blob: c34e4ae13feaab03e0a4e92c674ea17c697cc928 [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* Copyright (C) 2005-2019 Apple Inc. All rights reserved.
* Copyright (C) 2009 Google Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#pragma once
#include <limits.h>
#include <unicode/ustring.h>
#include <wtf/ASCIICType.h>
#include <wtf/CheckedArithmetic.h>
#include <wtf/DebugHeap.h>
#include <wtf/Expected.h>
#include <wtf/MathExtras.h>
#include <wtf/StdLibExtras.h>
#include <wtf/Vector.h>
#include <wtf/text/ASCIIFastPath.h>
#include <wtf/text/ConversionMode.h>
#include <wtf/text/StringCommon.h>
#include <wtf/text/StringHasher.h>
#include <wtf/text/UTF8ConversionError.h>
#if USE(CF)
typedef const struct __CFString * CFStringRef;
#endif
#ifdef __OBJC__
@class NSString;
#endif
namespace JSC {
namespace LLInt { class Data; }
class LLIntOffsetsExtractor;
}
namespace WTF {
class SymbolImpl;
class SymbolRegistry;
struct CStringTranslator;
struct HashAndUTF8CharactersTranslator;
struct LCharBufferTranslator;
struct StringHash;
struct SubstringTranslator;
struct UCharBufferTranslator;
template<typename> class RetainPtr;
template<typename> struct BufferFromStaticDataTranslator;
template<typename> struct HashAndCharactersTranslator;
// Define STRING_STATS to 1 turn on runtime statistics of string sizes and memory usage.
#define STRING_STATS 0
template<bool isSpecialCharacter(UChar), typename CharacterType> bool isAllSpecialCharacters(const CharacterType*, size_t length);
#if STRING_STATS
struct StringStats {
WTF_MAKE_STRUCT_FAST_ALLOCATED;
void add8BitString(unsigned length, bool isSubString = false)
{
++m_totalNumberStrings;
++m_number8BitStrings;
if (!isSubString)
m_total8BitData += length;
}
void add16BitString(unsigned length, bool isSubString = false)
{
++m_totalNumberStrings;
++m_number16BitStrings;
if (!isSubString)
m_total16BitData += length;
}
void removeString(StringImpl&);
void printStats();
static constexpr unsigned s_printStringStatsFrequency = 5000;
static std::atomic<unsigned> s_stringRemovesTillPrintStats;
std::atomic<unsigned> m_refCalls;
std::atomic<unsigned> m_derefCalls;
std::atomic<unsigned> m_totalNumberStrings;
std::atomic<unsigned> m_number8BitStrings;
std::atomic<unsigned> m_number16BitStrings;
std::atomic<unsigned long long> m_total8BitData;
std::atomic<unsigned long long> m_total16BitData;
};
#define STRING_STATS_ADD_8BIT_STRING(length) StringImpl::stringStats().add8BitString(length)
#define STRING_STATS_ADD_8BIT_STRING2(length, isSubString) StringImpl::stringStats().add8BitString(length, isSubString)
#define STRING_STATS_ADD_16BIT_STRING(length) StringImpl::stringStats().add16BitString(length)
#define STRING_STATS_ADD_16BIT_STRING2(length, isSubString) StringImpl::stringStats().add16BitString(length, isSubString)
#define STRING_STATS_REMOVE_STRING(string) StringImpl::stringStats().removeString(string)
#define STRING_STATS_REF_STRING(string) ++StringImpl::stringStats().m_refCalls;
#define STRING_STATS_DEREF_STRING(string) ++StringImpl::stringStats().m_derefCalls;
#else
#define STRING_STATS_ADD_8BIT_STRING(length) ((void)0)
#define STRING_STATS_ADD_8BIT_STRING2(length, isSubString) ((void)0)
#define STRING_STATS_ADD_16BIT_STRING(length) ((void)0)
#define STRING_STATS_ADD_16BIT_STRING2(length, isSubString) ((void)0)
#define STRING_STATS_ADD_UPCONVERTED_STRING(length) ((void)0)
#define STRING_STATS_REMOVE_STRING(string) ((void)0)
#define STRING_STATS_REF_STRING(string) ((void)0)
#define STRING_STATS_DEREF_STRING(string) ((void)0)
#endif
class StringImplShape {
WTF_MAKE_NONCOPYABLE(StringImplShape);
public:
static constexpr unsigned MaxLength = std::numeric_limits<int32_t>::max();
protected:
StringImplShape(unsigned refCount, unsigned length, const LChar*, unsigned hashAndFlags);
StringImplShape(unsigned refCount, unsigned length, const UChar*, unsigned hashAndFlags);
enum ConstructWithConstExprTag { ConstructWithConstExpr };
template<unsigned characterCount> constexpr StringImplShape(unsigned refCount, unsigned length, const char (&characters)[characterCount], unsigned hashAndFlags, ConstructWithConstExprTag);
template<unsigned characterCount> constexpr StringImplShape(unsigned refCount, unsigned length, const char16_t (&characters)[characterCount], unsigned hashAndFlags, ConstructWithConstExprTag);
unsigned m_refCount;
unsigned m_length;
union {
const LChar* m_data8;
const UChar* m_data16;
// It seems that reinterpret_cast prevents constexpr's compile time initialization in VC++.
// These are needed to avoid reinterpret_cast.
const char* m_data8Char;
const char16_t* m_data16Char;
};
mutable unsigned m_hashAndFlags;
};
// FIXME: Use of StringImpl and const is rather confused.
// The actual string inside a StringImpl is immutable, so you can't modify a string using a StringImpl&.
// We could mark every member function const and always use "const StringImpl&" and "const StringImpl*".
// Or we could say that "const" doesn't make sense at all and use "StringImpl&" and "StringImpl*" everywhere.
// Right now we use a mix of both, which makes code more confusing and has no benefit.
DECLARE_ALLOCATOR_WITH_HEAP_IDENTIFIER(StringImpl);
class StringImpl : private StringImplShape {
WTF_MAKE_NONCOPYABLE(StringImpl);
WTF_MAKE_FAST_ALLOCATED_WITH_HEAP_IDENTIFIER(StringImpl);
friend class AtomStringImpl;
friend class JSC::LLInt::Data;
friend class JSC::LLIntOffsetsExtractor;
friend class PrivateSymbolImpl;
friend class RegisteredSymbolImpl;
friend class SymbolImpl;
friend class ExternalStringImpl;
friend struct WTF::CStringTranslator;
friend struct WTF::HashAndUTF8CharactersTranslator;
friend struct WTF::LCharBufferTranslator;
friend struct WTF::SubstringTranslator;
friend struct WTF::UCharBufferTranslator;
template<typename> friend struct WTF::BufferFromStaticDataTranslator;
template<typename> friend struct WTF::HashAndCharactersTranslator;
public:
enum BufferOwnership { BufferInternal, BufferOwned, BufferSubstring, BufferExternal };
static constexpr unsigned MaxLength = StringImplShape::MaxLength;
// The bottom 6 bits in the hash are flags.
