blob: 9385e18e4b2b9649d1d5c6e17b5586b4f2686490 [file] [log] [blame]
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "Biquad.h"
#include "AudioUtilities.h"
#include "DenormalDisabler.h"
#include <algorithm>
#include <stdio.h>
#include <wtf/MathExtras.h>
#if USE(ACCELERATE)
// Work around a bug where VForce.h forward declares std::complex in a way that's incompatible with libc++ complex.
#define __VFORCE_H
#include <Accelerate/Accelerate.h>
#endif
namespace WebCore {
#if USE(ACCELERATE)
constexpr int kBufferSize = 1024;
#endif
Biquad::Biquad()
{
#if USE(ACCELERATE)
// Allocate two samples more for filter history
m_inputBuffer.resize(kBufferSize + 2);
m_outputBuffer.resize(kBufferSize + 2);
#endif
// Allocate enough space for the a-rate filter coefficients to handle a
// rendering quantum of 128 frames.
m_b0.resize(AudioUtilities::renderQuantumSize);
m_b1.resize(AudioUtilities::renderQuantumSize);
m_b2.resize(AudioUtilities::renderQuantumSize);
m_a1.resize(AudioUtilities::renderQuantumSize);
m_a2.resize(AudioUtilities::renderQuantumSize);
// Initialize as pass-thru (straight-wire, no filter effect)
setNormalizedCoefficients(0, 1, 0, 0, 1, 0, 0);
reset(); // clear filter memory
}
Biquad::~Biquad() = default;
void Biquad::process(const float* sourceP, float* destP, size_t framesToProcess)
{
if (hasSampleAccurateValues()) {
size_t n = framesToProcess;
// Create local copies of member variables
double x1 = m_x1;
double x2 = m_x2;
double y1 = m_y1;
double y2 = m_y2;
auto* b0 = m_b0.data();
auto* b1 = m_b1.data();
auto* b2 = m_b2.data();
auto* a1 = m_a1.data();
auto* a2 = m_a2.data();
for (size_t k = 0; k < n; ++k) {
// FIXME: this can be optimized by pipelining the multiply adds...
float x = *sourceP++;
float y = b0[k] * x + b1[k] * x1 + b2[k] * x2 - a1[k] * y1 - a2[k] * y2;
*destP++ = y;
// Update state variables
x2 = x1;
x1 = x;
y2 = y1;
y1 = y;
}
// Local variables back to member. Flush denormals here so we
// don't slow down the inner loop above.
m_x1 = DenormalDisabler::flushDenormalFloatToZero(x1);
m_x2 = DenormalDisabler::flushDenormalFloatToZero(x2);
m_y1 = DenormalDisabler::flushDenormalFloatToZero(y1);
m_y2 = DenormalDisabler::flushDenormalFloatToZero(y2);
// There is an assumption here that once we have sample accurate values we
// can never go back to not having sample accurate values. This is
// currently true in the way AudioParamTimline is implemented: once an
// event is inserted, sample accurate processing is always enabled.
//
// If so, then we never have to update the state variables for the MACOSX
// path. The structure of the state variable in these cases aren't well
// documented so it's not clear how to update them anyway.
return;
}
#if USE(ACCELERATE)
auto* inputP = m_inputBuffer.data();
auto* outputP = m_outputBuffer.data();
// Set up filter state. This is needed in case we're switching from
// filtering with variable coefficients (i.e., with automations) to
// fixed coefficients (without automations).
inputP[0] = m_x2;
inputP[1] = m_x1;
outputP[0] = m_y2;
outputP[1] = m_y1;
// Use vecLib if available
processFast(sourceP, destP, framesToProcess);
ASSERT(framesToProcess >= 2);
// Copy the last inputs and outputs to the filter memory variables.
