClip) {
if (phase == PaintPhaseOutline)
paintInfo.phase = PaintPhaseChildOutlines;
else if (phase == PaintPhaseChildBlockBackground) {
paintInfo.phase = PaintPhaseBlockBackground;
paintObject(paintInfo, tx, ty);
paintInfo.phase = PaintPhaseChildBlockBackgrounds;
}
IntRect clipRect(controlClipRect(tx, ty));
if (clipRect.isEmpty())
return;
paintInfo.context->save();
paintInfo.context->clip(clipRect);
}
paintObject(paintInfo, tx, ty);
// Pop the clip.
if (useControlClip) {
paintInfo.context->restore();
if (phase == PaintPhaseOutline) {
paintInfo.phase = PaintPhaseSelfOutline;
paintObject(paintInfo, tx, ty);
paintInfo.phase = phase;
} else if (phase == PaintPhaseChildBlockBackground)
paintInfo.phase = phase;
}
}
void RenderBlock::paintColumns(PaintInfo& paintInfo, int tx, int ty, bool paintingFloats)
{
// We need to do multiple passes, breaking up our child painting into strips.
GraphicsContext* context = paintInfo.context;
int currXOffset = 0;
int currYOffset = 0;
int ruleAdd = borderLeft() + paddingLeft();
int ruleX = 0;
int colGap = columnGap();
const Color& ruleColor = style()->columnRuleColor();
bool ruleTransparent = style()->columnRuleIsTransparent();
EBorderStyle ruleStyle = style()->columnRuleStyle();
int ruleWidth = style()->columnRuleWidth();
bool renderRule = !paintingFloats && ruleStyle > BHIDDEN && !ruleTransparent && ruleWidth <= colGap;
Vector<IntRect>* colRects = columnRects();
unsigned colCount = colRects->size();
for (unsigned i = 0; i < colCount; i++) {
// For each rect, we clip to the rect, and then we adjust our coords.
IntRect colRect = colRects->at(i);
colRect.move(tx, ty);
context->save();
// Each strip pushes a clip, since column boxes are specified as being
// like overflow:hidden.
context->clip(colRect);
// Adjust tx and ty to change where we paint.
PaintInfo info(paintInfo);
info.rect.intersect(colRect);
// Adjust our x and y when painting.
int finalX = tx + currXOffset;
int finalY = ty + currYOffset;
if (paintingFloats)
paintFloats(info, finalX, finalY, paintInfo.phase == PaintPhaseSelection);
else
paintContents(info, finalX, finalY);
// Move to the next position.
if (style()->direction() == LTR) {
ruleX += colRect.width() + colGap / 2;
currXOffset += colRect.width() + colGap;
} else {
ruleX -= (colRect.width() + colGap / 2);
currXOffset -= (colRect.width() + colGap);
}
currYOffset -= colRect.height();
context->restore();
// Now paint the column rule.
if (renderRule && paintInfo.phase == PaintPhaseForeground && i < colCount - 1) {
int ruleStart = ruleX - ruleWidth / 2 + ruleAdd;
int ruleEnd = ruleStart + ruleWidth;
drawBorder(paintInfo.context, tx + ruleStart, ty + borderTop() + paddingTop(), tx + ruleEnd, ty + borderTop() + paddingTop() + contentHeight(),
style()->direction() == LTR ? BSLeft : BSRight, ruleColor, style()->color(), ruleStyle, 0, 0);
}
ruleX = currXOffset;
}
}
void RenderBlock::paintContents(PaintInfo& paintInfo, int tx, int ty)
{
// Avoid painting descendants of the root element when stylesheets haven't loaded. This eliminates FOUC.
// It's ok not to draw, because later on, when all the stylesheets do load, updateStyleSelector on the Document
// will do a full repaint().
if (document()->didLayoutWithPendingStylesheets() && !isRenderView())
return;
if (childrenInline())
paintLines(paintInfo, tx, ty);
else
paintChildren(paintInfo, tx, ty);
}
void RenderBlock::paintChildren(PaintInfo& paintInfo, int tx, int ty)
{
PaintPhase newPhase = (paintInfo.phase == PaintPhaseChildOutlines) ? PaintPhaseOutline : paintInfo.phase;
newPhase = (newPhase == PaintPhaseChildBlockBackgrounds) ? PaintPhaseChildBlockBackground : newPhase;
// We don't paint our own background, but we do let the kids paint their backgrounds.
PaintInfo info(paintInfo);
info.phase = newPhase;
info.paintingRoot = paintingRootForChildren(paintInfo);
bool isPrinting = document()->printing();
for (RenderObject* child = firstChild(); child; child = child->nextSibling()) {
// Check for page-break-before: always, and if it's set, break and bail.
if (isPrinting && !childrenInline() && child->style()->pageBreakBefore() == PBALWAYS &&
inRootBlockContext() && (ty + child->yPos()) > paintInfo.rect.y() &&
(ty + child->yPos()) < paintInfo.rect.bottom()) {
view()->setBestTruncatedAt(ty + child->yPos(), this, true);
return;
}
if (!child->hasLayer() && !child->isFloating())
child->paint(info, tx, ty);
// Check for page-break-after: always, and if it's set, break and bail.
if (isPrinting && !childrenInline() && child->style()->pageBreakAfter() == PBALWAYS &&
inRootBlockContext() && (ty + child->yPos() + child->height()) > paintInfo.rect.y() &&
(ty + child->yPos() + child->height()) < paintInfo.rect.bottom()) {
view()->setBestTruncatedAt(ty + child->yPos() + child->height() + max(0, child->collapsedMarginBottom()), this, true);
return;
}
}
}
void RenderBlock::paintCaret(PaintInfo& paintInfo, CaretType type)
{
SelectionController* selectionController = type == CursorCaret ? document()->frame()->selectionController() : document()->frame()->dragCaretController();
Node* caretNode = selectionController->start().node();
RenderObject* renderer = caretNode ? caretNode->renderer() : 0;
if (!renderer)
return;
// if caretNode is a block and caret is inside it then caret should be painted by that block
bool cursorInsideBlockCaretNode = renderer->isBlockFlow() && selectionController->isInsideNode();
if ((cursorInsideBlockCaretNode ? renderer : renderer->containingBlock()) == this && selectionController->isContentEditable()) {
if (type == CursorCaret)
document()->frame()->paintCaret(paintInfo.context, paintInfo.rect);
else
document()->frame()->paintDragCaret(paintInfo.context, paintInfo.rect);
}
}
void RenderBlock::paintObject(PaintInfo& paintInfo, int tx, int ty)
{
PaintPhase paintPhase = paintInfo.phase;
// If we're a repositioned run-in or a compact, don't paint background/borders.
bool inlineFlow = isInlineFlow();
// 1. paint background, borders etc
if (!inlineFlow &&
(paintPhase == PaintPhaseBlockBackground || paintPhase == PaintPhaseChildBlockBackground) &&
hasBoxDecorations() && style()->visibility() == VISIBLE) {
paintBoxDecorations(paintInfo, tx, ty);
}
// We're done. We don't bother painting any children.
if (paintPhase == PaintPhaseBlockBackground)
return;
// Adjust our painting position if we're inside a scrolled layer (e.g., an overflow:auto div).s
int scrolledX = tx;
int scrolledY = ty;
if (hasOverflowClip())
m_layer->subtractScrollOffset(scrolledX, scrolledY);
// 2. paint contents
if (paintPhase != PaintPhaseSelfOutline) {
if (m_hasColumns)
paintColumns(paintInfo, scrolledX, scrolledY);
else
paintContents(paintInfo, scrolledX, scrolledY);
}
// 3. paint selection
// FIXME: Make this work with multi column layouts. For now don't fill gaps.
bool isPrinting = document()->printing();
if (!inlineFlow && !isPrinting && !m_hasColumns)
paintSelection(paintInfo, scrolledX, scrolledY); // Fill in gaps in selection on lines and between blocks.
// 4. paint floats.
if (!inlineFlow && (paintPhase == PaintPhaseFloat || paintPhase == PaintPhaseSelection)) {
if (m_hasColumns)
paintColumns(paintInfo, scrolledX, scrolledY, true);
else
paintFloats(paintInfo, scrolledX, scrolledY, paintPhase == PaintPhaseSelection);
}
// 5. paint outline.
if (!inlineFlow && (paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseSelfOutline) && hasOutline() && style()->visibility() == VISIBLE)
RenderObject::paintOutline(paintInfo.context, tx, ty, width(), height(), style());
// 6. paint continuation outlines.
if (!inlineFlow && (paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseChildOutlines)) {
if (continuation() && continuation()->hasOutline() && continuation()->style()->visibility() == VISIBLE) {
RenderFlow* inlineFlow = static_cast<RenderFlow*>(continuation()->element()->renderer());
if (!inlineFlow->hasLayer())
containingBlock()->addContinuationWithOutline(inlineFlow);
else if (!inlineFlow->firstLineBox())
inlineFlow->paintOutline(paintInfo.context, tx - xPos() + inlineFlow->containingBlock()->xPos(),
ty - yPos() + inlineFlow->containingBlock()->yPos());
}
paintContinuationOutlines(paintInfo, tx, ty);
}
// 7. paint caret.
// If the caret's node's render object's containing block is this block, and the paint action is PaintPhaseForeground,
// then paint the caret.
if (!inlineFlow && paintPhase == PaintPhaseForeground) {
paintCaret(paintInfo, CursorCaret);
paintCaret(paintInfo, DragCaret);
}
}
void RenderBlock::paintFloats(PaintInfo& paintInfo, int tx, int ty, bool paintSelection)
{
if (!m_floatingObjects)
return;
FloatingObject* r;
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
for (; (r = it.current()); ++it) {
// Only paint the object if our noPaint flag isn't set.
if (!r->noPaint && !r->node->hasLayer()) {
PaintInfo currentPaintInfo(paintInfo);
currentPaintInfo.phase = paintSelection ? PaintPhaseSelection : PaintPhaseBlockBackground;
int currentTX = tx + r->left - r->node->xPos() + r->node->marginLeft();
int currentTY = ty + r->startY - r->node->yPos() + r->node->marginTop();
r->node->paint(currentPaintInfo, currentTX, currentTY);
if (!paintSelection) {
currentPaintInfo.phase = PaintPhaseChildBlockBackgrounds;
r->node->paint(currentPaintInfo, currentTX, currentTY);
currentPaintInfo.phase = PaintPhaseFloat;
r->node->paint(currentPaintInfo, currentTX, currentTY);
currentPaintInfo.phase = PaintPhaseForeground;
r->node->paint(currentPaintInfo, currentTX, currentTY);
currentPaintInfo.phase = PaintPhaseOutline;
r->node->paint(currentPaintInfo, currentTX, currentTY);
}
}
}
}
void RenderBlock::paintEllipsisBoxes(PaintInfo& paintInfo, int tx, int ty)
{
if (!shouldPaintWithinRoot(paintInfo) || !firstLineBox())
return;
if (style()->visibility() == VISIBLE && paintInfo.phase == PaintPhaseForeground) {
// We can check the first box and last box and avoid painting if we don't
// intersect.
int yPos = ty + firstLineBox()->yPos();;
int h = lastLineBox()->yPos() + lastLineBox()->height() - firstLineBox()->yPos();
if (yPos >= paintInfo.rect.bottom() || yPos + h <= paintInfo.rect.y())
return;
// See if our boxes intersect with the dirty rect. If so, then we paint
// them. Note that boxes can easily overlap, so we can't make any assumptions
// based off positions of our first line box or our last line box.
for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) {
yPos = ty + curr->yPos();
h = curr->height();
if (curr->ellipsisBox() && yPos < paintInfo.rect.bottom() && yPos + h > paintInfo.rect.y())
curr->paintEllipsisBox(paintInfo, tx, ty);
}
}
}
HashMap<RenderBlock*, RenderFlowSequencedSet*>* continuationOutlineTable()
{
static HashMap<RenderBlock*, RenderFlowSequencedSet*> table;
return &table;
}
void RenderBlock::addContinuationWithOutline(RenderFlow* flow)
{
// We can't make this work if the inline is in a layer. We'll just rely on the broken
// way of painting.
ASSERT(!flow->layer());
HashMap<RenderBlock*, RenderFlowSequencedSet*>* table = continuationOutlineTable();
RenderFlowSequencedSet* continuations = table->get(this);
if (!continuations) {
continuations = new RenderFlowSequencedSet;
table->set(this, continuations);
}
continuations->add(flow);
}
void RenderBlock::paintContinuationOutlines(PaintInfo& info, int tx, int ty)
{
HashMap<RenderBlock*, RenderFlowSequencedSet*>* table = continuationOutlineTable();
if (table->isEmpty())
return;
RenderFlowSequencedSet* continuations = table->get(this);
if (!continuations)
return;
// Paint each continuation outline.
RenderFlowSequencedSet::iterator end = continuations->end();
for (RenderFlowSequencedSet::iterator it = continuations->begin(); it != end; ++it) {
// Need to add in the coordinates of the intervening blocks.