static constexpr const unsigned s_flagCount = 6;
private:
static constexpr const unsigned s_flagMask = (1u << s_flagCount) - 1;
static_assert(s_flagCount <= StringHasher::flagCount, "StringHasher reserves enough bits for StringImpl flags");
static constexpr const unsigned s_flagStringKindCount = 4;
static constexpr const unsigned s_hashFlagStringKindIsAtom = 1u << (s_flagStringKindCount);
static constexpr const unsigned s_hashFlagStringKindIsSymbol = 1u << (s_flagStringKindCount + 1);
static constexpr const unsigned s_hashMaskStringKind = s_hashFlagStringKindIsAtom | s_hashFlagStringKindIsSymbol;
static constexpr const unsigned s_hashFlagDidReportCost = 1u << 3;
static constexpr const unsigned s_hashFlag8BitBuffer = 1u << 2;
static constexpr const unsigned s_hashMaskBufferOwnership = (1u << 0) | (1u << 1);
enum StringKind {
StringNormal = 0u, // non-symbol, non-atomic
StringAtom = s_hashFlagStringKindIsAtom, // non-symbol, atomic
StringSymbol = s_hashFlagStringKindIsSymbol, // symbol, non-atomic
};
// Create a normal 8-bit string with internal storage (BufferInternal).
enum Force8Bit { Force8BitConstructor };
StringImpl(unsigned length, Force8Bit);
// Create a normal 16-bit string with internal storage (BufferInternal).
explicit StringImpl(unsigned length);
// Create a StringImpl adopting ownership of the provided buffer (BufferOwned).
template<typename Malloc> StringImpl(MallocPtr<LChar, Malloc>, unsigned length);
template<typename Malloc> StringImpl(MallocPtr<UChar, Malloc>, unsigned length);
enum ConstructWithoutCopyingTag { ConstructWithoutCopying };
StringImpl(const UChar*, unsigned length, ConstructWithoutCopyingTag);
StringImpl(const LChar*, unsigned length, ConstructWithoutCopyingTag);
// Used to create new strings that are a substring of an existing StringImpl (BufferSubstring).
StringImpl(const LChar*, unsigned length, Ref<StringImpl>&&);
StringImpl(const UChar*, unsigned length, Ref<StringImpl>&&);
public:
WTF_EXPORT_PRIVATE static void destroy(StringImpl*);
WTF_EXPORT_PRIVATE static Ref<StringImpl> create(const UChar*, unsigned length);
WTF_EXPORT_PRIVATE static Ref<StringImpl> create(const LChar*, unsigned length);
WTF_EXPORT_PRIVATE static Ref<StringImpl> create8BitIfPossible(const UChar*, unsigned length);
template<size_t inlineCapacity> static Ref<StringImpl> create8BitIfPossible(const Vector<UChar, inlineCapacity>&);
WTF_EXPORT_PRIVATE static Ref<StringImpl> create8BitIfPossible(const UChar*);
ALWAYS_INLINE static Ref<StringImpl> create(const char* characters, unsigned length) { return create(reinterpret_cast<const LChar*>(characters), length); }
WTF_EXPORT_PRIVATE static Ref<StringImpl> create(const LChar*);
ALWAYS_INLINE static Ref<StringImpl> create(const char* string) { return create(reinterpret_cast<const LChar*>(string)); }
static Ref<StringImpl> createSubstringSharingImpl(StringImpl&, unsigned offset, unsigned length);
template<unsigned characterCount> static Ref<StringImpl> createFromLiteral(const char (&)[characterCount]);
// FIXME: Replace calls to these overloads of createFromLiteral to createWithoutCopying instead.
WTF_EXPORT_PRIVATE static Ref<StringImpl> createFromLiteral(const char*, unsigned length);
WTF_EXPORT_PRIVATE static Ref<StringImpl> createFromLiteral(const char*);
WTF_EXPORT_PRIVATE static Ref<StringImpl> createWithoutCopying(const UChar*, unsigned length);
WTF_EXPORT_PRIVATE static Ref<StringImpl> createWithoutCopying(const LChar*, unsigned length);
WTF_EXPORT_PRIVATE static Ref<StringImpl> createUninitialized(unsigned length, LChar*&);
WTF_EXPORT_PRIVATE static Ref<StringImpl> createUninitialized(unsigned length, UChar*&);
template<typename CharacterType> static RefPtr<StringImpl> tryCreateUninitialized(unsigned length, CharacterType*&);
// Reallocate the StringImpl. The originalString must be only owned by the Ref,
// and the buffer ownership must be BufferInternal. Just like the input pointer of realloc(),
// the originalString can't be used after this function.
static Ref<StringImpl> reallocate(Ref<StringImpl>&& originalString, unsigned length, LChar*& data);
static Ref<StringImpl> reallocate(Ref<StringImpl>&& originalString, unsigned length, UChar*& data);
static Expected<Ref<StringImpl>, UTF8ConversionError> tryReallocate(Ref<StringImpl>&& originalString, unsigned length, LChar*& data);
static Expected<Ref<StringImpl>, UTF8ConversionError> tryReallocate(Ref<StringImpl>&& originalString, unsigned length, UChar*& data);
static unsigned flagsOffset() { return OBJECT_OFFSETOF(StringImpl, m_hashAndFlags); }
static constexpr unsigned flagIs8Bit() { return s_hashFlag8BitBuffer; }
static constexpr unsigned flagIsAtom() { return s_hashFlagStringKindIsAtom; }
static constexpr unsigned flagIsSymbol() { return s_hashFlagStringKindIsSymbol; }
static constexpr unsigned maskStringKind() { return s_hashMaskStringKind; }
static unsigned dataOffset() { return OBJECT_OFFSETOF(StringImpl, m_data8); }
template<typename CharacterType, size_t inlineCapacity, typename OverflowHandler, size_t minCapacity, typename Malloc>
static Ref<StringImpl> adopt(Vector<CharacterType, inlineCapacity, OverflowHandler, minCapacity, Malloc>&&);
WTF_EXPORT_PRIVATE static Ref<StringImpl> adopt(StringBuffer<UChar>&&);
WTF_EXPORT_PRIVATE static Ref<StringImpl> adopt(StringBuffer<LChar>&&);
unsigned length() const { return m_length; }
static ptrdiff_t lengthMemoryOffset() { return OBJECT_OFFSETOF(StringImpl, m_length); }
bool isEmpty() const { return !m_length; }
bool is8Bit() const { return m_hashAndFlags & s_hashFlag8BitBuffer; }
ALWAYS_INLINE const LChar* characters8() const { ASSERT(is8Bit()); return m_data8; }
ALWAYS_INLINE const UChar* characters16() const { ASSERT(!is8Bit()); return m_data16; }
template<typename CharacterType> const CharacterType* characters() const;
size_t cost() const;
size_t costDuringGC();
WTF_EXPORT_PRIVATE size_t sizeInBytes() const;
bool isSymbol() const { return m_hashAndFlags & s_hashFlagStringKindIsSymbol; }
bool isAtom() const { return m_hashAndFlags & s_hashFlagStringKindIsAtom; }
void setIsAtom(bool);
bool isExternal() const { return bufferOwnership() == BufferExternal; }
bool isSubString() const { return bufferOwnership() == BufferSubstring; }
static WTF_EXPORT_PRIVATE Expected<CString, UTF8ConversionError> utf8ForCharacters(const LChar* characters, unsigned length);
static WTF_EXPORT_PRIVATE Expected<CString, UTF8ConversionError> utf8ForCharacters(const UChar* characters, unsigned length, ConversionMode = LenientConversion);
WTF_EXPORT_PRIVATE Expected<CString, UTF8ConversionError> tryGetUtf8ForRange(unsigned offset, unsigned length, ConversionMode = LenientConversion) const;
WTF_EXPORT_PRIVATE Expected<CString, UTF8ConversionError> tryGetUtf8(ConversionMode = LenientConversion) const;
WTF_EXPORT_PRIVATE CString utf8(ConversionMode = LenientConversion) const;
private:
static WTF_EXPORT_PRIVATE UTF8ConversionError utf8Impl(const UChar* characters, unsigned length, char*& buffer, size_t bufferSize, ConversionMode);
// The high bits of 'hash' are always empty, but we prefer to store our flags
// in the low bits because it makes them slightly more efficient to access.
