blob: 9e60dab2fbae3eb0c91979fe8e4234f4f76fb46f [file] [log] [blame]
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: Int128Impl.h
// -----------------------------------------------------------------------------
//
// This header file defines 128-bit integer types, `uint128` and `Int128Impl`.
//
// TODO(absl-team): This module is inconsistent as many inline `uint128` methods
// are defined in this file, while many inline `Int128Impl` methods are defined in
// the `int128_*_intrinsic.inc` files.
//
// Int128.h and Int128.cpp are derived from abseil-cpp (https://github.com/abseil/abseil-cpp)
// Imported revision is ddb842f583e560bbde497bc96cfebe25f9089e11.
// We apply the following changes.
// 1. Use WTF macros instead of ABSL macros.
// 2. Remove abseil HashTable handling
// 3. Remove __int128_t handling
#pragma once
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <iosfwd>
#include <limits>
#include <utility>
#include <wtf/Platform.h>
#if COMPILER(MSVC)
// In very old versions of MSVC and when the /Zc:wchar_t flag is off, wchar_t is
// a typedef for unsigned short. Otherwise wchar_t is mapped to the __wchar_t
// builtin type. We need to make sure not to define operator wchar_t()
// alongside operator unsigned short() in these instances.
#define ABSL_INTERNAL_WCHAR_T __wchar_t
#else
#define ABSL_INTERNAL_WCHAR_T wchar_t
#endif
namespace WTF {
class Int128Impl;
class PrintStream;
// UInt128Impl
//
// An unsigned 128-bit integer type. The API is meant to mimic an intrinsic type
// as closely as is practical, including exhibiting undefined behavior in
// analogous cases (e.g. division by zero). This type is intended to be a
// drop-in replacement once C++ supports an intrinsic `uint128_t` type; when
// that occurs, existing well-behaved uses of `UInt128Impl` will continue to work
// using that new type.
//
// Note: code written with this type will continue to compile once `uint128_t`
// is introduced, provided the replacement helper functions
// `UInt128Impl(Low|High)64()` and `MakeUInt128()` are made.
//
// A `UInt128Impl` supports the following:
//
// * Implicit construction from integral types
// * Explicit conversion to integral types
//
// However, a `UInt128Impl` differs from intrinsic integral types in the following
// ways:
//
// * Errors on implicit conversions that do not preserve value (such as
// loss of precision when converting to float values).
// * Requires explicit construction from and conversion to floating point
// types.
// * Conversion to integral types requires an explicit static_cast() to
// mimic use of the `-Wnarrowing` compiler flag.
// * The alignment requirement of `UInt128Impl` may differ from that of an
// intrinsic 128-bit integer type depending on platform and build
// configuration.
//
// Example:
//
// float y = UInt128Max(); // Error. UInt128Impl cannot be implicitly
// // converted to float.
//
// UInt128Impl v;
// uint64_t i = v; // Error
// uint64_t i = static_cast<uint64_t>(v); // OK
//
class alignas(16) UInt128Impl {
public:
UInt128Impl() = default;
// Constructors from arithmetic types
constexpr UInt128Impl(int v); // NOLINT(runtime/explicit)
constexpr UInt128Impl(unsigned int v); // NOLINT(runtime/explicit)
constexpr UInt128Impl(long v); // NOLINT(runtime/int)
constexpr UInt128Impl(unsigned long v); // NOLINT(runtime/int)
constexpr UInt128Impl(long long v); // NOLINT(runtime/int)
constexpr UInt128Impl(unsigned long long v); // NOLINT(runtime/int)
constexpr UInt128Impl(Int128Impl v); // NOLINT(runtime/explicit)
WTF_EXPORT_PRIVATE explicit UInt128Impl(float v);
WTF_EXPORT_PRIVATE explicit UInt128Impl(double v);
WTF_EXPORT_PRIVATE explicit UInt128Impl(long double v);
// Assignment operators from arithmetic types
UInt128Impl& operator=(int v);
UInt128Impl& operator=(unsigned int v);
UInt128Impl& operator=(long v); // NOLINT(runtime/int)
UInt128Impl& operator=(unsigned long v); // NOLINT(runtime/int)
UInt128Impl& operator=(long long v); // NOLINT(runtime/int)
UInt128Impl& operator=(unsigned long long v); // NOLINT(runtime/int)
UInt128Impl& operator=(Int128Impl v);
// Conversion operators to other arithmetic types
constexpr explicit operator bool() const;
constexpr explicit operator char() const;
constexpr explicit operator signed char() const;
constexpr explicit operator unsigned char() const;
constexpr explicit operator char16_t() const;
constexpr explicit operator char32_t() const;
constexpr explicit operator ABSL_INTERNAL_WCHAR_T() const;
constexpr explicit operator short() const; // NOLINT(runtime/int)
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator unsigned short() const;
constexpr explicit operator int() const;
constexpr explicit operator unsigned int() const;
constexpr explicit operator long() const; // NOLINT(runtime/int)
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator unsigned long() const;
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator long long() const;
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator unsigned long long() const;
explicit operator float() const;
explicit operator double() const;
explicit operator long double() const;
// Trivial copy constructor, assignment operator and destructor.
// Arithmetic operators.
UInt128Impl& operator+=(UInt128Impl other);
UInt128Impl& operator-=(UInt128Impl other);
UInt128Impl& operator*=(UInt128Impl other);
// Long division/modulo for UInt128Impl.