// This is needed because the next rendering quantum might be an
// automation which needs the history to continue correctly. Because
// sourceP and destP can be the same block of memory, we can't read from
// sourceP to get the last inputs. Fortunately, processFast has put the
// last inputs in input[0] and input[1].
m_x1 = inputP[1];
m_x2 = inputP[0];
m_y1 = destP[framesToProcess - 1];
m_y2 = destP[framesToProcess - 2];
#else
size_t n = framesToProcess;
// Create local copies of member variables
double x1 = m_x1;
double x2 = m_x2;
double y1 = m_y1;
double y2 = m_y2;
double b0 = m_b0[0];
double b1 = m_b1[0];
double b2 = m_b2[0];
double a1 = m_a1[0];
double a2 = m_a2[0];
while (n--) {
// FIXME: this can be optimized by pipelining the multiply adds...
float x = *sourceP++;
float y = b0 * x + b1 * x1 + b2 * x2 - a1 * y1 - a2 * y2;
*destP++ = y;
// Update state variables
x2 = x1;
x1 = x;
y2 = y1;
y1 = y;
}
// Local variables back to member. Flush denormals here so we
// don't slow down the inner loop above.
m_x1 = DenormalDisabler::flushDenormalFloatToZero(x1);
m_x2 = DenormalDisabler::flushDenormalFloatToZero(x2);
m_y1 = DenormalDisabler::flushDenormalFloatToZero(y1);
m_y2 = DenormalDisabler::flushDenormalFloatToZero(y2);
#endif
}
#if USE(ACCELERATE)
// Here we have optimized version using Accelerate.framework
void Biquad::processFast(const float* sourceP, float* destP, size_t framesToProcess)
{
double filterCoefficients[5];
filterCoefficients[0] = m_b0[0];
filterCoefficients[1] = m_b1[0];
filterCoefficients[2] = m_b2[0];
filterCoefficients[3] = m_a1[0];
filterCoefficients[4] = m_a2[0];
double* inputP = m_inputBuffer.data();
double* outputP = m_outputBuffer.data();
double* input2P = inputP + 2;
double* output2P = outputP + 2;
// Break up processing into smaller slices (kBufferSize) if necessary.
size_t n = framesToProcess;
while (n > 0) {
int framesThisTime = n < kBufferSize ? n : kBufferSize;
// Copy input to input buffer
for (int i = 0; i < framesThisTime; ++i)
input2P[i] = *sourceP++;
processSliceFast(inputP, outputP, filterCoefficients, framesThisTime);
// Copy output buffer to output (converts float -> double).
for (int i = 0; i < framesThisTime; ++i)
*destP++ = static_cast<float>(output2P[i]);
n -= framesThisTime;
}
}
void Biquad::processSliceFast(double* sourceP, double* destP, double* coefficientsP, size_t framesToProcess)
{
// Use double-precision for filter stability
vDSP_deq22D(sourceP, 1, coefficientsP, destP, 1, framesToProcess);
// Save history. Note that sourceP and destP reference m_inputBuffer and m_outputBuffer respectively.
// These buffers are allocated (in the constructor) with space for two extra samples so it's OK to access
// array values two beyond framesToProcess.
sourceP[0] = sourceP[framesToProcess - 2 + 2];
sourceP[1] = sourceP[framesToProcess - 1 + 2];
destP[0] = destP[framesToProcess - 2 + 2];
destP[1] = destP[framesToProcess - 1 + 2];
}
#endif // USE(ACCELERATE)
void Biquad::reset()
{
#if USE(ACCELERATE)
// Two extra samples for filter history
double* inputP = m_inputBuffer.data();
inputP[0] = 0;
inputP[1] = 0;
double* outputP = m_outputBuffer.data();
outputP[0] = 0;
outputP[1] = 0;
#endif
m_x1 = m_x2 = m_y1 = m_y2 = 0;
}
void Biquad::setLowpassParams(size_t index, double cutoff, double resonance)
{
// Limit cutoff to 0 to 1.
cutoff = std::max(0.0, std::min(cutoff, 1.0));
if (cutoff == 1) {
// When cutoff is 1, the z-transform is 1.
setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0);
} else if (cutoff > 0) {
// Compute biquad coefficients for lowpass filter
resonance = pow(10.0, 0.05 * resonance);
double theta = piDouble * cutoff;
double alpha = sin(theta) / (2 * resonance);
double cosw = cos(theta);
double beta = (1 - cosw) / 2;
double b0 = beta;
double b1 = 2 * beta;
double b2 = beta;
double a0 = 1 + alpha;
double a1 = -2 * cosw;
double a2 = 1 - alpha;
setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2);
} else {
// When cutoff is zero, nothing gets through the filter, so set
// coefficients up correctly.
setNormalizedCoefficients(index, 0, 0, 0, 1, 0, 0);
}
}
void Biquad::setHighpassParams(size_t index, double cutoff, double resonance)
{
// Limit cutoff to 0 to 1.