// So, we shift left and right when setting and getting our hash code.
void setHash(unsigned) const;
unsigned rawHash() const { return m_hashAndFlags >> s_flagCount; }
public:
bool hasHash() const { return !!rawHash(); }
unsigned existingHash() const { ASSERT(hasHash()); return rawHash(); }
unsigned hash() const { return hasHash() ? rawHash() : hashSlowCase(); }
WTF_EXPORT_PRIVATE unsigned concurrentHash() const;
unsigned symbolAwareHash() const;
unsigned existingSymbolAwareHash() const;
bool isStatic() const { return m_refCount & s_refCountFlagIsStaticString; }
size_t refCount() const { return m_refCount / s_refCountIncrement; }
bool hasOneRef() const { return m_refCount == s_refCountIncrement; }
bool hasAtLeastOneRef() const { return m_refCount; } // For assertions.
void ref();
void deref();
class StaticStringImpl : private StringImplShape {
WTF_MAKE_NONCOPYABLE(StaticStringImpl);
public:
// Used to construct static strings, which have an special refCount that can never hit zero.
// This means that the static string will never be destroyed, which is important because
// static strings will be shared across threads & ref-counted in a non-threadsafe manner.
//
// In order to make StaticStringImpl thread safe, we also need to ensure that the rest of
// the fields are never mutated by threads. We have this guarantee because:
//
// 1. m_length is only set on construction and never mutated thereafter.
//
// 2. m_data8 and m_data16 are only set on construction and never mutated thereafter.
// We also know that a StringImpl never changes from 8 bit to 16 bit because there
// is no way to set/clear the s_hashFlag8BitBuffer flag other than at construction.
//
// 3. m_hashAndFlags will not be mutated by different threads because:
//
// a. StaticStringImpl's constructor sets the s_hashFlagDidReportCost flag to ensure
// that StringImpl::cost() returns early.
// This means StaticStringImpl costs are not counted. But since there should only
// be a finite set of StaticStringImpls, their cost can be aggregated into a single
// system cost if needed.
// b. setIsAtom() is never called on a StaticStringImpl.
// setIsAtom() asserts !isStatic().
// c. setHash() is never called on a StaticStringImpl.
// StaticStringImpl's constructor sets the hash on construction.
// StringImpl::hash() only sets a new hash iff !hasHash().
// Additionally, StringImpl::setHash() asserts hasHash() and !isStatic().
template<unsigned characterCount> constexpr StaticStringImpl(const char (&characters)[characterCount], StringKind = StringNormal);
template<unsigned characterCount> constexpr StaticStringImpl(const char16_t (&characters)[characterCount], StringKind = StringNormal);
operator StringImpl&();
};
WTF_EXPORT_PRIVATE static StaticStringImpl s_emptyAtomString;
ALWAYS_INLINE static StringImpl* empty() { return reinterpret_cast<StringImpl*>(&s_emptyAtomString); }
// FIXME: Does this really belong in StringImpl?
template<typename SourceCharacterType, typename DestinationCharacterType> static void copyCharacters(DestinationCharacterType* destination, const SourceCharacterType* source, unsigned numCharacters);
// Some string features, like reference counting and the atomicity flag, are not
// thread-safe. We achieve thread safety by isolation, giving each thread
// its own copy of the string.
Ref<StringImpl> isolatedCopy() const;
WTF_EXPORT_PRIVATE Ref<StringImpl> substring(unsigned position, unsigned length = MaxLength);
UChar at(unsigned) const;
UChar operator[](unsigned i) const { return at(i); }
WTF_EXPORT_PRIVATE UChar32 characterStartingAt(unsigned);
int toIntStrict(bool* ok = 0, int base = 10);
unsigned toUIntStrict(bool* ok = 0, int base = 10);
int64_t toInt64Strict(bool* ok = 0, int base = 10);
uint64_t toUInt64Strict(bool* ok = 0, int base = 10);
intptr_t toIntPtrStrict(bool* ok = 0, int base = 10);
WTF_EXPORT_PRIVATE int toInt(bool* ok = 0); // ignores trailing garbage
unsigned toUInt(bool* ok = 0); // ignores trailing garbage
int64_t toInt64(bool* ok = 0); // ignores trailing garbage
uint64_t toUInt64(bool* ok = 0); // ignores trailing garbage
intptr_t toIntPtr(bool* ok = 0); // ignores trailing garbage
// FIXME: Like the strict functions above, these give false for "ok" when there is trailing garbage.
// Like the non-strict functions above, these return the value when there is trailing garbage.
// It would be better if these were more consistent with the above functions instead.