RenderFlow* flow = *it;
RenderBlock* block = flow->containingBlock();
for ( ; block && block != this; block = block->containingBlock()) {
tx += block->xPos();
ty += block->yPos();
}
ASSERT(block);
flow->paintOutline(info.context, tx, ty);
}
// Delete
delete continuations;
table->remove(this);
}
void RenderBlock::setSelectionState(SelectionState s)
{
if (selectionState() == s)
return;
if (s == SelectionInside && selectionState() != SelectionNone)
return;
if ((s == SelectionStart && selectionState() == SelectionEnd) ||
(s == SelectionEnd && selectionState() == SelectionStart))
m_selectionState = SelectionBoth;
else
m_selectionState = s;
RenderBlock* cb = containingBlock();
if (cb && !cb->isRenderView())
cb->setSelectionState(s);
}
bool RenderBlock::shouldPaintSelectionGaps() const
{
return m_selectionState != SelectionNone && style()->visibility() == VISIBLE && isSelectionRoot();
}
bool RenderBlock::isSelectionRoot() const
{
if (!element())
return false;
// FIXME: Eventually tables should have to learn how to fill gaps between cells, at least in simple non-spanning cases.
if (isTable())
return false;
if (isBody() || isRoot() || hasOverflowClip() || isRelPositioned() ||
isFloatingOrPositioned() || isTableCell() || isInlineBlockOrInlineTable() || hasTransform())
return true;
if (view() && view()->selectionStart()) {
Node* startElement = view()->selectionStart()->element();
if (startElement && startElement->rootEditableElement() == element())
return true;
}
return false;
}
GapRects RenderBlock::selectionGapRects()
{
ASSERT(!needsLayout());
if (!shouldPaintSelectionGaps())
return GapRects();
int tx, ty;
absolutePositionForContent(tx, ty);
if (hasOverflowClip())
layer()->subtractScrollOffset(tx, ty);
int lastTop = -borderTopExtra();
int lastLeft = leftSelectionOffset(this, lastTop);
int lastRight = rightSelectionOffset(this, lastTop);
return fillSelectionGaps(this, tx, ty, tx, ty, lastTop, lastLeft, lastRight);
}
void RenderBlock::paintSelection(PaintInfo& paintInfo, int tx, int ty)
{
if (shouldPaintSelectionGaps() && paintInfo.phase == PaintPhaseForeground) {
int lastTop = -borderTopExtra();
int lastLeft = leftSelectionOffset(this, lastTop);
int lastRight = rightSelectionOffset(this, lastTop);
fillSelectionGaps(this, tx, ty, tx, ty, lastTop, lastLeft, lastRight, &paintInfo);
}
}
GapRects RenderBlock::fillSelectionGaps(RenderBlock* rootBlock, int blockX, int blockY, int tx, int ty,
int& lastTop, int& lastLeft, int& lastRight, const PaintInfo* paintInfo)
{
// FIXME: overflow: auto/scroll regions need more math here, since painting in the border box is different from painting in the padding box (one is scrolled, the other is
// fixed).
GapRects result;
if (!isBlockFlow()) // FIXME: Make multi-column selection gap filling work someday.
return result;
if (m_hasColumns || hasTransform()) {
// FIXME: We should learn how to gap fill multiple columns and transforms eventually.
lastTop = (ty - blockY) + height();
lastLeft = leftSelectionOffset(rootBlock, height());
lastRight = rightSelectionOffset(rootBlock, height());
return result;
}
if (childrenInline())
result = fillInlineSelectionGaps(rootBlock, blockX, blockY, tx, ty, lastTop, lastLeft, lastRight, paintInfo);
else
result = fillBlockSelectionGaps(rootBlock, blockX, blockY, tx, ty, lastTop, lastLeft, lastRight, paintInfo);
// Go ahead and fill the vertical gap all the way to the bottom of our block if the selection extends past our block.
if (rootBlock == this && (m_selectionState != SelectionBoth && m_selectionState != SelectionEnd))
result.uniteCenter(fillVerticalSelectionGap(lastTop, lastLeft, lastRight, ty + height() + borderBottomExtra(),
rootBlock, blockX, blockY, paintInfo));
return result;
}
GapRects RenderBlock::fillInlineSelectionGaps(RenderBlock* rootBlock, int blockX, int blockY, int tx, int ty,
int& lastTop, int& lastLeft, int& lastRight, const PaintInfo* paintInfo)
{
GapRects result;
bool containsStart = selectionState() == SelectionStart || selectionState() == SelectionBoth;
if (!firstLineBox()) {
if (containsStart) {
// Go ahead and update our lastY to be the bottom of the block. <hr>s or empty blocks with height can trip this
// case.
lastTop = (ty - blockY) + height();
lastLeft = leftSelectionOffset(rootBlock, height());
lastRight = rightSelectionOffset(rootBlock, height());
}
return result;
}
RootInlineBox* lastSelectedLine = 0;
RootInlineBox* curr;
for (curr = firstRootBox(); curr && !curr->hasSelectedChildren(); curr = curr->nextRootBox()) { }
// Now paint the gaps for the lines.
for (; curr && curr->hasSelectedChildren(); curr = curr->nextRootBox()) {
int selTop = curr->selectionTop();
int selHeight = curr->selectionHeight();
if (!containsStart && !lastSelectedLine &&
selectionState() != SelectionStart && selectionState() != SelectionBoth)
result.uniteCenter(fillVerticalSelectionGap(lastTop, lastLeft, lastRight, ty + selTop,
rootBlock, blockX, blockY, paintInfo));
if (!paintInfo || ty + selTop < paintInfo->rect.bottom() && ty + selTop + selHeight > paintInfo->rect.y())
result.unite(curr->fillLineSelectionGap(selTop, selHeight, rootBlock, blockX, blockY, tx, ty, paintInfo));
lastSelectedLine = curr;
}
if (containsStart && !lastSelectedLine)
// Selection must start just after our last line.
lastSelectedLine = lastRootBox();
if (lastSelectedLine && selectionState() != SelectionEnd && selectionState() != SelectionBoth) {
// Go ahead and update our lastY to be the bottom of the last selected line.
lastTop = (ty - blockY) + lastSelectedLine->bottomOverflow();
lastLeft = leftSelectionOffset(rootBlock, lastSelectedLine->bottomOverflow());
lastRight = rightSelectionOffset(rootBlock, lastSelectedLine->bottomOverflow());
}
return result;
}
GapRects RenderBlock::fillBlockSelectionGaps(RenderBlock* rootBlock, int blockX, int blockY, int tx, int ty,
int& lastTop, int& lastLeft, int& lastRight, const PaintInfo* paintInfo)
{
GapRects result;
// Go ahead and jump right to the first block child that contains some selected objects.
RenderObject* curr;
for (curr = firstChild(); curr && curr->selectionState() == SelectionNone; curr = curr->nextSibling()) { }
for (bool sawSelectionEnd = false; curr && !sawSelectionEnd; curr = curr->nextSibling()) {
SelectionState childState = curr->selectionState();
if (childState == SelectionBoth || childState == SelectionEnd)
sawSelectionEnd = true;
if (curr->isFloatingOrPositioned())
continue; // We must be a normal flow object in order to even be considered.
if (curr->isRelPositioned() && curr->hasLayer()) {
// If the relposition offset is anything other than 0, then treat this just like an absolute positioned element.
// Just disregard it completely.
int x = 0;
int y = 0;
curr->layer()->relativePositionOffset(x, y);
if (x || y)
continue;
}
bool paintsOwnSelection = curr->shouldPaintSelectionGaps() || curr->isTable(); // FIXME: Eventually we won't special-case table like this.
bool fillBlockGaps = paintsOwnSelection || (curr->canBeSelectionLeaf() && childState != SelectionNone);
if (fillBlockGaps) {
// We need to fill the vertical gap above this object.
if (childState == SelectionEnd || childState == SelectionInside)
// Fill the gap above the object.
result.uniteCenter(fillVerticalSelectionGap(lastTop, lastLeft, lastRight,
ty + curr->yPos(), rootBlock, blockX, blockY, paintInfo));
// Only fill side gaps for objects that paint their own selection if we know for sure the selection is going to extend all the way *past*
// our object. We know this if the selection did not end inside our object.
if (paintsOwnSelection && (childState == SelectionStart || sawSelectionEnd))
childState = SelectionNone;
// Fill side gaps on this object based off its state.
bool leftGap, rightGap;
getHorizontalSelectionGapInfo(childState, leftGap, rightGap);
if (leftGap)
result.uniteLeft(fillLeftSelectionGap(this, curr->xPos(), curr->yPos(), curr->height(), rootBlock, blockX, blockY, tx, ty, paintInfo));
if (rightGap)
result.uniteRight(fillRightSelectionGap(this, curr->xPos() + curr->width(), curr->yPos(), curr->height(), rootBlock, blockX, blockY, tx, ty, paintInfo));
// Update lastTop to be just underneath the object. lastLeft and lastRight extend as far as
// they can without bumping into floating or positioned objects. Ideally they will go right up
// to the border of the root selection block.
lastTop = (ty - blockY) + (curr->yPos() + curr->height());
lastLeft = leftSelectionOffset(rootBlock, curr->yPos() + curr->height());
lastRight = rightSelectionOffset(rootBlock, curr->yPos() + curr->height());
} else if (childState != SelectionNone)
// We must be a block that has some selected object inside it. Go ahead and recur.
result.unite(static_cast<RenderBlock*>(curr)->fillSelectionGaps(rootBlock, blockX, blockY, tx + curr->xPos(), ty + curr->yPos(),
lastTop, lastLeft, lastRight, paintInfo));
}
return result;
}
IntRect RenderBlock::fillHorizontalSelectionGap(RenderObject* selObj, int xPos, int yPos, int width, int height, const PaintInfo* paintInfo)
{
if (width <= 0 || height <= 0)
return IntRect();
IntRect gapRect(xPos, yPos, width, height);
if (paintInfo && selObj->style()->visibility() == VISIBLE)
paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor());
return gapRect;
}
IntRect RenderBlock::fillVerticalSelectionGap(int lastTop, int lastLeft, int lastRight, int bottomY, RenderBlock* rootBlock,
int blockX, int blockY, const PaintInfo* paintInfo)
{
int top = blockY + lastTop;
int height = bottomY - top;
if (height <= 0)
return IntRect();
// Get the selection offsets for the bottom of the gap
int left = blockX + max(lastLeft, leftSelectionOffset(rootBlock, bottomY));
int right = blockX + min(lastRight, rightSelectionOffset(rootBlock, bottomY));
int width = right - left;
if (width <= 0)
return IntRect();
IntRect gapRect(left, top, width, height);
if (paintInfo)
paintInfo->context->fillRect(gapRect, selectionBackgroundColor());
return gapRect;
}
IntRect RenderBlock::fillLeftSelectionGap(RenderObject* selObj, int xPos, int yPos, int height, RenderBlock* rootBlock,
int blockX, int blockY, int tx, int ty, const PaintInfo* paintInfo)
{
int top = yPos + ty;
int left = blockX + max(leftSelectionOffset(rootBlock, yPos), leftSelectionOffset(rootBlock, yPos + height));
int width = tx + xPos - left;
if (width <= 0)
return IntRect();
IntRect gapRect(left, top, width, height);
if (paintInfo)
paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor());
return gapRect;
}
IntRect RenderBlock::fillRightSelectionGap(RenderObject* selObj, int xPos, int yPos, int height, RenderBlock* rootBlock,
int blockX, int blockY, int tx, int ty, const PaintInfo* paintInfo)
{
int left = xPos + tx;
int top = yPos + ty;
int right = blockX + min(rightSelectionOffset(rootBlock, yPos), rightSelectionOffset(rootBlock, yPos + height));
int width = right - left;
if (width <= 0)
return IntRect();
IntRect gapRect(left, top, width, height);
if (paintInfo)
paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor());
return gapRect;
}
void RenderBlock::getHorizontalSelectionGapInfo(SelectionState state, bool& leftGap, bool& rightGap)
{
bool ltr = style()->direction() == LTR;
leftGap = (state == RenderObject::SelectionInside) ||
(state == RenderObject::SelectionEnd && ltr) ||
(state == RenderObject::SelectionStart && !ltr);
rightGap = (state == RenderObject::SelectionInside) ||
(state == RenderObject::SelectionStart && ltr) ||
(state == RenderObject::SelectionEnd && !ltr);
}
int RenderBlock::leftSelectionOffset(RenderBlock* rootBlock, int y)
{
int left = leftOffset(y);
if (left == borderLeft() + paddingLeft()) {
if (rootBlock != this)
// The border can potentially be further extended by our containingBlock().
return containingBlock()->leftSelectionOffset(rootBlock, y + yPos());
return left;
}
else {
RenderBlock* cb = this;
while (cb != rootBlock) {
left += cb->xPos();
cb = cb->containingBlock();
}
}
return left;
}
int RenderBlock::rightSelectionOffset(RenderBlock* rootBlock, int y)
{
int right = rightOffset(y);
if (right == (contentWidth() + (borderLeft() + paddingLeft()))) {
if (rootBlock != this)
// The border can potentially be further extended by our containingBlock().
return containingBlock()->rightSelectionOffset(rootBlock, y + yPos());
return right;
}
else {
RenderBlock* cb = this;
while (cb != rootBlock) {
right += cb->xPos();
cb = cb->containingBlock();
}
}
return right;
}
void RenderBlock::insertPositionedObject(RenderObject *o)
{
// Create the list of special objects if we don't aleady have one
if (!m_positionedObjects)
m_positionedObjects = new ListHashSet<RenderObject*>;
m_positionedObjects->add(o);
}
void RenderBlock::removePositionedObject(RenderObject *o)
{
if (m_positionedObjects)
m_positionedObjects->remove(o);
}
void RenderBlock::removePositionedObjects(RenderBlock* o)
{
if (!m_positionedObjects)
return;
RenderObject* r;
Iterator end = m_positionedObjects->end();
Vector<RenderObject*, 16> deadObjects;
for (Iterator it = m_positionedObjects->begin(); it != end; ++it) {
r = *it;
if (!o || r->isDescendantOf(o)) {
if (o)
r->setChildNeedsLayout(true, false);
// It is parent blocks job to add positioned child to positioned objects list of its containing block
// Parent layout needs to be invalidated to ensure this happens.