cutoff = std::max(0.0, std::min(cutoff, 1.0));
if (cutoff == 1) {
// The z-transform is 0.
setNormalizedCoefficients(index, 0, 0, 0, 1, 0, 0);
} else if (cutoff > 0) {
// Compute biquad coefficients for highpass filter
resonance = pow(10.0, 0.05 * resonance);
double theta = piDouble * cutoff;
double alpha = sin(theta) / (2 * resonance);
double cosw = cos(theta);
double beta = (1 + cosw) / 2;
double b0 = beta;
double b1 = -(2 * beta);
double b2 = beta;
double a0 = 1 + alpha;
double a1 = -2 * cosw;
double a2 = 1 - alpha;
setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2);
} else {
// When cutoff is zero, we need to be careful because the above
// gives a quadratic divided by the same quadratic, with poles
// and zeros on the unit circle in the same place. When cutoff
// is zero, the z-transform is 1.
setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0);
}
}
void Biquad::setNormalizedCoefficients(size_t index, double b0, double b1, double b2, double a0, double a1, double a2)
{
double a0Inverse = 1 / a0;
m_b0[index] = b0 * a0Inverse;
m_b1[index] = b1 * a0Inverse;
m_b2[index] = b2 * a0Inverse;
m_a1[index] = a1 * a0Inverse;
m_a2[index] = a2 * a0Inverse;
}
void Biquad::setLowShelfParams(size_t index, double frequency, double dbGain)
{
// Clip frequencies to between 0 and 1, inclusive.
frequency = std::max(0.0, std::min(frequency, 1.0));
double A = pow(10.0, dbGain / 40);
if (frequency == 1) {
// The z-transform is a constant gain.
setNormalizedCoefficients(index, A * A, 0, 0, 1, 0, 0);
} else if (frequency > 0) {
double w0 = piDouble * frequency;
double S = 1; // filter slope (1 is max value)
double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2);
double k = cos(w0);
double k2 = 2 * sqrt(A) * alpha;
double aPlusOne = A + 1;
double aMinusOne = A - 1;
double b0 = A * (aPlusOne - aMinusOne * k + k2);
double b1 = 2 * A * (aMinusOne - aPlusOne * k);
double b2 = A * (aPlusOne - aMinusOne * k - k2);
double a0 = aPlusOne + aMinusOne * k + k2;
double a1 = -2 * (aMinusOne + aPlusOne * k);
double a2 = aPlusOne + aMinusOne * k - k2;
setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2);
} else {
// When frequency is 0, the z-transform is 1.
setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0);
}
}
void Biquad::setHighShelfParams(size_t index, double frequency, double dbGain)
{
// Clip frequencies to between 0 and 1, inclusive.
frequency = std::max(0.0, std::min(frequency, 1.0));
double A = pow(10.0, dbGain / 40);
if (frequency == 1) {
// The z-transform is 1.
setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0);
} else if (frequency > 0) {
double w0 = piDouble * frequency;
double S = 1; // filter slope (1 is max value)
double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2);
double k = cos(w0);
double k2 = 2 * sqrt(A) * alpha;
double aPlusOne = A + 1;
double aMinusOne = A - 1;
double b0 = A * (aPlusOne + aMinusOne * k + k2);
double b1 = -2 * A * (aMinusOne + aPlusOne * k);
double b2 = A * (aPlusOne + aMinusOne * k - k2);
double a0 = aPlusOne - aMinusOne * k + k2;
double a1 = 2 * (aMinusOne - aPlusOne * k);
double a2 = aPlusOne - aMinusOne * k - k2;
setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2);
} else {
// When frequency = 0, the filter is just a gain, A^2.
setNormalizedCoefficients(index, A * A, 0, 0, 1, 0, 0);
}
}
void Biquad::setPeakingParams(size_t index, double frequency, double Q, double dbGain)
{
// Clip frequencies to between 0 and 1, inclusive.
frequency = std::max(0.0, std::min(frequency, 1.0));
// Don't let Q go negative, which causes an unstable filter.
