blob: 3886658fd21441d7b3dabc67c107a471c3a1c95e [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2001 Dirk Mueller (mueller@kde.org)
* Copyright (C) 2004-2020 Apple Inc. All rights reserved.
* Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies)
* Copyright (C) 2009 Torch Mobile Inc. All rights reserved. (http://www.torchmobile.com/)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "Node.h"
#include "AXObjectCache.h"
#include "Attr.h"
#include "ChildListMutationScope.h"
#include "CommonAtomStrings.h"
#include "CommonVM.h"
#include "ComposedTreeAncestorIterator.h"
#include "ContainerNodeAlgorithms.h"
#include "ContextMenuController.h"
#include "DOMWindow.h"
#include "DataTransfer.h"
#include "DocumentInlines.h"
#include "DocumentType.h"
#include "ElementIterator.h"
#include "ElementRareData.h"
#include "ElementTraversal.h"
#include "EventDispatcher.h"
#include "EventHandler.h"
#include "EventLoop.h"
#include "EventNames.h"
#include "FrameView.h"
#include "GCReachableRef.h"
#include "HTMLAreaElement.h"
#include "HTMLBodyElement.h"
#include "HTMLDialogElement.h"
#include "HTMLElement.h"
#include "HTMLImageElement.h"
#include "HTMLSlotElement.h"
#include "HTMLStyleElement.h"
#include "InputEvent.h"
#include "InspectorController.h"
#include "InspectorInstrumentation.h"
#include "KeyboardEvent.h"
#include "Logging.h"
#include "MutationEvent.h"
#include "NodeRenderStyle.h"
#include "ProcessingInstruction.h"
#include "ProgressEvent.h"
#include "RenderBlock.h"
#include "RenderBox.h"
#include "RenderTextControl.h"
#include "RenderView.h"
#include "SVGElement.h"
#include "ScopedEventQueue.h"
#include "ScriptDisallowedScope.h"
#include "Settings.h"
#include "StorageEvent.h"
#include "StyleResolver.h"
#include "StyleSheetContents.h"
#include "TemplateContentDocumentFragment.h"
#include "TextEvent.h"
#include "TextManipulationController.h"
#include "TouchEvent.h"
#include "WebCoreOpaqueRoot.h"
#include "WheelEvent.h"
#include "XMLNSNames.h"
#include "XMLNames.h"
#include <JavaScriptCore/HeapInlines.h>
#include <variant>
#include <wtf/HexNumber.h>
#include <wtf/IsoMallocInlines.h>
#include <wtf/RefCountedLeakCounter.h>
#include <wtf/SHA1.h>
#include <wtf/text/CString.h>
#include <wtf/text/StringBuilder.h>
#include <wtf/text/TextStream.h>
#if ENABLE(CONTENT_CHANGE_OBSERVER)
#include "ContentChangeObserver.h"
#endif
namespace WebCore {
WTF_MAKE_ISO_ALLOCATED_IMPL(Node);
using namespace HTMLNames;
#if DUMP_NODE_STATISTICS
static WeakHashSet<Node>& liveNodeSet()
{
static NeverDestroyed<WeakHashSet<Node>> liveNodes;
return liveNodes;
}
static const char* stringForRareDataUseType(NodeRareData::UseType useType)
{
switch (useType) {
case NodeRareData::UseType::NodeList:
return "NodeList";
case NodeRareData::UseType::MutationObserver:
return "MutationObserver";
case NodeRareData::UseType::TabIndex:
return "TabIndex";
case NodeRareData::UseType::MinimumSize:
return "MinimumSize";
case NodeRareData::UseType::ScrollingPosition:
return "ScrollingPosition";
case NodeRareData::UseType::ComputedStyle:
return "ComputedStyle";
case NodeRareData::UseType::Dataset:
return "Dataset";
case NodeRareData::UseType::ClassList:
return "ClassList";
case NodeRareData::UseType::ShadowRoot:
return "ShadowRoot";
case NodeRareData::UseType::CustomElementQueue:
return "CustomElementQueue";
case NodeRareData::UseType::AttributeMap:
return "AttributeMap";
case NodeRareData::UseType::InteractionObserver:
return "InteractionObserver";
case NodeRareData::UseType::ResizeObserver:
return "ResizeObserver";
case NodeRareData::UseType::Animations:
return "Animations";
case NodeRareData::UseType::PseudoElements:
return "PseudoElements";
case NodeRareData::UseType::StyleMap:
return "StyleMap";
case NodeRareData::UseType::PartList:
return "PartList";
case NodeRareData::UseType::PartNames:
return "PartNames";
case NodeRareData::UseType::ExplicitlySetAttrElementsMap:
return "ExplicitlySetAttrElementsMap";
}
return nullptr;
}
#endif
void Node::dumpStatistics()
{
#if DUMP_NODE_STATISTICS
size_t nodesWithRareData = 0;
size_t elementNodes = 0;
size_t attrNodes = 0;
size_t textNodes = 0;
size_t cdataNodes = 0;
size_t commentNodes = 0;
size_t piNodes = 0;
size_t documentNodes = 0;
size_t docTypeNodes = 0;
size_t fragmentNodes = 0;
size_t shadowRootNodes = 0;
HashMap<String, size_t> perTagCount;
size_t attributes = 0;
size_t attributesWithAttr = 0;
size_t elementsWithAttributeStorage = 0;
size_t elementsWithRareData = 0;
size_t elementsWithNamedNodeMap = 0;
HashMap<uint16_t, size_t> rareDataSingleUseTypeCounts;
size_t mixedRareDataUseCount = 0;
for (auto& node : liveNodeSet()) {
if (node.hasRareData()) {
++nodesWithRareData;
if (is<Element>(node)) {
++elementsWithRareData;
if (downcast<Element>(node).hasNamedNodeMap())
++elementsWithNamedNodeMap;
}
auto* rareData = node.rareData();
auto useTypes = is<Element>(node) ? static_cast<ElementRareData*>(rareData)->useTypes() : rareData->useTypes();
unsigned useTypeCount = 0;
for (auto type : useTypes) {
UNUSED_PARAM(type);
useTypeCount++;
}
if (useTypeCount == 1) {
auto result = rareDataSingleUseTypeCounts.add(static_cast<uint16_t>(*useTypes.begin()), 0);
result.iterator->value++;
} else
mixedRareDataUseCount++;
}
switch (node.nodeType()) {
case ELEMENT_NODE: {
++elementNodes;
// Tag stats
Element& element = downcast<Element>(node);
HashMap<String, size_t>::AddResult result = perTagCount.add(element.tagName(), 1);
if (!result.isNewEntry)
result.iterator->value++;
if (const ElementData* elementData = element.elementData()) {
unsigned length = elementData->length();
attributes += length;
++elementsWithAttributeStorage;
for (unsigned i = 0; i < length; ++i) {