RenderObject* p = r->parent();
while (p && !p->isRenderBlock())
p = p->parent();
if (p)
p->setChildNeedsLayout(true);
deadObjects.append(r);
}
}
for (unsigned i = 0; i < deadObjects.size(); i++)
m_positionedObjects->remove(deadObjects.at(i));
}
void RenderBlock::insertFloatingObject(RenderObject *o)
{
// Create the list of special objects if we don't aleady have one
if (!m_floatingObjects) {
m_floatingObjects = new DeprecatedPtrList<FloatingObject>;
m_floatingObjects->setAutoDelete(true);
}
else {
// Don't insert the object again if it's already in the list
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
FloatingObject* f;
while ( (f = it.current()) ) {
if (f->node == o) return;
++it;
}
}
// Create the special object entry & append it to the list
FloatingObject *newObj;
if (o->isFloating()) {
// floating object
o->layoutIfNeeded();
if(o->style()->floating() == FLEFT)
newObj = new FloatingObject(FloatingObject::FloatLeft);
else
newObj = new FloatingObject(FloatingObject::FloatRight);
newObj->startY = -1;
newObj->endY = -1;
newObj->width = o->width() + o->marginLeft() + o->marginRight();
newObj->noPaint = o->hasLayer(); // If a layer exists, the float will paint itself. Otherwise someone else will.
}
else {
// We should never get here, as insertFloatingObject() should only ever be called with floating
// objects.
ASSERT(false);
newObj = 0; // keep gcc's uninitialized variable warnings happy
}
newObj->node = o;
m_floatingObjects->append(newObj);
}
void RenderBlock::removeFloatingObject(RenderObject *o)
{
if (m_floatingObjects) {
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
while (it.current()) {
if (it.current()->node == o)
m_floatingObjects->removeRef(it.current());
++it;
}
}
}
void RenderBlock::positionNewFloats()
{
if (!m_floatingObjects)
return;
FloatingObject* f = m_floatingObjects->last();
// If all floats have already been positioned, then we have no work to do.
if (!f || f->startY != -1)
return;
// Move backwards through our floating object list until we find a float that has
// already been positioned. Then we'll be able to move forward, positioning all of
// the new floats that need it.
FloatingObject* lastFloat = m_floatingObjects->getPrev();
while (lastFloat && lastFloat->startY == -1) {
f = m_floatingObjects->prev();
lastFloat = m_floatingObjects->getPrev();
}
int y = m_height;
// The float cannot start above the y position of the last positioned float.
if (lastFloat)
y = max(lastFloat->startY, y);
// Now walk through the set of unpositioned floats and place them.
while (f) {
// The containing block is responsible for positioning floats, so if we have floats in our
// list that come from somewhere else, do not attempt to position them.
if (f->node->containingBlock() != this) {
f = m_floatingObjects->next();
continue;
}
RenderObject* o = f->node;
int _height = o->height() + o->marginTop() + o->marginBottom();
int ro = rightOffset(); // Constant part of right offset.
int lo = leftOffset(); // Constat part of left offset.
int fwidth = f->width; // The width we look for.
if (ro - lo < fwidth)
fwidth = ro - lo; // Never look for more than what will be available.
IntRect oldRect(o->xPos(), o->yPos() , o->width(), o->height());
if (o->style()->clear() & CLEFT)
y = max(leftBottom(), y);
if (o->style()->clear() & CRIGHT)
y = max(rightBottom(), y);
if (o->style()->floating() == FLEFT) {
int heightRemainingLeft = 1;
int heightRemainingRight = 1;
int fx = leftRelOffset(y,lo, false, &heightRemainingLeft);
while (rightRelOffset(y,ro, false, &heightRemainingRight)-fx < fwidth) {
y += min(heightRemainingLeft, heightRemainingRight);
fx = leftRelOffset(y,lo, false, &heightRemainingLeft);
}
fx = max(0, fx);
f->left = fx;
o->setPos(fx + o->marginLeft(), y + o->marginTop());
} else {
int heightRemainingLeft = 1;
int heightRemainingRight = 1;
int fx = rightRelOffset(y,ro, false, &heightRemainingRight);
while (fx - leftRelOffset(y,lo, false, &heightRemainingLeft) < fwidth) {
y += min(heightRemainingLeft, heightRemainingRight);
fx = rightRelOffset(y, ro, false, &heightRemainingRight);
}
fx = max(f->width, fx);
f->left = fx - f->width;
o->setPos(fx - o->marginRight() - o->width(), y + o->marginTop());
}
f->startY = y;
f->endY = f->startY + _height;
// If the child moved, we have to repaint it.
if (o->checkForRepaintDuringLayout())
o->repaintDuringLayoutIfMoved(oldRect);
f = m_floatingObjects->next();
}
}
void RenderBlock::newLine()
{
positionNewFloats();
// set y position
int newY = 0;
switch(m_clearStatus)
{
case CLEFT:
newY = leftBottom();
break;
case CRIGHT:
newY = rightBottom();
break;
case CBOTH:
newY = floatBottom();
default:
break;
}
if (m_height < newY)
m_height = newY;
m_clearStatus = CNONE;
}
int
RenderBlock::leftOffset() const
{
return borderLeft()+paddingLeft();
}
int
RenderBlock::leftRelOffset(int y, int fixedOffset, bool applyTextIndent,
int *heightRemaining ) const
{
int left = fixedOffset;
if (m_floatingObjects) {
if ( heightRemaining ) *heightRemaining = 1;
FloatingObject* r;
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
for ( ; (r = it.current()); ++it )
{
//kdDebug( 6040 ) <<(void *)this << " left: sy, ey, x, w " << r->startY << "," << r->endY << "," << r->left << "," << r->width << " " << endl;
if (r->startY <= y && r->endY > y &&
r->type() == FloatingObject::FloatLeft &&
r->left + r->width > left) {
left = r->left + r->width;
if ( heightRemaining ) *heightRemaining = r->endY - y;
}
}
}
if (applyTextIndent && m_firstLine && style()->direction() == LTR) {
int cw=0;
if (style()->textIndent().isPercent())
cw = containingBlock()->availableWidth();
left += style()->textIndent().calcMinValue(cw);
}
//kdDebug( 6040 ) << "leftOffset(" << y << ") = " << left << endl;
return left;
}
int
RenderBlock::rightOffset() const
{
return borderLeft() + paddingLeft() + availableWidth();
}
int
RenderBlock::rightRelOffset(int y, int fixedOffset, bool applyTextIndent,
int *heightRemaining ) const
{
int right = fixedOffset;
if (m_floatingObjects) {
if (heightRemaining) *heightRemaining = 1;
FloatingObject* r;
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
for ( ; (r = it.current()); ++it )
{
//kdDebug( 6040 ) << "right: sy, ey, x, w " << r->startY << "," << r->endY << "," << r->left << "," << r->width << " " << endl;
if (r->startY <= y && r->endY > y &&
r->type() == FloatingObject::FloatRight &&
r->left < right) {
right = r->left;
if ( heightRemaining ) *heightRemaining = r->endY - y;
}
}
}
if (applyTextIndent && m_firstLine && style()->direction() == RTL) {
int cw=0;
if (style()->textIndent().isPercent())
cw = containingBlock()->availableWidth();
right -= style()->textIndent().calcMinValue(cw);
}
//kdDebug( 6040 ) << "rightOffset(" << y << ") = " << right << endl;
return right;
}
int
RenderBlock::lineWidth(int y) const
{
//kdDebug( 6040 ) << "lineWidth(" << y << ")=" << rightOffset(y) - leftOffset(y) << endl;
int result = rightOffset(y) - leftOffset(y);
return (result < 0) ? 0 : result;
}
int
RenderBlock::nearestFloatBottom(int height) const
{
if (!m_floatingObjects) return 0;
int bottom = 0;
FloatingObject* r;
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
for ( ; (r = it.current()); ++it )
if (r->endY>height && (r->endY<bottom || bottom==0))
bottom=r->endY;
return max(bottom, height);
}
int
RenderBlock::floatBottom() const
{
if (!m_floatingObjects) return 0;
int bottom=0;
FloatingObject* r;
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
for ( ; (r = it.current()); ++it )
if (r->endY>bottom)
bottom=r->endY;
return bottom;
}
IntRect RenderBlock::floatRect() const
{
IntRect result;
if (!m_floatingObjects || hasOverflowClip())
return result;
FloatingObject* r;
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
for (; (r = it.current()); ++it) {
if (!r->noPaint && !r->node->hasLayer()) {
IntRect childRect = r->node->overflowRect(false);
childRect.move(r->left + r->node->marginLeft(), r->startY + r->node->marginTop());
result.unite(childRect);
}
}
return result;
}
int RenderBlock::lowestPosition(bool includeOverflowInterior, bool includeSelf) const
{
int bottom = RenderFlow::lowestPosition(includeOverflowInterior, includeSelf);
if (!includeOverflowInterior && hasOverflowClip())
return bottom;
if (includeSelf && m_overflowHeight > bottom)
bottom = m_overflowHeight;
if (m_positionedObjects) {
RenderObject* r;
Iterator end = m_positionedObjects->end();
for (Iterator it = m_positionedObjects->begin(); it != end; ++it) {
r = *it;
// Fixed positioned objects do not scroll and thus should not constitute
// part of the lowest position.
if (r->style()->position() != FixedPosition) {
// FIXME: Should work for overflow sections too.
// If a positioned object lies completely to the left of the root it will be unreachable via scrolling.
// Therefore we should not allow it to contribute to the lowest position.
if (!isRenderView() || r->xPos() + r->width() > 0 || r->xPos() + r->rightmostPosition(false) > 0) {
int lp = r->yPos() + r->lowestPosition(false);
bottom = max(bottom, lp);
}
}
}
}
if (m_hasColumns) {
Vector<IntRect>* colRects = columnRects();
for (unsigned i = 0; i < colRects->size(); i++)
bottom = max(bottom, colRects->at(i).bottom());
return bottom;
}
if (m_floatingObjects) {
FloatingObject* r;
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
for ( ; (r = it.current()); ++it ) {
if (!r->noPaint || r->node->hasLayer()) {
int lp = r->startY + r->node->marginTop() + r->node->lowestPosition(false);
bottom = max(bottom, lp);
}
}
}
if (!includeSelf && lastLineBox()) {
int lp = lastLineBox()->yPos() + lastLineBox()->height();
bottom = max(bottom, lp);
}
return bottom;
}
int RenderBlock::rightmostPosition(bool includeOverflowInterior, bool includeSelf) const
{
int right = RenderFlow::rightmostPosition(includeOverflowInterior, includeSelf);
if (!includeOverflowInterior && hasOverflowClip())
return right;
if (includeSelf && m_overflowWidth > right)
right = m_overflowWidth;
if (m_positionedObjects) {
RenderObject* r;
Iterator end = m_positionedObjects->end();
for (Iterator it = m_positionedObjects->begin() ; it != end; ++it) {
r = *it;
// Fixed positioned objects do not scroll and thus should not constitute
// part of the rightmost position.
if (r->style()->position() != FixedPosition) {
// FIXME: Should work for overflow sections too.
// If a positioned object lies completely above the root it will be unreachable via scrolling.