Q = std::max(0.0, Q);
double A = pow(10.0, dbGain / 40);
if (frequency > 0 && frequency < 1) {
if (Q > 0) {
double w0 = piDouble * frequency;
double alpha = sin(w0) / (2 * Q);
double k = cos(w0);
double b0 = 1 + alpha * A;
double b1 = -2 * k;
double b2 = 1 - alpha * A;
double a0 = 1 + alpha / A;
double a1 = -2 * k;
double a2 = 1 - alpha / A;
setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2);
} else {
// When Q = 0, the above formulas have problems. If we look at
// the z-transform, we can see that the limit as Q->0 is A^2, so
// set the filter that way.
setNormalizedCoefficients(index, A * A, 0, 0, 1, 0, 0);
}
} else {
// When frequency is 0 or 1, the z-transform is 1.
setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0);
}
}
void Biquad::setAllpassParams(size_t index, double frequency, double Q)
{
// Clip frequencies to between 0 and 1, inclusive.
frequency = std::max(0.0, std::min(frequency, 1.0));
// Don't let Q go negative, which causes an unstable filter.
Q = std::max(0.0, Q);
if (frequency > 0 && frequency < 1) {
if (Q > 0) {
double w0 = piDouble * frequency;
double alpha = sin(w0) / (2 * Q);
double k = cos(w0);
double b0 = 1 - alpha;
double b1 = -2 * k;
double b2 = 1 + alpha;
double a0 = 1 + alpha;
double a1 = -2 * k;
double a2 = 1 - alpha;
setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2);
} else {
// When Q = 0, the above formulas have problems. If we look at
// the z-transform, we can see that the limit as Q->0 is -1, so
// set the filter that way.
setNormalizedCoefficients(index, -1, 0, 0, 1, 0, 0);
}
} else {
// When frequency is 0 or 1, the z-transform is 1.
setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0);
}
}
void Biquad::setNotchParams(size_t index, double frequency, double Q)
{
// Clip frequencies to between 0 and 1, inclusive.
frequency = std::max(0.0, std::min(frequency, 1.0));
// Don't let Q go negative, which causes an unstable filter.
Q = std::max(0.0, Q);
if (frequency > 0 && frequency < 1) {
if (Q > 0) {
double w0 = piDouble * frequency;
double alpha = sin(w0) / (2 * Q);
double k = cos(w0);
double b0 = 1;
double b1 = -2 * k;
double b2 = 1;
double a0 = 1 + alpha;
double a1 = -2 * k;
double a2 = 1 - alpha;
setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2);
} else {
// When Q = 0, the above formulas have problems. If we look at
// the z-transform, we can see that the limit as Q->0 is 0, so
// set the filter that way.
setNormalizedCoefficients(index, 0, 0, 0, 1, 0, 0);
}
} else {
// When frequency is 0 or 1, the z-transform is 1.
setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0);
}
}
void Biquad::setBandpassParams(size_t index, double frequency, double Q)
{
// No negative frequencies allowed.
frequency = std::max(0.0, frequency);
// Don't let Q go negative, which causes an unstable filter.
Q = std::max(0.0, Q);
if (frequency > 0 && frequency < 1) {
double w0 = piDouble * frequency;
if (Q > 0) {
double alpha = sin(w0) / (2 * Q);
double k = cos(w0);
double b0 = alpha;
double b1 = 0;
double b2 = -alpha;
double a0 = 1 + alpha;
double a1 = -2 * k;
double a2 = 1 - alpha;
setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2);
} else {
// When Q = 0, the above formulas have problems. If we look at
// the z-transform, we can see that the limit as Q->0 is 1, so
// set the filter that way.
setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0);
}
} else {
// When the cutoff is zero, the z-transform approaches 0, if Q
// > 0. When both Q and cutoff are zero, the z-transform is
// pretty much undefined. What should we do in this case?
// For now, just make the filter 0. When the cutoff is 1, the
// z-transform also approaches 0.
setNormalizedCoefficients(index, 0, 0, 0, 1, 0, 0);
}
}
void Biquad::getFrequencyResponse(unsigned nFrequencies, const float* frequency, float* magResponse, float* phaseResponse)
{
// Evaluate the Z-transform of the filter at given normalized
// frequency from 0 to 1. (1 corresponds to the Nyquist
// frequency.)