double toDouble(bool* ok = 0);
float toFloat(bool* ok = 0);
WTF_EXPORT_PRIVATE Ref<StringImpl> convertToASCIILowercase();
WTF_EXPORT_PRIVATE Ref<StringImpl> convertToASCIIUppercase();
WTF_EXPORT_PRIVATE Ref<StringImpl> convertToLowercaseWithoutLocale();
WTF_EXPORT_PRIVATE Ref<StringImpl> convertToLowercaseWithoutLocaleStartingAtFailingIndex8Bit(unsigned);
WTF_EXPORT_PRIVATE Ref<StringImpl> convertToUppercaseWithoutLocale();
WTF_EXPORT_PRIVATE Ref<StringImpl> convertToLowercaseWithLocale(const AtomString& localeIdentifier);
WTF_EXPORT_PRIVATE Ref<StringImpl> convertToUppercaseWithLocale(const AtomString& localeIdentifier);
Ref<StringImpl> foldCase();
Ref<StringImpl> stripWhiteSpace();
WTF_EXPORT_PRIVATE Ref<StringImpl> simplifyWhiteSpace();
Ref<StringImpl> simplifyWhiteSpace(CodeUnitMatchFunction);
Ref<StringImpl> stripLeadingAndTrailingCharacters(CodeUnitMatchFunction);
Ref<StringImpl> removeCharacters(CodeUnitMatchFunction);
bool isAllASCII() const;
bool isAllLatin1() const;
template<bool isSpecialCharacter(UChar)> bool isAllSpecialCharacters() const;
size_t find(LChar character, unsigned start = 0);
size_t find(char character, unsigned start = 0);
size_t find(UChar character, unsigned start = 0);
WTF_EXPORT_PRIVATE size_t find(CodeUnitMatchFunction, unsigned index = 0);
size_t find(const LChar*, unsigned index = 0);
ALWAYS_INLINE size_t find(const char* string, unsigned index = 0) { return find(reinterpret_cast<const LChar*>(string), index); }
WTF_EXPORT_PRIVATE size_t find(StringImpl*);
WTF_EXPORT_PRIVATE size_t find(StringImpl*, unsigned index);
WTF_EXPORT_PRIVATE size_t findIgnoringASCIICase(const StringImpl&) const;
WTF_EXPORT_PRIVATE size_t findIgnoringASCIICase(const StringImpl&, unsigned startOffset) const;
WTF_EXPORT_PRIVATE size_t findIgnoringASCIICase(const StringImpl*) const;
WTF_EXPORT_PRIVATE size_t findIgnoringASCIICase(const StringImpl*, unsigned startOffset) const;
WTF_EXPORT_PRIVATE size_t reverseFind(UChar, unsigned index = MaxLength);
WTF_EXPORT_PRIVATE size_t reverseFind(StringImpl*, unsigned index = MaxLength);
WTF_EXPORT_PRIVATE bool startsWith(const StringImpl*) const;
WTF_EXPORT_PRIVATE bool startsWith(const StringImpl&) const;
WTF_EXPORT_PRIVATE bool startsWithIgnoringASCIICase(const StringImpl*) const;
WTF_EXPORT_PRIVATE bool startsWithIgnoringASCIICase(const StringImpl&) const;
WTF_EXPORT_PRIVATE bool startsWith(UChar) const;
WTF_EXPORT_PRIVATE bool startsWith(const char*, unsigned matchLength) const;
template<unsigned matchLength> bool startsWith(const char (&prefix)[matchLength]) const { return startsWith(prefix, matchLength - 1); }
WTF_EXPORT_PRIVATE bool hasInfixStartingAt(const StringImpl&, unsigned startOffset) const;
WTF_EXPORT_PRIVATE bool endsWith(StringImpl*);
WTF_EXPORT_PRIVATE bool endsWith(StringImpl&);
WTF_EXPORT_PRIVATE bool endsWithIgnoringASCIICase(const StringImpl*) const;
WTF_EXPORT_PRIVATE bool endsWithIgnoringASCIICase(const StringImpl&) const;
WTF_EXPORT_PRIVATE bool endsWith(UChar) const;
WTF_EXPORT_PRIVATE bool endsWith(const char*, unsigned matchLength) const;
template<unsigned matchLength> bool endsWith(const char (&prefix)[matchLength]) const { return endsWith(prefix, matchLength - 1); }
WTF_EXPORT_PRIVATE bool hasInfixEndingAt(const StringImpl&, unsigned endOffset) const;
WTF_EXPORT_PRIVATE Ref<StringImpl> replace(UChar, UChar);
WTF_EXPORT_PRIVATE Ref<StringImpl> replace(UChar, StringImpl*);
ALWAYS_INLINE Ref<StringImpl> replace(UChar pattern, const char* replacement, unsigned replacementLength) { return replace(pattern, reinterpret_cast<const LChar*>(replacement), replacementLength); }
WTF_EXPORT_PRIVATE Ref<StringImpl> replace(UChar, const LChar*, unsigned replacementLength);
Ref<StringImpl> replace(UChar, const UChar*, unsigned replacementLength);
WTF_EXPORT_PRIVATE Ref<StringImpl> replace(StringImpl*, StringImpl*);
WTF_EXPORT_PRIVATE Ref<StringImpl> replace(unsigned index, unsigned length, StringImpl*);
WTF_EXPORT_PRIVATE UCharDirection defaultWritingDirection(bool* hasStrongDirectionality = nullptr);
#if USE(CF)
RetainPtr<CFStringRef> createCFString();
#endif
#ifdef __OBJC__
WTF_EXPORT_PRIVATE operator NSString *();
#endif
#if STRING_STATS
ALWAYS_INLINE static StringStats& stringStats() { return m_stringStats; }
#endif
BufferOwnership bufferOwnership() const { return static_cast<BufferOwnership>(m_hashAndFlags & s_hashMaskBufferOwnership); }
template<typename T> static size_t headerSize() { return tailOffset<T>(); }
protected:
~StringImpl();
// Used to create new symbol string that holds an existing [[Description]] string as a substring buffer (BufferSubstring).
enum CreateSymbolTag { CreateSymbol };
StringImpl(CreateSymbolTag, const LChar*, unsigned length);
StringImpl(CreateSymbolTag, const UChar*, unsigned length);
// Null symbol.
explicit StringImpl(CreateSymbolTag);
private:
template<typename> static size_t allocationSize(Checked<size_t> tailElementCount);
template<typename> static size_t maxInternalLength();
template<typename> static size_t tailOffset();
bool requiresCopy() const;
template<typename T> const T* tailPointer() const;
template<typename T> T* tailPointer();
StringImpl* const& substringBuffer() const;
StringImpl*& substringBuffer();
enum class CaseConvertType { Upper, Lower };
template<CaseConvertType, typename CharacterType> static Ref<StringImpl> convertASCIICase(StringImpl&, const CharacterType*, unsigned);
template<class CodeUnitPredicate> Ref<StringImpl> stripMatchedCharacters(CodeUnitPredicate);
template<typename CharacterType> ALWAYS_INLINE Ref<StringImpl> removeCharacters(const CharacterType* characters, CodeUnitMatchFunction);
template<typename CharacterType, class CodeUnitPredicate> Ref<StringImpl> simplifyMatchedCharactersToSpace(CodeUnitPredicate);
template<typename CharacterType> static Ref<StringImpl> constructInternal(StringImpl&, unsigned);
template<typename CharacterType> static Ref<StringImpl> createUninitializedInternal(unsigned, CharacterType*&);
template<typename CharacterType> static Ref<StringImpl> createUninitializedInternalNonEmpty(unsigned, CharacterType*&);
template<typename CharacterType> static Expected<Ref<StringImpl>, UTF8ConversionError> reallocateInternal(Ref<StringImpl>&&, unsigned, CharacterType*&);
template<typename CharacterType> static Ref<StringImpl> createInternal(const CharacterType*, unsigned);
WTF_EXPORT_PRIVATE NEVER_INLINE unsigned hashSlowCase() const;
// The bottom bit in the ref count indicates a static (immortal) string.
static constexpr unsigned s_refCountFlagIsStaticString = 0x1;
static constexpr unsigned s_refCountIncrement = 0x2; // This allows us to ref / deref without disturbing the static string flag.
