| /* |
| * Copyright (C) 2010 Google Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| * its contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| |
| #if ENABLE(WEB_AUDIO) |
| |
| #include "Biquad.h" |
| |
| #include "AudioUtilities.h" |
| #include "DenormalDisabler.h" |
| #include <algorithm> |
| #include <stdio.h> |
| #include <wtf/MathExtras.h> |
| |
| #if USE(ACCELERATE) |
| // Work around a bug where VForce.h forward declares std::complex in a way that's incompatible with libc++ complex. |
| #define __VFORCE_H |
| #include <Accelerate/Accelerate.h> |
| #endif |
| |
| namespace WebCore { |
| |
| #if USE(ACCELERATE) |
| constexpr int kBufferSize = 1024; |
| #endif |
| |
| Biquad::Biquad() |
| { |
| #if USE(ACCELERATE) |
| // Allocate two samples more for filter history |
| m_inputBuffer.resize(kBufferSize + 2); |
| m_outputBuffer.resize(kBufferSize + 2); |
| #endif |
| |
| // Allocate enough space for the a-rate filter coefficients to handle a |
| // rendering quantum of 128 frames. |
| m_b0.resize(AudioUtilities::renderQuantumSize); |
| m_b1.resize(AudioUtilities::renderQuantumSize); |
| m_b2.resize(AudioUtilities::renderQuantumSize); |
| m_a1.resize(AudioUtilities::renderQuantumSize); |
| m_a2.resize(AudioUtilities::renderQuantumSize); |
| |
| // Initialize as pass-thru (straight-wire, no filter effect) |
| setNormalizedCoefficients(0, 1, 0, 0, 1, 0, 0); |
| |
| reset(); // clear filter memory |
| } |
| |
| Biquad::~Biquad() = default; |
| |
| void Biquad::process(const float* sourceP, float* destP, size_t framesToProcess) |
| { |
| if (hasSampleAccurateValues()) { |
| size_t n = framesToProcess; |
| |
| // Create local copies of member variables |
| double x1 = m_x1; |
| double x2 = m_x2; |
| double y1 = m_y1; |
| double y2 = m_y2; |
| |
| auto* b0 = m_b0.data(); |
| auto* b1 = m_b1.data(); |
| auto* b2 = m_b2.data(); |
| auto* a1 = m_a1.data(); |
| auto* a2 = m_a2.data(); |
| |
| for (size_t k = 0; k < n; ++k) { |
| // FIXME: this can be optimized by pipelining the multiply adds... |
| float x = *sourceP++; |
| float y = b0[k] * x + b1[k] * x1 + b2[k] * x2 - a1[k] * y1 - a2[k] * y2; |
| |
| *destP++ = y; |
| |
| // Update state variables |
| x2 = x1; |
| x1 = x; |
| y2 = y1; |
| y1 = y; |
| } |
| |
| // Local variables back to member. Flush denormals here so we |
| // don't slow down the inner loop above. |
| m_x1 = DenormalDisabler::flushDenormalFloatToZero(x1); |
| m_x2 = DenormalDisabler::flushDenormalFloatToZero(x2); |
| m_y1 = DenormalDisabler::flushDenormalFloatToZero(y1); |
| m_y2 = DenormalDisabler::flushDenormalFloatToZero(y2); |
| |
| // There is an assumption here that once we have sample accurate values we |
| // can never go back to not having sample accurate values. This is |
| // currently true in the way AudioParamTimline is implemented: once an |
| // event is inserted, sample accurate processing is always enabled. |
| // |
| // If so, then we never have to update the state variables for the MACOSX |
| // path. The structure of the state variable in these cases aren't well |
| // documented so it's not clear how to update them anyway. |
| return; |
| } |
| |
| #if USE(ACCELERATE) |
| auto* inputP = m_inputBuffer.data(); |
| auto* outputP = m_outputBuffer.data(); |
| |
| // Set up filter state. This is needed in case we're switching from |
| // filtering with variable coefficients (i.e., with automations) to |
| // fixed coefficients (without automations). |
| inputP[0] = m_x2; |
| inputP[1] = m_x1; |
| outputP[0] = m_y2; |
| outputP[1] = m_y1; |
| |
