blob: 6cc7f7f96c85d0ca0e65859a120ac5da7f77e576 [file] [log] [blame]
/*
* Copyright (C) 2019-2020 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "WasmSlowPaths.h"
#if ENABLE(WEBASSEMBLY)
#include "BytecodeStructs.h"
#include "JITExceptions.h"
#include "JSWebAssemblyException.h"
#include "JSWebAssemblyInstance.h"
#include "LLIntData.h"
#include "WasmBBQPlan.h"
#include "WasmCallee.h"
#include "WasmFunctionCodeBlockGenerator.h"
#include "WasmInstance.h"
#include "WasmModuleInformation.h"
#include "WasmOMGPlan.h"
#include "WasmOSREntryPlan.h"
#include "WasmOperations.h"
#include "WasmTypeDefinitionInlines.h"
#include "WasmWorklist.h"
#include "WebAssemblyFunction.h"
namespace JSC { namespace LLInt {
#define WASM_RETURN_TWO(first, second) do { \
return encodeResult(first, second); \
} while (false)
#define WASM_END_IMPL() WASM_RETURN_TWO(pc, 0)
#define WASM_THROW(exceptionType) do { \
callFrame->setArgumentCountIncludingThis(static_cast<int>(exceptionType)); \
WASM_RETURN_TWO(LLInt::wasmExceptionInstructions(), 0); \
} while (false)
#define WASM_END() do { \
WASM_END_IMPL(); \
} while (false)
#define WASM_RETURN(value) do { \
callFrame->uncheckedR(instruction.m_dst) = static_cast<EncodedJSValue>(value); \
WASM_END_IMPL(); \
} while (false)
#define WASM_CALL_RETURN(targetInstance, callTarget, callTargetTag) do { \
WASM_RETURN_TWO((retagCodePtr<callTargetTag, JSEntrySlowPathPtrTag>(callTarget)), targetInstance); \
} while (false)
#define CALLEE() \
static_cast<Wasm::LLIntCallee*>(callFrame->callee().asWasmCallee())
#define READ(virtualRegister) \
(virtualRegister.isConstant() \
? JSValue::decode(CALLEE()->getConstant(virtualRegister)) \
: callFrame->r(virtualRegister))
#if ENABLE(WEBASSEMBLY_B3JIT)
enum class RequiredWasmJIT { Any, OMG };
inline bool shouldJIT(Wasm::LLIntCallee* callee, RequiredWasmJIT requiredJIT = RequiredWasmJIT::Any)
{
if (requiredJIT == RequiredWasmJIT::OMG) {
if (!Options::useOMGJIT())
return false;
} else {
if (Options::wasmLLIntTiersUpToBBQ() && !Options::useBBQJIT())
return false;
if (!Options::wasmLLIntTiersUpToBBQ() && !Options::useOMGJIT())
return false;
}
if (!Options::wasmFunctionIndexRangeToCompile().isInRange(callee->functionIndex()))
return false;
return true;
}
inline bool jitCompileAndSetHeuristics(Wasm::LLIntCallee* callee, Wasm::Instance* instance)
{
Wasm::LLIntTierUpCounter& tierUpCounter = callee->tierUpCounter();
if (!tierUpCounter.checkIfOptimizationThresholdReached()) {
dataLogLnIf(Options::verboseOSR(), " JIT threshold should be lifted.");
return false;
}
if (callee->replacement(instance->memory()->mode())) {
dataLogLnIf(Options::verboseOSR(), " Code was already compiled.");
tierUpCounter.optimizeSoon();
return true;
}
bool compile = false;
{
Locker locker { tierUpCounter.m_lock };
switch (tierUpCounter.m_compilationStatus) {
case Wasm::LLIntTierUpCounter::CompilationStatus::NotCompiled:
compile = true;
tierUpCounter.m_compilationStatus = Wasm::LLIntTierUpCounter::CompilationStatus::Compiling;
break;
case Wasm::LLIntTierUpCounter::CompilationStatus::Compiling:
tierUpCounter.optimizeAfterWarmUp();
break;
case Wasm::LLIntTierUpCounter::CompilationStatus::Compiled:
break;
}
}
if (compile) {
uint32_t functionIndex = callee->functionIndex();
RefPtr<Wasm::Plan> plan;
if (Options::wasmLLIntTiersUpToBBQ())
plan = adoptRef(*new Wasm::BBQPlan(instance->context(), const_cast<Wasm::ModuleInformation&>(instance->module().moduleInformation()), functionIndex, instance->calleeGroup(), Wasm::Plan::dontFinalize()));
else
plan = adoptRef(*new Wasm::OMGPlan(instance->context(), Ref<Wasm::Module>(instance->module()), functionIndex, instance->memory()->mode(), Wasm::Plan::dontFinalize()));
Wasm::ensureWorklist().enqueue(*plan);
if (UNLIKELY(!Options::useConcurrentJIT()))
plan->waitForCompletion();
else
tierUpCounter.optimizeAfterWarmUp();
}
return !!callee->replacement(instance->memory()->mode());
}
WASM_SLOW_PATH_DECL(prologue_osr)
{
UNUSED_PARAM(pc);
Wasm::LLIntCallee* callee = CALLEE();
if (!shouldJIT(callee)) {
callee->tierUpCounter().deferIndefinitely();