#if STRING_STATS
WTF_EXPORT_PRIVATE static StringStats m_stringStats;
#endif
public:
void assertHashIsCorrect() const;
};
using StaticStringImpl = StringImpl::StaticStringImpl;
static_assert(sizeof(StringImpl) == sizeof(StaticStringImpl), "");
#if ASSERT_ENABLED
// StringImpls created from StaticStringImpl will ASSERT in the generic ValueCheck<T>::checkConsistency
// as they are not allocated by fastMalloc. We don't currently have any way to detect that case
// so we ignore the consistency check for all StringImpl*.
template<> struct ValueCheck<StringImpl*> {
static void checkConsistency(const StringImpl*) { }
};
#endif // ASSERT_ENABLED
WTF_EXPORT_PRIVATE bool equal(const StringImpl*, const StringImpl*);
WTF_EXPORT_PRIVATE bool equal(const StringImpl*, const LChar*);
inline bool equal(const StringImpl* a, const char* b) { return equal(a, reinterpret_cast<const LChar*>(b)); }
WTF_EXPORT_PRIVATE bool equal(const StringImpl*, const LChar*, unsigned);
WTF_EXPORT_PRIVATE bool equal(const StringImpl*, const UChar*, unsigned);
inline bool equal(const StringImpl* a, const char* b, unsigned length) { return equal(a, reinterpret_cast<const LChar*>(b), length); }
inline bool equal(const LChar* a, StringImpl* b) { return equal(b, a); }
inline bool equal(const char* a, StringImpl* b) { return equal(b, reinterpret_cast<const LChar*>(a)); }
WTF_EXPORT_PRIVATE bool equal(const StringImpl& a, const StringImpl& b);
WTF_EXPORT_PRIVATE bool equalIgnoringNullity(StringImpl*, StringImpl*);
WTF_EXPORT_PRIVATE bool equalIgnoringNullity(const UChar*, size_t length, StringImpl*);
bool equalIgnoringASCIICase(const StringImpl&, const StringImpl&);
WTF_EXPORT_PRIVATE bool equalIgnoringASCIICase(const StringImpl*, const StringImpl*);
bool equalIgnoringASCIICase(const StringImpl&, const char*);
bool equalIgnoringASCIICase(const StringImpl*, const char*);
WTF_EXPORT_PRIVATE bool equalIgnoringASCIICaseNonNull(const StringImpl*, const StringImpl*);
template<unsigned length> bool equalLettersIgnoringASCIICase(const StringImpl&, const char (&lowercaseLetters)[length]);
template<unsigned length> bool equalLettersIgnoringASCIICase(const StringImpl*, const char (&lowercaseLetters)[length]);
size_t find(const LChar*, unsigned length, CodeUnitMatchFunction, unsigned index = 0);
size_t find(const UChar*, unsigned length, CodeUnitMatchFunction, unsigned index = 0);
template<typename CharacterType> size_t reverseFindLineTerminator(const CharacterType*, unsigned length, unsigned index = StringImpl::MaxLength);
template<typename CharacterType> size_t reverseFind(const CharacterType*, unsigned length, CharacterType matchCharacter, unsigned index = StringImpl::MaxLength);
size_t reverseFind(const UChar*, unsigned length, LChar matchCharacter, unsigned index = StringImpl::MaxLength);
size_t reverseFind(const LChar*, unsigned length, UChar matchCharacter, unsigned index = StringImpl::MaxLength);
template<size_t inlineCapacity> bool equalIgnoringNullity(const Vector<UChar, inlineCapacity>&, StringImpl*);
template<typename CharacterType1, typename CharacterType2> int codePointCompare(const CharacterType1*, unsigned length1, const CharacterType2*, unsigned length2);
int codePointCompare(const StringImpl*, const StringImpl*);
// FIXME: Should rename this to make clear it uses the Unicode definition of whitespace.
// Most WebKit callers don't want that would use isASCIISpace or isHTMLSpace instead.
bool isSpaceOrNewline(UChar32);
template<typename CharacterType> unsigned lengthOfNullTerminatedString(const CharacterType*);
// StringHash is the default hash for StringImpl* and RefPtr<StringImpl>
template<typename T> struct DefaultHash;
template<> struct DefaultHash<StringImpl*> {
typedef StringHash Hash;
};
template<> struct DefaultHash<RefPtr<StringImpl>> {
typedef StringHash Hash;
};
#define MAKE_STATIC_STRING_IMPL(characters) ([] { \
static StaticStringImpl impl(characters); \
return &impl; \
}())
template<> ALWAYS_INLINE Ref<StringImpl> StringImpl::constructInternal<LChar>(StringImpl& string, unsigned length)
{
return adoptRef(*new (NotNull, &string) StringImpl { length, Force8BitConstructor });
}
template<> ALWAYS_INLINE Ref<StringImpl> StringImpl::constructInternal<UChar>(StringImpl& string, unsigned length)
{
return adoptRef(*new (NotNull, &string) StringImpl { length });
}
template<> ALWAYS_INLINE const LChar* StringImpl::characters<LChar>() const
{
return characters8();
}
template<> ALWAYS_INLINE const UChar* StringImpl::characters<UChar>() const
{
return characters16();
}
inline size_t find(const LChar* characters, unsigned length, CodeUnitMatchFunction matchFunction, unsigned index)
{
while (index < length) {
if (matchFunction(characters[index]))
return index;
++index;
}
return notFound;
}
inline size_t find(const UChar* characters, unsigned length, CodeUnitMatchFunction matchFunction, unsigned index)
{
while (index < length) {
if (matchFunction(characters[index]))
return index;
++index;
}
return notFound;
}
template<typename CharacterType> inline size_t reverseFindLineTerminator(const CharacterType* characters, unsigned length, unsigned index)
{
if (!length)
return notFound;
if (index >= length)
index = length - 1;
auto character = characters[index];
while (character != '\n' && character != '\r') {
if (!index--)
return notFound;
character = characters[index];
}
return index;
}
template<typename CharacterType> inline size_t reverseFind(const CharacterType* characters, unsigned length, CharacterType matchCharacter, unsigned index)
{
if (!length)
return notFound;
if (index >= length)
index = length - 1;
while (characters[index] != matchCharacter) {
if (!index--)
return notFound;
}
return index;
}
ALWAYS_INLINE size_t reverseFind(const UChar* characters, unsigned length, LChar matchCharacter, unsigned index)
{
return reverseFind(characters, length, static_cast<UChar>(matchCharacter), index);
}
inline size_t reverseFind(const LChar* characters, unsigned length, UChar matchCharacter, unsigned index)
{
if (!isLatin1(matchCharacter))
return notFound;
return reverseFind(characters, length, static_cast<LChar>(matchCharacter), index);
}
inline size_t StringImpl::find(LChar character, unsigned start)
{
if (is8Bit())
return WTF::find(characters8(), m_length, character, start);
return WTF::find(characters16(), m_length, character, start);
}
ALWAYS_INLINE size_t StringImpl::find(char character, unsigned start)
{
return find(static_cast<LChar>(character), start);
}
inline size_t StringImpl::find(UChar character, unsigned start)
{
if (is8Bit())
return WTF::find(characters8(), m_length, character, start);
return WTF::find(characters16(), m_length, character, start);
}
template<size_t inlineCapacity> inline bool equalIgnoringNullity(const Vector<UChar, inlineCapacity>& a, StringImpl* b)
{
return equalIgnoringNullity(a.data(), a.size(), b);
}
template<typename CharacterType1, typename CharacterType2> inline int codePointCompare(const CharacterType1* characters1, unsigned length1, const CharacterType2* characters2, unsigned length2)
{
unsigned commonLength = std::min(length1, length2);
unsigned position = 0;
while (position < commonLength && *characters1 == *characters2) {
++characters1;
++characters2;
++position;
}
if (position < commonLength)
return (characters1[0] > characters2[0]) ? 1 : -1;
if (length1 == length2)
return 0;
return (length1 > length2) ? 1 : -1;
}
inline int codePointCompare(const StringImpl* string1, const StringImpl* string2)
{
// FIXME: Should null strings compare as less than empty strings rather than equal to them?
