blob: ce8bf7edecdbd04701faa2c12e80101cc15b7a1b [file] [log] [blame]
<!DOCTYPE html>
<html lang="en">
<head>
<title>WebKit MathML Demos (2016)</title>
<meta charset="utf-8"/>
<link rel="stylesheet" type="text/css" href="webfonts.css"/>
<style type="text/css">
p {
text-align: center;
margin: 1em;
}
</style>
</head>
<body>
<h1>WebKit MathML Demos (2016)</h1>
<h2 id="math_fonts">Mathematical Fonts</h2>
<p><math><semantics><mstyle displaystyle="true"><mi>γ</mi><mo>=</mo><mrow><munder><mo lspace="0em" rspace="0em">lim</mo><mrow><mi>n</mi><mo stretchy="false"></mo><mn></mn></mrow></munder><mrow><mo>(</mo><mrow><mo></mo><mo lspace="0em" rspace="thinmathspace">ln</mo><mi>n</mi><mo>+</mo><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfrac><mn>1</mn><mi>k</mi></mfrac></mrow><mo>)</mo></mrow></mrow><mo>=</mo><mrow><msubsup><mo></mo><mn>1</mn><mn></mn></msubsup><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><mo stretchy="false"></mo><mi>x</mi><mo stretchy="false"></mo></mrow></mfrac><mo></mo><mfrac><mn>1</mn><mi>x</mi></mfrac></mrow><mo>)</mo></mrow><mspace width="thinmathspace"/><mi>d</mi><mi>x</mi></mrow><mo></mo><mn>0.5772156649</mn></mstyle><annotation encoding="TeX">{\displaystyle \gamma = {\lim_{n\to \infty }\left(-\operatorname{ln} n+\sum _{k=1}^{n}{\frac {1}{k}}\right)} = {\int _{1}^{\infty }\left({\frac {1}{\lfloor x\rfloor }}-{\frac {1}{x}}\right)\,dx} \approx 0.5772156649}</annotation></semantics></math></p>
<p><math class="libertinus"><semantics><mstyle displaystyle="true"><mi>γ</mi><mo>=</mo><mrow><munder><mo lspace="0em" rspace="0em">lim</mo><mrow><mi>n</mi><mo stretchy="false"></mo><mn></mn></mrow></munder><mrow><mo>(</mo><mrow><mo></mo><mo lspace="0em" rspace="thinmathspace">ln</mo><mi>n</mi><mo>+</mo><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfrac><mn>1</mn><mi>k</mi></mfrac></mrow><mo>)</mo></mrow></mrow><mo>=</mo><mrow><msubsup><mo></mo><mn>1</mn><mn></mn></msubsup><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><mo stretchy="false"></mo><mi>x</mi><mo stretchy="false"></mo></mrow></mfrac><mo></mo><mfrac><mn>1</mn><mi>x</mi></mfrac></mrow><mo>)</mo></mrow><mspace width="thinmathspace"/><mi>d</mi><mi>x</mi></mrow><mo></mo><mn>0.5772156649</mn></mstyle><annotation encoding="TeX">{\displaystyle \gamma = {\lim_{n\to \infty }\left(-\operatorname{ln} n+\sum _{k=1}^{n}{\frac {1}{k}}\right)} = {\int _{1}^{\infty }\left({\frac {1}{\lfloor x\rfloor }}-{\frac {1}{x}}\right)\,dx} \approx 0.5772156649}</annotation></semantics></math></p>
<p><math style="font-family: STIXGeneral, STIXSizeOneSym, sans-serif"><semantics><mstyle displaystyle="true"><mi>γ</mi><mo>=</mo><mrow><munder><mo lspace="0em" rspace="0em">lim</mo><mrow><mi>n</mi><mo stretchy="false"></mo><mn></mn></mrow></munder><mrow><mo>(</mo><mrow><mo></mo><mo lspace="0em" rspace="thinmathspace">ln</mo><mi>n</mi><mo>+</mo><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfrac><mn>1</mn><mi>k</mi></mfrac></mrow><mo>)</mo></mrow></mrow><mo>=</mo><mrow><msubsup><mo></mo><mn>1</mn><mn></mn></msubsup><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><mo stretchy="false"></mo><mi>x</mi><mo