| // Use vecLib if available |
| processFast(sourceP, destP, framesToProcess); |
| |
| ASSERT(framesToProcess >= 2); |
| |
| // Copy the last inputs and outputs to the filter memory variables. |
| // This is needed because the next rendering quantum might be an |
| // automation which needs the history to continue correctly. Because |
| // sourceP and destP can be the same block of memory, we can't read from |
| // sourceP to get the last inputs. Fortunately, processFast has put the |
| // last inputs in input[0] and input[1]. |
| m_x1 = inputP[1]; |
| m_x2 = inputP[0]; |
| m_y1 = destP[framesToProcess - 1]; |
| m_y2 = destP[framesToProcess - 2]; |
| #else |
| size_t n = framesToProcess; |
| |
| // Create local copies of member variables |
| double x1 = m_x1; |
| double x2 = m_x2; |
| double y1 = m_y1; |
| double y2 = m_y2; |
| |
| double b0 = m_b0[0]; |
| double b1 = m_b1[0]; |
| double b2 = m_b2[0]; |
| double a1 = m_a1[0]; |
| double a2 = m_a2[0]; |
| |
| while (n--) { |
| // FIXME: this can be optimized by pipelining the multiply adds... |
| float x = *sourceP++; |
| float y = b0 * x + b1 * x1 + b2 * x2 - a1 * y1 - a2 * y2; |
| |
| *destP++ = y; |
| |
| // Update state variables |
| x2 = x1; |
| x1 = x; |
| y2 = y1; |
| y1 = y; |
| } |
| |
| // Local variables back to member. Flush denormals here so we |
| // don't slow down the inner loop above. |
| m_x1 = DenormalDisabler::flushDenormalFloatToZero(x1); |
| m_x2 = DenormalDisabler::flushDenormalFloatToZero(x2); |
| m_y1 = DenormalDisabler::flushDenormalFloatToZero(y1); |
| m_y2 = DenormalDisabler::flushDenormalFloatToZero(y2); |
| #endif |
| } |
| |
| #if USE(ACCELERATE) |
| |
| // Here we have optimized version using Accelerate.framework |
| |
| void Biquad::processFast(const float* sourceP, float* destP, size_t framesToProcess) |
| { |
| double filterCoefficients[5]; |
| filterCoefficients[0] = m_b0[0]; |
| filterCoefficients[1] = m_b1[0]; |
| filterCoefficients[2] = m_b2[0]; |
| filterCoefficients[3] = m_a1[0]; |
| filterCoefficients[4] = m_a2[0]; |
| |
| double* inputP = m_inputBuffer.data(); |
| double* outputP = m_outputBuffer.data(); |
| |
| double* input2P = inputP + 2; |
| double* output2P = outputP + 2; |
| |
| // Break up processing into smaller slices (kBufferSize) if necessary. |
| |
| size_t n = framesToProcess; |
| |
| while (n > 0) { |
| int framesThisTime = n < kBufferSize ? n : kBufferSize; |
| |
| // Copy input to input buffer |
| for (int i = 0; i < framesThisTime; ++i) |
| input2P[i] = *sourceP++; |
| |
| processSliceFast(inputP, outputP, filterCoefficients, framesThisTime); |
| |
| // Copy output buffer to output (converts float -> double). |
| for (int i = 0; i < framesThisTime; ++i) |
| *destP++ = static_cast<float>(output2P[i]); |
| |
| n -= framesThisTime; |
| } |
| } |
| |
| void Biquad::processSliceFast(double* sourceP, double* destP, double* coefficientsP, size_t framesToProcess) |
| { |
| // Use double-precision for filter stability |
| vDSP_deq22D(sourceP, 1, coefficientsP, destP, 1, framesToProcess); |
| |
| // Save history. Note that sourceP and destP reference m_inputBuffer and m_outputBuffer respectively. |
| // These buffers are allocated (in the constructor) with space for two extra samples so it's OK to access |
| // array values two beyond framesToProcess. |
| sourceP[0] = sourceP[framesToProcess - 2 + 2]; |
| sourceP[1] = sourceP[framesToProcess - 1 + 2]; |
| destP[0] = destP[framesToProcess - 2 + 2]; |
| destP[1] = destP[framesToProcess - 1 + 2]; |
| } |
| |
| #endif // USE(ACCELERATE) |
| |
| |