if (!string1)
return (string2 && string2->length()) ? -1 : 0;
if (!string2)
return string1->length() ? 1 : 0;
bool string1Is8Bit = string1->is8Bit();
bool string2Is8Bit = string2->is8Bit();
if (string1Is8Bit) {
if (string2Is8Bit)
return codePointCompare(string1->characters8(), string1->length(), string2->characters8(), string2->length());
return codePointCompare(string1->characters8(), string1->length(), string2->characters16(), string2->length());
}
if (string2Is8Bit)
return codePointCompare(string1->characters16(), string1->length(), string2->characters8(), string2->length());
return codePointCompare(string1->characters16(), string1->length(), string2->characters16(), string2->length());
}
inline bool isSpaceOrNewline(UChar32 character)
{
// Use isASCIISpace() for all Latin-1 characters. This will include newlines, which aren't included in Unicode DirWS.
return isLatin1(character) ? isASCIISpace(character) : u_charDirection(character) == U_WHITE_SPACE_NEUTRAL;
}
template<typename CharacterType> inline unsigned lengthOfNullTerminatedString(const CharacterType* string)
{
ASSERT(string);
size_t length = 0;
while (string[length])
++length;
RELEASE_ASSERT(length < StringImpl::MaxLength);
return static_cast<unsigned>(length);
}
inline StringImplShape::StringImplShape(unsigned refCount, unsigned length, const LChar* data8, unsigned hashAndFlags)
: m_refCount(refCount)
, m_length(length)
, m_data8(data8)
, m_hashAndFlags(hashAndFlags)
{
}
inline StringImplShape::StringImplShape(unsigned refCount, unsigned length, const UChar* data16, unsigned hashAndFlags)
: m_refCount(refCount)
, m_length(length)
, m_data16(data16)
, m_hashAndFlags(hashAndFlags)
{
}
template<unsigned characterCount> constexpr StringImplShape::StringImplShape(unsigned refCount, unsigned length, const char (&characters)[characterCount], unsigned hashAndFlags, ConstructWithConstExprTag)
: m_refCount(refCount)
, m_length(length)
, m_data8Char(characters)
, m_hashAndFlags(hashAndFlags)
{
}
template<unsigned characterCount> constexpr StringImplShape::StringImplShape(unsigned refCount, unsigned length, const char16_t (&characters)[characterCount], unsigned hashAndFlags, ConstructWithConstExprTag)
: m_refCount(refCount)
, m_length(length)
, m_data16Char(characters)
, m_hashAndFlags(hashAndFlags)
{
}
inline Ref<StringImpl> StringImpl::isolatedCopy() const
{
if (!requiresCopy()) {
if (is8Bit())
return StringImpl::createWithoutCopying(m_data8, m_length);
return StringImpl::createWithoutCopying(m_data16, m_length);
}
if (is8Bit())
return create(m_data8, m_length);
return create(m_data16, m_length);
}
inline bool StringImpl::isAllASCII() const
{
if (is8Bit())
return charactersAreAllASCII(characters8(), length());
return charactersAreAllASCII(characters16(), length());
}
inline bool StringImpl::isAllLatin1() const
{
if (is8Bit())
return true;
auto* characters = characters16();
UChar ored = 0;
for (size_t i = 0; i < length(); ++i)
ored |= characters[i];
return !(ored & 0xFF00);
}
template<bool isSpecialCharacter(UChar), typename CharacterType> inline bool isAllSpecialCharacters(const CharacterType* characters, size_t length)
{
for (size_t i = 0; i < length; ++i) {
if (!isSpecialCharacter(characters[i]))
return false;
}
return true;
}
template<bool isSpecialCharacter(UChar)> inline bool StringImpl::isAllSpecialCharacters() const
{
if (is8Bit())
return WTF::isAllSpecialCharacters<isSpecialCharacter>(characters8(), length());
return WTF::isAllSpecialCharacters<isSpecialCharacter>(characters16(), length());
}
inline StringImpl::StringImpl(unsigned length, Force8Bit)
: StringImplShape(s_refCountIncrement, length, tailPointer<LChar>(), s_hashFlag8BitBuffer | StringNormal | BufferInternal)
{
ASSERT(m_data8);
ASSERT(m_length);
STRING_STATS_ADD_8BIT_STRING(m_length);
}
inline StringImpl::StringImpl(unsigned length)
: StringImplShape(s_refCountIncrement, length, tailPointer<UChar>(), StringNormal | BufferInternal)
{
ASSERT(m_data16);
ASSERT(m_length);
STRING_STATS_ADD_16BIT_STRING(m_length);
}
template<typename Malloc>
inline StringImpl::StringImpl(MallocPtr<LChar, Malloc> characters, unsigned length)
: StringImplShape(s_refCountIncrement, length, static_cast<const LChar*>(nullptr), s_hashFlag8BitBuffer | StringNormal | BufferOwned)
{
if constexpr (std::is_same<Malloc, StringImplMalloc>::value)
m_data8 = characters.leakPtr();
else {
m_data8 = static_cast<const LChar*>(StringImplMalloc::malloc(length));
memcpy((void*)m_data8, characters.get(), length);
}
ASSERT(m_data8);
ASSERT(m_length);
STRING_STATS_ADD_8BIT_STRING(m_length);
}
inline StringImpl::StringImpl(const UChar* characters, unsigned length, ConstructWithoutCopyingTag)
: StringImplShape(s_refCountIncrement, length, characters, StringNormal | BufferInternal)
{
ASSERT(m_data16);
ASSERT(m_length);
STRING_STATS_ADD_16BIT_STRING(m_length);
}
inline StringImpl::StringImpl(const LChar* characters, unsigned length, ConstructWithoutCopyingTag)
: StringImplShape(s_refCountIncrement, length, characters, s_hashFlag8BitBuffer | StringNormal | BufferInternal)
{
ASSERT(m_data8);
ASSERT(m_length);
STRING_STATS_ADD_8BIT_STRING(m_length);
}
template<typename Malloc>
inline StringImpl::StringImpl(MallocPtr<UChar, Malloc> characters, unsigned length)
: StringImplShape(s_refCountIncrement, length, static_cast<const UChar*>(nullptr), StringNormal | BufferOwned)
{
if constexpr (std::is_same<Malloc, StringImplMalloc>::value)
m_data16 = characters.leakPtr();
else {
m_data16 = static_cast<const UChar*>(StringImplMalloc::malloc(length * sizeof(UChar)));
memcpy((void*)m_data16, characters.get(), length * sizeof(UChar));
}
ASSERT(m_data16);
ASSERT(m_length);
STRING_STATS_ADD_16BIT_STRING(m_length);
}
inline StringImpl::StringImpl(const LChar* characters, unsigned length, Ref<StringImpl>&& base)
: StringImplShape(s_refCountIncrement, length, characters, s_hashFlag8BitBuffer | StringNormal | BufferSubstring)
{
ASSERT(is8Bit());
ASSERT(m_data8);
ASSERT(m_length);
ASSERT(base->bufferOwnership() != BufferSubstring);
substringBuffer() = &base.leakRef();
STRING_STATS_ADD_8BIT_STRING2(m_length, true);
}
inline StringImpl::StringImpl(const UChar* characters, unsigned length, Ref<StringImpl>&& base)
: StringImplShape(s_refCountIncrement, length, characters, StringNormal | BufferSubstring)
{
ASSERT(!is8Bit());
ASSERT(m_data16);
ASSERT(m_length);
ASSERT(base->bufferOwnership() != BufferSubstring);
substringBuffer() = &base.leakRef();
STRING_STATS_ADD_16BIT_STRING2(m_length, true);
}
template<size_t inlineCapacity> inline Ref<StringImpl> StringImpl::create8BitIfPossible(const Vector<UChar, inlineCapacity>& vector)
{
return create8BitIfPossible(vector.data(), vector.size());
}
ALWAYS_INLINE Ref<StringImpl> StringImpl::createSubstringSharingImpl(StringImpl& rep, unsigned offset, unsigned length)
{
ASSERT(length <= rep.length());
if (!length)
return *empty();
// Coyping the thing would save more memory sometimes, largely due to the size of pointer.