const Attribute& attr = elementData->attributeAt(i);
if (element.attrIfExists(attr.name()))
++attributesWithAttr;
}
}
break;
}
case ATTRIBUTE_NODE: {
++attrNodes;
break;
}
case TEXT_NODE: {
++textNodes;
break;
}
case CDATA_SECTION_NODE: {
++cdataNodes;
break;
}
case PROCESSING_INSTRUCTION_NODE: {
++piNodes;
break;
}
case COMMENT_NODE: {
++commentNodes;
break;
}
case DOCUMENT_NODE: {
++documentNodes;
break;
}
case DOCUMENT_TYPE_NODE: {
++docTypeNodes;
break;
}
case DOCUMENT_FRAGMENT_NODE: {
if (node.isShadowRoot())
++shadowRootNodes;
else
++fragmentNodes;
break;
}
}
}
printf("Number of Nodes: %d\n\n", liveNodeSet().computeSize());
printf("Number of Nodes with RareData: %zu\n", nodesWithRareData);
printf(" Mixed use: %zu\n", mixedRareDataUseCount);
for (auto it : rareDataSingleUseTypeCounts)
printf(" %s: %zu\n", stringForRareDataUseType(static_cast<NodeRareData::UseType>(it.key)), it.value);
printf("\n");
printf("NodeType distribution:\n");
printf(" Number of Element nodes: %zu\n", elementNodes);
printf(" Number of Attribute nodes: %zu\n", attrNodes);
printf(" Number of Text nodes: %zu\n", textNodes);
printf(" Number of CDATASection nodes: %zu\n", cdataNodes);
printf(" Number of Comment nodes: %zu\n", commentNodes);
printf(" Number of ProcessingInstruction nodes: %zu\n", piNodes);
printf(" Number of Document nodes: %zu\n", documentNodes);
printf(" Number of DocumentType nodes: %zu\n", docTypeNodes);
printf(" Number of DocumentFragment nodes: %zu\n", fragmentNodes);
printf(" Number of ShadowRoot nodes: %zu\n", shadowRootNodes);
printf("Element tag name distibution:\n");
for (auto& stringSizePair : perTagCount)
printf(" Number of <%s> tags: %zu\n", stringSizePair.key.utf8().data(), stringSizePair.value);
printf("Attributes:\n");
printf(" Number of Attributes (non-Node and Node): %zu [%zu]\n", attributes, sizeof(Attribute));
printf(" Number of Attributes with an Attr: %zu\n", attributesWithAttr);
printf(" Number of Elements with attribute storage: %zu [%zu]\n", elementsWithAttributeStorage, sizeof(ElementData));
printf(" Number of Elements with RareData: %zu\n", elementsWithRareData);
printf(" Number of Elements with NamedNodeMap: %zu [%zu]\n", elementsWithNamedNodeMap, sizeof(NamedNodeMap));
#endif
}
DEFINE_DEBUG_ONLY_GLOBAL(WTF::RefCountedLeakCounter, nodeCounter, ("WebCoreNode"));
#ifndef NDEBUG
static bool shouldIgnoreLeaks = false;
static WeakHashSet<Node>& ignoreSet()
{
static NeverDestroyed<WeakHashSet<Node>> ignore;
return ignore;
}
#endif
void Node::startIgnoringLeaks()
{
#ifndef NDEBUG
shouldIgnoreLeaks = true;
#endif
}
void Node::stopIgnoringLeaks()
{
#ifndef NDEBUG
shouldIgnoreLeaks = false;
#endif
}
void Node::trackForDebugging()
{
#ifndef NDEBUG
if (shouldIgnoreLeaks)
ignoreSet().add(*this);
else
nodeCounter.increment();
#endif
#if DUMP_NODE_STATISTICS
liveNodeSet().add(*this);
#endif
}
Node::Node(Document& document, ConstructionType type)
: m_nodeFlags(type)
, m_treeScope(&document)
{
ASSERT(isMainThread());
document.incrementReferencingNodeCount();
#if !defined(NDEBUG) || (defined(DUMP_NODE_STATISTICS) && DUMP_NODE_STATISTICS)
trackForDebugging();
#endif
}
Node::~Node()
{
ASSERT(isMainThread());
ASSERT(m_refCountAndParentBit == s_refCountIncrement);
ASSERT(m_deletionHasBegun);
ASSERT(!m_adoptionIsRequired);
InspectorInstrumentation::willDestroyDOMNode(*this);
#ifndef NDEBUG
if (!ignoreSet().remove(*this))
nodeCounter.decrement();
#endif
#if DUMP_NODE_STATISTICS
liveNodeSet().remove(*this);
#endif
ASSERT(!renderer());
ASSERT(!parentNode());
ASSERT(!m_previous);
ASSERT(!m_next);
if (auto* textManipulationController = document().textManipulationControllerIfExists(); UNLIKELY(textManipulationController))
textManipulationController->removeNode(*this);
if (hasEventTargetData())
clearEventTargetData();
document().decrementReferencingNodeCount();
#if ENABLE(TOUCH_EVENTS) && PLATFORM(IOS_FAMILY) && (ASSERT_ENABLED || ENABLE(SECURITY_ASSERTIONS))
for (auto* document : Document::allDocuments()) {
ASSERT_WITH_SECURITY_IMPLICATION(!document->touchEventListenersContain(*this));
ASSERT_WITH_SECURITY_IMPLICATION(!document->touchEventHandlersContain(*this));
ASSERT_WITH_SECURITY_IMPLICATION(!document->touchEventTargetsContain(*this));
}
#endif
}
void Node::willBeDeletedFrom(Document& document)
{
if (hasEventTargetData()) {
document.didRemoveWheelEventHandler(*this, EventHandlerRemoval::All);
#if ENABLE(TOUCH_EVENTS)
#if PLATFORM(IOS_FAMILY)
document.removeTouchEventListener(*this, EventHandlerRemoval::All);
#endif
document.didRemoveTouchEventHandler(*this, EventHandlerRemoval::All);
#endif
}
#if ENABLE(TOUCH_EVENTS) && PLATFORM(IOS_FAMILY)
document.removeTouchEventHandler(*this, EventHandlerRemoval::All);
#endif
if (auto* cache = document.existingAXObjectCache())
cache->remove(*this);
}
void Node::materializeRareData()
{
if (is<Element>(*this))
m_rareDataWithBitfields.setPointer(std::unique_ptr<NodeRareData, NodeRareDataDeleter>(new ElementRareData));
else
m_rareDataWithBitfields.setPointer(std::unique_ptr<NodeRareData, NodeRareDataDeleter>(new NodeRareData));
}
inline void Node::NodeRareDataDeleter::operator()(NodeRareData* rareData) const
{
if (rareData->isElementRareData())
delete static_cast<ElementRareData*>(rareData);
else
delete static_cast<NodeRareData*>(rareData);
}
void Node::clearRareData()
{
ASSERT(hasRareData());
ASSERT(!transientMutationObserverRegistry() || transientMutationObserverRegistry()->isEmpty());
m_rareDataWithBitfields.setPointer(nullptr);
}
bool Node::isNode() const
{
return true;
}
String Node::nodeValue() const
{
return String();
}
void Node::setNodeValue(const String&)
{
// By default, setting nodeValue has no effect.