stretchy="false"></mo></mrow></mfrac><mo></mo><mfrac><mn>1</mn><mi>x</mi></mfrac></mrow><mo>)</mo></mrow><mspace width="thinmathspace"/><mi>d</mi><mi>x</mi></mrow><mo></mo><mn>0.5772156649</mn></mstyle><annotation encoding="TeX">{\displaystyle \gamma = {\lim_{n\to \infty }\left(-\operatorname{ln} n+\sum _{k=1}^{n}{\frac {1}{k}}\right)} = {\int _{1}^{\infty }\left({\frac {1}{\lfloor x\rfloor }}-{\frac {1}{x}}\right)\,dx} \approx 0.5772156649}</annotation></semantics></math></p>
<h2 id="hyperlinks">Hyperlinks</h2>
<p><math display="block"><semantics><mrow href="https://en.wikipedia.org/wiki/Pythagorean_theorem"><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><msup><mi>c</mi><mn>2</mn></msup></mrow></mrow><annotation encoding="TeX">\href{https://en.wikipedia.org/wiki/Pythagorean_theorem}{a^2 + b^2 = c^2}</annotation></semantics></math></p>
<p><math display="block"><semantics><mrow><mrow href="https://en.wikipedia.org/wiki/Legendre_symbol#Definition"><mrow><mo>(</mo><mfrac><mi>q</mi><mi>p</mi></mfrac><mo>)</mo></mrow></mrow><mrow><mo>(</mo><mfrac><mi>p</mi><mi>q</mi></mfrac><mo>)</mo></mrow><mo>=</mo><msup><mrow><mo stretchy="false">(</mo><mo></mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mrow><mfrac><mrow><mi>p</mi><mo></mo><mn>1</mn></mrow><mn>2</mn></mfrac><mfrac><mrow><mi>q</mi><mo></mo><mn>1</mn></mrow><mn>2</mn></mfrac></mrow></msup></mrow><annotation encoding="TeX">\href{https://en.wikipedia.org/wiki/Legendre_symbol#Definition}{\left({\frac{q}{p}}\right)} \left({\frac {p}{q}}\right) = {(-1)}^{{\frac{p-1}{2}}{\frac{q-1}{2}}}</annotation></semantics></math></p>
<p><math display="block"><semantics><mrow><mrow href="https://en.wikipedia.org/wiki/Determinant"><mo lspace="0em" rspace="0em">det</mo></mrow><mo stretchy="false">(</mo><mrow href="https://en.wikipedia.org/wiki/Matrix_exponential"><mrow><mo lspace="0em" rspace="0em">exp</mo><mi>A</mi></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="0em">exp</mo><mrow><mo stretchy="false">(</mo><mrow href="https://en.wikipedia.org/wiki/Trace_(linear_algebr"><mrow><mstyle mathvariant="normal"><mrow><mi>T</mi><mi>r</mi></mrow></mstyle><mrow><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow></mrow></mrow><mo stretchy="false">)</mo></mrow></mrow><annotation encoding="TeX">\href{https://en.wikipedia.org/wiki/Determinant}{\det}(\href{https://en.wikipedia.org/wiki/Matrix_exponential}{\exp{A}}) = \exp{(\href{https://en.wikipedia.org/wiki/Trace_(linear_algebr}{\mathrm{Tr}{(A)}})}</annotation></semantics></math></p>
<h2 id="mathvariants">Mathvariants</h2>
<p><math display="block"><semantics><mrow><mi>f</mi><mo>:</mo><mstyle mathvariant="fraktur"><mi>g</mi></mstyle><mo stretchy="false"></mo><mstyle mathvariant="fraktur"><msup><mi>g</mi><mo></mo></msup></mstyle><mo>,</mo><mspace width="1em"/><mi>f</mi><mo stretchy="false">(</mo><mo stretchy="false">[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">]</mo><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">[</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>,</mo><mi>f</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow><annotation encoding="TeX">f:{\mathfrak {g}}\to {\mathfrak {g'}},\quad f([x,y])=[f(x),f(y)]</annotation></semantics></math></p>