WASM_RETURN_TWO(nullptr, nullptr);
}
if (!Options::useWasmLLIntPrologueOSR())
WASM_RETURN_TWO(nullptr, nullptr);
dataLogLnIf(Options::verboseOSR(), *callee, ": Entered prologue_osr with tierUpCounter = ", callee->tierUpCounter());
if (!jitCompileAndSetHeuristics(callee, instance))
WASM_RETURN_TWO(nullptr, nullptr);
WASM_RETURN_TWO(callee->replacement(instance->memory()->mode())->entrypoint().executableAddress(), nullptr);
}
WASM_SLOW_PATH_DECL(loop_osr)
{
Wasm::LLIntCallee* callee = CALLEE();
Wasm::LLIntTierUpCounter& tierUpCounter = callee->tierUpCounter();
if (!Options::useWebAssemblyOSR() || !Options::useWasmLLIntLoopOSR() || !shouldJIT(callee, RequiredWasmJIT::OMG)) {
slow_path_wasm_prologue_osr(callFrame, pc, instance);
WASM_RETURN_TWO(nullptr, nullptr);
}
dataLogLnIf(Options::verboseOSR(), *callee, ": Entered loop_osr with tierUpCounter = ", callee->tierUpCounter());
if (!tierUpCounter.checkIfOptimizationThresholdReached()) {
dataLogLnIf(Options::verboseOSR(), " JIT threshold should be lifted.");
WASM_RETURN_TWO(nullptr, nullptr);
}
unsigned loopOSREntryBytecodeOffset = callee->bytecodeOffset(pc);
const auto& osrEntryData = tierUpCounter.osrEntryDataForLoop(loopOSREntryBytecodeOffset);
if (Options::wasmLLIntTiersUpToBBQ()) {
if (!jitCompileAndSetHeuristics(callee, instance))
WASM_RETURN_TWO(nullptr, nullptr);
Wasm::BBQCallee* bbqCallee;
{
Locker locker { instance->calleeGroup()->m_lock };
bbqCallee = instance->calleeGroup()->bbqCallee(locker, callee->functionIndex());
}
RELEASE_ASSERT(bbqCallee);
size_t osrEntryScratchBufferSize = bbqCallee->osrEntryScratchBufferSize();
RELEASE_ASSERT(osrEntryScratchBufferSize >= osrEntryData.values.size());
uint64_t* buffer = instance->context()->scratchBufferForSize(osrEntryScratchBufferSize);
if (!buffer)
WASM_RETURN_TWO(nullptr, nullptr);
RELEASE_ASSERT(osrEntryData.loopIndex < bbqCallee->loopEntrypoints().size());
uint32_t index = 0;
for (VirtualRegister reg : osrEntryData.values)
buffer[index++] = READ(reg).encodedJSValue();
WASM_RETURN_TWO(buffer, bbqCallee->loopEntrypoints()[osrEntryData.loopIndex].executableAddress());
} else {
const auto doOSREntry = [&](Wasm::OSREntryCallee* osrEntryCallee) {
if (osrEntryCallee->loopIndex() != osrEntryData.loopIndex)
WASM_RETURN_TWO(nullptr, nullptr);
size_t osrEntryScratchBufferSize = osrEntryCallee->osrEntryScratchBufferSize();
RELEASE_ASSERT(osrEntryScratchBufferSize == osrEntryData.values.size());
uint64_t* buffer = instance->context()->scratchBufferForSize(osrEntryScratchBufferSize);
if (!buffer)
WASM_RETURN_TWO(nullptr, nullptr);
uint32_t index = 0;
for (VirtualRegister reg : osrEntryData.values)
buffer[index++] = READ(reg).encodedJSValue();
WASM_RETURN_TWO(buffer, osrEntryCallee->entrypoint().executableAddress());
};
if (auto* osrEntryCallee = callee->osrEntryCallee(instance->memory()->mode()))
return doOSREntry(osrEntryCallee);
bool compile = false;
{
Locker locker { tierUpCounter.m_lock };
switch (tierUpCounter.m_loopCompilationStatus) {
case Wasm::LLIntTierUpCounter::CompilationStatus::NotCompiled:
compile = true;
tierUpCounter.m_loopCompilationStatus = Wasm::LLIntTierUpCounter::CompilationStatus::Compiling;
break;
case Wasm::LLIntTierUpCounter::CompilationStatus::Compiling:
tierUpCounter.optimizeAfterWarmUp();
break;
case Wasm::LLIntTierUpCounter::CompilationStatus::Compiled:
break;
}
}
if (compile) {
Ref<Wasm::Plan> plan = adoptRef(*static_cast<Wasm::Plan*>(new Wasm::OSREntryPlan(instance->context(), Ref<Wasm::Module>(instance->module()), Ref<Wasm::Callee>(*callee), callee->functionIndex(), osrEntryData.loopIndex, instance->memory()->mode(), Wasm::Plan::dontFinalize())));
Wasm::ensureWorklist().enqueue(plan.copyRef());
if (UNLIKELY(!Options::useConcurrentJIT()))
plan->waitForCompletion();
else
tierUpCounter.optimizeAfterWarmUp();
}
if (auto* osrEntryCallee = callee->osrEntryCallee(instance->memory()->mode()))
return doOSREntry(osrEntryCallee);
WASM_RETURN_TWO(nullptr, nullptr);
}
}
WASM_SLOW_PATH_DECL(epilogue_osr)
{
Wasm::LLIntCallee* callee = CALLEE();
if (!shouldJIT(callee)) {