//
// The z-transform of the filter is
//
// H(z) = (b0 + b1*z^(-1) + b2*z^(-2))/(1 + a1*z^(-1) + a2*z^(-2))
//
// Evaluate as
//
// b0 + (b1 + b2*z1)*z1
// --------------------
// 1 + (a1 + a2*z1)*z1
//
// with z1 = 1/z and z = exp(j*pi*frequency). Hence z1 = exp(-j*pi*frequency)
// Make local copies of the coefficients as a micro-optimization.
double b0 = m_b0[0];
double b1 = m_b1[0];
double b2 = m_b2[0];
double a1 = m_a1[0];
double a2 = m_a2[0];
for (unsigned k = 0; k < nFrequencies; ++k) {
if (frequency[k] < 0 || frequency[k] > 1) {
// Out-of-bounds frequencies should return NaN.
magResponse[k] = std::nanf("");
phaseResponse[k] = std::nanf("");
} else {
double omega = -piDouble * frequency[k];
std::complex<double> z = std::complex<double>(cos(omega), sin(omega));
std::complex<double> numerator = b0 + (b1 + b2 * z) * z;
std::complex<double> denominator = std::complex<double>(1, 0) + (a1 + a2 * z) * z;
std::complex<double> response = numerator / denominator;
magResponse[k] = static_cast<float>(abs(response));
phaseResponse[k] = static_cast<float>(atan2(imag(response), real(response)));
}
}
}
static double repeatedRootResponse(double n, double c1, double c2, double r, double logEPS)
{
// The response is h(n) = r^(n-2)*[c1*(n+1)*r^2+c2]. We're looking
// for n such that |h(n)| = eps. Equivalently, we want a root
// of the equation log(|h(n)|) - log(eps) = 0 or
//
// (n-2)*log(r) + log(|c1*(n+1)*r^2+c2|) - log(eps)
//
// This helps with finding a nuemrical solution because this
// approximately linearizes the response for large n.
return (n - 2) * std::log(r) + std::log(std::fabs(c1 * (n + 1) * r * r + c2)) - logEPS;
}
// Regula Falsi root finder, Illinois variant
// (https://en.wikipedia.org/wiki/False_position_method#The_Illinois_algorithm).
//
// This finds a root of the repeated root response where the root is
// assumed to lie between |low| and |high|. The response is given by
// |c1|, |c2|, and |r| as determined by |RepeatedRootResponse|.
// |logEPS| is the log the the maximum allowed amplitude in the
// response.
static double rootFinder(double low, double high, double logEPS, double c1, double c2, double r)
{
// Desired accuray of the root (in frames). This doesn't need to be
// super-accurate, so half frame is good enough, and should be less
// than 1 because the algorithm may prematurely terminate.
constexpr double accuracyThreshold = 0.5;
// Max number of iterations to do. If we haven't converged by now,
// just return whatever we've found.
constexpr int maxIterations = 10;
int side = 0;
double root = 0;
double fLow = repeatedRootResponse(low, c1, c2, r, logEPS);
double fHigh = repeatedRootResponse(high, c1, c2, r, logEPS);
// The function values must be finite and have opposite signs!
ASSERT(std::isfinite(fLow));
ASSERT(std::isfinite(fHigh));
ASSERT(fLow * fHigh <= 0);
int iteration;
for (iteration = 0; iteration < maxIterations; ++iteration) {
root = (fLow * high - fHigh * low) / (fLow - fHigh);
if (fabs(high - low) < accuracyThreshold * std::fabs(high + low))
break;
double fr = repeatedRootResponse(root, c1, c2, r, logEPS);
ASSERT(std::isfinite(fr));
if (fr * fHigh > 0) {
// fr and fHigh have same sign. Copy root to fHigh
high = root;
fHigh = fr;
side = -1;
} else if (fLow * fr > 0) {
// fr and fLow have same sign. Copy root to fLow
low = root;
fLow = fr;
if (side == 1)
fHigh /= 2;
side = 1;
} else {
// fLow * fr looks like zero, so assume we've converged.
break;
}
}
// Want to know if the max number of iterations is ever exceeded so
// we can understand why that happened.
ASSERT(iteration < maxIterations);
return root;
}
double Biquad::tailFrame(size_t coefIndex, double maxFrame)
{
// The Biquad filter is given by
//
// H(z) = (b0 + b1/z + b2/z^2)/(1 + a1/z + a2/z^2).
//
// To compute the tail time, compute the impulse response, h(n), of
// H(z), which we can do analytically. From this impulse response,
// find the value n0 where |h(n)| <= eps for n >= n0.