UInt128Impl& operator/=(UInt128Impl other);
UInt128Impl& operator%=(UInt128Impl other);
UInt128Impl operator++(int);
UInt128Impl operator--(int);
UInt128Impl& operator<<=(int);
UInt128Impl& operator>>=(int);
UInt128Impl& operator&=(UInt128Impl other);
UInt128Impl& operator|=(UInt128Impl other);
UInt128Impl& operator^=(UInt128Impl other);
UInt128Impl& operator++();
UInt128Impl& operator--();
// UInt128Low64()
//
// Returns the lower 64-bit value of a `UInt128Impl` value.
friend constexpr uint64_t UInt128Low64(UInt128Impl v);
// UInt128High64()
//
// Returns the higher 64-bit value of a `UInt128Impl` value.
friend constexpr uint64_t UInt128High64(UInt128Impl v);
// MakeUInt128()
//
// Constructs a `UInt128Impl` numeric value from two 64-bit unsigned integers.
// Note that this factory function is the only way to construct a `UInt128Impl`
// from integer values greater than 2^64.
//
// Example:
//
// UInt128Impl big = MakeUInt128(1, 0);
friend constexpr UInt128Impl MakeUInt128(uint64_t high, uint64_t low);
// UInt128Max()
//
// Returns the highest value for a 128-bit unsigned integer.
friend constexpr UInt128Impl UInt128Max();
private:
constexpr UInt128Impl(uint64_t high, uint64_t low);
// TODO(strel) Update implementation to use __int128 once all users of
// UInt128Impl are fixed to not depend on alignof(UInt128Impl) == 8. Also add
// alignas(16) to class definition to keep alignment consistent across
// platforms.
#if CPU(LITTLE_ENDIAN)
uint64_t lo_;
uint64_t hi_;
#elif CPU(BIG_ENDIAN)
uint64_t hi_;
uint64_t lo_;
#else // byte order
#error "Unsupported byte order: must be little-endian or big-endian."
#endif // byte order
};
// allow UInt128Impl to be logged
WTF_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, UInt128Impl v);
// TODO(strel) add operator>>(std::istream&, UInt128Impl)
constexpr UInt128Impl UInt128Max() {
return UInt128Impl((std::numeric_limits<uint64_t>::max)(),
(std::numeric_limits<uint64_t>::max)());
}
} // namespace WTF
// Specialized numeric_limits for UInt128Impl.
namespace std {
template <>
class numeric_limits<WTF::UInt128Impl> {
public:
static constexpr bool is_specialized = true;
static constexpr bool is_signed = false;
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr float_round_style round_style = round_toward_zero;
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = true;
static constexpr int digits = 128;
static constexpr int digits10 = 38;
static constexpr int max_digits10 = 0;
static constexpr int radix = 2;
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
static constexpr bool traps = numeric_limits<uint64_t>::traps;
static constexpr bool tinyness_before = false;
static constexpr WTF::UInt128Impl (min)() { return 0; }
static constexpr WTF::UInt128Impl lowest() { return 0; }
static constexpr WTF::UInt128Impl (max)() { return WTF::UInt128Max(); }
static constexpr WTF::UInt128Impl epsilon() { return 0; }
static constexpr WTF::UInt128Impl round_error() { return 0; }
static constexpr WTF::UInt128Impl infinity() { return 0; }
static constexpr WTF::UInt128Impl quiet_NaN() { return 0; }
static constexpr WTF::UInt128Impl signaling_NaN() { return 0; }
static constexpr WTF::UInt128Impl denorm_min() { return 0; }
};
} // namespace std
namespace WTF {
// Int128Impl
//
// A signed 128-bit integer type. The API is meant to mimic an intrinsic
// integral type as closely as is practical, including exhibiting undefined
// behavior in analogous cases (e.g. division by zero).
//
// An `Int128Impl` supports the following:
//
// * Implicit construction from integral types
// * Explicit conversion to integral types
//
// However, an `Int128Impl` differs from intrinsic integral types in the following
// ways:
//
// * It is not implicitly convertible to other integral types.
// * Requires explicit construction from and conversion to floating point
// types.
// The design goal for `Int128Impl` is that it will be compatible with a future
// `int128_t`, if that type becomes a part of the standard.
//
// Example:
//
// float y = Int128Impl(17); // Error. Int128Impl cannot be implicitly
// // converted to float.
//
// Int128Impl v;
// int64_t i = v; // Error
// int64_t i = static_cast<int64_t>(v); // OK
//
class alignas(16) Int128Impl {
public:
Int128Impl() = default;
// Constructors from arithmetic types
constexpr Int128Impl(int v); // NOLINT(runtime/explicit)
constexpr Int128Impl(unsigned int v); // NOLINT(runtime/explicit)
constexpr Int128Impl(long v); // NOLINT(runtime/int)
constexpr Int128Impl(unsigned long v); // NOLINT(runtime/int)
constexpr Int128Impl(long long v); // NOLINT(runtime/int)
constexpr Int128Impl(unsigned long long v); // NOLINT(runtime/int)
constexpr explicit Int128Impl(UInt128Impl v);
WTF_EXPORT_PRIVATE explicit Int128Impl(float v);
WTF_EXPORT_PRIVATE explicit Int128Impl(double v);
WTF_EXPORT_PRIVATE explicit Int128Impl(long double v);
// Assignment operators from arithmetic types
Int128Impl& operator=(int v);
Int128Impl& operator=(unsigned int v);
Int128Impl& operator=(long v); // NOLINT(runtime/int)
Int128Impl& operator=(unsigned long v); // NOLINT(runtime/int)
Int128Impl& operator=(long long v); // NOLINT(runtime/int)
Int128Impl& operator=(unsigned long long v); // NOLINT(runtime/int)
// Conversion operators to other arithmetic types
constexpr explicit operator bool() const;
constexpr explicit operator char() const;
constexpr explicit operator signed char() const;
constexpr explicit operator unsigned char() const;
constexpr explicit operator char16_t() const;
constexpr explicit operator char32_t() const;
constexpr explicit operator ABSL_INTERNAL_WCHAR_T() const;
constexpr explicit operator short() const; // NOLINT(runtime/int)
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator unsigned short() const;
constexpr explicit operator int() const;
constexpr explicit operator unsigned int() const;
constexpr explicit operator long() const; // NOLINT(runtime/int)
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator unsigned long() const;
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator long long() const;
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator unsigned long long() const;
explicit operator float() const;
explicit operator double() const;
explicit operator long double() const;
// Trivial copy constructor, assignment operator and destructor.