callee->tierUpCounter().deferIndefinitely();
WASM_END_IMPL();
}
if (!Options::useWasmLLIntEpilogueOSR())
WASM_END_IMPL();
dataLogLnIf(Options::verboseOSR(), *callee, ": Entered epilogue_osr with tierUpCounter = ", callee->tierUpCounter());
jitCompileAndSetHeuristics(callee, instance);
WASM_END_IMPL();
}
#endif
WASM_SLOW_PATH_DECL(trace)
{
UNUSED_PARAM(instance);
if (!Options::traceLLIntExecution())
WASM_END_IMPL();
WasmOpcodeID opcodeID = pc->opcodeID();
dataLogF("<%p> %p / %p: executing bc#%zu, %s, pc = %p\n",
&Thread::current(),
CALLEE(),
callFrame,
static_cast<intptr_t>(CALLEE()->bytecodeOffset(pc)),
pc->name(),
pc);
if (opcodeID == wasm_enter) {
dataLogF("Frame will eventually return to %p\n", callFrame->returnPC().value());
*removeCodePtrTag<volatile char*>(callFrame->returnPC().value());
}
if (opcodeID == wasm_ret) {
dataLogF("Will be returning to %p\n", callFrame->returnPC().value());
dataLogF("The new cfr will be %p\n", callFrame->callerFrame());
}
WASM_END_IMPL();
}
WASM_SLOW_PATH_DECL(out_of_line_jump_target)
{
UNUSED_PARAM(instance);
pc = CALLEE()->outOfLineJumpTarget(pc);
WASM_END_IMPL();
}
WASM_SLOW_PATH_DECL(ref_func)
{
auto instruction = pc->as<WasmRefFunc>();
WASM_RETURN(Wasm::operationWasmRefFunc(instance, instruction.m_functionIndex));
}
WASM_SLOW_PATH_DECL(rtt_canon)
{
auto instruction = pc->as<WasmRttCanon>();
WASM_RETURN(Wasm::operationWasmRttCanon(instance, instruction.m_typeIndex));
}
WASM_SLOW_PATH_DECL(table_get)
{
auto instruction = pc->as<WasmTableGet>();
int32_t index = READ(instruction.m_index).unboxedInt32();
EncodedJSValue result = Wasm::operationGetWasmTableElement(instance, instruction.m_tableIndex, index);
if (!result)
WASM_THROW(Wasm::ExceptionType::OutOfBoundsTableAccess);
WASM_RETURN(result);
}
WASM_SLOW_PATH_DECL(table_set)
{
auto instruction = pc->as<WasmTableSet>();
uint32_t index = READ(instruction.m_index).unboxedUInt32();
EncodedJSValue value = READ(instruction.m_value).encodedJSValue();
if (!Wasm::operationSetWasmTableElement(instance, instruction.m_tableIndex, index, value))
WASM_THROW(Wasm::ExceptionType::OutOfBoundsTableAccess);
WASM_END();
}
WASM_SLOW_PATH_DECL(table_init)
{
auto instruction = pc->as<WasmTableInit>();
uint32_t dstOffset = READ(instruction.m_dstOffset).unboxedUInt32();
uint32_t srcOffset = READ(instruction.m_srcOffset).unboxedUInt32();
uint32_t length = READ(instruction.m_length).unboxedUInt32();
if (!Wasm::operationWasmTableInit(instance, instruction.m_elementIndex, instruction.m_tableIndex, dstOffset, srcOffset, length))
WASM_THROW(Wasm::ExceptionType::OutOfBoundsTableAccess);
WASM_END();
}
WASM_SLOW_PATH_DECL(elem_drop)
{
UNUSED_PARAM(callFrame);
auto instruction = pc->as<WasmElemDrop>();
Wasm::operationWasmElemDrop(instance, instruction.m_elementIndex);
WASM_END();
}
WASM_SLOW_PATH_DECL(table_size)
{
auto instruction = pc->as<WasmTableSize>();
WASM_RETURN(Wasm::operationGetWasmTableSize(instance, instruction.m_tableIndex));
}
WASM_SLOW_PATH_DECL(table_fill)
{
auto instruction = pc->as<WasmTableFill>();
uint32_t offset = READ(instruction.m_offset).unboxedUInt32();
EncodedJSValue fill = READ(instruction.m_fill).encodedJSValue();
uint32_t size = READ(instruction.m_size).unboxedUInt32();
if (!Wasm::operationWasmTableFill(instance, instruction.m_tableIndex, offset, fill, size))
WASM_THROW(Wasm::ExceptionType::OutOfBoundsTableAccess);
WASM_END();
}
WASM_SLOW_PATH_DECL(table_copy)
{
auto instruction = pc->as<WasmTableCopy>();
int32_t dstOffset = READ(instruction.m_dstOffset).unboxedInt32();
int32_t srcOffset = READ(instruction.m_srcOffset).unboxedInt32();
int32_t length = READ(instruction.m_length).unboxedInt32();
if (!Wasm::operationWasmTableCopy(instance, instruction.m_dstTableIndex, instruction.m_srcTableIndex, dstOffset, srcOffset, length))
WASM_THROW(Wasm::ExceptionType::OutOfBoundsTableAccess);
WASM_END();
}
WASM_SLOW_PATH_DECL(table_grow)
{
auto instruction = pc->as<WasmTableGrow>();
EncodedJSValue fill = READ(instruction.m_fill).encodedJSValue();
uint32_t size = READ(instruction.m_size).unboxedUInt32();