}
RefPtr<NodeList> Node::childNodes()
{
if (is<ContainerNode>(*this))
return ensureRareData().ensureNodeLists().ensureChildNodeList(downcast<ContainerNode>(*this));
return ensureRareData().ensureNodeLists().ensureEmptyChildNodeList(*this);
}
Node *Node::lastDescendant() const
{
Node *n = const_cast<Node *>(this);
while (n && n->lastChild())
n = n->lastChild();
return n;
}
Node* Node::firstDescendant() const
{
Node *n = const_cast<Node *>(this);
while (n && n->firstChild())
n = n->firstChild();
return n;
}
Element* Node::previousElementSibling() const
{
return ElementTraversal::previousSibling(*this);
}
Element* Node::nextElementSibling() const
{
return ElementTraversal::nextSibling(*this);
}
ExceptionOr<void> Node::insertBefore(Node& newChild, Node* refChild)
{
if (!is<ContainerNode>(*this))
return Exception { HierarchyRequestError };
return downcast<ContainerNode>(*this).insertBefore(newChild, refChild);
}
ExceptionOr<void> Node::replaceChild(Node& newChild, Node& oldChild)
{
if (!is<ContainerNode>(*this))
return Exception { HierarchyRequestError };
return downcast<ContainerNode>(*this).replaceChild(newChild, oldChild);
}
ExceptionOr<void> Node::removeChild(Node& oldChild)
{
if (!is<ContainerNode>(*this))
return Exception { NotFoundError };
return downcast<ContainerNode>(*this).removeChild(oldChild);
}
ExceptionOr<void> Node::appendChild(Node& newChild)
{
if (!is<ContainerNode>(*this))
return Exception { HierarchyRequestError };
return downcast<ContainerNode>(*this).appendChild(newChild);
}
static HashSet<RefPtr<Node>> nodeSetPreTransformedFromNodeOrStringVector(const FixedVector<NodeOrString>& vector)
{
HashSet<RefPtr<Node>> nodeSet;
for (const auto& variant : vector) {
WTF::switchOn(variant,
[&] (const RefPtr<Node>& node) { nodeSet.add(const_cast<Node*>(node.get())); },
[] (const String&) { }
);
}
return nodeSet;
}
static RefPtr<Node> firstPrecedingSiblingNotInNodeSet(Node& context, const HashSet<RefPtr<Node>>& nodeSet)
{
for (auto* sibling = context.previousSibling(); sibling; sibling = sibling->previousSibling()) {
if (!nodeSet.contains(sibling))
return sibling;
}
return nullptr;
}
static RefPtr<Node> firstFollowingSiblingNotInNodeSet(Node& context, const HashSet<RefPtr<Node>>& nodeSet)
{
for (auto* sibling = context.nextSibling(); sibling; sibling = sibling->nextSibling()) {
if (!nodeSet.contains(sibling))
return sibling;
}
return nullptr;
}
ExceptionOr<RefPtr<Node>> Node::convertNodesOrStringsIntoNode(FixedVector<NodeOrString>&& nodeOrStringVector)
{
if (nodeOrStringVector.isEmpty())
return nullptr;
Vector<Ref<Node>> nodes;
nodes.reserveInitialCapacity(nodeOrStringVector.size());
for (auto& variant : nodeOrStringVector) {
WTF::switchOn(variant,
[&](RefPtr<Node>& node) { nodes.uncheckedAppend(*node.get()); },
[&](String& string) { nodes.uncheckedAppend(Text::create(document(), WTFMove(string))); }
);
}
if (nodes.size() == 1)
return RefPtr<Node> { WTFMove(nodes.first()) };
auto nodeToReturn = DocumentFragment::create(document());
for (auto& node : nodes) {
auto appendResult = nodeToReturn->appendChild(node);
if (appendResult.hasException())
return appendResult.releaseException();
}
return RefPtr<Node> { WTFMove(nodeToReturn) };
}
ExceptionOr<void> Node::before(FixedVector<NodeOrString>&& nodeOrStringVector)
{
RefPtr<ContainerNode> parent = parentNode();
if (!parent)
return { };
auto nodeSet = nodeSetPreTransformedFromNodeOrStringVector(nodeOrStringVector);
auto viablePreviousSibling = firstPrecedingSiblingNotInNodeSet(*this, nodeSet);
auto result = convertNodesOrStringsIntoNode(WTFMove(nodeOrStringVector));
if (result.hasException())
return result.releaseException();
auto node = result.releaseReturnValue();
if (!node)
return { };
if (viablePreviousSibling)
viablePreviousSibling = viablePreviousSibling->nextSibling();
else
viablePreviousSibling = parent->firstChild();
return parent->insertBefore(*node, viablePreviousSibling.get());
}
ExceptionOr<void> Node::after(FixedVector<NodeOrString>&& nodeOrStringVector)
{
RefPtr<ContainerNode> parent = parentNode();
if (!parent)
return { };
auto nodeSet = nodeSetPreTransformedFromNodeOrStringVector(nodeOrStringVector);
auto viableNextSibling = firstFollowingSiblingNotInNodeSet(*this, nodeSet);
auto result = convertNodesOrStringsIntoNode(WTFMove(nodeOrStringVector));
if (result.hasException())
return result.releaseException();
auto node = result.releaseReturnValue();
if (!node)
return { };
return parent->insertBefore(*node, viableNextSibling.get());
}
ExceptionOr<void> Node::replaceWith(FixedVector<NodeOrString>&& nodeOrStringVector)
{
RefPtr<ContainerNode> parent = parentNode();
if (!parent)
return { };
auto nodeSet = nodeSetPreTransformedFromNodeOrStringVector(nodeOrStringVector);
auto viableNextSibling = firstFollowingSiblingNotInNodeSet(*this, nodeSet);
auto result = convertNodesOrStringsIntoNode(WTFMove(nodeOrStringVector));
if (result.hasException())
return result.releaseException();
if (parentNode() == parent) {
if (auto node = result.releaseReturnValue())
return parent->replaceChild(*node, *this);
return parent->removeChild(*this);
}
if (auto node = result.releaseReturnValue())
return parent->insertBefore(*node, viableNextSibling.get());
return { };
}
ExceptionOr<void> Node::remove()
{
auto* parent = parentNode();
if (!parent)
return { };
return parent->removeChild(*this);
}
void Node::normalize()
{
// Go through the subtree beneath us, normalizing all nodes. This means that
// any two adjacent text nodes are merged and any empty text nodes are removed.