// Arithmetic operators
Int128Impl& operator+=(Int128Impl other);
Int128Impl& operator-=(Int128Impl other);
Int128Impl& operator*=(Int128Impl other);
Int128Impl& operator/=(Int128Impl other);
Int128Impl& operator%=(Int128Impl other);
Int128Impl operator++(int); // postfix increment: i++
Int128Impl operator--(int); // postfix decrement: i--
Int128Impl& operator++(); // prefix increment: ++i
Int128Impl& operator--(); // prefix decrement: --i
Int128Impl& operator&=(Int128Impl other);
Int128Impl& operator|=(Int128Impl other);
Int128Impl& operator^=(Int128Impl other);
Int128Impl& operator<<=(int amount);
Int128Impl& operator>>=(int amount);
// Int128Low64()
//
// Returns the lower 64-bit value of a `Int128Impl` value.
friend constexpr uint64_t Int128Low64(Int128Impl v);
// Int128High64()
//
// Returns the higher 64-bit value of a `Int128Impl` value.
friend constexpr int64_t Int128High64(Int128Impl v);
// MakeInt128()
//
// Constructs a `Int128Impl` numeric value from two 64-bit integers. Note that
// signedness is conveyed in the upper `high` value.
//
// (Int128Impl(1) << 64) * high + low
//
// Note that this factory function is the only way to construct a `Int128Impl`
// from integer values greater than 2^64 or less than -2^64.
//
// Example:
//
// Int128Impl big = MakeInt128(1, 0);
// Int128Impl big_n = MakeInt128(-1, 0);
friend constexpr Int128Impl MakeInt128(int64_t high, uint64_t low);
// Int128Max()
//
// Returns the maximum value for a 128-bit signed integer.
friend constexpr Int128Impl Int128Max();
// Int128Min()
//
// Returns the minimum value for a 128-bit signed integer.
friend constexpr Int128Impl Int128Min();
private:
constexpr Int128Impl(int64_t high, uint64_t low);
#if CPU(LITTLE_ENDIAN)
uint64_t lo_;
int64_t hi_;
#elif CPU(BIG_ENDIAN)
int64_t hi_;
uint64_t lo_;
#else // byte order
#error "Unsupported byte order: must be little-endian or big-endian."
#endif // byte order
};
WTF_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, Int128Impl v);
// TODO(absl-team) add operator>>(std::istream&, Int128Impl)
constexpr Int128Impl Int128Max() {
return Int128Impl((std::numeric_limits<int64_t>::max)(),
(std::numeric_limits<uint64_t>::max)());
}
constexpr Int128Impl Int128Min() {
return Int128Impl((std::numeric_limits<int64_t>::min)(), 0);
}
} // namespace WTF
// Specialized numeric_limits for Int128Impl.
namespace std {
template <>
class numeric_limits<WTF::Int128Impl> {
public:
static constexpr bool is_specialized = true;
static constexpr bool is_signed = true;
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr float_round_style round_style = round_toward_zero;
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = false;
static constexpr int digits = 127;
static constexpr int digits10 = 38;
static constexpr int max_digits10 = 0;
static constexpr int radix = 2;
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
static constexpr bool traps = numeric_limits<uint64_t>::traps;
static constexpr bool tinyness_before = false;
static constexpr WTF::Int128Impl (min)() { return WTF::Int128Min(); }
static constexpr WTF::Int128Impl lowest() { return WTF::Int128Min(); }
static constexpr WTF::Int128Impl (max)() { return WTF::Int128Max(); }
static constexpr WTF::Int128Impl epsilon() { return 0; }
static constexpr WTF::Int128Impl round_error() { return 0; }
static constexpr WTF::Int128Impl infinity() { return 0; }
static constexpr WTF::Int128Impl quiet_NaN() { return 0; }
static constexpr WTF::Int128Impl signaling_NaN() { return 0; }
static constexpr WTF::Int128Impl denorm_min() { return 0; }
};
} // namespace std
// --------------------------------------------------------------------------
// Implementation details follow
// --------------------------------------------------------------------------
namespace WTF {
constexpr UInt128Impl MakeUInt128(uint64_t high, uint64_t low) {
return UInt128Impl(high, low);
}
// Assignment from integer types.
inline UInt128Impl& UInt128Impl::operator=(int v) { return *this = UInt128Impl(v); }
inline UInt128Impl& UInt128Impl::operator=(unsigned int v) {
return *this = UInt128Impl(v);
}
inline UInt128Impl& UInt128Impl::operator=(long v) { // NOLINT(runtime/int)
return *this = UInt128Impl(v);
}
// NOLINTNEXTLINE(runtime/int)
inline UInt128Impl& UInt128Impl::operator=(unsigned long v) {
return *this = UInt128Impl(v);
}
// NOLINTNEXTLINE(runtime/int)
inline UInt128Impl& UInt128Impl::operator=(long long v) {
return *this = UInt128Impl(v);
}
// NOLINTNEXTLINE(runtime/int)
inline UInt128Impl& UInt128Impl::operator=(unsigned long long v) {
return *this = UInt128Impl(v);
}
inline UInt128Impl& UInt128Impl::operator=(Int128Impl v) {
return *this = UInt128Impl(v);
}
// Arithmetic operators.