WASM_RETURN(Wasm::operationWasmTableGrow(instance, instruction.m_tableIndex, fill, size));
}
WASM_SLOW_PATH_DECL(grow_memory)
{
auto instruction = pc->as<WasmGrowMemory>();
int32_t delta = READ(instruction.m_delta).unboxedInt32();
WASM_RETURN(Wasm::operationGrowMemory(callFrame, instance, delta));
}
WASM_SLOW_PATH_DECL(memory_fill)
{
auto instruction = pc->as<WasmMemoryFill>();
uint32_t dstAddress = READ(instruction.m_dstAddress).unboxedUInt32();
uint32_t targetValue = READ(instruction.m_targetValue).unboxedUInt32();
uint32_t count = READ(instruction.m_count).unboxedUInt32();
if (!Wasm::operationWasmMemoryFill(instance, dstAddress, targetValue, count))
WASM_THROW(Wasm::ExceptionType::OutOfBoundsMemoryAccess);
WASM_END();
}
WASM_SLOW_PATH_DECL(memory_copy)
{
auto instruction = pc->as<WasmMemoryCopy>();
uint32_t dstAddress = READ(instruction.m_dstAddress).unboxedUInt32();
uint32_t srcAddress = READ(instruction.m_srcAddress).unboxedUInt32();
uint32_t count = READ(instruction.m_count).unboxedUInt32();
if (!Wasm::operationWasmMemoryCopy(instance, dstAddress, srcAddress, count))
WASM_THROW(Wasm::ExceptionType::OutOfBoundsMemoryAccess);
WASM_END();
}
WASM_SLOW_PATH_DECL(memory_init)
{
auto instruction = pc->as<WasmMemoryInit>();
uint32_t dstAddress = READ(instruction.m_dstAddress).unboxedUInt32();
uint32_t srcAddress = READ(instruction.m_srcAddress).unboxedUInt32();
uint32_t length = READ(instruction.m_length).unboxedUInt32();
if (!Wasm::operationWasmMemoryInit(instance, instruction.m_dataSegmentIndex, dstAddress, srcAddress, length))
WASM_THROW(Wasm::ExceptionType::OutOfBoundsMemoryAccess);
WASM_END();
}
WASM_SLOW_PATH_DECL(data_drop)
{
UNUSED_PARAM(callFrame);
auto instruction = pc->as<WasmDataDrop>();
Wasm::operationWasmDataDrop(instance, instruction.m_dataSegmentIndex);
WASM_END();
}
inline SlowPathReturnType doWasmCall(Wasm::Instance* instance, unsigned functionIndex)
{
uint32_t importFunctionCount = instance->module().moduleInformation().importFunctionCount();
MacroAssemblerCodePtr<WasmEntryPtrTag> codePtr;
if (functionIndex < importFunctionCount) {
Wasm::Instance::ImportFunctionInfo* functionInfo = instance->importFunctionInfo(functionIndex);
if (functionInfo->targetInstance) {
// target is a wasm function from a different instance
codePtr = instance->calleeGroup()->wasmToWasmExitStub(functionIndex);
} else {
// target is JS
codePtr = functionInfo->wasmToEmbedderStub;
}
} else {
// Target is a wasm function within the same instance
codePtr = *instance->calleeGroup()->entrypointLoadLocationFromFunctionIndexSpace(functionIndex);
}
WASM_CALL_RETURN(instance, codePtr.executableAddress(), WasmEntryPtrTag);
}
WASM_SLOW_PATH_DECL(call)
{
UNUSED_PARAM(callFrame);
auto instruction = pc->as<WasmCall>();
return doWasmCall(instance, instruction.m_functionIndex);
}
WASM_SLOW_PATH_DECL(call_no_tls)
{
UNUSED_PARAM(callFrame);
auto instruction = pc->as<WasmCallNoTls>();
return doWasmCall(instance, instruction.m_functionIndex);
}
inline SlowPathReturnType doWasmCallIndirect(CallFrame* callFrame, Wasm::Instance* instance, unsigned functionIndex, unsigned tableIndex, unsigned typeIndex)
{
Wasm::FuncRefTable* table = instance->table(tableIndex)->asFuncrefTable();
if (functionIndex >= table->length())
WASM_THROW(Wasm::ExceptionType::OutOfBoundsCallIndirect);
Wasm::Instance* targetInstance = table->instance(functionIndex);
const Wasm::WasmToWasmImportableFunction& function = table->function(functionIndex);
if (function.typeIndex == Wasm::TypeDefinition::invalidIndex)
WASM_THROW(Wasm::ExceptionType::NullTableEntry);
const auto& callSignature = CALLEE()->signature(typeIndex);
if (callSignature != Wasm::TypeInformation::getFunctionSignature(function.typeIndex))
WASM_THROW(Wasm::ExceptionType::BadSignature);
if (targetInstance != instance)
targetInstance->setCachedStackLimit(instance->cachedStackLimit());
WASM_CALL_RETURN(targetInstance, function.entrypointLoadLocation->executableAddress(), WasmEntryPtrTag);
}
WASM_SLOW_PATH_DECL(call_indirect)
{
auto instruction = pc->as<WasmCallIndirect>();
unsigned functionIndex = READ(instruction.m_functionIndex).unboxedInt32();