size_t substringSize = allocationSize<StringImpl*>(1);
if (rep.is8Bit()) {
if (substringSize >= allocationSize<LChar>(length))
return create(rep.m_data8 + offset, length);
} else {
if (substringSize >= allocationSize<UChar>(length))
return create(rep.m_data16 + offset, length);
}
auto* ownerRep = ((rep.bufferOwnership() == BufferSubstring) ? rep.substringBuffer() : &rep);
// We allocate a buffer that contains both the StringImpl struct as well as the pointer to the owner string.
auto* stringImpl = static_cast<StringImpl*>(StringImplMalloc::malloc(substringSize));
if (rep.is8Bit())
return adoptRef(*new (NotNull, stringImpl) StringImpl(rep.m_data8 + offset, length, *ownerRep));
return adoptRef(*new (NotNull, stringImpl) StringImpl(rep.m_data16 + offset, length, *ownerRep));
}
template<unsigned characterCount> ALWAYS_INLINE Ref<StringImpl> StringImpl::createFromLiteral(const char (&characters)[characterCount])
{
COMPILE_ASSERT(characterCount > 1, StringImplFromLiteralNotEmpty);
COMPILE_ASSERT((characterCount - 1 <= ((unsigned(~0) - sizeof(StringImpl)) / sizeof(LChar))), StringImplFromLiteralCannotOverflow);
return createWithoutCopying(reinterpret_cast<const LChar*>(characters), characterCount - 1);
}
template<typename CharacterType> ALWAYS_INLINE RefPtr<StringImpl> StringImpl::tryCreateUninitialized(unsigned length, CharacterType*& output)
{
if (!length) {
output = nullptr;
return empty();
}
if (length > maxInternalLength<CharacterType>()) {
output = nullptr;
return nullptr;
}
StringImpl* result;
result = (StringImpl*)StringImplMalloc::tryMalloc(allocationSize<CharacterType>(length));
if (!result) {
output = nullptr;
return nullptr;
}
output = result->tailPointer<CharacterType>();
return constructInternal<CharacterType>(*result, length);
}
template<typename CharacterType, size_t inlineCapacity, typename OverflowHandler, size_t minCapacity, typename Malloc>
inline Ref<StringImpl> StringImpl::adopt(Vector<CharacterType, inlineCapacity, OverflowHandler, minCapacity, Malloc>&& vector)
{
if (size_t size = vector.size()) {
ASSERT(vector.data());
if (size > MaxLength)
CRASH();
if constexpr (std::is_same<Malloc, StringImplMalloc>::value)
return adoptRef(*new StringImpl(vector.releaseBuffer(), size));
else {
// We have to copy between malloc zones.
auto vectorBuffer = vector.releaseBuffer();
auto stringImplBuffer = MallocPtr<CharacterType, StringImplMalloc>::malloc(size);
memcpy(stringImplBuffer.get(), vectorBuffer.get(), size);
return adoptRef(*new StringImpl(WTFMove(stringImplBuffer), size));
}
}
return *empty();
}
inline size_t StringImpl::cost() const
{
// For substrings, return the cost of the base string.
if (bufferOwnership() == BufferSubstring)
return substringBuffer()->cost();
// Note: we must not alter the m_hashAndFlags field in instances of StaticStringImpl.
// We ensure this by pre-setting the s_hashFlagDidReportCost bit in all instances of
// StaticStringImpl. As a result, StaticStringImpl instances will always return a cost of
// 0 here and avoid modifying m_hashAndFlags.
if (m_hashAndFlags & s_hashFlagDidReportCost)
return 0;
m_hashAndFlags |= s_hashFlagDidReportCost;
size_t result = m_length;
if (!is8Bit())
result <<= 1;
return result;
}
inline size_t StringImpl::costDuringGC()
{
if (isStatic())
return 0;
if (bufferOwnership() == BufferSubstring)
return divideRoundedUp(substringBuffer()->costDuringGC(), refCount());
size_t result = m_length;
if (!is8Bit())
result <<= 1;
return divideRoundedUp(result, refCount());
}
inline void StringImpl::setIsAtom(bool isAtom)
{
ASSERT(!isStatic());
ASSERT(!isSymbol());
if (isAtom)
m_hashAndFlags |= s_hashFlagStringKindIsAtom;
else
m_hashAndFlags &= ~s_hashFlagStringKindIsAtom;
}
inline void StringImpl::setHash(unsigned hash) const
{
// The high bits of 'hash' are always empty, but we prefer to store our flags
// in the low bits because it makes them slightly more efficient to access.
// So, we shift left and right when setting and getting our hash code.
ASSERT(!hasHash());
ASSERT(!isStatic());
// Multiple clients assume that StringHasher is the canonical string hash function.
ASSERT(hash == (is8Bit() ? StringHasher::computeHashAndMaskTop8Bits(m_data8, m_length) : StringHasher::computeHashAndMaskTop8Bits(m_data16, m_length)));
ASSERT(!(hash & (s_flagMask << (8 * sizeof(hash) - s_flagCount)))); // Verify that enough high bits are empty.
hash <<= s_flagCount;
ASSERT(!(hash & m_hashAndFlags)); // Verify that enough low bits are empty after shift.
ASSERT(hash); // Verify that 0 is a valid sentinel hash value.
m_hashAndFlags |= hash; // Store hash with flags in low bits.