// Therefore we should not allow it to contribute to the rightmost position.
if (!isRenderView() || r->yPos() + r->height() > 0 || r->yPos() + r->lowestPosition(false) > 0) {
int rp = r->xPos() + r->rightmostPosition(false);
right = max(right, rp);
}
}
}
}
if (m_hasColumns) {
// This only matters for LTR
if (style()->direction() == LTR)
right = max(columnRects()->last().right(), right);
return right;
}
if (m_floatingObjects) {
FloatingObject* r;
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
for ( ; (r = it.current()); ++it ) {
if (!r->noPaint || r->node->hasLayer()) {
int rp = r->left + r->node->marginLeft() + r->node->rightmostPosition(false);
right = max(right, rp);
}
}
}
if (!includeSelf && firstLineBox()) {
for (InlineRunBox* currBox = firstLineBox(); currBox; currBox = currBox->nextLineBox()) {
int rp = currBox->xPos() + currBox->width();
// If this node is a root editable element, then the rightmostPosition should account for a caret at the end.
// FIXME: Need to find another way to do this, since scrollbars could show when we don't want them to.
if (node()->isContentEditable() && node() == node()->rootEditableElement() && style()->direction() == LTR)
rp += 1;
right = max(right, rp);
}
}
return right;
}
int RenderBlock::leftmostPosition(bool includeOverflowInterior, bool includeSelf) const
{
int left = RenderFlow::leftmostPosition(includeOverflowInterior, includeSelf);
if (!includeOverflowInterior && hasOverflowClip())
return left;
if (includeSelf && m_overflowLeft < left)
left = m_overflowLeft;
if (m_positionedObjects) {
RenderObject* r;
Iterator end = m_positionedObjects->end();
for (Iterator it = m_positionedObjects->begin(); it != end; ++it) {
r = *it;
// Fixed positioned objects do not scroll and thus should not constitute
// part of the leftmost position.
if (r->style()->position() != FixedPosition) {
// FIXME: Should work for overflow sections too.
// If a positioned object lies completely above the root it will be unreachable via scrolling.
// Therefore we should not allow it to contribute to the leftmost position.
if (!isRenderView() || r->yPos() + r->height() > 0 || r->yPos() + r->lowestPosition(false) > 0) {
int lp = r->xPos() + r->leftmostPosition(false);
left = min(left, lp);
}
}
}
}
if (m_hasColumns) {
// This only matters for RTL
if (style()->direction() == RTL)
left = min(columnRects()->last().x(), left);
return left;
}
if (m_floatingObjects) {
FloatingObject* r;
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
for ( ; (r = it.current()); ++it ) {
if (!r->noPaint || r->node->hasLayer()) {
int lp = r->left + r->node->marginLeft() + r->node->leftmostPosition(false);
left = min(left, lp);
}
}
}
if (!includeSelf && firstLineBox()) {
for (InlineRunBox* currBox = firstLineBox(); currBox; currBox = currBox->nextLineBox())
left = min(left, (int)currBox->xPos());
}
return left;
}
int
RenderBlock::leftBottom()
{
if (!m_floatingObjects) return 0;
int bottom=0;
FloatingObject* r;
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
for ( ; (r = it.current()); ++it )
if (r->endY > bottom && r->type() == FloatingObject::FloatLeft)
bottom=r->endY;
return bottom;
}
int
RenderBlock::rightBottom()
{
if (!m_floatingObjects) return 0;
int bottom=0;
FloatingObject* r;
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
for ( ; (r = it.current()); ++it )
if (r->endY>bottom && r->type() == FloatingObject::FloatRight)
bottom=r->endY;
return bottom;
}
void
RenderBlock::clearFloats()
{
if (m_floatingObjects)
m_floatingObjects->clear();
// Inline blocks are covered by the isReplaced() check in the avoidFloats method.
if (avoidsFloats() || isRoot() || isRenderView() || isFloatingOrPositioned() || isTableCell())
return;
// Attempt to locate a previous sibling with overhanging floats. We skip any elements that are
// out of flow (like floating/positioned elements), and we also skip over any objects that may have shifted
// to avoid floats.
bool parentHasFloats = false;
RenderObject *prev = previousSibling();
while (prev && (!prev->isRenderBlock() || prev->avoidsFloats() || prev->isFloatingOrPositioned())) {
if (prev->isFloating())
parentHasFloats = true;
prev = prev->previousSibling();
}
// First add in floats from the parent.
int offset = m_y;
if (parentHasFloats)
addIntrudingFloats(static_cast<RenderBlock *>(parent()),
parent()->borderLeft() + parent()->paddingLeft(), offset);
int xoffset = 0;
if (prev)
offset -= prev->yPos();
else {
prev = parent();
xoffset += prev->borderLeft() + prev->paddingLeft();
}
//kdDebug() << "RenderBlock::clearFloats found previous "<< (void *)this << " prev=" << (void *)prev<< endl;
// Add overhanging floats from the previous RenderBlock, but only if it has a float that intrudes into our space.
if (!prev->isRenderBlock()) return;
RenderBlock* block = static_cast<RenderBlock *>(prev);
if (!block->m_floatingObjects) return;
if (block->floatBottom() > offset)
addIntrudingFloats(block, xoffset, offset);
}
int RenderBlock::addOverhangingFloats(RenderBlock* child, int xoff, int yoff, bool makeChildPaintOtherFloats)
{
// Prevent floats from being added to the canvas by the root element, e.g., <html>.
if (child->hasOverflowClip() || !child->containsFloats() || child->isRoot())
return 0;
int lowestFloatBottom = 0;
// Floats that will remain the child's responsiblity to paint should factor into its
// visual overflow.
IntRect floatsOverflowRect;
DeprecatedPtrListIterator<FloatingObject> it(*child->m_floatingObjects);
for (FloatingObject* r; (r = it.current()); ++it) {
int bottom = child->yPos() + r->endY;
lowestFloatBottom = max(lowestFloatBottom, bottom);
if (bottom > height()) {
// If the object is not in the list, we add it now.
if (!containsFloat(r->node)) {
FloatingObject *floatingObj = new FloatingObject(r->type());
floatingObj->startY = r->startY - yoff;
floatingObj->endY = r->endY - yoff;
floatingObj->left = r->left - xoff;
floatingObj->width = r->width;
floatingObj->node = r->node;
// The nearest enclosing layer always paints the float (so that zindex and stacking
// behaves properly). We always want to propagate the desire to paint the float as
// far out as we can, to the outermost block that overlaps the float, stopping only
// if we hit a layer boundary.
if (r->node->enclosingLayer() == enclosingLayer())
r->noPaint = true;
else
floatingObj->noPaint = true;
// We create the floating object list lazily.
if (!m_floatingObjects) {
m_floatingObjects = new DeprecatedPtrList<FloatingObject>;
m_floatingObjects->setAutoDelete(true);
}
m_floatingObjects->append(floatingObj);
}
} else if (makeChildPaintOtherFloats && r->noPaint && !r->node->hasLayer() && r->node->isDescendantOf(child) && r->node->enclosingLayer() == child->enclosingLayer())
// The float is not overhanging from this block, so if it is a descendant of the child, the child should
// paint it (the other case is that it is intruding into the child), unless it has its own layer or enclosing
// layer.
// If makeChildPaintOtherFloats is false, it means that the child must already know about all the floats
// it should paint.
r->noPaint = false;
if (!r->noPaint && !r->node->hasLayer()) {
IntRect floatOverflowRect = r->node->overflowRect(false);
floatOverflowRect.move(r->left + r->node->marginLeft(), r->startY + r->node->marginTop());
floatsOverflowRect.unite(floatOverflowRect);
}
}
child->addVisualOverflow(floatsOverflowRect);
return lowestFloatBottom;
}
void RenderBlock::addIntrudingFloats(RenderBlock* prev, int xoff, int yoff)
{
// If the parent or previous sibling doesn't have any floats to add, don't bother.
if (!prev->m_floatingObjects)
return;
DeprecatedPtrListIterator<FloatingObject> it(*prev->m_floatingObjects);
for (FloatingObject *r; (r = it.current()); ++it) {
if (r->endY > yoff) {
// The object may already be in our list. Check for it up front to avoid
// creating duplicate entries.
FloatingObject* f = 0;
if (m_floatingObjects) {
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
while ((f = it.current())) {
if (f->node == r->node) break;
++it;
}
}
if (!f) {
FloatingObject *floatingObj = new FloatingObject(r->type());
floatingObj->startY = r->startY - yoff;
floatingObj->endY = r->endY - yoff;
floatingObj->left = r->left - xoff;
// Applying the child's margin makes no sense in the case where the child was passed in.
// since his own margin was added already through the subtraction of the |xoff| variable
// above. |xoff| will equal -flow->marginLeft() in this case, so it's already been taken
// into account. Only apply this code if |child| is false, since otherwise the left margin
// will get applied twice.
if (prev != parent())
floatingObj->left += prev->marginLeft();
floatingObj->left -= marginLeft();
floatingObj->noPaint = true; // We are not in the direct inheritance chain for this float. We will never paint it.
floatingObj->width = r->width;
floatingObj->node = r->node;
// We create the floating object list lazily.
if (!m_floatingObjects) {
m_floatingObjects = new DeprecatedPtrList<FloatingObject>;
m_floatingObjects->setAutoDelete(true);
}
m_floatingObjects->append(floatingObj);
}
}
}
}
bool RenderBlock::avoidsFloats() const
{
// Floats can't intrude into our box if we have a non-auto column count or width.
return RenderFlow::avoidsFloats() || !style()->hasAutoColumnCount() || !style()->hasAutoColumnWidth();
}
bool RenderBlock::containsFloat(RenderObject* o)
{
if (m_floatingObjects) {
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
while (it.current()) {
if (it.current()->node == o)
return true;
++it;
}
}
return false;
}
void RenderBlock::markAllDescendantsWithFloatsForLayout(RenderObject* floatToRemove)
{
setChildNeedsLayout(true);
if (floatToRemove)
removeFloatingObject(floatToRemove);
// Iterate over our children and mark them as needed.
if (!childrenInline()) {
for (RenderObject* child = firstChild(); child; child = child->nextSibling()) {
if (isBlockFlow() && !child->isFloatingOrPositioned() &&
((floatToRemove ? child->containsFloat(floatToRemove) : child->containsFloats()) || child->shrinkToAvoidFloats()))
child->markAllDescendantsWithFloatsForLayout(floatToRemove);
}
}
}
int RenderBlock::getClearDelta(RenderObject *child)
{
// There is no need to compute clearance if we have no floats.
if (!containsFloats())
return 0;
// At least one float is present. We need to perform the clearance computation.
bool clearSet = child->style()->clear() != CNONE;
int bottom = 0;
switch (child->style()->clear()) {
case CNONE:
break;
case CLEFT:
bottom = leftBottom();
break;
case CRIGHT:
bottom = rightBottom();
break;
case CBOTH:
bottom = floatBottom();
break;
}
// We also clear floats if we are too big to sit on the same line as a float (and wish to avoid floats by default).
// FIXME: Note that the remaining space checks aren't quite accurate, since you should be able to clear only some floats (the minimum # needed
// to fit) and not all (we should be using nearestFloatBottom and looping).
// Do not allow tables to wrap in quirks or even in almost strict mode
// (ebay on the PLT, finance.yahoo.com in the real world, versiontracker.com forces even almost strict mode not to work)
int result = clearSet ? max(0, bottom - child->yPos()) : 0;
if (!result && child->avoidsFloats() && child->style()->width().isFixed() &&
child->minPrefWidth() > lineWidth(child->yPos()) && child->minPrefWidth() <= availableWidth() &&
document()->inStrictMode())
result = max(0, floatBottom() - child->yPos());
return result;
}
void RenderBlock::addVisualOverflow(const IntRect& r)
{
if (r.isEmpty())
return;
m_overflowLeft = min(m_overflowLeft, r.x());
m_overflowWidth = max(m_overflowWidth, r.right());
m_overflowTop = min(m_overflowTop, r.y());
m_overflowHeight = max(m_overflowHeight, r.bottom());
}
bool RenderBlock::isPointInOverflowControl(HitTestResult& result, int _x, int _y, int _tx, int _ty)
{
if (!scrollsOverflow())
return false;
return layer()->hitTestOverflowControls(result);
}
bool RenderBlock::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, int _x, int _y, int _tx, int _ty, HitTestAction hitTestAction)
{
bool inlineFlow = isInlineFlow();
int tx = _tx + m_x;
int ty = _ty + m_y + borderTopExtra();
if (!inlineFlow && !isRenderView()) {
// Check if we need to do anything at all.