RefPtr<Node> node = this;
while (Node* firstChild = node->firstChild())
node = firstChild;
while (node) {
NodeType type = node->nodeType();
if (type == ELEMENT_NODE)
downcast<Element>(*node).normalizeAttributes();
if (node == this)
break;
if (type != TEXT_NODE) {
node = NodeTraversal::nextPostOrder(*node);
continue;
}
RefPtr<Text> text = downcast<Text>(node.get());
// Remove empty text nodes.
if (!text->length()) {
// Care must be taken to get the next node before removing the current node.
node = NodeTraversal::nextPostOrder(*node);
text->remove();
continue;
}
// Merge text nodes.
while (Node* nextSibling = node->nextSibling()) {
if (nextSibling->nodeType() != TEXT_NODE)
break;
Ref<Text> nextText = downcast<Text>(*nextSibling);
// Remove empty text nodes.
if (!nextText->length()) {
nextText->remove();
continue;
}
// Both non-empty text nodes. Merge them.
unsigned offset = text->length();
// Update start/end for any affected Ranges before appendData since modifying contents might trigger mutation events that modify ordering.
document().textNodesMerged(nextText, offset);
// FIXME: DOM spec requires contents to be replaced all at once (see https://dom.spec.whatwg.org/#dom-node-normalize).
// Appending once per sibling may trigger mutation events too many times.
text->appendData(nextText->data());
nextText->remove();
}
node = NodeTraversal::nextPostOrder(*node);
}
}
ExceptionOr<Ref<Node>> Node::cloneNodeForBindings(bool deep)
{
if (UNLIKELY(isShadowRoot()))
return Exception { NotSupportedError };
return cloneNode(deep);
}
const AtomString& Node::prefix() const
{
// For nodes other than elements and attributes, the prefix is always null
return nullAtom();
}
ExceptionOr<void> Node::setPrefix(const AtomString&)
{
// The spec says that for nodes other than elements and attributes, prefix is always null.
// It does not say what to do when the user tries to set the prefix on another type of
// node, however Mozilla throws a NamespaceError exception.
return Exception { NamespaceError };
}
const AtomString& Node::localName() const
{
return nullAtom();
}
const AtomString& Node::namespaceURI() const
{
return nullAtom();
}
bool Node::isContentEditable() const
{
return computeEditability(UserSelectAllDoesNotAffectEditability, ShouldUpdateStyle::Update) != Editability::ReadOnly;
}
bool Node::isContentRichlyEditable() const
{
return computeEditability(UserSelectAllIsAlwaysNonEditable, ShouldUpdateStyle::Update) == Editability::CanEditRichly;
}
void Node::inspect()
{
if (document().page())
document().page()->inspectorController().inspect(this);
}
static Node::Editability computeEditabilityFromComputedStyle(const RenderStyle& style, Node::UserSelectAllTreatment treatment, PageIsEditable pageIsEditable)
{
// Ideally we'd call ASSERT(!needsStyleRecalc()) here, but
// ContainerNode::setFocus() calls invalidateStyleForSubtree(), so the assertion
// would fire in the middle of Document::setFocusedElement().
// Elements with user-select: all style are considered atomic
// therefore non editable.
if (treatment == Node::UserSelectAllIsAlwaysNonEditable && style.effectiveUserSelect() == UserSelect::All)
return Node::Editability::ReadOnly;
if (pageIsEditable == PageIsEditable::Yes)
return Node::Editability::CanEditRichly;
switch (style.effectiveUserModify()) {
case UserModify::ReadOnly:
return Node::Editability::ReadOnly;
case UserModify::ReadWrite:
return Node::Editability::CanEditRichly;
case UserModify::ReadWritePlaintextOnly:
return Node::Editability::CanEditPlainText;
}
ASSERT_NOT_REACHED();
return Node::Editability::ReadOnly;
}
Node::Editability Node::computeEditabilityWithStyle(const RenderStyle* style, UserSelectAllTreatment treatment, ShouldUpdateStyle shouldUpdateStyle) const
{
if (!document().hasLivingRenderTree() || isPseudoElement())
return Editability::ReadOnly;
Ref document = this->document();
auto pageIsEditable = document->page() && document->page()->isEditable() ? PageIsEditable::Yes : PageIsEditable::No;
if (isInShadowTree())
return HTMLElement::editabilityFromContentEditableAttr(*this, pageIsEditable);
if (shouldUpdateStyle == ShouldUpdateStyle::Update && document->needsStyleRecalc()) {
if (!document->usesStyleBasedEditability())
return HTMLElement::editabilityFromContentEditableAttr(*this, pageIsEditable);
document->updateStyleIfNeeded();
}
if (!style)
style = isDocumentNode() ? renderStyle() : const_cast<Node*>(this)->computedStyle();
if (!style)
return Editability::ReadOnly;
return computeEditabilityFromComputedStyle(*style, treatment, pageIsEditable);
}
Node::Editability Node::computeEditability(UserSelectAllTreatment treatment, ShouldUpdateStyle shouldUpdateStyle) const
{
return computeEditabilityWithStyle(nullptr, treatment, shouldUpdateStyle);
}
RenderBox* Node::renderBox() const
{
return dynamicDowncast<RenderBox>(renderer());
}
RenderBoxModelObject* Node::renderBoxModelObject() const
{
return dynamicDowncast<RenderBoxModelObject>(renderer());
}
LayoutRect Node::renderRect(bool* isReplaced)
{
RenderObject* hitRenderer = this->renderer();
if (!hitRenderer && is<HTMLAreaElement>(*this)) {
auto& area = downcast<HTMLAreaElement>(*this);
if (auto* imageElement = area.imageElement())
hitRenderer = imageElement->renderer();
}
RenderObject* renderer = hitRenderer;
while (renderer && !renderer->isBody() && !renderer->isDocumentElementRenderer()) {
if (renderer->isRenderBlock() || renderer->isInlineBlockOrInlineTable() || renderer->isReplacedOrInlineBlock()) {
// FIXME: Is this really what callers want for the "isReplaced" flag?
*isReplaced = renderer->isReplacedOrInlineBlock();
return renderer->absoluteBoundingBoxRect();
}
renderer = renderer->parent();
}
return LayoutRect();
}
void Node::refEventTarget()
{
ref();
}
void Node::derefEventTarget()
{
deref();
}
void Node::adjustStyleValidity(Style::Validity validity, Style::InvalidationMode mode)
{
if (validity > styleValidity()) {
auto bitfields = styleBitfields();
bitfields.setStyleValidity(validity);
setStyleBitfields(bitfields);
}
if (mode == Style::InvalidationMode::RecompositeLayer)
setStyleFlag(NodeStyleFlag::StyleResolutionShouldRecompositeLayer);
}
inline void Node::updateAncestorsForStyleRecalc()
{
auto composedAncestors = composedTreeAncestors(*this);
auto it = composedAncestors.begin();
auto end = composedAncestors.end();
if (it != end) {
it->setDirectChildNeedsStyleRecalc();
for (; it != end; ++it) {
// Iterator skips over shadow roots.