| void Biquad::reset() |
| { |
| #if USE(ACCELERATE) |
| // Two extra samples for filter history |
| double* inputP = m_inputBuffer.data(); |
| inputP[0] = 0; |
| inputP[1] = 0; |
| |
| double* outputP = m_outputBuffer.data(); |
| outputP[0] = 0; |
| outputP[1] = 0; |
| #endif |
| |
| m_x1 = m_x2 = m_y1 = m_y2 = 0; |
| |
| } |
| |
| void Biquad::setLowpassParams(size_t index, double cutoff, double resonance) |
| { |
| // Limit cutoff to 0 to 1. |
| cutoff = std::max(0.0, std::min(cutoff, 1.0)); |
| |
| if (cutoff == 1) { |
| // When cutoff is 1, the z-transform is 1. |
| setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0); |
| } else if (cutoff > 0) { |
| // Compute biquad coefficients for lowpass filter |
| resonance = pow(10.0, 0.05 * resonance); |
| |
| double theta = piDouble * cutoff; |
| double alpha = sin(theta) / (2 * resonance); |
| double cosw = cos(theta); |
| double beta = (1 - cosw) / 2; |
| |
| double b0 = beta; |
| double b1 = 2 * beta; |
| double b2 = beta; |
| |
| double a0 = 1 + alpha; |
| double a1 = -2 * cosw; |
| double a2 = 1 - alpha; |
| |
| setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2); |
| } else { |
| // When cutoff is zero, nothing gets through the filter, so set |
| // coefficients up correctly. |
| setNormalizedCoefficients(index, 0, 0, 0, 1, 0, 0); |
| } |
| } |
| |
| void Biquad::setHighpassParams(size_t index, double cutoff, double resonance) |
| { |
| // Limit cutoff to 0 to 1. |
| cutoff = std::max(0.0, std::min(cutoff, 1.0)); |
| |
| if (cutoff == 1) { |
| // The z-transform is 0. |
| setNormalizedCoefficients(index, 0, 0, 0, 1, 0, 0); |
| } else if (cutoff > 0) { |
| // Compute biquad coefficients for highpass filter |
| resonance = pow(10.0, 0.05 * resonance); |
| |
| double theta = piDouble * cutoff; |
| double alpha = sin(theta) / (2 * resonance); |
| double cosw = cos(theta); |
| double beta = (1 + cosw) / 2; |
| |
| double b0 = beta; |
| double b1 = -(2 * beta); |
| double b2 = beta; |
| |
| double a0 = 1 + alpha; |
| double a1 = -2 * cosw; |
| double a2 = 1 - alpha; |
| |
| setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2); |
| } else { |
| // When cutoff is zero, we need to be careful because the above |
| // gives a quadratic divided by the same quadratic, with poles |
| // and zeros on the unit circle in the same place. When cutoff |
| // is zero, the z-transform is 1. |
| setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0); |
| } |
| } |
| |
| void Biquad::setNormalizedCoefficients(size_t index, double b0, double b1, double b2, double a0, double a1, double a2) |
| { |
| double a0Inverse = 1 / a0; |
| |
| m_b0[index] = b0 * a0Inverse; |
| m_b1[index] = b1 * a0Inverse; |
| m_b2[index] = b2 * a0Inverse; |
| m_a1[index] = a1 * a0Inverse; |
| m_a2[index] = a2 * a0Inverse; |
| } |
| |
| void Biquad::setLowShelfParams(size_t index, double frequency, double dbGain) |
| { |
| // Clip frequencies to between 0 and 1, inclusive. |
| frequency = std::max(0.0, std::min(frequency, 1.0)); |
| |
| double A = pow(10.0, dbGain / 40); |
| |
| if (frequency == 1) { |
| // The z-transform is a constant gain. |
| setNormalizedCoefficients(index, A * A, 0, 0, 1, 0, 0); |
| } else if (frequency > 0) { |
| double w0 = piDouble * frequency; |
| double S = 1; // filter slope (1 is max value) |
| double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2); |
| double k = cos(w0); |
| double k2 = 2 * sqrt(A) * alpha; |
| double aPlusOne = A + 1; |
| double aMinusOne = A - 1; |
| |
| double b0 = A * (aPlusOne - aMinusOne * k + k2); |