constexpr UInt128Impl operator<<(UInt128Impl lhs, int amount);
constexpr UInt128Impl operator>>(UInt128Impl lhs, int amount);
constexpr UInt128Impl operator+(UInt128Impl lhs, UInt128Impl rhs);
constexpr UInt128Impl operator-(UInt128Impl lhs, UInt128Impl rhs);
constexpr UInt128Impl operator*(UInt128Impl lhs, UInt128Impl rhs);
WTF_EXPORT_PRIVATE UInt128Impl operator/(UInt128Impl lhs, UInt128Impl rhs);
WTF_EXPORT_PRIVATE UInt128Impl operator%(UInt128Impl lhs, UInt128Impl rhs);
inline UInt128Impl& UInt128Impl::operator<<=(int amount) {
*this = *this << amount;
return *this;
}
inline UInt128Impl& UInt128Impl::operator>>=(int amount) {
*this = *this >> amount;
return *this;
}
inline UInt128Impl& UInt128Impl::operator+=(UInt128Impl other) {
*this = *this + other;
return *this;
}
inline UInt128Impl& UInt128Impl::operator-=(UInt128Impl other) {
*this = *this - other;
return *this;
}
inline UInt128Impl& UInt128Impl::operator*=(UInt128Impl other) {
*this = *this * other;
return *this;
}
inline UInt128Impl& UInt128Impl::operator/=(UInt128Impl other) {
*this = *this / other;
return *this;
}
inline UInt128Impl& UInt128Impl::operator%=(UInt128Impl other) {
*this = *this % other;
return *this;
}
constexpr uint64_t UInt128Low64(UInt128Impl v) { return v.lo_; }
constexpr uint64_t UInt128High64(UInt128Impl v) { return v.hi_; }
// Constructors from integer types.
#if CPU(LITTLE_ENDIAN)
constexpr UInt128Impl::UInt128Impl(uint64_t high, uint64_t low)
: lo_{low}, hi_{high} {}
constexpr UInt128Impl::UInt128Impl(int v)
: lo_{static_cast<uint64_t>(v)},
hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0} {}
constexpr UInt128Impl::UInt128Impl(long v) // NOLINT(runtime/int)
: lo_{static_cast<uint64_t>(v)},
hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0} {}
constexpr UInt128Impl::UInt128Impl(long long v) // NOLINT(runtime/int)
: lo_{static_cast<uint64_t>(v)},
hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0} {}
constexpr UInt128Impl::UInt128Impl(unsigned int v) : lo_{v}, hi_{0} {}
// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::UInt128Impl(unsigned long v) : lo_{v}, hi_{0} {}
// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::UInt128Impl(unsigned long long v) : lo_{v}, hi_{0} {}
constexpr UInt128Impl::UInt128Impl(Int128Impl v)
: lo_{Int128Low64(v)}, hi_{static_cast<uint64_t>(Int128High64(v))} {}
#elif CPU(BIG_ENDIAN)
constexpr UInt128Impl::UInt128Impl(uint64_t high, uint64_t low)
: hi_{high}, lo_{low} {}
constexpr UInt128Impl::UInt128Impl(int v)
: hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0},
lo_{static_cast<uint64_t>(v)} {}
constexpr UInt128Impl::UInt128Impl(long v) // NOLINT(runtime/int)
: hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0},
lo_{static_cast<uint64_t>(v)} {}
constexpr UInt128Impl::UInt128Impl(long long v) // NOLINT(runtime/int)
: hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0},
lo_{static_cast<uint64_t>(v)} {}
constexpr UInt128Impl::UInt128Impl(unsigned int v) : hi_{0}, lo_{v} {}
// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::UInt128Impl(unsigned long v) : hi_{0}, lo_{v} {}
// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::UInt128Impl(unsigned long long v) : hi_{0}, lo_{v} {}
constexpr UInt128Impl::UInt128Impl(Int128Impl v)
: hi_{static_cast<uint64_t>(Int128High64(v))}, lo_{Int128Low64(v)} {}
#else // byte order
#error "Unsupported byte order: must be little-endian or big-endian."
#endif // byte order
// Conversion operators to integer types.
constexpr UInt128Impl::operator bool() const { return lo_ || hi_; }
constexpr UInt128Impl::operator char() const { return static_cast<char>(lo_); }
constexpr UInt128Impl::operator signed char() const {
return static_cast<signed char>(lo_);
}
constexpr UInt128Impl::operator unsigned char() const {
return static_cast<unsigned char>(lo_);
}
constexpr UInt128Impl::operator char16_t() const {
return static_cast<char16_t>(lo_);
}
constexpr UInt128Impl::operator char32_t() const {
return static_cast<char32_t>(lo_);
}
constexpr UInt128Impl::operator ABSL_INTERNAL_WCHAR_T() const {
return static_cast<ABSL_INTERNAL_WCHAR_T>(lo_);
}
// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::operator short() const { return static_cast<short>(lo_); }
constexpr UInt128Impl::operator unsigned short() const { // NOLINT(runtime/int)
return static_cast<unsigned short>(lo_); // NOLINT(runtime/int)
}
constexpr UInt128Impl::operator int() const { return static_cast<int>(lo_); }
constexpr UInt128Impl::operator unsigned int() const {
return static_cast<unsigned int>(lo_);
}
// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::operator long() const { return static_cast<long>(lo_); }
constexpr UInt128Impl::operator unsigned long() const { // NOLINT(runtime/int)
return static_cast<unsigned long>(lo_); // NOLINT(runtime/int)
}
constexpr UInt128Impl::operator long long() const { // NOLINT(runtime/int)
return static_cast<long long>(lo_); // NOLINT(runtime/int)
}
constexpr UInt128Impl::operator unsigned long long() const { // NOLINT(runtime/int)
return static_cast<unsigned long long>(lo_); // NOLINT(runtime/int)
}
// Conversion operators to floating point types.