if (auto* shadowRoot = it->shadowRoot())
shadowRoot->setChildNeedsStyleRecalc();
if (it->childNeedsStyleRecalc())
break;
it->setChildNeedsStyleRecalc();
}
}
auto* documentElement = document().documentElement();
if (!documentElement)
return;
if (!documentElement->childNeedsStyleRecalc() && !documentElement->needsStyleRecalc())
return;
document().setChildNeedsStyleRecalc();
document().scheduleStyleRecalc();
}
void Node::invalidateStyle(Style::Validity validity, Style::InvalidationMode mode)
{
ASSERT(validity != Style::Validity::Valid);
if (!inRenderedDocument())
return;
// FIXME: This should eventually be an ASSERT.
if (document().inRenderTreeUpdate())
return;
// FIXME: This should be set on all descendants in case of a subtree invalidation.
setNodeFlag(NodeFlag::IsComputedStyleInvalidFlag);
// FIXME: Why the second condition?
bool markAncestors = styleValidity() == Style::Validity::Valid || validity == Style::Validity::SubtreeAndRenderersInvalid;
adjustStyleValidity(validity, mode);
if (markAncestors)
updateAncestorsForStyleRecalc();
}
unsigned Node::computeNodeIndex() const
{
unsigned count = 0;
for (Node* sibling = previousSibling(); sibling; sibling = sibling->previousSibling())
++count;
return count;
}
template<unsigned type>
bool shouldInvalidateNodeListCachesForAttr(const unsigned nodeListCounts[], const QualifiedName& attrName)
{
if constexpr (type >= numNodeListInvalidationTypes)
return false;
else {
if (nodeListCounts[type] && shouldInvalidateTypeOnAttributeChange(static_cast<NodeListInvalidationType>(type), attrName))
return true;
return shouldInvalidateNodeListCachesForAttr<type + 1>(nodeListCounts, attrName);
}
}
inline bool Document::shouldInvalidateNodeListAndCollectionCaches() const
{
for (int type = 0; type < numNodeListInvalidationTypes; ++type) {
if (m_nodeListAndCollectionCounts[type])
return true;
}
return false;
}
inline bool Document::shouldInvalidateNodeListAndCollectionCachesForAttribute(const QualifiedName& attrName) const
{
return shouldInvalidateNodeListCachesForAttr<DoNotInvalidateOnAttributeChanges + 1>(m_nodeListAndCollectionCounts, attrName);
}
template <typename InvalidationFunction>
void Document::invalidateNodeListAndCollectionCaches(InvalidationFunction invalidate)
{
for (auto* list : copyToVectorSpecialization<Vector<LiveNodeList*, 8>>(m_listsInvalidatedAtDocument))
invalidate(*list);
for (auto* collection : copyToVectorSpecialization<Vector<HTMLCollection*, 8>>(m_collectionsInvalidatedAtDocument))
invalidate(*collection);
}
void Node::invalidateNodeListAndCollectionCachesInAncestors()
{
if (hasRareData()) {
if (auto* lists = rareData()->nodeLists())
lists->clearChildNodeListCache();
}
if (!document().shouldInvalidateNodeListAndCollectionCaches())
return;
document().invalidateNodeListAndCollectionCaches([](auto& list) {
list.invalidateCache();
});
for (auto* node = this; node; node = node->parentNode()) {
if (!node->hasRareData())
continue;
if (auto* lists = node->rareData()->nodeLists())
lists->invalidateCaches();
}
}
void Node::invalidateNodeListAndCollectionCachesInAncestorsForAttribute(const QualifiedName& attrName)
{
ASSERT(is<Element>(*this));
if (!document().shouldInvalidateNodeListAndCollectionCachesForAttribute(attrName))
return;
document().invalidateNodeListAndCollectionCaches([&attrName](auto& list) {
list.invalidateCacheForAttribute(attrName);
});
for (auto* node = this; node; node = node->parentNode()) {
if (!node->hasRareData())
continue;
if (auto* lists = node->rareData()->nodeLists())
lists->invalidateCachesForAttribute(attrName);
}
}
NodeListsNodeData* Node::nodeLists()
{
return hasRareData() ? rareData()->nodeLists() : nullptr;
}
void Node::clearNodeLists()
{
rareData()->clearNodeLists();
}
ExceptionOr<void> Node::checkSetPrefix(const AtomString& prefix)
{
// Perform error checking as required by spec for setting Node.prefix. Used by
// Element::setPrefix() and Attr::setPrefix()
if (!prefix.isEmpty() && !Document::isValidName(prefix))
return Exception { InvalidCharacterError };
// FIXME: Raise NamespaceError if prefix is malformed per the Namespaces in XML specification.
auto& namespaceURI = this->namespaceURI();
if (namespaceURI.isEmpty() && !prefix.isEmpty())
return Exception { NamespaceError };
if (prefix == xmlAtom() && namespaceURI != XMLNames::xmlNamespaceURI)
return Exception { NamespaceError };
// Attribute-specific checks are in Attr::setPrefix().
return { };
}
bool Node::isDescendantOf(const Node& other) const
{
// Return true if other is an ancestor of this.
if (other.isDocumentNode())
return &treeScope().rootNode() == &other && !isDocumentNode() && isConnected();
if (!other.hasChildNodes() || isConnected() != other.isConnected())
return false;
for (auto ancestor = parentNode(); ancestor; ancestor = ancestor->parentNode()) {
if (ancestor == &other)
return true;
}
return false;
}
bool Node::isDescendantOrShadowDescendantOf(const Node& other) const
{
if (isDescendantOf(other))
return true;
for (auto host = shadowHost(); host; host = host->shadowHost()) {
if (other.contains(*host))
return true;
}
return false;
}
bool Node::contains(const Node& node) const
{
return this == &node || node.isDescendantOf(*this);
}
bool Node::containsIncludingShadowDOM(const Node* node) const
{
for (; node; node = node->parentOrShadowHostNode()) {
if (node == this)
return true;
}
return false;
}
Node* Node::pseudoAwarePreviousSibling() const
{
Element* parentOrHost = is<PseudoElement>(*this) ? downcast<PseudoElement>(*this).hostElement() : parentElement();
if (parentOrHost && !previousSibling()) {
if (isAfterPseudoElement() && parentOrHost->lastChild())
return parentOrHost->lastChild();
if (!isBeforePseudoElement())
return parentOrHost->beforePseudoElement();
}
return previousSibling();
}
Node* Node::pseudoAwareNextSibling() const
{
Element* parentOrHost = is<PseudoElement>(*this) ? downcast<PseudoElement>(*this).hostElement() : parentElement();
if (parentOrHost && !nextSibling()) {
if (isBeforePseudoElement() && parentOrHost->firstChild())
return parentOrHost->firstChild();
if (!isAfterPseudoElement())
return parentOrHost->afterPseudoElement();
}
return nextSibling();
}
Node* Node::pseudoAwareFirstChild() const
{
if (is<Element>(*this)) {
const Element& currentElement = downcast<Element>(*this);
Node* first = currentElement.beforePseudoElement();
if (first)
return first;
first = currentElement.firstChild();
if (!first)
first = currentElement.afterPseudoElement();
return first;
}
return firstChild();
}
Node* Node::pseudoAwareLastChild() const
{
if (is<Element>(*this)) {
const Element& currentElement = downcast<Element>(*this);
Node* last = currentElement.afterPseudoElement();
if (last)
return last;
last = currentElement.lastChild();
if (!last)
last = currentElement.beforePseudoElement();
return last;
}
return lastChild();
}
const RenderStyle* Node::computedStyle(PseudoId pseudoElementSpecifier)
{
auto* composedParent = composedTreeAncestors(*this).first();
if (!composedParent)
return nullptr;
return composedParent->computedStyle(pseudoElementSpecifier);
}
// FIXME: Shouldn't these functions be in the editing code? Code that asks questions about HTML in the core DOM class
// is obviously misplaced.