| double b1 = 2 * A * (aMinusOne - aPlusOne * k); |
| double b2 = A * (aPlusOne - aMinusOne * k - k2); |
| double a0 = aPlusOne + aMinusOne * k + k2; |
| double a1 = -2 * (aMinusOne + aPlusOne * k); |
| double a2 = aPlusOne + aMinusOne * k - k2; |
| |
| setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2); |
| } else { |
| // When frequency is 0, the z-transform is 1. |
| setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0); |
| } |
| } |
| |
| void Biquad::setHighShelfParams(size_t index, double frequency, double dbGain) |
| { |
| // Clip frequencies to between 0 and 1, inclusive. |
| frequency = std::max(0.0, std::min(frequency, 1.0)); |
| |
| double A = pow(10.0, dbGain / 40); |
| |
| if (frequency == 1) { |
| // The z-transform is 1. |
| setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0); |
| } else if (frequency > 0) { |
| double w0 = piDouble * frequency; |
| double S = 1; // filter slope (1 is max value) |
| double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2); |
| double k = cos(w0); |
| double k2 = 2 * sqrt(A) * alpha; |
| double aPlusOne = A + 1; |
| double aMinusOne = A - 1; |
| |
| double b0 = A * (aPlusOne + aMinusOne * k + k2); |
| double b1 = -2 * A * (aMinusOne + aPlusOne * k); |
| double b2 = A * (aPlusOne + aMinusOne * k - k2); |
| double a0 = aPlusOne - aMinusOne * k + k2; |
| double a1 = 2 * (aMinusOne - aPlusOne * k); |
| double a2 = aPlusOne - aMinusOne * k - k2; |
| |
| setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2); |
| } else { |
| // When frequency = 0, the filter is just a gain, A^2. |
| setNormalizedCoefficients(index, A * A, 0, 0, 1, 0, 0); |
| } |
| } |
| |
| void Biquad::setPeakingParams(size_t index, double frequency, double Q, double dbGain) |
| { |
| // Clip frequencies to between 0 and 1, inclusive. |
| frequency = std::max(0.0, std::min(frequency, 1.0)); |
| |
| // Don't let Q go negative, which causes an unstable filter. |
| Q = std::max(0.0, Q); |
| |
| double A = pow(10.0, dbGain / 40); |
| |
| if (frequency > 0 && frequency < 1) { |
| if (Q > 0) { |
| double w0 = piDouble * frequency; |
| double alpha = sin(w0) / (2 * Q); |
| double k = cos(w0); |
| |
| double b0 = 1 + alpha * A; |
| double b1 = -2 * k; |
| double b2 = 1 - alpha * A; |
| double a0 = 1 + alpha / A; |
| double a1 = -2 * k; |
| double a2 = 1 - alpha / A; |
| |
| setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2); |
| } else { |
| // When Q = 0, the above formulas have problems. If we look at |
| // the z-transform, we can see that the limit as Q->0 is A^2, so |
| // set the filter that way. |
| setNormalizedCoefficients(index, A * A, 0, 0, 1, 0, 0); |
| } |
| } else { |
| // When frequency is 0 or 1, the z-transform is 1. |
| setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0); |
| } |
| } |
| |
| void Biquad::setAllpassParams(size_t index, double frequency, double Q) |
| { |
| // Clip frequencies to between 0 and 1, inclusive. |
| frequency = std::max(0.0, std::min(frequency, 1.0)); |
| |
| // Don't let Q go negative, which causes an unstable filter. |
| Q = std::max(0.0, Q); |
| |
| if (frequency > 0 && frequency < 1) { |
| if (Q > 0) { |
| double w0 = piDouble * frequency; |
| double alpha = sin(w0) / (2 * Q); |
| double k = cos(w0); |
| |
| double b0 = 1 - alpha; |
| double b1 = -2 * k; |
| double b2 = 1 + alpha; |
| double a0 = 1 + alpha; |
| double a1 = -2 * k; |
| double a2 = 1 - alpha; |
| |
| setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2); |
| } else { |
| // When Q = 0, the above formulas have problems. If we look at |