inline UInt128Impl::operator float() const {
return static_cast<float>(lo_) + std::ldexp(static_cast<float>(hi_), 64);
}
inline UInt128Impl::operator double() const {
return static_cast<double>(lo_) + std::ldexp(static_cast<double>(hi_), 64);
}
inline UInt128Impl::operator long double() const {
return static_cast<long double>(lo_) +
std::ldexp(static_cast<long double>(hi_), 64);
}
// Comparison operators.
constexpr bool operator==(UInt128Impl lhs, UInt128Impl rhs) {
return (UInt128Low64(lhs) == UInt128Low64(rhs) &&
UInt128High64(lhs) == UInt128High64(rhs));
}
constexpr bool operator!=(UInt128Impl lhs, UInt128Impl rhs) { return !(lhs == rhs); }
constexpr bool operator<(UInt128Impl lhs, UInt128Impl rhs) {
return (UInt128High64(lhs) == UInt128High64(rhs))
? (UInt128Low64(lhs) < UInt128Low64(rhs))
: (UInt128High64(lhs) < UInt128High64(rhs));
}
constexpr bool operator>(UInt128Impl lhs, UInt128Impl rhs) { return rhs < lhs; }
constexpr bool operator<=(UInt128Impl lhs, UInt128Impl rhs) { return !(rhs < lhs); }
constexpr bool operator>=(UInt128Impl lhs, UInt128Impl rhs) { return !(lhs < rhs); }
// Unary operators.
constexpr inline UInt128Impl operator+(UInt128Impl val) {
return val;
}
constexpr inline Int128Impl operator+(Int128Impl val) {
return val;
}
constexpr UInt128Impl operator-(UInt128Impl val) {
return MakeUInt128(
~UInt128High64(val) + static_cast<unsigned long>(UInt128Low64(val) == 0),
~UInt128Low64(val) + 1);
}
constexpr inline bool operator!(UInt128Impl val) {
return !UInt128High64(val) && !UInt128Low64(val);
}
// Logical operators.
constexpr inline UInt128Impl operator~(UInt128Impl val) {
return MakeUInt128(~UInt128High64(val), ~UInt128Low64(val));
}
constexpr inline UInt128Impl operator|(UInt128Impl lhs, UInt128Impl rhs) {
return MakeUInt128(UInt128High64(lhs) | UInt128High64(rhs),
UInt128Low64(lhs) | UInt128Low64(rhs));
}
constexpr inline UInt128Impl operator&(UInt128Impl lhs, UInt128Impl rhs) {
return MakeUInt128(UInt128High64(lhs) & UInt128High64(rhs),
UInt128Low64(lhs) & UInt128Low64(rhs));
}
constexpr inline UInt128Impl operator^(UInt128Impl lhs, UInt128Impl rhs) {
return MakeUInt128(UInt128High64(lhs) ^ UInt128High64(rhs),
UInt128Low64(lhs) ^ UInt128Low64(rhs));
}
inline UInt128Impl& UInt128Impl::operator|=(UInt128Impl other) {
*this = *this | other;
return *this;
}
inline UInt128Impl& UInt128Impl::operator&=(UInt128Impl other) {
*this = *this & other;
return *this;
}
inline UInt128Impl& UInt128Impl::operator^=(UInt128Impl other) {
*this = *this ^ other;
return *this;
}
// Arithmetic operators.
constexpr UInt128Impl operator<<(UInt128Impl lhs, int amount) {
// uint64_t shifts of >= 64 are undefined, so we will need some
// special-casing.
return amount >= 64 ? MakeUInt128(UInt128Low64(lhs) << (amount - 64), 0)
: amount == 0 ? lhs
: MakeUInt128((UInt128High64(lhs) << amount) |
(UInt128Low64(lhs) >> (64 - amount)),
UInt128Low64(lhs) << amount);
}
constexpr UInt128Impl operator>>(UInt128Impl lhs, int amount) {
// uint64_t shifts of >= 64 are undefined, so we will need some
// special-casing.
return amount >= 64 ? MakeUInt128(0, UInt128High64(lhs) >> (amount - 64))
: amount == 0 ? lhs
: MakeUInt128(UInt128High64(lhs) >> amount,
(UInt128Low64(lhs) >> amount) |
(UInt128High64(lhs) << (64 - amount)));
}
namespace int128_internal {
constexpr UInt128Impl AddResult(UInt128Impl result, UInt128Impl lhs) {
// check for carry
return (UInt128Low64(result) < UInt128Low64(lhs))
? MakeUInt128(UInt128High64(result) + 1, UInt128Low64(result))
: result;
}
} // namespace int128_internal
constexpr UInt128Impl operator+(UInt128Impl lhs, UInt128Impl rhs) {
return int128_internal::AddResult(
MakeUInt128(UInt128High64(lhs) + UInt128High64(rhs),
UInt128Low64(lhs) + UInt128Low64(rhs)),
lhs);
}
namespace int128_internal {
constexpr UInt128Impl SubstructResult(UInt128Impl result, UInt128Impl lhs, UInt128Impl rhs) {
// check for carry
return (UInt128Low64(lhs) < UInt128Low64(rhs))
? MakeUInt128(UInt128High64(result) - 1, UInt128Low64(result))
: result;
}
} // namespace int128_internal
constexpr UInt128Impl operator-(UInt128Impl lhs, UInt128Impl rhs) {
return int128_internal::SubstructResult(
MakeUInt128(UInt128High64(lhs) - UInt128High64(rhs),
UInt128Low64(lhs) - UInt128Low64(rhs)),
lhs, rhs);
}
constexpr UInt128Impl operator*(UInt128Impl lhs, UInt128Impl rhs) {
uint64_t a32 = UInt128Low64(lhs) >> 32;
uint64_t a00 = UInt128Low64(lhs) & 0xffffffff;
uint64_t b32 = UInt128Low64(rhs) >> 32;
uint64_t b00 = UInt128Low64(rhs) & 0xffffffff;
UInt128Impl result =
MakeUInt128(UInt128High64(lhs) * UInt128Low64(rhs) +
UInt128Low64(lhs) * UInt128High64(rhs) + a32 * b32,
a00 * b00);
UInt128Impl v1 = UInt128Impl(a32 * b00) << 32;
UInt128Impl v2 = UInt128Impl(a00 * b32) << 32;
return result + v1 + v2;
}
// Increment/decrement operators.