}
inline void StringImpl::ref()
{
STRING_STATS_REF_STRING(*this);
m_refCount += s_refCountIncrement;
}
inline void StringImpl::deref()
{
STRING_STATS_DEREF_STRING(*this);
unsigned tempRefCount = m_refCount - s_refCountIncrement;
if (!tempRefCount) {
StringImpl::destroy(this);
return;
}
m_refCount = tempRefCount;
}
template<typename SourceCharacterType, typename DestinationCharacterType>
inline void StringImpl::copyCharacters(DestinationCharacterType* destination, const SourceCharacterType* source, unsigned numCharacters)
{
static_assert(std::is_same<SourceCharacterType, LChar>::value || std::is_same<SourceCharacterType, UChar>::value);
static_assert(std::is_same<DestinationCharacterType, LChar>::value || std::is_same<DestinationCharacterType, UChar>::value);
if constexpr (std::is_same<SourceCharacterType, DestinationCharacterType>::value) {
if (numCharacters == 1) {
*destination = *source;
return;
}
memcpy(destination, source, numCharacters * sizeof(DestinationCharacterType));
} else {
// FIXME: We should ensure that UChar -> LChar copying happens when UChar only contains Latin-1.
// https://bugs.webkit.org/show_bug.cgi?id=205355
for (unsigned i = 0; i < numCharacters; ++i)
destination[i] = source[i];
}
}
inline UChar StringImpl::at(unsigned i) const
{
ASSERT_WITH_SECURITY_IMPLICATION(i < m_length);
return is8Bit() ? m_data8[i] : m_data16[i];
}
inline StringImpl::StringImpl(CreateSymbolTag, const LChar* characters, unsigned length)
: StringImplShape(s_refCountIncrement, length, characters, s_hashFlag8BitBuffer | StringSymbol | BufferSubstring)
{
ASSERT(is8Bit());
ASSERT(m_data8);
STRING_STATS_ADD_8BIT_STRING2(m_length, true);
}
inline StringImpl::StringImpl(CreateSymbolTag, const UChar* characters, unsigned length)
: StringImplShape(s_refCountIncrement, length, characters, StringSymbol | BufferSubstring)
{
ASSERT(!is8Bit());
ASSERT(m_data16);
STRING_STATS_ADD_16BIT_STRING2(m_length, true);
}
inline StringImpl::StringImpl(CreateSymbolTag)
: StringImplShape(s_refCountIncrement, 0, empty()->characters8(), s_hashFlag8BitBuffer | StringSymbol | BufferSubstring)
{
ASSERT(is8Bit());
ASSERT(m_data8);
STRING_STATS_ADD_8BIT_STRING2(m_length, true);
}
template<typename T> inline size_t StringImpl::allocationSize(Checked<size_t> tailElementCount)
{
return (tailOffset<T>() + tailElementCount * sizeof(T)).unsafeGet();
}
template<typename CharacterType>
inline size_t StringImpl::maxInternalLength()
{
// In order to not overflow the unsigned length, the check for (std::numeric_limits<unsigned>::max() - sizeof(StringImpl)) is needed when sizeof(CharacterType) == 2.
return std::min(static_cast<size_t>(MaxLength), (std::numeric_limits<unsigned>::max() - sizeof(StringImpl)) / sizeof(CharacterType));
}
template<typename T> inline size_t StringImpl::tailOffset()
{
#if COMPILER(MSVC)
// MSVC doesn't support alignof yet.
return roundUpToMultipleOf<sizeof(T)>(sizeof(StringImpl));
#else
return roundUpToMultipleOf<alignof(T)>(offsetof(StringImpl, m_hashAndFlags) + sizeof(StringImpl::m_hashAndFlags));
#endif
}
inline bool StringImpl::requiresCopy() const
{
if (bufferOwnership() != BufferInternal)
return true;
if (is8Bit())
return m_data8 == tailPointer<LChar>();
return m_data16 == tailPointer<UChar>();
}
template<typename T> inline const T* StringImpl::tailPointer() const
{
return reinterpret_cast_ptr<const T*>(reinterpret_cast<const uint8_t*>(this) + tailOffset<T>());
}
template<typename T> inline T* StringImpl::tailPointer()
{
return reinterpret_cast_ptr<T*>(reinterpret_cast<uint8_t*>(this) + tailOffset<T>());
}
inline StringImpl* const& StringImpl::substringBuffer() const
{
ASSERT(bufferOwnership() == BufferSubstring);
return *tailPointer<StringImpl*>();
}
inline StringImpl*& StringImpl::substringBuffer()
{
ASSERT(bufferOwnership() == BufferSubstring);
return *tailPointer<StringImpl*>();
}
inline void StringImpl::assertHashIsCorrect() const
{
ASSERT(existingHash() == StringHasher::computeHashAndMaskTop8Bits(characters8(), length()));
}
template<unsigned characterCount> constexpr StringImpl::StaticStringImpl::StaticStringImpl(const char (&characters)[characterCount], StringKind stringKind)
: StringImplShape(s_refCountFlagIsStaticString, characterCount - 1, characters,
s_hashFlag8BitBuffer | s_hashFlagDidReportCost | stringKind | BufferInternal | (StringHasher::computeLiteralHashAndMaskTop8Bits(characters) << s_flagCount), ConstructWithConstExpr)
{
}
template<unsigned characterCount> constexpr StringImpl::StaticStringImpl::StaticStringImpl(const char16_t (&characters)[characterCount], StringKind stringKind)
: StringImplShape(s_refCountFlagIsStaticString, characterCount - 1, characters,
s_hashFlagDidReportCost | stringKind | BufferInternal | (StringHasher::computeLiteralHashAndMaskTop8Bits(characters) << s_flagCount), ConstructWithConstExpr)
{
}
inline StringImpl::StaticStringImpl::operator StringImpl&()
{
return *reinterpret_cast<StringImpl*>(this);
}
inline bool equalIgnoringASCIICase(const StringImpl& a, const StringImpl& b)
{
return equalIgnoringASCIICaseCommon(a, b);
}
inline bool equalIgnoringASCIICase(const StringImpl& a, const char* b)
{
return equalIgnoringASCIICaseCommon(a, b);
}
inline bool equalIgnoringASCIICase(const StringImpl* a, const char* b)
{
return a && equalIgnoringASCIICase(*a, b);
}
template<unsigned length> inline bool startsWithLettersIgnoringASCIICase(const StringImpl& string, const char (&lowercaseLetters)[length])
{
return startsWithLettersIgnoringASCIICaseCommon(string, lowercaseLetters);
}
template<unsigned length> inline bool startsWithLettersIgnoringASCIICase(const StringImpl* string, const char (&lowercaseLetters)[length])
{
return string && startsWithLettersIgnoringASCIICase(*string, lowercaseLetters);
}
template<unsigned length> inline bool equalLettersIgnoringASCIICase(const StringImpl& string, const char (&lowercaseLetters)[length])
{
return equalLettersIgnoringASCIICaseCommon(string, lowercaseLetters);
}
template<unsigned length> inline bool equalLettersIgnoringASCIICase(const StringImpl* string, const char (&lowercaseLetters)[length])
{
return string && equalLettersIgnoringASCIICase(*string, lowercaseLetters);
}
} // namespace WTF
using WTF::StaticStringImpl;
using WTF::StringImpl;
using WTF::equal;