bool Node::canStartSelection() const
{
if (hasEditableStyle())
return true;
if (renderer()) {
const RenderStyle& style = renderer()->style();
// We allow selections to begin within an element that has -webkit-user-select: none set,
// but if the element is draggable then dragging should take priority over selection.
if (style.userDrag() == UserDrag::Element && style.effectiveUserSelect() == UserSelect::None)
return false;
}
return parentOrShadowHostNode() ? parentOrShadowHostNode()->canStartSelection() : true;
}
Element* Node::shadowHost() const
{
if (ShadowRoot* root = containingShadowRoot())
return root->host();
return nullptr;
}
ShadowRoot* Node::containingShadowRoot() const
{
return dynamicDowncast<ShadowRoot>(treeScope().rootNode());
}
#if ASSERT_ENABLED
// https://dom.spec.whatwg.org/#concept-closed-shadow-hidden
static bool isClosedShadowHiddenUsingSpecDefinition(const Node& A, const Node& B)
{
return A.isInShadowTree()
&& !A.rootNode().containsIncludingShadowDOM(&B)
&& (A.containingShadowRoot()->mode() != ShadowRootMode::Open || isClosedShadowHiddenUsingSpecDefinition(*A.shadowHost(), B));
}
#endif
// http://w3c.github.io/webcomponents/spec/shadow/#dfn-unclosed-node
bool Node::isClosedShadowHidden(const Node& otherNode) const
{
// Use Vector instead of HashSet since we expect the number of ancestor tree scopes to be small.
Vector<TreeScope*, 8> ancestorScopesOfThisNode;
for (auto* scope = &treeScope(); scope; scope = scope->parentTreeScope())
ancestorScopesOfThisNode.append(scope);
for (auto* treeScopeThatCanAccessOtherNode = &otherNode.treeScope(); treeScopeThatCanAccessOtherNode; treeScopeThatCanAccessOtherNode = treeScopeThatCanAccessOtherNode->parentTreeScope()) {
for (auto* scope : ancestorScopesOfThisNode) {
if (scope == treeScopeThatCanAccessOtherNode) {
ASSERT(!isClosedShadowHiddenUsingSpecDefinition(otherNode, *this));
return false; // treeScopeThatCanAccessOtherNode is a shadow-including inclusive ancestor of this node.
}
}
auto& root = treeScopeThatCanAccessOtherNode->rootNode();
if (is<ShadowRoot>(root) && downcast<ShadowRoot>(root).mode() != ShadowRootMode::Open)
break;
}
ASSERT(isClosedShadowHiddenUsingSpecDefinition(otherNode, *this));
return true;
}
static inline ShadowRoot* parentShadowRoot(const Node& node)
{
if (auto* parent = node.parentElement())
return parent->shadowRoot();
return nullptr;
}
HTMLSlotElement* Node::assignedSlot() const
{
if (auto* shadowRoot = parentShadowRoot(*this))
return shadowRoot->findAssignedSlot(*this);
return nullptr;
}
HTMLSlotElement* Node::assignedSlotForBindings() const
{
auto* shadowRoot = parentShadowRoot(*this);
if (shadowRoot && shadowRoot->mode() == ShadowRootMode::Open)
return shadowRoot->findAssignedSlot(*this);
return nullptr;
}
ContainerNode* Node::parentInComposedTree() const
{
ASSERT(isMainThreadOrGCThread());
if (auto* slot = assignedSlot())
return slot;
if (is<ShadowRoot>(*this))
return downcast<ShadowRoot>(*this).host();
return parentNode();
}
Element* Node::parentElementInComposedTree() const
{
if (auto* slot = assignedSlot())
return slot;
if (is<PseudoElement>(*this))
return downcast<PseudoElement>(*this).hostElement();
if (auto* parent = parentNode()) {
if (is<ShadowRoot>(*parent))
return downcast<ShadowRoot>(*parent).host();
if (is<Element>(*parent))
return downcast<Element>(parent);
}
return nullptr;
}
bool Node::isInUserAgentShadowTree() const
{
auto* shadowRoot = containingShadowRoot();
return shadowRoot && shadowRoot->mode() == ShadowRootMode::UserAgent;
}
Node* Node::nonBoundaryShadowTreeRootNode()
{
ASSERT(!isShadowRoot());
Node* root = this;
while (root) {
if (root->isShadowRoot())
return root;
Node* parent = root->parentNodeGuaranteedHostFree();
if (parent && parent->isShadowRoot())
return root;
root = parent;
}
return 0;
}
ContainerNode* Node::nonShadowBoundaryParentNode() const
{
ContainerNode* parent = parentNode();
return parent && !parent->isShadowRoot() ? parent : nullptr;
}
Element* Node::parentOrShadowHostElement() const
{
ContainerNode* parent = parentOrShadowHostNode();
if (!parent)
return nullptr;
if (is<ShadowRoot>(*parent))
return downcast<ShadowRoot>(*parent).host();
if (!is<Element>(*parent))
return nullptr;
return downcast<Element>(parent);
}
Node& Node::traverseToRootNode() const
{
Node* node = const_cast<Node*>(this);
Node* highest = node;
for (; node; node = node->parentNode())
highest = node;
return *highest;
}
// https://dom.spec.whatwg.org/#concept-shadow-including-root
Node& Node::shadowIncludingRoot() const
{
auto& root = rootNode();
if (!is<ShadowRoot>(root))
return root;
auto* host = downcast<ShadowRoot>(root).host();
return host ? host->shadowIncludingRoot() : root;
}
Node& Node::getRootNode(const GetRootNodeOptions& options) const
{
return options.composed ? shadowIncludingRoot() : rootNode();
}
void Node::queueTaskKeepingThisNodeAlive(TaskSource source, Function<void ()>&& task)
{
document().eventLoop().queueTask(source, [protectedThis = GCReachableRef(*this), task = WTFMove(task)] () {
task();
});
}
void Node::queueTaskToDispatchEvent(TaskSource source, Ref<Event>&& event)
{
queueTaskKeepingThisNodeAlive(source, [protectedThis = Ref { *this }, event = WTFMove(event)]() {
protectedThis->dispatchEvent(event);
});
}
Node::InsertedIntoAncestorResult Node::insertedIntoAncestor(InsertionType insertionType, ContainerNode& parentOfInsertedTree)
{
if (insertionType.connectedToDocument)
setNodeFlag(NodeFlag::IsConnected);
if (parentOfInsertedTree.isInShadowTree())
setNodeFlag(NodeFlag::IsInShadowTree);
invalidateStyle(Style::Validity::SubtreeAndRenderersInvalid);
return InsertedIntoAncestorResult::Done;
}
void Node::removedFromAncestor(RemovalType removalType, ContainerNode& oldParentOfRemovedTree)
{
if (removalType.disconnectedFromDocument)
clearNodeFlag(NodeFlag::IsConnected);
if (isInShadowTree() && !treeScope().rootNode().isShadowRoot())
clearNodeFlag(NodeFlag::IsInShadowTree);
if (removalType.disconnectedFromDocument) {
if (auto* cache = oldParentOfRemovedTree.document().existingAXObjectCache())
cache->remove(*this);
}
}
bool Node::isRootEditableElement() const
{
return hasEditableStyle() && isElementNode() && (!parentNode() || !parentNode()->hasEditableStyle()
|| !parentNode()->isElementNode() || document().body() == this);
}
Element* Node::rootEditableElement() const
{
Element* result = nullptr;
for (Node* node = const_cast<Node*>(this); node && node->hasEditableStyle(); node = node->parentNode()) {
if (is<Element>(*node))
result = downcast<Element>(node);
if (document().body() == node)
break;
}
return result;
}
// FIXME: End of obviously misplaced HTML editing functions. Try to move these out of Node.