| // the z-transform, we can see that the limit as Q->0 is -1, so |
| // set the filter that way. |
| setNormalizedCoefficients(index, -1, 0, 0, 1, 0, 0); |
| } |
| } else { |
| // When frequency is 0 or 1, the z-transform is 1. |
| setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0); |
| } |
| } |
| |
| void Biquad::setNotchParams(size_t index, double frequency, double Q) |
| { |
| // Clip frequencies to between 0 and 1, inclusive. |
| frequency = std::max(0.0, std::min(frequency, 1.0)); |
| |
| // Don't let Q go negative, which causes an unstable filter. |
| Q = std::max(0.0, Q); |
| |
| if (frequency > 0 && frequency < 1) { |
| if (Q > 0) { |
| double w0 = piDouble * frequency; |
| double alpha = sin(w0) / (2 * Q); |
| double k = cos(w0); |
| |
| double b0 = 1; |
| double b1 = -2 * k; |
| double b2 = 1; |
| double a0 = 1 + alpha; |
| double a1 = -2 * k; |
| double a2 = 1 - alpha; |
| |
| setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2); |
| } else { |
| // When Q = 0, the above formulas have problems. If we look at |
| // the z-transform, we can see that the limit as Q->0 is 0, so |
| // set the filter that way. |
| setNormalizedCoefficients(index, 0, 0, 0, 1, 0, 0); |
| } |
| } else { |
| // When frequency is 0 or 1, the z-transform is 1. |
| setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0); |
| } |
| } |
| |
| void Biquad::setBandpassParams(size_t index, double frequency, double Q) |
| { |
| // No negative frequencies allowed. |
| frequency = std::max(0.0, frequency); |
| |
| // Don't let Q go negative, which causes an unstable filter. |
| Q = std::max(0.0, Q); |
| |
| if (frequency > 0 && frequency < 1) { |
| double w0 = piDouble * frequency; |
| if (Q > 0) { |
| double alpha = sin(w0) / (2 * Q); |
| double k = cos(w0); |
| |
| double b0 = alpha; |
| double b1 = 0; |
| double b2 = -alpha; |
| double a0 = 1 + alpha; |
| double a1 = -2 * k; |
| double a2 = 1 - alpha; |
| |
| setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2); |
| } else { |
| // When Q = 0, the above formulas have problems. If we look at |
| // the z-transform, we can see that the limit as Q->0 is 1, so |
| // set the filter that way. |
| setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0); |
| } |
| } else { |
| // When the cutoff is zero, the z-transform approaches 0, if Q |
| // > 0. When both Q and cutoff are zero, the z-transform is |
| // pretty much undefined. What should we do in this case? |
| // For now, just make the filter 0. When the cutoff is 1, the |
| // z-transform also approaches 0. |
| setNormalizedCoefficients(index, 0, 0, 0, 1, 0, 0); |
| } |
| } |
| |
| void Biquad::getFrequencyResponse(unsigned nFrequencies, const float* frequency, float* magResponse, float* phaseResponse) |
| { |
| // Evaluate the Z-transform of the filter at given normalized |
| // frequency from 0 to 1. (1 corresponds to the Nyquist |
| // frequency.) |
| // |
| // The z-transform of the filter is |
| // |
| // H(z) = (b0 + b1*z^(-1) + b2*z^(-2))/(1 + a1*z^(-1) + a2*z^(-2)) |
| // |
| // Evaluate as |
| // |
| // b0 + (b1 + b2*z1)*z1 |
| // -------------------- |
| // 1 + (a1 + a2*z1)*z1 |
| // |
| // with z1 = 1/z and z = exp(j*pi*frequency). Hence z1 = exp(-j*pi*frequency) |
| |
| // Make local copies of the coefficients as a micro-optimization. |
| double b0 = m_b0[0]; |
| double b1 = m_b1[0]; |
| double b2 = m_b2[0]; |
| double a1 = m_a1[0]; |
| double a2 = m_a2[0]; |
| |
| for (unsigned k = 0; k < nFrequencies; ++k) { |
| if (frequency[k] < 0 || frequency[k] > 1) { |