return doWasmCallIndirect(callFrame, instance, functionIndex, instruction.m_tableIndex, instruction.m_typeIndex);
}
WASM_SLOW_PATH_DECL(call_indirect_no_tls)
{
auto instruction = pc->as<WasmCallIndirectNoTls>();
unsigned functionIndex = READ(instruction.m_functionIndex).unboxedInt32();
return doWasmCallIndirect(callFrame, instance, functionIndex, instruction.m_tableIndex, instruction.m_typeIndex);
}
inline SlowPathReturnType doWasmCallRef(CallFrame* callFrame, Wasm::Instance* callerInstance, JSValue targetReference, unsigned typeIndex)
{
UNUSED_PARAM(callFrame);
if (targetReference.isNull())
WASM_THROW(Wasm::ExceptionType::NullReference);
ASSERT(targetReference.isObject());
JSObject* referenceAsObject = jsCast<JSObject*>(targetReference);
ASSERT(referenceAsObject->inherits<WebAssemblyFunctionBase>());
auto* wasmFunction = jsCast<WebAssemblyFunctionBase*>(referenceAsObject);
Wasm::WasmToWasmImportableFunction function = wasmFunction->importableFunction();
Wasm::Instance* calleeInstance = &wasmFunction->instance()->instance();
if (calleeInstance != callerInstance)
calleeInstance->setCachedStackLimit(callerInstance->cachedStackLimit());
ASSERT(Wasm::TypeInformation::getFunctionSignature(function.typeIndex) == CALLEE()->signature(typeIndex));
UNUSED_PARAM(typeIndex);
WASM_CALL_RETURN(calleeInstance, function.entrypointLoadLocation->executableAddress(), WasmEntryPtrTag);
}
WASM_SLOW_PATH_DECL(call_ref)
{
auto instruction = pc->as<WasmCallRef>();
JSValue reference = JSValue::decode(READ(instruction.m_functionReference).encodedJSValue());
return doWasmCallRef(callFrame, instance, reference, instruction.m_typeIndex);
}
WASM_SLOW_PATH_DECL(call_ref_no_tls)
{
auto instruction = pc->as<WasmCallRefNoTls>();
JSValue reference = JSValue::decode(READ(instruction.m_functionReference).encodedJSValue());
return doWasmCallRef(callFrame, instance, reference, instruction.m_typeIndex);
}
WASM_SLOW_PATH_DECL(set_global_ref)
{
auto instruction = pc->as<WasmSetGlobalRef>();
instance->setGlobal(instruction.m_globalIndex, READ(instruction.m_value).jsValue());
WASM_END_IMPL();
}
WASM_SLOW_PATH_DECL(set_global_ref_portable_binding)
{
auto instruction = pc->as<WasmSetGlobalRefPortableBinding>();
instance->setGlobal(instruction.m_globalIndex, READ(instruction.m_value).jsValue());
WASM_END_IMPL();
}
WASM_SLOW_PATH_DECL(memory_atomic_wait32)
{
auto instruction = pc->as<WasmMemoryAtomicWait32>();
unsigned base = READ(instruction.m_pointer).unboxedInt32();
unsigned offset = instruction.m_offset;
uint32_t value = READ(instruction.m_value).unboxedInt32();
int64_t timeout = READ(instruction.m_timeout).unboxedInt64();
int32_t result = Wasm::operationMemoryAtomicWait32(instance, base, offset, value, timeout);
if (result < 0)
WASM_THROW(Wasm::ExceptionType::OutOfBoundsMemoryAccess);
WASM_RETURN(result);
}
WASM_SLOW_PATH_DECL(memory_atomic_wait64)
{
auto instruction = pc->as<WasmMemoryAtomicWait64>();
unsigned base = READ(instruction.m_pointer).unboxedInt32();
unsigned offset = instruction.m_offset;
uint64_t value = READ(instruction.m_value).unboxedInt64();
int64_t timeout = READ(instruction.m_timeout).unboxedInt64();
int32_t result = Wasm::operationMemoryAtomicWait64(instance, base, offset, value, timeout);
if (result < 0)
WASM_THROW(Wasm::ExceptionType::OutOfBoundsMemoryAccess);
WASM_RETURN(result);
}
WASM_SLOW_PATH_DECL(memory_atomic_notify)
{
auto instruction = pc->as<WasmMemoryAtomicNotify>();
unsigned base = READ(instruction.m_pointer).unboxedInt32();
unsigned offset = instruction.m_offset;
int32_t count = READ(instruction.m_count).unboxedInt32();
int32_t result = Wasm::operationMemoryAtomicNotify(instance, base, offset, count);
if (result < 0)
WASM_THROW(Wasm::ExceptionType::OutOfBoundsMemoryAccess);
WASM_RETURN(result);
}
WASM_SLOW_PATH_DECL(throw)
{
instance->storeTopCallFrame(callFrame);
JSWebAssemblyInstance* jsInstance = instance->owner<JSWebAssemblyInstance>();
JSGlobalObject* globalObject = jsInstance->globalObject();
VM& vm = globalObject->vm();
auto throwScope = DECLARE_THROW_SCOPE(vm);