IntRect overflowBox = overflowRect(false);
overflowBox.move(tx, ty);
if (!overflowBox.contains(_x, _y))
return false;
}
if (isPointInOverflowControl(result, _x, _y, tx, ty)) {
if (hitTestAction == HitTestBlockBackground) {
updateHitTestResult(result, IntPoint(_x - tx, _y - ty));
return true;
}
return false;
}
// If we have lightweight control clipping, then we can't have any spillout.
if (!hasControlClip() || controlClipRect(tx, ty).contains(_x, _y)) {
// Hit test descendants first.
int scrolledX = tx;
int scrolledY = ty;
if (hasOverflowClip())
m_layer->subtractScrollOffset(scrolledX, scrolledY);
// Hit test contents if we don't have columns.
if (!m_hasColumns && hitTestContents(request, result, _x, _y, scrolledX, scrolledY, hitTestAction))
return true;
// Hit test our columns if we do have them.
if (m_hasColumns && hitTestColumns(request, result, _x, _y, scrolledX, scrolledY, hitTestAction))
return true;
// Hit test floats.
if (hitTestAction == HitTestFloat && m_floatingObjects) {
if (isRenderView()) {
scrolledX += static_cast<RenderView*>(this)->frameView()->contentsX();
scrolledY += static_cast<RenderView*>(this)->frameView()->contentsY();
}
FloatingObject* o;
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
for (it.toLast(); (o = it.current()); --it) {
if (!o->noPaint && !o->node->hasLayer()) {
int xoffset = scrolledX + o->left + o->node->marginLeft() - o->node->xPos();
int yoffset = scrolledY + o->startY + o->node->marginTop() - o->node->yPos();
if (o->node->hitTest(request, result, IntPoint(_x, _y), xoffset, yoffset)) {
updateHitTestResult(result, IntPoint(_x - xoffset, _y - yoffset));
return true;
}
}
}
}
}
// Now hit test our background.
if (!inlineFlow && (hitTestAction == HitTestBlockBackground || hitTestAction == HitTestChildBlockBackground)) {
int topExtra = borderTopExtra();
IntRect boundsRect(tx, ty - topExtra, m_width, m_height + topExtra + borderBottomExtra());
if (style()->visibility() == VISIBLE && boundsRect.contains(_x, _y)) {
updateHitTestResult(result, IntPoint(_x - tx, _y - ty + topExtra));
return true;
}
}
return false;
}
bool RenderBlock::hitTestColumns(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty, HitTestAction hitTestAction)
{
// We need to do multiple passes, breaking up our hit testing into strips.
// We can always go left to right, since column contents are clipped (meaning that there
// can't be any overlap).
int currXOffset = 0;
int currYOffset = 0;
int colGap = columnGap();
Vector<IntRect>* colRects = columnRects();
for (unsigned i = 0; i < colRects->size(); i++) {
IntRect colRect = colRects->at(i);
colRect.move(tx, ty);
if (colRect.contains(x, y)) {
// The point is inside this column.
// Adjust tx and ty to change where we hit test.
int finalX = tx + currXOffset;
int finalY = ty + currYOffset;
return hitTestContents(request, result, x, y, finalX, finalY, hitTestAction);
}
// Move to the next position.
if (style()->direction() == LTR)
currXOffset += colRect.width() + colGap;
else
currXOffset -= (colRect.width() + colGap);
currYOffset -= colRect.height();
}
return false;
}
bool RenderBlock::hitTestContents(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty, HitTestAction hitTestAction)
{
if (childrenInline() && !isTable()) {
// We have to hit-test our line boxes.
if (hitTestLines(request, result, x, y, tx, ty, hitTestAction)) {
updateHitTestResult(result, IntPoint(x - tx, y - ty));
return true;
}
} else {
// Hit test our children.
HitTestAction childHitTest = hitTestAction;
if (hitTestAction == HitTestChildBlockBackgrounds)
childHitTest = HitTestChildBlockBackground;
for (RenderObject* child = lastChild(); child; child = child->previousSibling()) {
// FIXME: We have to skip over inline flows, since they can show up inside RenderTables at the moment (a demoted inline <form> for example). If we ever implement a
// table-specific hit-test method (which we should do for performance reasons anyway), then we can remove this check.
if (!child->hasLayer() && !child->isFloating() && !child->isInlineFlow() && child->nodeAtPoint(request, result, x, y, tx, ty, childHitTest)) {
updateHitTestResult(result, IntPoint(x - tx, y - ty));
return true;
}
}
}
return false;
}
Position RenderBlock::positionForBox(InlineBox *box, bool start) const
{
if (!box)
return Position();
if (!box->object()->element())
return Position(element(), start ? caretMinOffset() : caretMaxOffset());
if (!box->isInlineTextBox())
return Position(box->object()->element(), start ? box->object()->caretMinOffset() : box->object()->caretMaxOffset());
InlineTextBox *textBox = static_cast<InlineTextBox *>(box);
return Position(box->object()->element(), start ? textBox->start() : textBox->start() + textBox->len());
}
Position RenderBlock::positionForRenderer(RenderObject* renderer, bool start) const
{
if (!renderer)
return Position(element(), 0);
Node* node = renderer->element() ? renderer->element() : element();
if (!node)
return Position();
ASSERT(renderer == node->renderer());
int offset = start ? renderer->caretMinOffset() : renderer->caretMaxOffset();
// FIXME: This was a runtime check that seemingly couldn't fail; changed it to an assertion for now.
ASSERT(!node->isCharacterDataNode() || renderer->isText());
return Position(node, offset);
}
VisiblePosition RenderBlock::positionForCoordinates(int x, int y)
{
if (isTable())
return RenderFlow::positionForCoordinates(x, y);
int top = borderTop();
int bottom = top + borderTopExtra() + paddingTop() + contentHeight() + paddingBottom() + borderBottomExtra();
int left = borderLeft();
int right = left + paddingLeft() + contentWidth() + paddingRight();
Node* n = element();
int contentsX = x;
int contentsY = y - borderTopExtra();
if (hasOverflowClip())
m_layer->scrollOffset(contentsX, contentsY);
if (m_hasColumns) {
IntPoint contentsPoint(contentsX, contentsY);
adjustPointToColumnContents(contentsPoint);
contentsX = contentsPoint.x();
contentsY = contentsPoint.y();
}
if (isReplaced()) {
if (y < 0 || y < height() && x < 0)
return VisiblePosition(n, caretMinOffset(), DOWNSTREAM);
if (y >= height() || y >= 0 && x >= width())
return VisiblePosition(n, caretMaxOffset(), DOWNSTREAM);
}
// If we start inside the shadow tree, we will stay inside (even if the point is above or below).
if (!(n && n->isShadowNode()) && !childrenInline()) {
// Don't return positions inside editable roots for coordinates outside those roots, except for coordinates outside
// a document that is entirely editable.
bool isEditableRoot = n && n->rootEditableElement() == n && !n->hasTagName(bodyTag) && !n->hasTagName(htmlTag);
if (y < top || (isEditableRoot && (y < bottom && x < left))) {
if (!isEditableRoot)
if (RenderObject* c = firstChild()) { // FIXME: This code doesn't make any sense. This child could be an inline or a positioned element or a float or a compact, etc.
VisiblePosition p = c->positionForCoordinates(contentsX - c->xPos(), contentsY - c->yPos());
if (p.isNotNull())
return p;
}
if (n) {
if (Node* sp = n->shadowParentNode())
n = sp;
if (Node* p = n->parent())
return VisiblePosition(p, n->nodeIndex(), DOWNSTREAM);
}
return VisiblePosition(n, 0, DOWNSTREAM);
}
if (y >= bottom || (isEditableRoot && (y >= top && x >= right))) {
if (!isEditableRoot)
if (RenderObject* c = lastChild()) { // FIXME: This code doesn't make any sense. This child could be an inline or a positioned element or a float or a compact, ect.
VisiblePosition p = c->positionForCoordinates(contentsX - c->xPos(), contentsY - c->yPos());
if (p.isNotNull())
return p;
}
if (n) {
if (Node* sp = n->shadowParentNode())
n = sp;
if (Node* p = n->parent())
return VisiblePosition(p, n->nodeIndex() + 1, DOWNSTREAM);
}
return VisiblePosition(n, 0, DOWNSTREAM);
}
}
if (childrenInline()) {
if (!firstRootBox())
return VisiblePosition(n, 0, DOWNSTREAM);
if (contentsY < firstRootBox()->topOverflow() - verticalLineClickFudgeFactor)
// y coordinate is above first root line box
return VisiblePosition(positionForBox(firstRootBox()->firstLeafChild(), true), DOWNSTREAM);
// look for the closest line box in the root box which is at the passed-in y coordinate
for (RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) {
// set the bottom based on whether there is a next root box
if (root->nextRootBox())
// FIXME: make the break point halfway between the bottom of the previous root box and the top of the next root box
bottom = root->nextRootBox()->topOverflow();
else
bottom = root->bottomOverflow() + verticalLineClickFudgeFactor;
// check if this root line box is located at this y coordinate
if (contentsY < bottom && root->firstChild()) {
InlineBox* closestBox = root->closestLeafChildForXPos(x);
if (closestBox)
// pass the box a y position that is inside it
return closestBox->object()->positionForCoordinates(contentsX, closestBox->m_y);
}
}
if (lastRootBox())
// y coordinate is below last root line box
return VisiblePosition(positionForBox(lastRootBox()->lastLeafChild(), false), DOWNSTREAM);
return VisiblePosition(n, 0, DOWNSTREAM);
}
// See if any child blocks exist at this y coordinate.
if (firstChild() && contentsY < firstChild()->yPos())
return VisiblePosition(n, 0, DOWNSTREAM);
for (RenderObject* renderer = firstChild(); renderer; renderer = renderer->nextSibling()) {
if (renderer->height() == 0 || renderer->style()->visibility() != VISIBLE || renderer->isFloatingOrPositioned())
continue;
RenderObject* next = renderer->nextSibling();
while (next && next->isFloatingOrPositioned())
next = next->nextSibling();
if (next)
bottom = next->yPos();
else
bottom = top + scrollHeight();
if (contentsY >= renderer->yPos() && contentsY < bottom)
return renderer->positionForCoordinates(contentsX - renderer->xPos(), contentsY - renderer->yPos());
}
return RenderFlow::positionForCoordinates(x, y);
}
int RenderBlock::availableWidth() const
{
// If we have multiple columns, then the available width is reduced to our column width.
if (m_hasColumns)
return desiredColumnWidth();
return contentWidth();
}
int RenderBlock::columnGap() const
{
if (style()->hasNormalColumnGap())
return style()->fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches <p> margins.
return static_cast<int>(style()->columnGap());
}
void RenderBlock::calcColumnWidth()
{
// Calculate our column width and column count.
unsigned desiredColumnCount = 1;
int desiredColumnWidth = contentWidth();
// For now, we don't support multi-column layouts when printing, since we have to do a lot of work for proper pagination.
if (document()->printing() || (style()->hasAutoColumnCount() && style()->hasAutoColumnWidth())) {
setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth);
return;
}
int availWidth = desiredColumnWidth;
int colGap = columnGap();
int colWidth = max(1, static_cast<int>(style()->columnWidth()));
int colCount = max(1, static_cast<int>(style()->columnCount()));
if (style()->hasAutoColumnWidth()) {
if ((colCount - 1) * colGap < availWidth) {
desiredColumnCount = colCount;
desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount;
} else if (colGap < availWidth) {
desiredColumnCount = availWidth / colGap;
desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount;
}
} else if (style()->hasAutoColumnCount()) {
if (colWidth < availWidth) {
desiredColumnCount = (availWidth + colGap) / (colWidth + colGap);
desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount;
}
} else {
// Both are set.
if (colCount * colWidth + (colCount - 1) * colGap <= availWidth) {
desiredColumnCount = colCount;
desiredColumnWidth = colWidth;
} else if (colWidth < availWidth) {
desiredColumnCount = (availWidth + colGap) / (colWidth + colGap);
desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount;
}
}
setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth);
}
void RenderBlock::setDesiredColumnCountAndWidth(int count, int width)
{
if (count == 1) {
if (m_hasColumns) {
delete gColumnInfoMap->take(this);
m_hasColumns = false;
}
} else {
ColumnInfo* info;
if (m_hasColumns)
info = gColumnInfoMap->get(this);
else {
if (!gColumnInfoMap)
gColumnInfoMap = new ColumnInfoMap;
info = new ColumnInfo;
gColumnInfoMap->add(this, info);
m_hasColumns = true;
}
info->m_desiredColumnCount = count;
info->m_desiredColumnWidth = width;
}
}
int RenderBlock::desiredColumnWidth() const
{
if (!m_hasColumns)
return contentWidth();
return gColumnInfoMap->get(this)->m_desiredColumnWidth;
}
unsigned RenderBlock::desiredColumnCount() const
{
if (!m_hasColumns)
return 1;
return gColumnInfoMap->get(this)->m_desiredColumnCount;
}
Vector<IntRect>* RenderBlock::columnRects() const
{
if (!m_hasColumns)
return 0;
return &gColumnInfoMap->get(this)->m_columnRects;
}
int RenderBlock::layoutColumns(int endOfContent)
{
// Don't do anything if we have no columns
if (!m_hasColumns)
return -1;
ColumnInfo* info = gColumnInfoMap->get(this);
int desiredColumnWidth = info->m_desiredColumnWidth;
int desiredColumnCount = info->m_desiredColumnCount;
Vector<IntRect>* columnRects = &info->m_columnRects;
bool computeIntrinsicHeight = (endOfContent == -1);
// Fill the columns in to the available height. Attempt to balance the height of the columns
int availableHeight = contentHeight();
int colHeight = computeIntrinsicHeight ? availableHeight / desiredColumnCount : availableHeight;
// Add in half our line-height to help with best-guess initial balancing.
int columnSlop = lineHeight(false) / 2;
int remainingSlopSpace = columnSlop * desiredColumnCount;
if (computeIntrinsicHeight)
colHeight += columnSlop;
int colGap = columnGap();
// Compute a collection of column rects.
columnRects->clear();
// Then we do a simulated "paint" into the column slices and allow the content to slightly adjust our individual column rects.