<p><math display="block"><semantics><mrow><msub><mstyle mathvariant="normal"><mrow><mi>S</mi><mi>L</mi></mrow></mstyle><mi>n</mi></msub><mo stretchy="false">(</mo><mstyle mathvariant="double-struck"><mi>R</mi></mstyle><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mi>A</mi><mo></mo><msub><mstyle mathvariant="script"><mi>M</mi></mstyle><mi>n</mi></msub><mo stretchy="false">(</mo><mstyle mathvariant="double-struck"><mi>R</mi></mstyle><mo stretchy="false">)</mo><mo>:</mo><mo lspace="0em" rspace="0em">det</mo><mi>A</mi><mo>=</mo><mn>1</mn></mrow><mo>}</mo></mrow></mrow><annotation encoding="TeX">{\mathrm{SL}}_n(\mathbb{R}) = \left\{ A \in \mathscr{M}_n(\mathbb{R}) : \det{A} = 1 \right\}</annotation></semantics></math></p>
<p><math display="block"><semantics><mrow><mstyle mathvariant="double-struck"><mi>Z</mi></mstyle><mo>/</mo><mi>N</mi><mstyle mathvariant="double-struck"><mi>Z</mi></mstyle><mo></mo><mstyle mathvariant="double-struck"><mi>Z</mi></mstyle><mo>/</mo><msub><mi>n</mi><mn>1</mn></msub><mstyle mathvariant="double-struck"><mi>Z</mi></mstyle><mo>×</mo><mo></mo><mo>×</mo><mstyle mathvariant="double-struck"><mi>Z</mi></mstyle><mo>/</mo><msub><mi>n</mi><mi>k</mi></msub><mstyle mathvariant="double-struck"><mi>Z</mi></mstyle></mrow><annotation encoding="TeX">{\mathbb {Z}}/N{\mathbb {Z}}\cong {\mathbb {Z}}/n_{1}{\mathbb {Z}}\times \cdots \times {\mathbb {Z}}/n_{k}{\mathbb {Z}}</annotation></semantics></math></p>
<h2 id="operators">Operators</h2>
<p><math display="block"><semantics><mrow><msup><mrow><mo>(</mo><mroot><mn>2</mn><mn>3</mn></mroot><mo>)</mo></mrow><mi>N</mi></msup><mo>=</mo><munder><munder><mrow><mroot><mn>2</mn><mn>3</mn></mroot><mo>×</mo><mroot><mn>2</mn><mn>3</mn></mroot><mo>×</mo><mroot><mn>2</mn><mn>3</mn></mroot><mo>×</mo><mo></mo><mo>×</mo><mroot><mn>2</mn><mn>3</mn></mroot></mrow><mo></mo></munder><mrow><mi>N</mi><mspace width="thinmathspace"/><mtext>times</mtext></mrow></munder><mo>=</mo><msup><mn>2</mn><mrow><mi>N</mi><mo>/</mo><mn>3</mn></mrow></msup></mrow><annotation encoding="TeX">\left(\sqrt[3]{2}\right)^N = \underset{N\,\text{times}}{\underbrace{\sqrt[3]{2} \times \sqrt[3]{2} \times \sqrt[3]{2} \times \dots \times \sqrt[3]{2}}} = 2^{N/3}</annotation></semantics></math></p>
<p><math display="block"><semantics><mrow><mrow><mi>Γ</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><munder><mo lspace="0em" rspace="0em">lim</mo><mrow><mi>n</mi><mo stretchy="false"></mo><mn></mn></mrow></munder><mspace width="thinmathspace"/><mfrac><mrow><mi>n</mi><mo>!</mo><mspace width="thickmathspace"/><msup><mi>n</mi><mi>t</mi></msup></mrow><mrow><mi>t</mi><mspace width="thickmathspace"/><mo stretchy="false">(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mo></mo><mo