//
// Assume first that the two poles of H(z) are not repeated, say r1
// and r2. Then, we can compute a partial fraction expansion of
// H(z):
//
// H(z) = (b0+b1/z+b2/z^2)/[(1-r1/z)*(1-r2/z)]
// = b0 + C2/(z-r2) - C1/(z-r1)
//
// where
// C2 = (b0*r2^2+b1*r2+b2)/(r2-r1)
// C1 = (b0*r1^2+b1*r1+b2)/(r2-r1)
//
// Expand H(z) then this in powers of 1/z gives:
//
// H(z) = b0 -(C2/r2+C1/r1) + sum(C2*r2^(i-1)/z^i + C1*r1^(i-1)/z^i)
//
// Thus, for n > 1 (we don't care about small n),
//
// h(n) = C2*r2^(n-1) + C1*r1^(n-1)
//
// We need to find n0 such that |h(n)| < eps for n > n0.
//
// Case 1: r1 and r2 are real and distinct, with |r1|>=|r2|.
//
// Then
//
// h(n) = C1*r1^(n-1)*(1 + C2/C1*(r2/r1)^(n-1))
//
// so
//
// |h(n)| = |C1|*|r1|^(n-1)*|1+C2/C1*(r2/r1)^(n-1)|
// <= |C1|*|r1|^(n-1)*[1 + |C2/C1|*|r2/r1|^(n-1)]
// <= |C1|*|r1|^(n-1)*[1 + |C2/C1|]
//
// so
//
// |h(n)| = |C1|*|r1|^(n-1)*|1+C2/C1*(r2/r1)^(n-1)|
// <= |C1|*|r1|^(n-1)*[1 + |C2/C1|*|r2/r1|^(n-1)]
// <= |C1|*|r1|^(n-1)*[1 + |C2/C1|]
//
// by using the triangle inequality and the fact that |r2|<=|r1|.
// And we want |h(n)|<=eps which is true if
//
// |C1|*|r1|^(n-1)*[1 + |C2/C1|] <= eps
//
// or
//
// n >= 1 + log(eps/C)/log(|r1|)
//
// where C = |C1|*[1+|C2/C1|] = |C1| + |C2|.
//
// Case 2: r1 and r2 are complex
//
// Thne we can write r1=r*exp(i*p) and r2=r*exp(-i*p). So,
//
// |h(n)| = |C2*r^(n-1)*exp(-i*p*(n-1)) + C1*r^(n-1)*exp(i*p*(n-1))|
// = |C1|*r^(n-1)*|1 + C2/C1*exp(-i*p*(n-1))/exp(i*n*(n-1))|
// <= |C1|*r^(n-1)*[1 + |C2/C1|]
//
// Again, this is easily solved to give
//
// n >= 1 + log(eps/C)/log(r)
//
// where C = |C1|*[1+|C2/C1|] = |C1| + |C2|.
//
// Case 3: Repeated roots, r1=r2=r.
//
// In this case,
//
// H(z) = (b0+b1/z+b2/z^2)/[(1-r/z)^2
//
// Expanding this in powers of 1/z gives:
//
// H(z) = C1*sum((i+1)*r^i/z^i) - C2 * sum(r^(i-2)/z^i) + b2/r^2
// = b2/r^2 + sum([C1*(i+1)*r^i + C2*r^(i-2)]/z^i)
// where
// C1 = (b0*r^2+b1*r+b2)/r^2
// C2 = b1*r+2*b2
//
// Thus, the impulse response is
//
// h(n) = C1*(n+1)*r^n + C2*r^(n-2)
// = r^(n-2)*[C1*(n+1)*r^2+C2]
//
// So
//
// |h(n)| = |r|^(n-2)*|C1*(n+1)*r^2+C2|
//
// To find n such that |h(n)| < eps, we need a numerical method in
// general, so there's no real reason to simplify this or use other
// approximations. Just solve |h(n)|=eps directly.
//
// Thus, for an set of filter coefficients, we can compute the tail
// time.
//
// If the maximum amplitude of the impulse response is less than
// this, we assume that we've reached the tail of the response.