inline UInt128Impl UInt128Impl::operator++(int) {
UInt128Impl tmp(*this);
*this += 1;
return tmp;
}
inline UInt128Impl UInt128Impl::operator--(int) {
UInt128Impl tmp(*this);
*this -= 1;
return tmp;
}
inline UInt128Impl& UInt128Impl::operator++() {
*this += 1;
return *this;
}
inline UInt128Impl& UInt128Impl::operator--() {
*this -= 1;
return *this;
}
constexpr Int128Impl MakeInt128(int64_t high, uint64_t low) {
return Int128Impl(high, low);
}
// Assignment from integer types.
inline Int128Impl& Int128Impl::operator=(int v) {
return *this = Int128Impl(v);
}
inline Int128Impl& Int128Impl::operator=(unsigned int v) {
return *this = Int128Impl(v);
}
inline Int128Impl& Int128Impl::operator=(long v) { // NOLINT(runtime/int)
return *this = Int128Impl(v);
}
// NOLINTNEXTLINE(runtime/int)
inline Int128Impl& Int128Impl::operator=(unsigned long v) {
return *this = Int128Impl(v);
}
// NOLINTNEXTLINE(runtime/int)
inline Int128Impl& Int128Impl::operator=(long long v) {
return *this = Int128Impl(v);
}
// NOLINTNEXTLINE(runtime/int)
inline Int128Impl& Int128Impl::operator=(unsigned long long v) {
return *this = Int128Impl(v);
}
// Arithmetic operators.
constexpr Int128Impl operator-(Int128Impl v);
constexpr Int128Impl operator+(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator-(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator*(Int128Impl lhs, Int128Impl rhs);
WTF_EXPORT_PRIVATE Int128Impl operator/(Int128Impl lhs, Int128Impl rhs);
WTF_EXPORT_PRIVATE Int128Impl operator%(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator|(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator&(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator^(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator<<(Int128Impl lhs, int amount);
constexpr Int128Impl operator>>(Int128Impl lhs, int amount);
inline Int128Impl& Int128Impl::operator+=(Int128Impl other) {
*this = *this + other;
return *this;
}
inline Int128Impl& Int128Impl::operator-=(Int128Impl other) {
*this = *this - other;
return *this;
}
inline Int128Impl& Int128Impl::operator*=(Int128Impl other) {
*this = *this * other;
return *this;
}
inline Int128Impl& Int128Impl::operator/=(Int128Impl other) {
*this = *this / other;
return *this;
}
inline Int128Impl& Int128Impl::operator%=(Int128Impl other) {
*this = *this % other;
return *this;
}
inline Int128Impl& Int128Impl::operator|=(Int128Impl other) {
*this = *this | other;
return *this;
}
inline Int128Impl& Int128Impl::operator&=(Int128Impl other) {
*this = *this & other;
return *this;
}
inline Int128Impl& Int128Impl::operator^=(Int128Impl other) {
*this = *this ^ other;
return *this;
}
inline Int128Impl& Int128Impl::operator<<=(int amount) {
*this = *this << amount;
return *this;
}
inline Int128Impl& Int128Impl::operator>>=(int amount) {
*this = *this >> amount;
return *this;
}
// Forward declaration for comparison operators.
constexpr bool operator!=(Int128Impl lhs, Int128Impl rhs);
namespace int128_internal {
// Casts from unsigned to signed while preserving the underlying binary
// representation.
constexpr int64_t BitCastToSigned(uint64_t v) {
// Casting an unsigned integer to a signed integer of the same
// width is implementation defined behavior if the source value would not fit
// in the destination type. We step around it with a roundtrip bitwise not
// operation to make sure this function remains constexpr. Clang, GCC, and
// MSVC optimize this to a no-op on x86-64.