| // Out-of-bounds frequencies should return NaN. |
| magResponse[k] = std::nanf(""); |
| phaseResponse[k] = std::nanf(""); |
| } else { |
| double omega = -piDouble * frequency[k]; |
| std::complex<double> z = std::complex<double>(cos(omega), sin(omega)); |
| std::complex<double> numerator = b0 + (b1 + b2 * z) * z; |
| std::complex<double> denominator = std::complex<double>(1, 0) + (a1 + a2 * z) * z; |
| std::complex<double> response = numerator / denominator; |
| magResponse[k] = static_cast<float>(abs(response)); |
| phaseResponse[k] = static_cast<float>(atan2(imag(response), real(response))); |
| } |
| } |
| } |
| |
| static double repeatedRootResponse(double n, double c1, double c2, double r, double logEPS) |
| { |
| // The response is h(n) = r^(n-2)*[c1*(n+1)*r^2+c2]. We're looking |
| // for n such that |h(n)| = eps. Equivalently, we want a root |
| // of the equation log(|h(n)|) - log(eps) = 0 or |
| // |
| // (n-2)*log(r) + log(|c1*(n+1)*r^2+c2|) - log(eps) |
| // |
| // This helps with finding a nuemrical solution because this |
| // approximately linearizes the response for large n. |
| |
| return (n - 2) * std::log(r) + std::log(std::fabs(c1 * (n + 1) * r * r + c2)) - logEPS; |
| } |
| |
| |
| // Regula Falsi root finder, Illinois variant |
| // (https://en.wikipedia.org/wiki/False_position_method#The_Illinois_algorithm). |
| // |
| // This finds a root of the repeated root response where the root is |
| // assumed to lie between |low| and |high|. The response is given by |
| // |c1|, |c2|, and |r| as determined by |RepeatedRootResponse|. |
| // |logEPS| is the log the the maximum allowed amplitude in the |
| // response. |
| static double rootFinder(double low, double high, double logEPS, double c1, double c2, double r) |
| { |
| // Desired accuray of the root (in frames). This doesn't need to be |
| // super-accurate, so half frame is good enough, and should be less |
| // than 1 because the algorithm may prematurely terminate. |
| constexpr double accuracyThreshold = 0.5; |
| // Max number of iterations to do. If we haven't converged by now, |
| // just return whatever we've found. |
| constexpr int maxIterations = 10; |
| |
| int side = 0; |
| double root = 0; |
| double fLow = repeatedRootResponse(low, c1, c2, r, logEPS); |
| double fHigh = repeatedRootResponse(high, c1, c2, r, logEPS); |
| |
| // The function values must be finite and have opposite signs! |
| ASSERT(std::isfinite(fLow)); |
| ASSERT(std::isfinite(fHigh)); |
| ASSERT(fLow * fHigh <= 0); |
| |
| int iteration; |
| for (iteration = 0; iteration < maxIterations; ++iteration) { |
| root = (fLow * high - fHigh * low) / (fLow - fHigh); |
| if (fabs(high - low) < accuracyThreshold * std::fabs(high + low)) |
| break; |
| double fr = repeatedRootResponse(root, c1, c2, r, logEPS); |
| |
| ASSERT(std::isfinite(fr)); |
| |
| if (fr * fHigh > 0) { |
| // fr and fHigh have same sign. Copy root to fHigh |
| high = root; |
| fHigh = fr; |
| side = -1; |
| } else if (fLow * fr > 0) { |
| // fr and fLow have same sign. Copy root to fLow |
| low = root; |
| fLow = fr; |
| if (side == 1) |
| fHigh /= 2; |
| side = 1; |
| } else { |
| // fLow * fr looks like zero, so assume we've converged. |
| break; |
| } |
| } |
| |
| // Want to know if the max number of iterations is ever exceeded so |
| // we can understand why that happened. |
| ASSERT(iteration < maxIterations); |
| |
| return root; |
| } |
| |
| double Biquad::tailFrame(size_t coefIndex, double maxFrame) |
| { |
| // The Biquad filter is given by |
| // |
| // H(z) = (b0 + b1/z + b2/z^2)/(1 + a1/z + a2/z^2). |