// FIXME: We need to take into account layers that are affected by the columns as well here so that they can have an opportunity
// to adjust column rects also.
RenderView* v = view();
int left = borderLeft() + paddingLeft();
int top = borderTop() + paddingTop();
int currX = style()->direction() == LTR ? borderLeft() + paddingLeft() : borderLeft() + paddingLeft() + contentWidth() - desiredColumnWidth;
int currY = top;
unsigned colCount = desiredColumnCount;
int maxColBottom = borderTop() + paddingTop();
int contentBottom = top + availableHeight;
for (unsigned i = 0; i < colCount; i++) {
// If we aren't constrained, then the last column can just get all the remaining space.
if (computeIntrinsicHeight && i == colCount - 1)
colHeight = availableHeight;
// This represents the real column position.
IntRect colRect(currX, top, desiredColumnWidth, colHeight);
// For the simulated paint, we pretend like everything is in one long strip.
IntRect pageRect(left, currY, desiredColumnWidth, colHeight);
v->setPrintRect(pageRect);
v->setTruncatedAt(currY + colHeight);
GraphicsContext context((PlatformGraphicsContext*)0);
RenderObject::PaintInfo paintInfo(&context, pageRect, PaintPhaseForeground, false, 0, 0);
m_hasColumns = false;
paintObject(paintInfo, 0, 0);
m_hasColumns = true;
int adjustedBottom = v->bestTruncatedAt();
if (adjustedBottom <= currY)
adjustedBottom = currY + colHeight;
colRect.setHeight(adjustedBottom - currY);
// Add in the lost space to the subsequent columns.
// FIXME: This will create a "staircase" effect if there are enough columns, but the effect should be pretty subtle.
if (computeIntrinsicHeight) {
int lostSpace = colHeight - colRect.height();
if (lostSpace > remainingSlopSpace) {
// Redestribute the space among the remaining columns.
int spaceToRedistribute = lostSpace - remainingSlopSpace;
int remainingColumns = colCount - i + 1;
colHeight += spaceToRedistribute / remainingColumns;
}
remainingSlopSpace = max(0, remainingSlopSpace - lostSpace);
}
if (style()->direction() == LTR)
currX += desiredColumnWidth + colGap;
else
currX -= (desiredColumnWidth + colGap);
currY += colRect.height();
availableHeight -= colRect.height();
maxColBottom = max(colRect.bottom(), maxColBottom);
columnRects->append(colRect);
// Start adding in more columns as long as there's still content left.
if (currY < endOfContent && i == colCount - 1)
colCount++;
}
m_overflowWidth = max(m_width, currX - colGap);
m_overflowLeft = min(0, currX + desiredColumnWidth + colGap);
m_overflowHeight = maxColBottom;
int toAdd = borderBottom() + paddingBottom() + horizontalScrollbarHeight();
if (computeIntrinsicHeight)
m_height = m_overflowHeight + toAdd;
v->setPrintRect(IntRect());
v->setTruncatedAt(0);
ASSERT(colCount == columnRects->size());
return contentBottom;
}
void RenderBlock::adjustPointToColumnContents(IntPoint& point) const
{
// Just bail if we have no columns.
if (!m_hasColumns)
return;
Vector<IntRect>* colRects = columnRects();
// Determine which columns we intersect.
int colGap = columnGap();
int leftGap = colGap / 2;
IntPoint columnPoint(colRects->at(0).location());
int yOffset = 0;
for (unsigned i = 0; i < colRects->size(); i++) {
// Add in half the column gap to the left and right of the rect.
IntRect colRect = colRects->at(i);
IntRect gapAndColumnRect(colRect.x() - leftGap, colRect.y(), colRect.width() + colGap, colRect.height());
if (gapAndColumnRect.contains(point)) {
// We're inside the column. Translate the x and y into our column coordinate space.
point.move(columnPoint.x() - colRect.x(), yOffset);
return;
}
// Move to the next position.
yOffset += colRect.height();
}
}
void RenderBlock::adjustRectForColumns(IntRect& r) const
{
// Just bail if we have no columns.
if (!m_hasColumns)
return;
Vector<IntRect>* colRects = columnRects();
// Begin with a result rect that is empty.
IntRect result;
// Determine which columns we intersect.
int currXOffset = 0;
int currYOffset = 0;
int colGap = columnGap();
for (unsigned i = 0; i < colRects->size(); i++) {
IntRect colRect = colRects->at(i);
IntRect repaintRect = r;
repaintRect.move(currXOffset, currYOffset);
repaintRect.intersect(colRect);
result.unite(repaintRect);
// Move to the next position.
if (style()->direction() == LTR)
currXOffset += colRect.width() + colGap;
else
currXOffset -= (colRect.width() + colGap);
currYOffset -= colRect.height();
}
r = result;
}
void RenderBlock::calcPrefWidths()
{
ASSERT(prefWidthsDirty());
updateFirstLetter();
if (!isTableCell() && style()->width().isFixed() && style()->width().value() > 0)
m_minPrefWidth = m_maxPrefWidth = calcContentBoxWidth(style()->width().value());
else {
m_minPrefWidth = 0;
m_maxPrefWidth = 0;
if (childrenInline())
calcInlinePrefWidths();
else
calcBlockPrefWidths();
m_maxPrefWidth = max(m_minPrefWidth, m_maxPrefWidth);
if (!style()->autoWrap() && childrenInline()) {
m_minPrefWidth = m_maxPrefWidth;
// A horizontal marquee with inline children has no minimum width.
if (m_layer && m_layer->marquee() && m_layer->marquee()->isHorizontal())
m_minPrefWidth = 0;
}
if (isTableCell()) {
Length w = static_cast<const RenderTableCell*>(this)->styleOrColWidth();
if (w.isFixed() && w.value() > 0)
m_maxPrefWidth = max(m_minPrefWidth, calcContentBoxWidth(w.value()));
}
}
if (style()->minWidth().isFixed() && style()->minWidth().value() > 0) {
m_maxPrefWidth = max(m_maxPrefWidth, calcContentBoxWidth(style()->minWidth().value()));
m_minPrefWidth = max(m_minPrefWidth, calcContentBoxWidth(style()->minWidth().value()));
}
if (style()->maxWidth().isFixed() && style()->maxWidth().value() != undefinedLength) {
m_maxPrefWidth = min(m_maxPrefWidth, calcContentBoxWidth(style()->maxWidth().value()));
m_minPrefWidth = min(m_minPrefWidth, calcContentBoxWidth(style()->maxWidth().value()));
}
int toAdd = 0;
toAdd = borderLeft() + borderRight() + paddingLeft() + paddingRight();
m_minPrefWidth += toAdd;
m_maxPrefWidth += toAdd;
setPrefWidthsDirty(false);
}
struct InlineMinMaxIterator
{
/* InlineMinMaxIterator is a class that will iterate over all render objects that contribute to
inline min/max width calculations. Note the following about the way it walks:
(1) Positioned content is skipped (since it does not contribute to min/max width of a block)
(2) We do not drill into the children of floats or replaced elements, since you can't break
in the middle of such an element.
(3) Inline flows (e.g., <a>, <span>, <i>) are walked twice, since each side can have
distinct borders/margin/padding that contribute to the min/max width.
*/
RenderObject* parent;
RenderObject* current;
bool endOfInline;
InlineMinMaxIterator(RenderObject* p, bool end = false)
:parent(p), current(p), endOfInline(end) {}
RenderObject* next();
};
RenderObject* InlineMinMaxIterator::next()
{
RenderObject* result = 0;
bool oldEndOfInline = endOfInline;
endOfInline = false;
while (current || current == parent) {
if (!oldEndOfInline &&
(current == parent ||
(!current->isFloating() && !current->isReplaced() && !current->isPositioned())))
result = current->firstChild();
if (!result) {
// We hit the end of our inline. (It was empty, e.g., <span></span>.)
if (!oldEndOfInline && current->isInlineFlow()) {
result = current;
endOfInline = true;
break;
}
while (current && current != parent) {
result = current->nextSibling();
if (result) break;
current = current->parent();
if (current && current != parent && current->isInlineFlow()) {
result = current;
endOfInline = true;
break;
}
}
}
if (!result)
break;
if (!result->isPositioned() && (result->isText() || result->isFloating() || result->isReplaced() || result->isInlineFlow()))
break;
current = result;
result = 0;
}
// Update our position.
current = result;
return current;
}
static int getBPMWidth(int childValue, Length cssUnit)
{
if (cssUnit.type() != Auto)
return (cssUnit.isFixed() ? cssUnit.value() : childValue);
return 0;
}
static int getBorderPaddingMargin(const RenderObject* child, bool endOfInline)
{
RenderStyle* cstyle = child->style();
int result = 0;
bool leftSide = (cstyle->direction() == LTR) ? !endOfInline : endOfInline;
result += getBPMWidth((leftSide ? child->marginLeft() : child->marginRight()),
(leftSide ? cstyle->marginLeft() :
cstyle->marginRight()));
result += getBPMWidth((leftSide ? child->paddingLeft() : child->paddingRight()),
(leftSide ? cstyle->paddingLeft() :
cstyle->paddingRight()));
result += leftSide ? child->borderLeft() : child->borderRight();
return result;
}
static inline void stripTrailingSpace(int& inlineMax, int& inlineMin,
RenderObject* trailingSpaceChild)
{
if (trailingSpaceChild && trailingSpaceChild->isText()) {
// Collapse away the trailing space at the end of a block.
RenderText* t = static_cast<RenderText*>(trailingSpaceChild);
const UChar space = ' ';
const Font& font = t->style()->font(); // FIXME: This ignores first-line.
int spaceWidth = font.width(TextRun(&space, 1));
inlineMax -= spaceWidth + font.wordSpacing();
if (inlineMin > inlineMax)
inlineMin = inlineMax;
}
}
void RenderBlock::calcInlinePrefWidths()
{
int inlineMax = 0;
int inlineMin = 0;
int cw = containingBlock()->contentWidth();
// If we are at the start of a line, we want to ignore all white-space.
// Also strip spaces if we previously had text that ended in a trailing space.
bool stripFrontSpaces = true;
RenderObject* trailingSpaceChild = 0;
// Firefox and Opera will allow a table cell to grow to fit an image inside it under
// very specific cirucumstances (in order to match common WinIE renderings).
// Not supporting the quirk has caused us to mis-render some real sites. (See Bugzilla 10517.)
bool allowImagesToBreak = !style()->htmlHacks() || !isTableCell() || !style()->width().isIntrinsicOrAuto();
bool autoWrap, oldAutoWrap;
autoWrap = oldAutoWrap = style()->autoWrap();
InlineMinMaxIterator childIterator(this);
bool addedTextIndent = false; // Only gets added in once.
RenderObject* prevFloat = 0;
RenderObject* previousLeaf = 0;
while (RenderObject* child = childIterator.next()) {
autoWrap = child->isReplaced() ? child->parent()->style()->autoWrap() :
child->style()->autoWrap();
if (!child->isBR()) {
// Step One: determine whether or not we need to go ahead and
// terminate our current line. Each discrete chunk can become
// the new min-width, if it is the widest chunk seen so far, and
// it can also become the max-width.
// Children fall into three categories:
// (1) An inline flow object. These objects always have a min/max of 0,
// and are included in the iteration solely so that their margins can
// be added in.
//
// (2) An inline non-text non-flow object, e.g., an inline replaced element.
// These objects can always be on a line by themselves, so in this situation
// we need to go ahead and break the current line, and then add in our own
// margins and min/max width on its own line, and then terminate the line.
//
// (3) A text object. Text runs can have breakable characters at the start,
// the middle or the end. They may also lose whitespace off the front if
// we're already ignoring whitespace. In order to compute accurate min-width
// information, we need three pieces of information.
// (a) the min-width of the first non-breakable run. Should be 0 if the text string
// starts with whitespace.
// (b) the min-width of the last non-breakable run. Should be 0 if the text string
// ends with whitespace.
// (c) the min/max width of the string (trimmed for whitespace).
//
// If the text string starts with whitespace, then we need to go ahead and
// terminate our current line (unless we're already in a whitespace stripping
// mode.
//
// If the text string has a breakable character in the middle, but didn't start
// with whitespace, then we add the width of the first non-breakable run and
// then end the current line. We then need to use the intermediate min/max width
// values (if any of them are larger than our current min/max). We then look at
// the width of the last non-breakable run and use that to start a new line
// (unless we end in whitespace).