auto instruction = pc->as<WasmThrow>();
const Wasm::Tag& tag = instance->tag(instruction.m_exceptionIndex);
FixedVector<uint64_t> values(tag.parameterCount());
for (unsigned i = 0; i < tag.parameterCount(); ++i)
values[i] = READ((instruction.m_firstValue - i)).encodedJSValue();
JSWebAssemblyException* exception = JSWebAssemblyException::create(vm, globalObject->webAssemblyExceptionStructure(), tag, WTFMove(values));
throwException(globalObject, throwScope, exception);
genericUnwind(vm, callFrame);
ASSERT(!!vm.callFrameForCatch);
ASSERT(!!vm.targetMachinePCForThrow);
// FIXME: We could make this better:
// This is a total hack, but the llint (both op_catch and llint_handle_uncaught_exception)
// require a cell in the callee field to load the VM. (The baseline JIT does not require
// this since it is compiled with a constant VM pointer.) We could make the calling convention
// for exceptions first load callFrameForCatch info call frame register before jumping
// to the exception handler. If we did this, we could remove this terrible hack.
// https://bugs.webkit.org/show_bug.cgi?id=170440
vm.calleeForWasmCatch = callFrame->callee();
Register* calleeSlot = bitwise_cast<Register*>(callFrame) + static_cast<int>(CallFrameSlot::callee);
*calleeSlot = bitwise_cast<JSCell*>(jsInstance->module());
WASM_RETURN_TWO(vm.targetMachinePCForThrow, nullptr);
}
WASM_SLOW_PATH_DECL(rethrow)
{
instance->storeTopCallFrame(callFrame);
JSWebAssemblyInstance* jsInstance = instance->owner<JSWebAssemblyInstance>();
JSGlobalObject* globalObject = jsInstance->globalObject();
VM& vm = globalObject->vm();
auto throwScope = DECLARE_THROW_SCOPE(vm);
auto instruction = pc->as<WasmRethrow>();
JSValue exception = READ(instruction.m_exception).jsValue();
throwException(globalObject, throwScope, exception);
genericUnwind(vm, callFrame);
ASSERT(!!vm.callFrameForCatch);
ASSERT(!!vm.targetMachinePCForThrow);
// FIXME: We could make this better:
// This is a total hack, but the llint (both op_catch and llint_handle_uncaught_exception)
// require a cell in the callee field to load the VM. (The baseline JIT does not require
// this since it is compiled with a constant VM pointer.) We could make the calling convention
// for exceptions first load callFrameForCatch info call frame register before jumping
// to the exception handler. If we did this, we could remove this terrible hack.
// https://bugs.webkit.org/show_bug.cgi?id=170440
vm.calleeForWasmCatch = callFrame->callee();
Register* calleeSlot = bitwise_cast<Register*>(callFrame) + static_cast<int>(CallFrameSlot::callee);
*calleeSlot = bitwise_cast<JSCell*>(jsInstance->module());
WASM_RETURN_TWO(vm.targetMachinePCForThrow, nullptr);
}
WASM_SLOW_PATH_DECL(retrieve_and_clear_exception)
{
UNUSED_PARAM(callFrame);
JSWebAssemblyInstance* jsInstance = instance->owner<JSWebAssemblyInstance>();
JSGlobalObject* globalObject = jsInstance->globalObject();
VM& vm = globalObject->vm();
auto throwScope = DECLARE_THROW_SCOPE(vm);
RELEASE_ASSERT(!!throwScope.exception());
Exception* exception = throwScope.exception();
JSValue thrownValue = exception->value();
void* payload = nullptr;
const auto& handleCatchAll = [&](const auto& instruction) {
callFrame->uncheckedR(instruction.m_exception) = thrownValue;
};
const auto& handleCatch = [&](const auto& instruction) {
JSWebAssemblyException* wasmException = jsDynamicCast<JSWebAssemblyException*>(thrownValue);
RELEASE_ASSERT(!!wasmException);
payload = bitwise_cast<void*>(wasmException->payload().data());
callFrame->uncheckedR(instruction.m_exception) = thrownValue;
};
if (pc->is<WasmCatch>())
handleCatch(pc->as<WasmCatch>());
else if (pc->is<WasmCatchAll>())
handleCatchAll(pc->as<WasmCatchAll>());
else if (pc->is<WasmCatchNoTls>())
handleCatch(pc->as<WasmCatchNoTls>());
else if (pc->is<WasmCatchAllNoTls>())
handleCatchAll(pc->as<WasmCatchAllNoTls>());
else
RELEASE_ASSERT_NOT_REACHED();
// We want to clear the exception here rather than in the catch prologue
// JIT code because clearing it also entails clearing a bit in an Atomic
// bit field in VMTraps.