stretchy="false">(</mo><mi>t</mi><mo>+</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mi>t</mi></mfrac><munderover><mo></mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mn></mn></munderover><mfrac><msup><mrow><mo>(</mo><mrow><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>n</mi></mfrac></mrow><mo>)</mo></mrow><mi>t</mi></msup><mrow><mn>1</mn><mo>+</mo><mfrac><mi>t</mi><mi>n</mi></mfrac></mrow></mfrac><mo>=</mo><mfrac><msup><mi>e</mi><mrow><mo></mo><mi>γ</mi><mi>t</mi></mrow></msup><mi>t</mi></mfrac><munderover><mo></mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mn></mn></munderover><msup><mrow><mo>(</mo><mrow><mn>1</mn><mo>+</mo><mfrac><mi>t</mi><mi>n</mi></mfrac></mrow><mo>)</mo></mrow><mrow><mo></mo><mn>1</mn></mrow></msup><msup><mi>e</mi><mfrac><mi>t</mi><mi>n</mi></mfrac></msup></mrow><annotation encoding="TeX">{\Gamma(t)} = \lim_{n \to \infty}\, \frac{n! \; n^t}{t \; (t+1)\cdots(t+n)}= \frac{1}{t} \prod_{n=1}^\infty \frac{\left(1+\frac{1}{n}\right)^t}{1+\frac{t}{n}} = \frac{e^{-\gamma t}}{t} \prod_{n=1}^\infty \left(1 + \frac{t}{n}\right)^{-1} e^{\frac{t}{n}}</annotation></semantics></math></p>
<h2 id="displaystyle">Displaystyle</h2>
<p><math><semantics><mrow><mrow><mrow><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>+</mo><mn></mn></mrow></munderover><mfrac><mn>9</mn><msup><mi>k</mi><mn>4</mn></msup></mfrac></mrow><mo>=</mo><mfrac><msup><mi>π</mi><mn>4</mn></msup><mn>10</mn></mfrac></mrow><mo>=</mo><mstyle displaystyle="true"><mfrac><msup><mi>π</mi><mn>4</mn></msup><mn>10</mn></mfrac><mo>=</mo><mrow><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>+</mo><mn></mn></mrow></munderover><mfrac><mn>9</mn><msup><mi>k</mi><mn>4</mn></msup></mfrac></mrow></mstyle></mrow><annotation encoding="TeX">{{\sum_{k=1}^{+\infty} \frac{9}{k^4}} = \frac{\pi^4}{10}} = {\displaystyle \frac{\pi^4}{10} = {\sum_{k=1}^{+\infty} \frac{9}{k^4}}}</annotation></semantics></math></p>
<p><math display="block"><semantics><mstyle displaystyle="true"><mstyle mathvariant="bold"><mi>B</mi></mstyle><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><munderover><mo></mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mi>n</mi></munderover><msub><mi>b</mi><mrow><mi>i</mi><mo>,</mo><mi>n</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><msub><mstyle mathvariant="bold"><mi>P</mi></mstyle><mi>i</mi></msub><msub><mi>w</mi><mi>i</mi></msub></mrow><mrow><munderover><mo></mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mi>n</mi></munderover><msub><mi>b</mi><mrow><mi>i</mi><mo>,</mo><mi>n</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><msub><mi>w</mi><mi>i</mi></msub></mrow></mfrac></mstyle><annotation encoding="TeX">{\displaystyle \mathbf {B} (t)={\frac {\sum _{i=0}^{n}b_{i,n}(t)\mathbf {P} _{i}w_{i}}{\sum _{i=0}^{n}b_{i,n}(t)w_{i}}}}</annotation></semantics></math></p>
<p><math display="block"><semantics><mrow><msup><mrow><mo>(</mo><mrow><munderover><mo></mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msup><mi>A</mi><mi>i</mi></msup></mrow><mo>)</mo></mrow><mn>2</mn></msup><mo>=</mo><msup><mrow><mo>(</mo><msup><mi>A</mi><mrow><munderover><mo></mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mi>i</mi></mrow></msup><mo>)</mo></mrow><mn>2</mn></msup><mo>=</mo><msup><mi>A</mi><mrow><mi>n</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo></mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup></mrow><annotation encoding="TeX">\left(\prod_{i=1}^n A^i\right)^2 = \left(A^{\sum_{i=1}^n i}\right)^2 = A^{n{(n-1)}}</annotation></semantics></math></p>