RenderStyle* cstyle = child->style();
int childMin = 0;
int childMax = 0;
if (!child->isText()) {
// Case (1) and (2). Inline replaced and inline flow elements.
if (child->isInlineFlow()) {
// Add in padding/border/margin from the appropriate side of
// the element.
int bpm = getBorderPaddingMargin(child, childIterator.endOfInline);
childMin += bpm;
childMax += bpm;
inlineMin += childMin;
inlineMax += childMax;
child->setPrefWidthsDirty(false);
if (static_cast<RenderFlow*>(child)->isWordBreak()) {
// End a line and start a new line.
m_minPrefWidth = max(inlineMin, m_minPrefWidth);
inlineMin = 0;
}
}
else {
// Inline replaced elts add in their margins to their min/max values.
int margins = 0;
Length leftMargin = cstyle->marginLeft();
Length rightMargin = cstyle->marginRight();
if (leftMargin.isFixed())
margins += leftMargin.value();
if (rightMargin.isFixed())
margins += rightMargin.value();
childMin += margins;
childMax += margins;
}
}
if (!child->isRenderInline() && !child->isText()) {
// Case (2). Inline replaced elements and floats.
// Go ahead and terminate the current line as far as
// minwidth is concerned.
childMin += child->minPrefWidth();
childMax += child->maxPrefWidth();
bool clearPreviousFloat;
if (child->isFloating()) {
clearPreviousFloat = (prevFloat
&& (prevFloat->style()->floating() == FLEFT && (child->style()->clear() & CLEFT)
|| prevFloat->style()->floating() == FRIGHT && (child->style()->clear() & CRIGHT)));
prevFloat = child;
} else
clearPreviousFloat = false;
bool canBreakReplacedElement = !child->isImage() || allowImagesToBreak;
if (canBreakReplacedElement && (autoWrap || oldAutoWrap) || clearPreviousFloat) {
m_minPrefWidth = max(inlineMin, m_minPrefWidth);
inlineMin = 0;
}
// If we're supposed to clear the previous float, then terminate maxwidth as well.
if (clearPreviousFloat) {
m_maxPrefWidth = max(inlineMax, m_maxPrefWidth);
inlineMax = 0;
}
// Add in text-indent. This is added in only once.
int ti = 0;
if (!addedTextIndent) {
addedTextIndent = true;
ti = style()->textIndent().calcMinValue(cw);
childMin+=ti;
childMax+=ti;
}
// Add our width to the max.
inlineMax += childMax;
if (!autoWrap || !canBreakReplacedElement)
inlineMin += childMin;
else
inlineMin = childMin;
if (autoWrap && canBreakReplacedElement) {
// Now check our line.
m_minPrefWidth = max(inlineMin, m_minPrefWidth);
// Now start a new line.
inlineMin = 0;
}
// We are no longer stripping whitespace at the start of
// a line.
if (!child->isFloating()) {
stripFrontSpaces = false;
trailingSpaceChild = 0;
}
}
else if (child->isText())
{
// Case (3). Text.
RenderText* t = static_cast<RenderText *>(child);
// Determine if we have a breakable character. Pass in
// whether or not we should ignore any spaces at the front
// of the string. If those are going to be stripped out,
// then they shouldn't be considered in the breakable char
// check.
bool hasBreakableChar, hasBreak;
int beginMin, endMin;
bool beginWS, endWS;
int beginMax, endMax;
t->trimmedPrefWidths(inlineMax, beginMin, beginWS, endMin, endWS,
hasBreakableChar, hasBreak, beginMax, endMax,
childMin, childMax, stripFrontSpaces);
// This text object will not be rendered, but it may still provide a breaking opportunity.
if (!hasBreak && childMax == 0) {
if (autoWrap && (beginWS || endWS)) {
m_minPrefWidth = max(inlineMin, m_minPrefWidth);
inlineMin = 0;
}
continue;
}
if (stripFrontSpaces)
trailingSpaceChild = child;
else
trailingSpaceChild = 0;
// Add in text-indent. This is added in only once.
int ti = 0;
if (!addedTextIndent) {
addedTextIndent = true;
ti = style()->textIndent().calcMinValue(cw);
childMin+=ti; beginMin += ti;
childMax+=ti; beginMax += ti;
}
// If we have no breakable characters at all,
// then this is the easy case. We add ourselves to the current
// min and max and continue.
if (!hasBreakableChar) {
inlineMin += childMin;
}
else {
// We have a breakable character. Now we need to know if
// we start and end with whitespace.
if (beginWS)
// Go ahead and end the current line.
m_minPrefWidth = max(inlineMin, m_minPrefWidth);
else {
inlineMin += beginMin;
m_minPrefWidth = max(inlineMin, m_minPrefWidth);
childMin -= ti;
}
inlineMin = childMin;
if (endWS) {
// We end in whitespace, which means we can go ahead
// and end our current line.
m_minPrefWidth = max(inlineMin, m_minPrefWidth);
inlineMin = 0;
} else {
m_minPrefWidth = max(inlineMin, m_minPrefWidth);
inlineMin = endMin;
}
}
if (hasBreak) {
inlineMax += beginMax;
m_maxPrefWidth = max(inlineMax, m_maxPrefWidth);
m_maxPrefWidth = max(childMax, m_maxPrefWidth);
inlineMax = endMax;
}
else
inlineMax += childMax;
}
} else {
m_minPrefWidth = max(inlineMin, m_minPrefWidth);
m_maxPrefWidth = max(inlineMax, m_maxPrefWidth);
inlineMin = inlineMax = 0;
stripFrontSpaces = true;
trailingSpaceChild = 0;
}
oldAutoWrap = autoWrap;
if (!child->isInlineFlow())
previousLeaf = child;
}
if (style()->collapseWhiteSpace())
stripTrailingSpace(inlineMax, inlineMin, trailingSpaceChild);
m_minPrefWidth = max(inlineMin, m_minPrefWidth);
m_maxPrefWidth = max(inlineMax, m_maxPrefWidth);
}
// Use a very large value (in effect infinite).
#define BLOCK_MAX_WIDTH 15000
void RenderBlock::calcBlockPrefWidths()
{
bool nowrap = style()->whiteSpace() == NOWRAP;
RenderObject *child = firstChild();
int floatLeftWidth = 0, floatRightWidth = 0;
while (child) {
// Positioned children don't affect the min/max width
if (child->isPositioned()) {
child = child->nextSibling();
continue;
}
if (child->isFloating() || child->avoidsFloats()) {
int floatTotalWidth = floatLeftWidth + floatRightWidth;
if (child->style()->clear() & CLEFT) {
m_maxPrefWidth = max(floatTotalWidth, m_maxPrefWidth);
floatLeftWidth = 0;
}
if (child->style()->clear() & CRIGHT) {
m_maxPrefWidth = max(floatTotalWidth, m_maxPrefWidth);
floatRightWidth = 0;
}
}
// A margin basically has three types: fixed, percentage, and auto (variable).
// Auto and percentage margins simply become 0 when computing min/max width.
// Fixed margins can be added in as is.
Length ml = child->style()->marginLeft();
Length mr = child->style()->marginRight();
int margin = 0, marginLeft = 0, marginRight = 0;
if (ml.isFixed())
marginLeft += ml.value();
if (mr.isFixed())
marginRight += mr.value();
margin = marginLeft + marginRight;
int w = child->minPrefWidth() + margin;
m_minPrefWidth = max(w, m_minPrefWidth);
// IE ignores tables for calculation of nowrap. Makes some sense.
if (nowrap && !child->isTable())
m_maxPrefWidth = max(w, m_maxPrefWidth);
w = child->maxPrefWidth() + margin;
if (!child->isFloating()) {
if (child->avoidsFloats()) {
// Determine a left and right max value based off whether or not the floats can fit in the
// margins of the object. For negative margins, we will attempt to overlap the float if the negative margin
// is smaller than the float width.
int maxLeft = marginLeft > 0 ? max(floatLeftWidth, marginLeft) : floatLeftWidth + marginLeft;
int maxRight = marginRight > 0 ? max(floatRightWidth, marginRight) : floatRightWidth + marginRight;
w = child->maxPrefWidth() + maxLeft + maxRight;
w = max(w, floatLeftWidth + floatRightWidth);
}
else
m_maxPrefWidth = max(floatLeftWidth + floatRightWidth, m_maxPrefWidth);
floatLeftWidth = floatRightWidth = 0;
}
if (child->isFloating()) {
if (style()->floating() == FLEFT)
floatLeftWidth += w;
else
floatRightWidth += w;
} else
m_maxPrefWidth = max(w, m_maxPrefWidth);
// A very specific WinIE quirk.
// Example:
/*
<div style="position:absolute; width:100px; top:50px;">
<div style="position:absolute;left:0px;top:50px;height:50px;background-color:green">
<table style="width:100%"><tr><td></table>
</div>
</div>
*/
// In the above example, the inner absolute positioned block should have a computed width
// of 100px because of the table.
// We can achieve this effect by making the maxwidth of blocks that contain tables
// with percentage widths be infinite (as long as they are not inside a table cell).
if (style()->htmlHacks() && child->style()->width().isPercent() &&
!isTableCell() && child->isTable() && m_maxPrefWidth < BLOCK_MAX_WIDTH) {
RenderBlock* cb = containingBlock();
while (!cb->isRenderView() && !cb->isTableCell())
cb = cb->containingBlock();
if (!cb->isTableCell())
m_maxPrefWidth = BLOCK_MAX_WIDTH;
}
child = child->nextSibling();
}
// Always make sure these values are non-negative.
m_minPrefWidth = max(0, m_minPrefWidth);
m_maxPrefWidth = max(0, m_maxPrefWidth);
m_maxPrefWidth = max(floatLeftWidth + floatRightWidth, m_maxPrefWidth);
}
bool RenderBlock::hasLineIfEmpty() const
{
return element() && (element()->isContentEditable() && element()->rootEditableElement() == element() ||
element()->isShadowNode() && element()->shadowParentNode()->hasTagName(inputTag));
}
short RenderBlock::lineHeight(bool b, bool isRootLineBox) const
{
// Inline blocks are replaced elements. Otherwise, just pass off to
// the base class. If we're being queried as though we're the root line
// box, then the fact that we're an inline-block is irrelevant, and we behave
// just like a block.
if (isReplaced() && !isRootLineBox)
return height()+marginTop()+marginBottom();
return RenderFlow::lineHeight(b, isRootLineBox);
}
short RenderBlock::baselinePosition(bool b, bool isRootLineBox) const
{
// Inline blocks are replaced elements. Otherwise, just pass off to
// the base class. If we're being queried as though we're the root line
// box, then the fact that we're an inline-block is irrelevant, and we behave
// just like a block.
if (isReplaced() && !isRootLineBox) {
// For "leaf" theme objects, let the theme decide what the baseline position is.
// FIXME: Might be better to have a custom CSS property instead, so that if the theme
// is turned off, checkboxes/radios will still have decent baselines.
if (style()->hasAppearance() && !theme()->isControlContainer(style()->appearance()))
return theme()->baselinePosition(this);
// CSS2.1 states that the baseline of an inline block is the baseline of the last line box in
// the normal flow. We make an exception for marquees, since their baselines are meaningless
// (the content inside them moves). This matches WinIE as well, which just bottom-aligns them.
// We also give up on finding a baseline if we have a vertical scrollbar, or if we are scrolled
// vertically (e.g., an overflow:hidden block that has had scrollTop moved) or if the baseline is outside
// of our content box.
int baselinePos = (m_layer && (m_layer->marquee() || m_layer->verticalScrollbar() || m_layer->scrollYOffset() != 0)) ? -1 : getBaselineOfLastLineBox();
if (baselinePos != -1 && baselinePos <= borderTop() + paddingTop() + contentHeight())
return marginTop() + baselinePos;
return height() + marginTop() + marginBottom();
}
return RenderFlow::baselinePosition(b, isRootLineBox);
}
int RenderBlock::getBaselineOfFirstLineBox() const
{
if (!isBlockFlow())
return RenderFlow::getBaselineOfFirstLineBox();
if (childrenInline()) {
if (firstLineBox())
return firstLineBox()->yPos() + firstLineBox()->baseline();
else
return -1;
}
else {
for (RenderObject* curr = firstChild(); curr; curr = curr->nextSibling()) {
if (!curr->isFloatingOrPositioned()) {
int result = curr->getBaselineOfFirstLineBox();
if (result != -1)
return curr->yPos() + result; // Translate to our coordinate space.
}
}
}
return -1;
}
int RenderBlock::getBaselineOfLastLineBox() const
{
if (!isBlockFlow())
return RenderFlow::getBaselineOfLastLineBox();
if (childrenInline()) {
if (!firstLineBox() && hasLineIfEmpty())
return RenderFlow::baselinePosition(true, true) + borderTop() + paddingTop();
if (lastLineBox())
return lastLineBox()->yPos() + lastLineBox()->baseline();
return -1;
}
else {
bool haveNormalFlowChild = false;
for (RenderObject* curr = lastChild(); curr; curr = curr->previousSibling()) {
if (!curr->isFloatingOrPositioned()) {
haveNormalFlowChild = true;
int result = curr->getBaselineOfLastLineBox();
if (result != -1)
return curr->yPos() + result; // Translate to our coordinate space.