// Currently, this means that the impulse is less than 1 bit of a
// 16-bit PCM value.
constexpr double maxTailAmplitude = 1 / 32768.0;
// Find the roots of 1+a1/z+a2/z^2 = 0. Or equivalently,
// z^2+a1*z+a2 = 0. From the quadratic formula the roots are
// (-a1+/-sqrt(a1^2-4*a2))/2.
double a1 = m_a1[coefIndex];
double a2 = m_a2[coefIndex];
double b0 = m_b0[coefIndex];
double b1 = m_b1[coefIndex];
double b2 = m_b2[coefIndex];
double discrim = a1 * a1 - 4 * a2;
if (discrim > 0) {
// Compute the real roots so that r1 has the largest magnitude.
double rplus = (-a1 + std::sqrt(discrim)) / 2;
double rminus = (-a1 - std::sqrt(discrim)) / 2;
double r1 = std::fabs(rplus) >= std::fabs(rminus) ? rplus : rminus;
// Use the fact that a2 = r1*r2
double r2 = a2 / r1;
double c1 = (b0 * r1 * r1 + b1 * r1 + b2) / (r2 - r1);
double c2 = (b0 * r2 * r2 + b1 * r2 + b2) / (r2 - r1);
ASSERT(std::isfinite(r1));
ASSERT(std::isfinite(r2));
ASSERT(std::isfinite(c1));
ASSERT(std::isfinite(c2));
// It's possible for maxTailAmplitude to be greater than c1 + c2.
// This may produce a negative tail frame. Just clamp the tail
// frame to 0.
double tailFrame = clampTo(1 + std::log(maxTailAmplitude / (std::fabs(c1) + std::fabs(c2))) / std::log(std::fabs(r1)), 0);
ASSERT(std::isfinite(tailFrame));
return tailFrame;
}
if (discrim < 0) {
// Two complex roots.
// One root is -a1/2 + i*sqrt(-discrim)/2.
double x = -a1 / 2;
double y = std::sqrt(-discrim) / 2;
std::complex<double> r1(x, y);
std::complex<double> r2(x, -y);
double r = std::hypot(x, y);
ASSERT(std::isfinite(r));
double tailFrame = 0;
// It's possible for r to be 1. (LPF with Q very large can cause this.)
if (r == 1)
tailFrame = maxFrame;
else {
double c1 = std::abs((b0 * r1 * r1 + b1 * r1 + b2) / (r2 - r1));
double c2 = std::abs((b0 * r2 * r2 + b1 * r2 + b2) / (r2 - r1));
ASSERT(std::isfinite(c1));
ASSERT(std::isfinite(c2));
tailFrame = 1 + std::log(maxTailAmplitude / (c1 + c2)) / std::log(r);
if (!c1 && !c2) {
// If c1 = c2 = 0, then H(z) = b0. Hence, there's no tail
// because this is just a wire from input to output.
tailFrame = 0;
} else {
// Otherwise, check that the tail has finite length. Not
// strictly necessary, but we want to know if this ever
// happens.
ASSERT(std::isfinite(tailFrame));
}
}
return tailFrame;
}
// Repeated roots. This should be pretty rare because all the
// coefficients need to be just the right values to get a
// discriminant of exactly zero.
double r = -a1 / 2;
double tailFrame = 0;
if (!r) {
// Double pole at 0. This just delays the signal by 2 frames,
// so set the tail frame to 2.
tailFrame = 2;
} else {
double c1 = (b0 * r * r + b1 * r + b2) / (r * r);
double c2 = b1 * r + 2 * b2;
ASSERT(std::isfinite(c1));
ASSERT(std::isfinite(c2));
// It can happen that c1=c2=0. This basically means that H(z) =
// constant, which is the limiting case for several of the
// biquad filters.
if (!c1 && !c2)
tailFrame = 0;
else {
// The function c*(n+1)*r^n is not monotonic, but it's easy to
// find the max point since the derivative is
// c*r^n*(1+(n+1)*log(r)). This has a root at
// -(1+log(r))/log(r). so we can start our search from that
// point to maxFrames.
double low = std::clamp(-(1 + std::log(r)) / std::log(r), 1.0, static_cast<double>(maxFrame - 1));
double high = maxFrame;
ASSERT(std::isfinite(low));
ASSERT(std::isfinite(high));
tailFrame = rootFinder(low, high, std::log(maxTailAmplitude), c1, c2, r);
}
}
return tailFrame;
}
} // namespace WebCore
#endif // ENABLE(WEB_AUDIO)