| // |
| // To compute the tail time, compute the impulse response, h(n), of |
| // H(z), which we can do analytically. From this impulse response, |
| // find the value n0 where |h(n)| <= eps for n >= n0. |
| // |
| // Assume first that the two poles of H(z) are not repeated, say r1 |
| // and r2. Then, we can compute a partial fraction expansion of |
| // H(z): |
| // |
| // H(z) = (b0+b1/z+b2/z^2)/[(1-r1/z)*(1-r2/z)] |
| // = b0 + C2/(z-r2) - C1/(z-r1) |
| // |
| // where |
| // C2 = (b0*r2^2+b1*r2+b2)/(r2-r1) |
| // C1 = (b0*r1^2+b1*r1+b2)/(r2-r1) |
| // |
| // Expand H(z) then this in powers of 1/z gives: |
| // |
| // H(z) = b0 -(C2/r2+C1/r1) + sum(C2*r2^(i-1)/z^i + C1*r1^(i-1)/z^i) |
| // |
| // Thus, for n > 1 (we don't care about small n), |
| // |
| // h(n) = C2*r2^(n-1) + C1*r1^(n-1) |
| // |
| // We need to find n0 such that |h(n)| < eps for n > n0. |
| // |
| // Case 1: r1 and r2 are real and distinct, with |r1|>=|r2|. |
| // |
| // Then |
| // |
| // h(n) = C1*r1^(n-1)*(1 + C2/C1*(r2/r1)^(n-1)) |
| // |
| // so |
| // |
| // |h(n)| = |C1|*|r1|^(n-1)*|1+C2/C1*(r2/r1)^(n-1)| |
| // <= |C1|*|r1|^(n-1)*[1 + |C2/C1|*|r2/r1|^(n-1)] |
| // <= |C1|*|r1|^(n-1)*[1 + |C2/C1|] |
| // |
| // so |
| // |
| // |h(n)| = |C1|*|r1|^(n-1)*|1+C2/C1*(r2/r1)^(n-1)| |
| // <= |C1|*|r1|^(n-1)*[1 + |C2/C1|*|r2/r1|^(n-1)] |
| // <= |C1|*|r1|^(n-1)*[1 + |C2/C1|] |
| // |
| // by using the triangle inequality and the fact that |r2|<=|r1|. |
| // And we want |h(n)|<=eps which is true if |
| // |
| // |C1|*|r1|^(n-1)*[1 + |C2/C1|] <= eps |
| // |
| // or |
| // |
| // n >= 1 + log(eps/C)/log(|r1|) |
| // |
| // where C = |C1|*[1+|C2/C1|] = |C1| + |C2|. |
| // |
| // Case 2: r1 and r2 are complex |
| // |
| // Thne we can write r1=r*exp(i*p) and r2=r*exp(-i*p). So, |
| // |
| // |h(n)| = |C2*r^(n-1)*exp(-i*p*(n-1)) + C1*r^(n-1)*exp(i*p*(n-1))| |
| // = |C1|*r^(n-1)*|1 + C2/C1*exp(-i*p*(n-1))/exp(i*n*(n-1))| |
| // <= |C1|*r^(n-1)*[1 + |C2/C1|] |
| // |
| // Again, this is easily solved to give |
| // |
| // n >= 1 + log(eps/C)/log(r) |
| // |
| // where C = |C1|*[1+|C2/C1|] = |C1| + |C2|. |
| // |
| // Case 3: Repeated roots, r1=r2=r. |
| // |
| // In this case, |
| // |
| // H(z) = (b0+b1/z+b2/z^2)/[(1-r/z)^2 |
| // |
| // Expanding this in powers of 1/z gives: |
| // |
| // H(z) = C1*sum((i+1)*r^i/z^i) - C2 * sum(r^(i-2)/z^i) + b2/r^2 |
| // = b2/r^2 + sum([C1*(i+1)*r^i + C2*r^(i-2)]/z^i) |
| // where |
| // C1 = (b0*r^2+b1*r+b2)/r^2 |
| // C2 = b1*r+2*b2 |
| // |
| // Thus, the impulse response is |
| // |
| // h(n) = C1*(n+1)*r^n + C2*r^(n-2) |
| // = r^(n-2)*[C1*(n+1)*r^2+C2] |
| // |
| // So |
| // |
| // |h(n)| = |r|^(n-2)*|C1*(n+1)*r^2+C2| |
| // |
| // To find n such that |h(n)| < eps, we need a numerical method in |
| // general, so there's no real reason to simplify this or use other |
| // approximations. Just solve |h(n)|=eps directly. |
| // |
| // Thus, for an set of filter coefficients, we can compute the tail |
| // time. |
| // |
| |
| // If the maximum amplitude of the impulse response is less than |
| // this, we assume that we've reached the tail of the response. |
| // Currently, this means that the impulse is less than 1 bit of a |
| // 16-bit PCM value. |
| constexpr double maxTailAmplitude = 1 / 32768.0; |
| |
| // Find the roots of 1+a1/z+a2/z^2 = 0. Or equivalently, |
| // z^2+a1*z+a2 = 0. From the quadratic formula the roots are |
| // (-a1+/-sqrt(a1^2-4*a2))/2. |
| |
| double a1 = m_a1[coefIndex]; |
| double a2 = m_a2[coefIndex]; |
| double b0 = m_b0[coefIndex]; |