throwScope.clearException();
WASM_RETURN_TWO(pc, payload);
}
#if USE(JSVALUE32_64)
WASM_SLOW_PATH_DECL(f32_ceil)
{
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmF32Ceil>();
float operand = READ(instruction.m_operand).unboxedFloat();
WASM_RETURN(JSValue::encode(wasmUnboxedFloat(std::ceil(operand))));
}
WASM_SLOW_PATH_DECL(f32_floor)
{
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmF32Floor>();
float operand = READ(instruction.m_operand).unboxedFloat();
WASM_RETURN(JSValue::encode(wasmUnboxedFloat(std::floor(operand))));
}
WASM_SLOW_PATH_DECL(f32_trunc)
{
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmF32Trunc>();
float operand = READ(instruction.m_operand).unboxedFloat();
WASM_RETURN(JSValue::encode(wasmUnboxedFloat(std::trunc(operand))));
}
WASM_SLOW_PATH_DECL(f32_nearest)
{
static_assert(std::numeric_limits<float>::round_style == std::round_to_nearest);
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmF32Nearest>();
float operand = READ(instruction.m_operand).unboxedFloat();
WASM_RETURN(JSValue::encode(wasmUnboxedFloat(std::nearbyint(operand))));
}
WASM_SLOW_PATH_DECL(f64_ceil)
{
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmF64Ceil>();
double operand = READ(instruction.m_operand).unboxedDouble();
WASM_RETURN(JSValue::encode(jsDoubleNumber(std::ceil(operand))));
}
WASM_SLOW_PATH_DECL(f64_floor)
{
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmF64Floor>();
double operand = READ(instruction.m_operand).unboxedDouble();
WASM_RETURN(JSValue::encode(jsDoubleNumber(std::floor(operand))));
}
WASM_SLOW_PATH_DECL(f64_trunc)
{
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmF64Trunc>();
double operand = READ(instruction.m_operand).unboxedDouble();
WASM_RETURN(JSValue::encode(jsDoubleNumber(std::trunc(operand))));
}
WASM_SLOW_PATH_DECL(f64_nearest)
{
static_assert(std::numeric_limits<float>::round_style == std::round_to_nearest);
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmF64Nearest>();
double operand = READ(instruction.m_operand).unboxedDouble();
WASM_RETURN(JSValue::encode(jsDoubleNumber(std::nearbyint(operand))));
}
WASM_SLOW_PATH_DECL(f32_convert_u_i64)
{
static_assert(std::numeric_limits<float>::round_style == std::round_to_nearest);
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmF32ConvertUI64>();
uint64_t operand = READ(instruction.m_operand).unboxedInt64();
WASM_RETURN(JSValue::encode(wasmUnboxedFloat(static_cast<float>(operand))));
}
WASM_SLOW_PATH_DECL(f32_convert_s_i64)
{
static_assert(std::numeric_limits<float>::round_style == std::round_to_nearest);
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmF32ConvertSI64>();
int64_t operand = READ(instruction.m_operand).unboxedInt64();
WASM_RETURN(JSValue::encode(wasmUnboxedFloat(static_cast<float>(operand))));
}
WASM_SLOW_PATH_DECL(f64_convert_u_i64)
{
static_assert(std::numeric_limits<float>::round_style == std::round_to_nearest);
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmF64ConvertUI64>();
uint64_t operand = READ(instruction.m_operand).unboxedInt64();
WASM_RETURN(JSValue::encode(jsDoubleNumber(static_cast<double>(operand))));
}
WASM_SLOW_PATH_DECL(f64_convert_s_i64)
{
static_assert(std::numeric_limits<float>::round_style == std::round_to_nearest);
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmF64ConvertSI64>();
int64_t operand = READ(instruction.m_operand).unboxedInt64();
WASM_RETURN(JSValue::encode(jsDoubleNumber(static_cast<double>(operand))));
}
WASM_SLOW_PATH_DECL(i64_trunc_u_f32)
{
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmI64TruncUF32>();
float operand = READ(instruction.m_operand).unboxedFloat();
if (std::isnan(operand) || operand <= -1.0f || operand >= -2.0f * static_cast<float>(INT64_MIN))
WASM_THROW(Wasm::ExceptionType::OutOfBoundsTrunc);
WASM_RETURN(static_cast<uint64_t>(operand));
}
WASM_SLOW_PATH_DECL(i64_trunc_s_f32)
{
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmI64TruncSF32>();
float operand = READ(instruction.m_operand).unboxedFloat();
if (std::isnan(operand) || operand < static_cast<float>(INT64_MIN) || operand >= -static_cast<float>(INT64_MIN))