Document* Node::ownerDocument() const
{
Document* document = &this->document();
return document == this ? nullptr : document;
}
const URL& Node::baseURI() const
{
auto& url = document().baseURL();
return url.isNull() ? aboutBlankURL() : url;
}
bool Node::isEqualNode(Node* other) const
{
if (!other)
return false;
NodeType nodeType = this->nodeType();
if (nodeType != other->nodeType())
return false;
switch (nodeType) {
case Node::DOCUMENT_TYPE_NODE: {
auto& thisDocType = downcast<DocumentType>(*this);
auto& otherDocType = downcast<DocumentType>(*other);
if (thisDocType.name() != otherDocType.name())
return false;
if (thisDocType.publicId() != otherDocType.publicId())
return false;
if (thisDocType.systemId() != otherDocType.systemId())
return false;
break;
}
case Node::ELEMENT_NODE: {
auto& thisElement = downcast<Element>(*this);
auto& otherElement = downcast<Element>(*other);
if (thisElement.tagQName() != otherElement.tagQName())
return false;
if (!thisElement.hasEquivalentAttributes(otherElement))
return false;
break;
}
case Node::PROCESSING_INSTRUCTION_NODE: {
auto& thisProcessingInstruction = downcast<ProcessingInstruction>(*this);
auto& otherProcessingInstruction = downcast<ProcessingInstruction>(*other);
if (thisProcessingInstruction.target() != otherProcessingInstruction.target())
return false;
if (thisProcessingInstruction.data() != otherProcessingInstruction.data())
return false;
break;
}
case Node::CDATA_SECTION_NODE:
case Node::TEXT_NODE:
case Node::COMMENT_NODE: {
auto& thisCharacterData = downcast<CharacterData>(*this);
auto& otherCharacterData = downcast<CharacterData>(*other);
if (thisCharacterData.data() != otherCharacterData.data())
return false;
break;
}
case Node::ATTRIBUTE_NODE: {
auto& thisAttribute = downcast<Attr>(*this);
auto& otherAttribute = downcast<Attr>(*other);
if (thisAttribute.qualifiedName() != otherAttribute.qualifiedName())
return false;
if (thisAttribute.value() != otherAttribute.value())
return false;
break;
}
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
break;
}
Node* child = firstChild();
Node* otherChild = other->firstChild();
while (child) {
if (!child->isEqualNode(otherChild))
return false;
child = child->nextSibling();
otherChild = otherChild->nextSibling();
}
if (otherChild)
return false;
return true;
}
// https://dom.spec.whatwg.org/#locate-a-namespace
static const AtomString& locateDefaultNamespace(const Node& node, const AtomString& prefix)
{
switch (node.nodeType()) {
case Node::ELEMENT_NODE: {
auto& element = downcast<Element>(node);
auto& namespaceURI = element.namespaceURI();
if (!namespaceURI.isNull() && element.prefix() == prefix)
return namespaceURI;
if (element.hasAttributes()) {
for (auto& attribute : element.attributesIterator()) {
if (attribute.namespaceURI() != XMLNSNames::xmlnsNamespaceURI)
continue;
if ((prefix.isNull() && attribute.prefix().isNull() && attribute.localName() == xmlnsAtom()) || (attribute.prefix() == xmlnsAtom() && attribute.localName() == prefix)) {
auto& result = attribute.value();
return result.isEmpty() ? nullAtom() : result;
}
}
}
auto* parent = node.parentElement();
return parent ? locateDefaultNamespace(*parent, prefix) : nullAtom();
}
case Node::DOCUMENT_NODE:
if (auto* documentElement = downcast<Document>(node).documentElement())
return locateDefaultNamespace(*documentElement, prefix);
return nullAtom();
case Node::DOCUMENT_TYPE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
return nullAtom();
case Node::ATTRIBUTE_NODE:
if (auto* ownerElement = downcast<Attr>(node).ownerElement())
return locateDefaultNamespace(*ownerElement, prefix);
return nullAtom();
default:
if (auto* parent = node.parentElement())
return locateDefaultNamespace(*parent, prefix);
return nullAtom();
}
}
// https://dom.spec.whatwg.org/#dom-node-isdefaultnamespace
bool Node::isDefaultNamespace(const AtomString& potentiallyEmptyNamespace) const
{
const AtomString& namespaceURI = potentiallyEmptyNamespace.isEmpty() ? nullAtom() : potentiallyEmptyNamespace;
return locateDefaultNamespace(*this, nullAtom()) == namespaceURI;
}
// https://dom.spec.whatwg.org/#dom-node-lookupnamespaceuri
const AtomString& Node::lookupNamespaceURI(const AtomString& potentiallyEmptyPrefix) const
{
const AtomString& prefix = potentiallyEmptyPrefix.isEmpty() ? nullAtom() : potentiallyEmptyPrefix;
return locateDefaultNamespace(*this, prefix);
}
// https://dom.spec.whatwg.org/#locate-a-namespace-prefix
static const AtomString& locateNamespacePrefix(const Element& element, const AtomString& namespaceURI)
{
if (element.namespaceURI() == namespaceURI)
return element.prefix();
if (element.hasAttributes()) {
for (auto& attribute : element.attributesIterator()) {
if (attribute.prefix() == xmlnsAtom() && attribute.value() == namespaceURI)
return attribute.localName();
}
}
auto* parent = element.parentElement();
return parent ? locateNamespacePrefix(*parent, namespaceURI) : nullAtom();
}
// https://dom.spec.whatwg.org/#dom-node-lookupprefix
const AtomString& Node::lookupPrefix(const AtomString& namespaceURI) const
{
if (namespaceURI.isEmpty())
return nullAtom();
switch (nodeType()) {
case ELEMENT_NODE:
return locateNamespacePrefix(downcast<Element>(*this), namespaceURI);
case DOCUMENT_NODE:
if (auto* documentElement = downcast<Document>(*this).documentElement())
return locateNamespacePrefix(*documentElement, namespaceURI);
return nullAtom();
case DOCUMENT_FRAGMENT_NODE:
case DOCUMENT_TYPE_NODE:
return nullAtom();
case ATTRIBUTE_NODE:
if (auto* ownerElement = downcast<Attr>(*this).ownerElement())
return locateNamespacePrefix(*ownerElement, namespaceURI);
return nullAtom();
default:
if (auto* parent = parentElement())
return locateNamespacePrefix(*parent, namespaceURI);