| double b1 = m_b1[coefIndex]; |
| double b2 = m_b2[coefIndex]; |
| |
| double discrim = a1 * a1 - 4 * a2; |
| if (discrim > 0) { |
| // Compute the real roots so that r1 has the largest magnitude. |
| double rplus = (-a1 + std::sqrt(discrim)) / 2; |
| double rminus = (-a1 - std::sqrt(discrim)) / 2; |
| double r1 = std::fabs(rplus) >= std::fabs(rminus) ? rplus : rminus; |
| // Use the fact that a2 = r1*r2 |
| double r2 = a2 / r1; |
| |
| double c1 = (b0 * r1 * r1 + b1 * r1 + b2) / (r2 - r1); |
| double c2 = (b0 * r2 * r2 + b1 * r2 + b2) / (r2 - r1); |
| |
| ASSERT(std::isfinite(r1)); |
| ASSERT(std::isfinite(r2)); |
| ASSERT(std::isfinite(c1)); |
| ASSERT(std::isfinite(c2)); |
| |
| // It's possible for maxTailAmplitude to be greater than c1 + c2. |
| // This may produce a negative tail frame. Just clamp the tail |
| // frame to 0. |
| double tailFrame = clampTo(1 + std::log(maxTailAmplitude / (std::fabs(c1) + std::fabs(c2))) / std::log(std::fabs(r1)), 0); |
| |
| ASSERT(std::isfinite(tailFrame)); |
| return tailFrame; |
| } |
| |
| if (discrim < 0) { |
| // Two complex roots. |
| // One root is -a1/2 + i*sqrt(-discrim)/2. |
| double x = -a1 / 2; |
| double y = std::sqrt(-discrim) / 2; |
| std::complex<double> r1(x, y); |
| std::complex<double> r2(x, -y); |
| double r = std::hypot(x, y); |
| |
| ASSERT(std::isfinite(r)); |
| |
| double tailFrame = 0; |
| // It's possible for r to be 1. (LPF with Q very large can cause this.) |
| if (r == 1) |
| tailFrame = maxFrame; |
| else { |
| double c1 = std::abs((b0 * r1 * r1 + b1 * r1 + b2) / (r2 - r1)); |
| double c2 = std::abs((b0 * r2 * r2 + b1 * r2 + b2) / (r2 - r1)); |
| |
| ASSERT(std::isfinite(c1)); |
| ASSERT(std::isfinite(c2)); |
| tailFrame = 1 + std::log(maxTailAmplitude / (c1 + c2)) / std::log(r); |
| if (!c1 && !c2) { |
| // If c1 = c2 = 0, then H(z) = b0. Hence, there's no tail |
| // because this is just a wire from input to output. |
| tailFrame = 0; |
| } else { |
| // Otherwise, check that the tail has finite length. Not |
| // strictly necessary, but we want to know if this ever |
| // happens. |
| ASSERT(std::isfinite(tailFrame)); |
| } |
| } |
| return tailFrame; |
| } |
| |
| // Repeated roots. This should be pretty rare because all the |
| // coefficients need to be just the right values to get a |
| // discriminant of exactly zero. |
| double r = -a1 / 2; |
| |
| double tailFrame = 0; |
| if (!r) { |
| // Double pole at 0. This just delays the signal by 2 frames, |
| // so set the tail frame to 2. |
| tailFrame = 2; |
| } else { |
| double c1 = (b0 * r * r + b1 * r + b2) / (r * r); |
| double c2 = b1 * r + 2 * b2; |
| |
| ASSERT(std::isfinite(c1)); |
| ASSERT(std::isfinite(c2)); |
| |
| // It can happen that c1=c2=0. This basically means that H(z) = |
| // constant, which is the limiting case for several of the |
| // biquad filters. |
| if (!c1 && !c2) |
| tailFrame = 0; |
| else { |
| // The function c*(n+1)*r^n is not monotonic, but it's easy to |
| // find the max point since the derivative is |
| // c*r^n*(1+(n+1)*log(r)). This has a root at |
| // -(1+log(r))/log(r). so we can start our search from that |
| // point to maxFrames. |
| |
| double low = std::clamp(-(1 + std::log(r)) / std::log(r), 1.0, static_cast<double>(maxFrame - 1)); |
| double high = maxFrame; |
| |
| ASSERT(std::isfinite(low)); |
| ASSERT(std::isfinite(high)); |
| |
| tailFrame = rootFinder(low, high, std::log(maxTailAmplitude), c1, c2, r); |
| } |
| } |
| |
| return tailFrame; |
| } |
| |
| } // namespace WebCore |
| |
| #endif // ENABLE(WEB_AUDIO) |