WASM_THROW(Wasm::ExceptionType::OutOfBoundsTrunc);
WASM_RETURN(static_cast<int64_t>(operand));
}
WASM_SLOW_PATH_DECL(i64_trunc_u_f64)
{
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmI64TruncUF64>();
double operand = READ(instruction.m_operand).unboxedDouble();
if (std::isnan(operand) || operand <= -1.0 || operand >= -2.0 * static_cast<double>(INT64_MIN))
WASM_THROW(Wasm::ExceptionType::OutOfBoundsTrunc);
WASM_RETURN(static_cast<uint64_t>(operand));
}
WASM_SLOW_PATH_DECL(i64_trunc_s_f64)
{
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmI64TruncSF64>();
double operand = READ(instruction.m_operand).unboxedDouble();
if (std::isnan(operand) || operand < static_cast<double>(INT64_MIN) || operand >= -static_cast<double>(INT64_MIN))
WASM_THROW(Wasm::ExceptionType::OutOfBoundsTrunc);
WASM_RETURN(static_cast<int64_t>(operand));
}
WASM_SLOW_PATH_DECL(i64_trunc_sat_f32_u)
{
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmI64TruncSatF32U>();
float operand = READ(instruction.m_operand).unboxedFloat();
uint64_t result;
if (std::isnan(operand) || operand <= -1.0f)
result = 0;
else if (operand >= -2.0f * static_cast<float>(INT64_MIN))
result = UINT64_MAX;
else
result = static_cast<uint64_t>(operand);
WASM_RETURN(result);
}
WASM_SLOW_PATH_DECL(i64_trunc_sat_f32_s)
{
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmI64TruncSatF32S>();
float operand = READ(instruction.m_operand).unboxedFloat();
int64_t result;
if (std::isnan(operand))
result = 0;
else if (operand < static_cast<float>(INT64_MIN))
result = INT64_MIN;
else if (operand >= -static_cast<float>(INT64_MIN))
result = INT64_MAX;
else
result = static_cast<int64_t>(operand);
WASM_RETURN(result);
}
WASM_SLOW_PATH_DECL(i64_trunc_sat_f64_u)
{
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmI64TruncSatF64U>();
double operand = READ(instruction.m_operand).unboxedDouble();
uint64_t result;
if (std::isnan(operand) || operand <= -1.0)
result = 0;
else if (operand >= -2.0 * static_cast<double>(INT64_MIN))
result = UINT64_MAX;
else
result = static_cast<uint64_t>(operand);
WASM_RETURN(result);
}
WASM_SLOW_PATH_DECL(i64_trunc_sat_f64_s)
{
UNUSED_PARAM(instance);
auto instruction = pc->as<WasmI64TruncSatF64S>();
double operand = READ(instruction.m_operand).unboxedDouble();
int64_t result;
if (std::isnan(operand))
result = 0;
else if (operand < static_cast<double>(INT64_MIN))
result = INT64_MIN;
else if (operand >= -static_cast<double>(INT64_MIN))
result = INT64_MAX;
else
result = static_cast<int64_t>(operand);
WASM_RETURN(result);
}
#endif
extern "C" SlowPathReturnType slow_path_wasm_throw_exception(CallFrame* callFrame, const WasmInstruction* pc, Wasm::Instance* instance, Wasm::ExceptionType exceptionType)
{
UNUSED_PARAM(pc);
WASM_RETURN_TWO(operationWasmToJSException(callFrame, exceptionType, instance), nullptr);
}
extern "C" SlowPathReturnType slow_path_wasm_popcount(const WasmInstruction* pc, uint32_t x)
{
void* result = bitwise_cast<void*>(static_cast<size_t>(__builtin_popcount(x)));
WASM_RETURN_TWO(pc, result);
}
extern "C" SlowPathReturnType slow_path_wasm_popcountll(const WasmInstruction* pc, uint64_t x)
{
void* result = bitwise_cast<void*>(static_cast<size_t>(__builtin_popcountll(x)));
WASM_RETURN_TWO(pc, result);
}
#if USE(JSVALUE32_64)
// Note: All these div and rem ops perform exception checks in asm
extern "C" int32_t slow_path_wasm_i32_div_s(int32_t a, int32_t b) { return a / b; }
extern "C" uint32_t slow_path_wasm_i32_div_u(uint32_t a, uint32_t b) { return a / b; }
extern "C" int32_t slow_path_wasm_i32_rem_s(int32_t a, int32_t b) { return a % b; }
extern "C" uint32_t slow_path_wasm_i32_rem_u(uint32_t a, uint32_t b) { return a % b; }
extern "C" int64_t slow_path_wasm_i64_div_s(int64_t a, int64_t b) { return a / b; }
extern "C" uint64_t slow_path_wasm_i64_div_u(uint64_t a, uint64_t b) { return a / b; }
extern "C" int64_t slow_path_wasm_i64_rem_s(int64_t a, int64_t b) { return a % b; }
extern "C" uint64_t slow_path_wasm_i64_rem_u(uint64_t a, uint64_t b) { return a % b; }
#endif
} } // namespace JSC::LLInt
#endif // ENABLE(WEBASSEMBLY)