return v & (uint64_t{1} << 63) ? ~static_cast<int64_t>(~v)
: static_cast<int64_t>(v);
}
} // namespace int128_internal
// #include "absl/numeric/int128_no_intrinsic.inc" // IWYU pragma: export
constexpr uint64_t Int128Low64(Int128Impl v) { return v.lo_; }
constexpr int64_t Int128High64(Int128Impl v) { return v.hi_; }
#if CPU(LITTLE_ENDIAN)
constexpr Int128Impl::Int128Impl(int64_t high, uint64_t low) :
lo_(low), hi_(high) {}
constexpr Int128Impl::Int128Impl(int v)
: lo_{static_cast<uint64_t>(v)}, hi_{v < 0 ? ~int64_t{0} : 0} {}
constexpr Int128Impl::Int128Impl(long v) // NOLINT(runtime/int)
: lo_{static_cast<uint64_t>(v)}, hi_{v < 0 ? ~int64_t{0} : 0} {}
constexpr Int128Impl::Int128Impl(long long v) // NOLINT(runtime/int)
: lo_{static_cast<uint64_t>(v)}, hi_{v < 0 ? ~int64_t{0} : 0} {}
constexpr Int128Impl::Int128Impl(unsigned int v) : lo_{v}, hi_{0} {}
// NOLINTNEXTLINE(runtime/int)
constexpr Int128Impl::Int128Impl(unsigned long v) : lo_{v}, hi_{0} {}
// NOLINTNEXTLINE(runtime/int)
constexpr Int128Impl::Int128Impl(unsigned long long v) : lo_{v}, hi_{0} {}
constexpr Int128Impl::Int128Impl(UInt128Impl v)
: lo_{UInt128Low64(v)}, hi_{static_cast<int64_t>(UInt128High64(v))} {}
#elif CPU(BIG_ENDIAN)
constexpr Int128Impl::Int128Impl(int64_t high, uint64_t low) :
hi_{high}, lo_{low} {}
constexpr Int128Impl::Int128Impl(int v)
: hi_{v < 0 ? ~int64_t{0} : 0}, lo_{static_cast<uint64_t>(v)} {}
constexpr Int128Impl::Int128Impl(long v) // NOLINT(runtime/int)
: hi_{v < 0 ? ~int64_t{0} : 0}, lo_{static_cast<uint64_t>(v)} {}
constexpr Int128Impl::Int128Impl(long long v) // NOLINT(runtime/int)
: hi_{v < 0 ? ~int64_t{0} : 0}, lo_{static_cast<uint64_t>(v)} {}
constexpr Int128Impl::Int128Impl(unsigned int v) : hi_{0}, lo_{v} {}
// NOLINTNEXTLINE(runtime/int)
constexpr Int128Impl::Int128Impl(unsigned long v) : hi_{0}, lo_{v} {}
// NOLINTNEXTLINE(runtime/int)
constexpr Int128Impl::Int128Impl(unsigned long long v) : hi_{0}, lo_{v} {}
constexpr Int128Impl::Int128Impl(UInt128Impl v)
: hi_{static_cast<int64_t>(UInt128High64(v))}, lo_{UInt128Low64(v)} {}
#else // byte order
#error "Unsupported byte order: must be little-endian or big-endian."
#endif // byte order
constexpr Int128Impl::operator bool() const { return lo_ || hi_; }
constexpr Int128Impl::operator char() const {
// NOLINTNEXTLINE(runtime/int)
return static_cast<char>(static_cast<long long>(*this));
}
constexpr Int128Impl::operator signed char() const {
// NOLINTNEXTLINE(runtime/int)
return static_cast<signed char>(static_cast<long long>(*this));
}
constexpr Int128Impl::operator unsigned char() const {
return static_cast<unsigned char>(lo_);
}
constexpr Int128Impl::operator char16_t() const {
return static_cast<char16_t>(lo_);
}
constexpr Int128Impl::operator char32_t() const {
return static_cast<char32_t>(lo_);
}
constexpr Int128Impl::operator ABSL_INTERNAL_WCHAR_T() const {
// NOLINTNEXTLINE(runtime/int)
return static_cast<ABSL_INTERNAL_WCHAR_T>(static_cast<long long>(*this));
}
constexpr Int128Impl::operator short() const { // NOLINT(runtime/int)
// NOLINTNEXTLINE(runtime/int)
return static_cast<short>(static_cast<long long>(*this));
}
constexpr Int128Impl::operator unsigned short() const { // NOLINT(runtime/int)
return static_cast<unsigned short>(lo_); // NOLINT(runtime/int)
}
constexpr Int128Impl::operator int() const {
// NOLINTNEXTLINE(runtime/int)
return static_cast<int>(static_cast<long long>(*this));
}
constexpr Int128Impl::operator unsigned int() const {
return static_cast<unsigned int>(lo_);
}
constexpr Int128Impl::operator long() const { // NOLINT(runtime/int)
// NOLINTNEXTLINE(runtime/int)
return static_cast<long>(static_cast<long long>(*this));
}
constexpr Int128Impl::operator unsigned long() const { // NOLINT(runtime/int)
return static_cast<unsigned long>(lo_); // NOLINT(runtime/int)
}
constexpr Int128Impl::operator long long() const { // NOLINT(runtime/int)
// We don't bother checking the value of hi_. If *this < 0, lo_'s high bit
// must be set in order for the value to fit into a long long. Conversely, if
// lo_'s high bit is set, *this must be < 0 for the value to fit.
return int128_internal::BitCastToSigned(lo_);
}
constexpr Int128Impl::operator unsigned long long() const { // NOLINT(runtime/int)
return static_cast<unsigned long long>(lo_); // NOLINT(runtime/int)
}
inline Int128Impl::operator float() const {
// We must convert the absolute value and then negate as needed, because
// floating point types are typically sign-magnitude. Otherwise, the
// difference between the high and low 64 bits when interpreted as two's
// complement overwhelms the precision of the mantissa.
//
// Also check to make sure we don't negate Int128Min()
return hi_ < 0 && *this != Int128Min()
? -static_cast<float>(-*this)
: static_cast<float>(lo_) +
std::ldexp(static_cast<float>(hi_), 64);
}
inline Int128Impl::operator double() const {
// See comment in Int128Impl::operator float() above.
return hi_ < 0 && *this != Int128Min()
? -static_cast<double>(-*this)
: static_cast<double>(lo_) +
std::ldexp(static_cast<double>(hi_), 64);
}
inline Int128Impl::operator long double() const {
// See comment in Int128Impl::operator float() above.
return hi_ < 0 && *this != Int128Min()
? -static_cast<long double>(-*this)
: static_cast<long double>(lo_) +
std::ldexp(static_cast<long double>(hi_), 64);
}
// Comparison operators.