<h2 id="open_type_math_parameters">OpenType MATH Parameters</h2>
<p><math display="block"><semantics><mstyle displaystyle="true"><mi>π</mi><mo>=</mo><mstyle displaystyle="true"><mfrac><mn>4</mn><mrow><mn>1</mn><mo>+</mo><mstyle displaystyle="true"><mfrac><msup><mn>1</mn><mn>2</mn></msup><mrow><mn>2</mn><mo>+</mo><mstyle displaystyle="true"><mfrac><msup><mn>3</mn><mn>2</mn></msup><mrow><mn>2</mn><mo>+</mo><mstyle displaystyle="true"><mfrac><msup><mn>5</mn><mn>2</mn></msup><mrow><mn>2</mn><mo>+</mo><mo></mo></mrow></mfrac></mstyle></mrow></mfrac></mstyle></mrow></mfrac></mstyle></mrow></mfrac></mstyle><mo>=</mo><munderover><mo></mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mn></mn></munderover><mfrac><mrow><mn>4</mn><mo stretchy="false">(</mo><mo></mo><mn>1</mn><msup><mo stretchy="false">)</mo><mi>n</mi></msup></mrow><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mn>4</mn><mn>1</mn></mfrac><mo></mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mo>+</mo><mfrac><mn>4</mn><mn>5</mn></mfrac><mo></mo><mfrac><mn>4</mn><mn>7</mn></mfrac><mo>+</mo><mo></mo><mo></mo></mstyle><annotation encoding="TeX">{\displaystyle \pi ={\displaystyle \frac{4}{1+{\displaystyle \frac {1^{2}}{2+{\displaystyle \frac {3^{2}}{2+{\displaystyle \frac {5^{2}}{2+\ddots }}}}}}}}=\sum _{n=0}^{\infty }{\frac {4(-1)^{n}}{2n+1}}={\frac {4}{1}}-{\frac {4}{3}}+{\frac {4}{5}}-{\frac {4}{7}}+-\cdots }</annotation></semantics></math></p>
<p><math display="block"><semantics><mrow><msub><mstyle mathvariant="normal"><mi>Φ</mi></mstyle><mi>E</mi></msub><mo>=</mo><mrow><msub><mo></mo><mi>S</mi></msub><mstyle mathvariant="bold"><mi>E</mi></mstyle><mo></mo><mstyle mathvariant="normal"><mi>d</mi></mstyle><mstyle mathvariant="bold"><mi>A</mi></mstyle></mrow><mo>=</mo><mfrac><mi>Q</mi><msub><mi>ϵ</mi><mn>0</mn></msub></mfrac></mrow><annotation encoding="TeX">{\mathrm \Phi}_E = {\oiint_S \mathbf {E} \cdot \mathrm{d} \mathbf{A}} = \frac{Q}{\epsilon_0}</annotation></semantics></math></p>
<h2 id="arabic_mathematics">Arabic Mathematics</h2>
<p dir="rtl">
<math class="arabic" dir="rtl" display="block">
<mmultiscripts>
<mo>ل</mo>
<mi>&#x1EE1F;</mi>
<none></none>
<mprescripts></mprescripts>
<none></none>
<mi>&#x1EE1D;</mi>
</mmultiscripts>
<mo>=</mo>
<mrow>
<mfrac>
<mi>&#x1EE1D;</mi>
<mi>&#x1EE1F;</mi>
</mfrac>
<mmultiscripts>
<mo>ل</mo>
<mrow>
<mi>&#x1EE1F;</mi>
<mo></mo>
<mn>١</mn>
</mrow>
<none></none>
<mprescripts></mprescripts>
<none></none>
<mrow>
<mi>&#x1EE1D;</mi>
<mo></mo>
<mn>١</mn>
</mrow>
</mmultiscripts>
</mrow>
</math>
</p>
<p dir="rtl"><math class="arabic" dir="rtl" display="block"><semantics><mrow><mi>س</mi><mo>=</mo><mfrac><mrow><mo></mo><mi>ب</mi><mo>±</mo><msqrt><mrow><msup><mi>ب</mi><mn>٢</mn></msup><mo></mo><mn>٤</mn><mi>ا</mi><mi>ج</mi></mrow></msqrt></mrow><mrow><mn>٢</mn><mi>ا</mi></mrow></mfrac></mrow><annotation encoding="TeX">س = \frac{-ب\pm\sqrt{ب^٢-٤اج}}{٢ا}</annotation></semantics></math></p>
</body>
</html>