}
}
if (!haveNormalFlowChild && hasLineIfEmpty())
return RenderFlow::baselinePosition(true, true) + borderTop() + paddingTop();
}
return -1;
}
RenderBlock* RenderBlock::firstLineBlock() const
{
const RenderObject* firstLineBlock = this;
bool hasPseudo = false;
while (true) {
hasPseudo = firstLineBlock->style()->hasPseudoStyle(RenderStyle::FIRST_LINE);
if (hasPseudo)
break;
RenderObject* parentBlock = firstLineBlock->parent();
if (firstLineBlock->isReplaced() || firstLineBlock->isFloating() ||
!parentBlock || parentBlock->firstChild() != firstLineBlock || !parentBlock->isBlockFlow())
break;
firstLineBlock = parentBlock;
}
if (!hasPseudo)
return 0;
return (RenderBlock*)(firstLineBlock);
}
void RenderBlock::updateFirstLetter()
{
if (!document()->usesFirstLetterRules())
return;
// Don't recurse
if (style()->styleType() == RenderStyle::FIRST_LETTER)
return;
// FIXME: We need to destroy the first-letter object if it is no longer the first child. Need to find
// an efficient way to check for that situation though before implementing anything.
RenderObject* firstLetterBlock = this;
bool hasPseudoStyle = false;
while (true) {
hasPseudoStyle = firstLetterBlock->style()->hasPseudoStyle(RenderStyle::FIRST_LETTER);
if (hasPseudoStyle)
break;
RenderObject* parentBlock = firstLetterBlock->parent();
if (firstLetterBlock->isReplaced() || !parentBlock || parentBlock->firstChild() != firstLetterBlock ||
!parentBlock->isBlockFlow())
break;
firstLetterBlock = parentBlock;
}
if (!hasPseudoStyle)
return;
// Drill into inlines looking for our first text child.
RenderObject* currChild = firstLetterBlock->firstChild();
while (currChild && currChild->needsLayout() && !currChild->isReplaced() && !currChild->isText())
currChild = currChild->firstChild();
// Get list markers out of the way.
while (currChild && currChild->isListMarker())
currChild = currChild->nextSibling();
if (!currChild)
return;
RenderObject* firstLetterContainer = currChild->parent();
// If the child already has style, then it has already been created, so we just want
// to update it.
if (currChild->style()->styleType() == RenderStyle::FIRST_LETTER) {
RenderStyle* pseudo = firstLetterBlock->getPseudoStyle(RenderStyle::FIRST_LETTER,
firstLetterContainer->firstLineStyle());
currChild->setStyle(pseudo);
for (RenderObject* genChild = currChild->firstChild(); genChild; genChild = genChild->nextSibling()) {
if (genChild->isText())
genChild->setStyle(pseudo);
}
return;
}
// If the child does not already have style, we create it here.
if (currChild->isText() && !currChild->isBR() && currChild->parent()->style()->styleType() != RenderStyle::FIRST_LETTER) {
// Our layout state is not valid for the repaints we are going to trigger by
// adding and removing children of firstLetterContainer.
view()->disableLayoutState();
RenderText* textObj = static_cast<RenderText*>(currChild);
// Create our pseudo style now that we have our firstLetterContainer determined.
RenderStyle* pseudoStyle = firstLetterBlock->getPseudoStyle(RenderStyle::FIRST_LETTER,
firstLetterContainer->firstLineStyle());
// Force inline display (except for floating first-letters)
pseudoStyle->setDisplay( pseudoStyle->isFloating() ? BLOCK : INLINE);
pseudoStyle->setPosition( StaticPosition ); // CSS2 says first-letter can't be positioned.
RenderObject* firstLetter = RenderFlow::createAnonymousFlow(document(), pseudoStyle); // anonymous box
// FIXME: This adds in the wrong place if list markers were skipped above. Should be
// firstLetterContainer->addChild(firstLetter, currChild);
firstLetterContainer->addChild(firstLetter, firstLetterContainer->firstChild());
// The original string is going to be either a generated content string or a DOM node's
// string. We want the original string before it got transformed in case first-letter has
// no text-transform or a different text-transform applied to it.
RefPtr<StringImpl> oldText = textObj->originalText();
ASSERT(oldText);
if (oldText && oldText->length() > 0) {
unsigned int length = 0;
// account for leading spaces and punctuation
while (length < oldText->length() && (isSpaceOrNewline((*oldText)[length]) || Unicode::isPunct((*oldText)[length])))
length++;
// account for first letter
length++;
// construct text fragment for the text after the first letter
// NOTE: this might empty
RenderTextFragment* remainingText =
new (renderArena()) RenderTextFragment(textObj->node(), oldText.get(), length, oldText->length() - length);
remainingText->setStyle(textObj->style());
if (remainingText->element())
remainingText->element()->setRenderer(remainingText);
RenderObject* nextObj = textObj->nextSibling();
firstLetterContainer->removeChild(textObj);
firstLetterContainer->addChild(remainingText, nextObj);
remainingText->setFirstLetter(firstLetter);
// construct text fragment for the first letter
RenderTextFragment* letter =
new (renderArena()) RenderTextFragment(remainingText->node(), oldText.get(), 0, length);
RenderStyle* newStyle = new (renderArena()) RenderStyle();
newStyle->inheritFrom(pseudoStyle);
letter->setStyle(newStyle);
firstLetter->addChild(letter);
textObj->destroy();
}
view()->enableLayoutState();
}
}
bool RenderBlock::inRootBlockContext() const
{
if (isTableCell() || isFloatingOrPositioned() || hasOverflowClip())
return false;
if (isRoot() || isRenderView())
return true;
return containingBlock()->inRootBlockContext();
}
// Helper methods for obtaining the last line, computing line counts and heights for line counts
// (crawling into blocks).
static bool shouldCheckLines(RenderObject* obj)
{
return !obj->isFloatingOrPositioned() && !obj->isCompact() && !obj->isRunIn() &&
obj->isBlockFlow() && obj->style()->height().isAuto() &&
(!obj->isFlexibleBox() || obj->style()->boxOrient() == VERTICAL);
}
static RootInlineBox* getLineAtIndex(RenderBlock* block, int i, int& count)
{
if (block->style()->visibility() == VISIBLE) {
if (block->childrenInline()) {
for (RootInlineBox* box = block->firstRootBox(); box; box = box->nextRootBox()) {
if (count++ == i)
return box;
}
}
else {
for (RenderObject* obj = block->firstChild(); obj; obj = obj->nextSibling()) {
if (shouldCheckLines(obj)) {
RootInlineBox *box = getLineAtIndex(static_cast<RenderBlock*>(obj), i, count);
if (box)
return box;
}
}
}
}
return 0;
}
int getHeightForLineCount(RenderBlock* block, int l, bool includeBottom, int& count)
{
if (block->style()->visibility() == VISIBLE) {
if (block->childrenInline()) {
for (RootInlineBox* box = block->firstRootBox(); box; box = box->nextRootBox()) {
if (++count == l)
return box->bottomOverflow() + (includeBottom ? (block->borderBottom() + block->paddingBottom()) : 0);
}
}
else {
RenderObject* normalFlowChildWithoutLines = 0;
for (RenderObject* obj = block->firstChild(); obj; obj = obj->nextSibling()) {
if (shouldCheckLines(obj)) {
int result = getHeightForLineCount(static_cast<RenderBlock*>(obj), l, false, count);
if (result != -1)
return result + obj->yPos() + (includeBottom ? (block->borderBottom() + block->paddingBottom()) : 0);
}
else if (!obj->isFloatingOrPositioned() && !obj->isCompact() && !obj->isRunIn())
normalFlowChildWithoutLines = obj;
}
if (normalFlowChildWithoutLines && l == 0)
return normalFlowChildWithoutLines->yPos() + normalFlowChildWithoutLines->height();
}
}
return -1;
}
RootInlineBox* RenderBlock::lineAtIndex(int i)
{
int count = 0;
return getLineAtIndex(this, i, count);
}
int RenderBlock::lineCount()
{
int count = 0;
if (style()->visibility() == VISIBLE) {
if (childrenInline())
for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox())
count++;
else
for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling())
if (shouldCheckLines(obj))
count += static_cast<RenderBlock*>(obj)->lineCount();
}
return count;
}
int RenderBlock::heightForLineCount(int l)
{
int count = 0;
return getHeightForLineCount(this, l, true, count);
}
void RenderBlock::adjustForBorderFit(int x, int& left, int& right) const
{
// We don't deal with relative positioning. Our assumption is that you shrink to fit the lines without accounting
// for either overflow or translations via relative positioning.
if (style()->visibility() == VISIBLE) {
if (childrenInline()) {
for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) {
if (box->firstChild())
left = min(left, x + box->firstChild()->xPos());
if (box->lastChild())
right = max(right, x + box->lastChild()->xPos() + box->lastChild()->width());
}
}
else {
for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling()) {
if (!obj->isFloatingOrPositioned()) {
if (obj->isBlockFlow() && !obj->hasOverflowClip())
static_cast<RenderBlock*>(obj)->adjustForBorderFit(x + obj->xPos(), left, right);
else if (obj->style()->visibility() == VISIBLE) {
// We are a replaced element or some kind of non-block-flow object.
left = min(left, x + obj->xPos());
right = max(right, x + obj->xPos() + obj->width());
}
}
}
}
if (m_floatingObjects) {
FloatingObject* r;
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
for (; (r = it.current()); ++it) {
// Only examine the object if our noPaint flag isn't set.
if (!r->noPaint) {
int floatLeft = r->left - r->node->xPos() + r->node->marginLeft();
int floatRight = floatLeft + r->node->width();
left = min(left, floatLeft);
right = max(right, floatRight);
}
}
}
}
}
void RenderBlock::borderFitAdjust(int& x, int& w) const
{
if (style()->borderFit() == BorderFitBorder)
return;
// Walk any normal flow lines to snugly fit.
int left = INT_MAX;
int right = INT_MIN;
int oldWidth = w;
adjustForBorderFit(0, left, right);
if (left != INT_MAX) {
left -= (borderLeft() + paddingLeft());
if (left > 0) {
x += left;
w -= left;
}
}
if (right != INT_MIN) {
right += (borderRight() + paddingRight());
if (right < oldWidth)
w -= (oldWidth - right);
}
}
void RenderBlock::clearTruncation()
{
if (style()->visibility() == VISIBLE) {
if (childrenInline() && hasMarkupTruncation()) {
setHasMarkupTruncation(false);
for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox())
box->clearTruncation();
}
else
for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling())
if (shouldCheckLines(obj))
static_cast<RenderBlock*>(obj)->clearTruncation();
}
}
void RenderBlock::setMaxTopMargins(int pos, int neg)
{
if (!m_maxMargin) {
if (pos == MaxMargin::topPosDefault(this) && neg == MaxMargin::topNegDefault(this))
return;
m_maxMargin = new MaxMargin(this);
}
m_maxMargin->m_topPos = pos;
m_maxMargin->m_topNeg = neg;
}
void RenderBlock::setMaxBottomMargins(int pos, int neg)
{
if (!m_maxMargin) {
if (pos == MaxMargin::bottomPosDefault(this) && neg == MaxMargin::bottomNegDefault(this))
return;
m_maxMargin = new MaxMargin(this);
}
m_maxMargin->m_bottomPos = pos;
m_maxMargin->m_bottomNeg = neg;
}
const char* RenderBlock::renderName() const
{
if (isBody())
return "RenderBody"; // FIXME: Temporary hack until we know that the regression tests pass.
if (isFloating())
return "RenderBlock (floating)";
if (isPositioned())
return "RenderBlock (positioned)";
if (isAnonymousBlock())
return "RenderBlock (anonymous)";
else if (isAnonymous())
return "RenderBlock (generated)";
if (isRelPositioned())
return "RenderBlock (relative positioned)";
if (isCompact())
return "RenderBlock (compact)";
if (isRunIn())
return "RenderBlock (run-in)";
return "RenderBlock";
}
#ifndef NDEBUG
void RenderBlock::dump(TextStream *stream, DeprecatedString ind) const
{
if (m_childrenInline) { *stream << " childrenInline"; }
if (m_firstLine) { *stream << " firstLine"; }
if (m_floatingObjects && !m_floatingObjects->isEmpty())
{
*stream << " special(";
DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects);
FloatingObject *r;
bool first = true;
for ( ; (r = it.current()); ++it )
{
if (!first)
*stream << ",";
*stream << r->node->renderName();
first = false;
}
*stream << ")";
}
// ### EClear m_clearStatus
RenderFlow::dump(stream,ind);
}
#endif
} // namespace WebCore