constexpr bool operator==(Int128Impl lhs, Int128Impl rhs) {
return (Int128Low64(lhs) == Int128Low64(rhs) &&
Int128High64(lhs) == Int128High64(rhs));
}
constexpr bool operator!=(Int128Impl lhs, Int128Impl rhs) { return !(lhs == rhs); }
constexpr bool operator<(Int128Impl lhs, Int128Impl rhs) {
return (Int128High64(lhs) == Int128High64(rhs))
? (Int128Low64(lhs) < Int128Low64(rhs))
: (Int128High64(lhs) < Int128High64(rhs));
}
constexpr bool operator>(Int128Impl lhs, Int128Impl rhs) {
return (Int128High64(lhs) == Int128High64(rhs))
? (Int128Low64(lhs) > Int128Low64(rhs))
: (Int128High64(lhs) > Int128High64(rhs));
}
constexpr bool operator<=(Int128Impl lhs, Int128Impl rhs) { return !(lhs > rhs); }
constexpr bool operator>=(Int128Impl lhs, Int128Impl rhs) { return !(lhs < rhs); }
// Unary operators.
constexpr Int128Impl operator-(Int128Impl v) {
return MakeInt128(~Int128High64(v) + (Int128Low64(v) == 0),
~Int128Low64(v) + 1);
}
constexpr bool operator!(Int128Impl v) {
return !Int128Low64(v) && !Int128High64(v);
}
constexpr Int128Impl operator~(Int128Impl val) {
return MakeInt128(~Int128High64(val), ~Int128Low64(val));
}
// Arithmetic operators.
namespace int128_internal {
constexpr Int128Impl SignedAddResult(Int128Impl result, Int128Impl lhs) {
// check for carry
return (Int128Low64(result) < Int128Low64(lhs))
? MakeInt128(Int128High64(result) + 1, Int128Low64(result))
: result;
}
} // namespace int128_internal
constexpr Int128Impl operator+(Int128Impl lhs, Int128Impl rhs) {
return int128_internal::SignedAddResult(
MakeInt128(Int128High64(lhs) + Int128High64(rhs),
Int128Low64(lhs) + Int128Low64(rhs)),
lhs);
}
namespace int128_internal {
constexpr Int128Impl SignedSubstructResult(Int128Impl result, Int128Impl lhs, Int128Impl rhs) {
// check for carry
return (Int128Low64(lhs) < Int128Low64(rhs))
? MakeInt128(Int128High64(result) - 1, Int128Low64(result))
: result;
}
} // namespace int128_internal
constexpr Int128Impl operator-(Int128Impl lhs, Int128Impl rhs) {
return int128_internal::SignedSubstructResult(
MakeInt128(Int128High64(lhs) - Int128High64(rhs),
Int128Low64(lhs) - Int128Low64(rhs)),
lhs, rhs);
}
constexpr Int128Impl operator*(Int128Impl lhs, Int128Impl rhs) {
return MakeInt128(
int128_internal::BitCastToSigned(UInt128High64(UInt128Impl(lhs) * rhs)),
UInt128Low64(UInt128Impl(lhs) * rhs));
}
inline Int128Impl Int128Impl::operator++(int) {
Int128Impl tmp(*this);
*this += 1;
return tmp;
}
inline Int128Impl Int128Impl::operator--(int) {
Int128Impl tmp(*this);
*this -= 1;
return tmp;
}
inline Int128Impl& Int128Impl::operator++() {
*this += 1;
return *this;
}
inline Int128Impl& Int128Impl::operator--() {
*this -= 1;
return *this;
}
constexpr Int128Impl operator|(Int128Impl lhs, Int128Impl rhs) {
return MakeInt128(Int128High64(lhs) | Int128High64(rhs),
Int128Low64(lhs) | Int128Low64(rhs));
}
constexpr Int128Impl operator&(Int128Impl lhs, Int128Impl rhs) {
return MakeInt128(Int128High64(lhs) & Int128High64(rhs),
Int128Low64(lhs) & Int128Low64(rhs));
}
constexpr Int128Impl operator^(Int128Impl lhs, Int128Impl rhs) {
return MakeInt128(Int128High64(lhs) ^ Int128High64(rhs),
Int128Low64(lhs) ^ Int128Low64(rhs));
}
constexpr Int128Impl operator<<(Int128Impl lhs, int amount) {
// int64_t shifts of >= 64 are undefined, so we need some special-casing.
return amount >= 64
? MakeInt128(
static_cast<int64_t>(Int128Low64(lhs) << (amount - 64)), 0)
: amount == 0
? lhs
: MakeInt128(
(Int128High64(lhs) << amount) |
static_cast<int64_t>(Int128Low64(lhs) >> (64 - amount)),
Int128Low64(lhs) << amount);
}
constexpr Int128Impl operator>>(Int128Impl lhs, int amount) {
// int64_t shifts of >= 64 are undefined, so we need some special-casing.
// The (Int128High64(lhs) >> 32) >> 32 "trick" causes the the most significant
// int64 to be inititialized with all zeros or all ones correctly. It takes
// into account whether the number is negative or positive, and whether the
// current architecture does arithmetic or logical right shifts for negative
// numbers.
return amount >= 64
? MakeInt128(
(Int128High64(lhs) >> 32) >> 32,
static_cast<uint64_t>(Int128High64(lhs) >> (amount - 64)))
: amount == 0
? lhs
: MakeInt128(Int128High64(lhs) >> amount,
(Int128Low64(lhs) >> amount) |
(static_cast<uint64_t>(Int128High64(lhs))
<< (64 - amount)));
}
#if HAVE(INT128_T)
using UInt128 = __uint128_t;
using Int128 = __int128_t;
#else
using UInt128 = UInt128Impl;
using Int128 = Int128Impl;
#endif
WTF_EXPORT_PRIVATE void printInternal(PrintStream&, UInt128);
WTF_EXPORT_PRIVATE void printInternal(PrintStream&, Int128);
} // namespace WTF
using WTF::Int128;
using WTF::UInt128;