return nullAtom();
}
}
static void appendTextContent(const Node* node, bool convertBRsToNewlines, bool& isNullString, StringBuilder& content)
{
switch (node->nodeType()) {
case Node::TEXT_NODE:
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
isNullString = false;
content.append(downcast<CharacterData>(*node).data());
break;
case Node::PROCESSING_INSTRUCTION_NODE:
isNullString = false;
content.append(downcast<ProcessingInstruction>(*node).data());
break;
case Node::ATTRIBUTE_NODE:
isNullString = false;
content.append(downcast<Attr>(*node).value());
break;
case Node::ELEMENT_NODE:
if (node->hasTagName(brTag) && convertBRsToNewlines) {
isNullString = false;
content.append('\n');
break;
}
FALLTHROUGH;
case Node::DOCUMENT_FRAGMENT_NODE:
isNullString = false;
for (Node* child = node->firstChild(); child; child = child->nextSibling()) {
if (child->nodeType() == Node::COMMENT_NODE || child->nodeType() == Node::PROCESSING_INSTRUCTION_NODE)
continue;
appendTextContent(child, convertBRsToNewlines, isNullString, content);
}
break;
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
break;
}
}
String Node::textContent(bool convertBRsToNewlines) const
{
StringBuilder content;
bool isNullString = true;
appendTextContent(this, convertBRsToNewlines, isNullString, content);
return isNullString ? String() : content.toString();
}
void Node::setTextContent(String&& text)
{
switch (nodeType()) {
case ATTRIBUTE_NODE:
case TEXT_NODE:
case CDATA_SECTION_NODE:
case COMMENT_NODE:
case PROCESSING_INSTRUCTION_NODE:
setNodeValue(WTFMove(text));
return;
case ELEMENT_NODE:
case DOCUMENT_FRAGMENT_NODE:
downcast<ContainerNode>(*this).stringReplaceAll(WTFMove(text));
return;
case DOCUMENT_NODE:
case DOCUMENT_TYPE_NODE:
// Do nothing.
return;
}
ASSERT_NOT_REACHED();
}
static SHA1::Digest hashPointer(const void* pointer)
{
SHA1 sha1;
sha1.addBytes(reinterpret_cast<const uint8_t*>(&pointer), sizeof(pointer));
SHA1::Digest digest;
sha1.computeHash(digest);
return digest;
}
static inline unsigned short compareDetachedElementsPosition(Node& firstNode, Node& secondNode)
{
// If the 2 nodes are not in the same tree, return the result of adding DOCUMENT_POSITION_DISCONNECTED,
// DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC, and either DOCUMENT_POSITION_PRECEDING or
// DOCUMENT_POSITION_FOLLOWING, with the constraint that this is to be consistent. Whether to return
// DOCUMENT_POSITION_PRECEDING or DOCUMENT_POSITION_FOLLOWING is implemented by comparing cryptographic
// hashes of Node pointers.
// See step 3 in https://dom.spec.whatwg.org/#dom-node-comparedocumentposition
SHA1::Digest firstHash = hashPointer(&firstNode);
SHA1::Digest secondHash = hashPointer(&secondNode);
unsigned short direction = memcmp(firstHash.data(), secondHash.data(), SHA1::hashSize) > 0 ? Node::DOCUMENT_POSITION_PRECEDING : Node::DOCUMENT_POSITION_FOLLOWING;
return Node::DOCUMENT_POSITION_DISCONNECTED | Node::DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction;
}
bool connectedInSameTreeScope(const Node* a, const Node* b)
{
// Note that we avoid comparing Attr nodes here, since they return false from isConnected() all the time (which seems like a bug).
return a && b && a->isConnected() == b->isConnected() && &a->treeScope() == &b->treeScope();
}
// FIXME: Refactor so this calls treeOrder, with additional code for any exotic inefficient things that are needed only here.
unsigned short Node::compareDocumentPosition(Node& otherNode)
{
if (&otherNode == this)
return DOCUMENT_POSITION_EQUIVALENT;
auto* attr1 = dynamicDowncast<Attr>(*this);
auto* attr2 = dynamicDowncast<Attr>(otherNode);
Node* start1 = attr1 ? attr1->ownerElement() : this;
Node* start2 = attr2 ? attr2->ownerElement() : &otherNode;
// If either of start1 or start2 is null, then we are disconnected, since one of the nodes is
// an orphaned attribute node.
if (!start1 || !start2)
return compareDetachedElementsPosition(*this, otherNode);
Vector<Node*, 16> chain1;
Vector<Node*, 16> chain2;
if (attr1)
chain1.append(attr1);
if (attr2)
chain2.append(attr2);
if (attr1 && attr2 && start1 == start2 && start1) {
// We are comparing two attributes on the same node. Crawl our attribute map and see which one we hit first.
Element* owner1 = attr1->ownerElement();
owner1->synchronizeAllAttributes();
for (const Attribute& attribute : owner1->attributesIterator()) {
// If neither of the two determining nodes is a child node and nodeType is the same for both determining nodes, then an
// implementation-dependent order between the determining nodes is returned. This order is stable as long as no nodes of
// the same nodeType are inserted into or removed from the direct container. This would be the case, for example,
// when comparing two attributes of the same element, and inserting or removing additional attributes might change
// the order between existing attributes.
if (attr1->qualifiedName() == attribute.name())
return DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | DOCUMENT_POSITION_FOLLOWING;
if (attr2->qualifiedName() == attribute.name())
return DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | DOCUMENT_POSITION_PRECEDING;
}
ASSERT_NOT_REACHED();
return DOCUMENT_POSITION_DISCONNECTED;
}
// If one node is in the document and the other is not, we must be disconnected.
// If the nodes have different owning documents, they must be disconnected.
if (!connectedInSameTreeScope(start1, start2))
return compareDetachedElementsPosition(*this, otherNode);
// We need to find a common ancestor container, and then compare the indices of the two immediate children.
Node* current;
for (current = start1; current; current = current->parentNode())
chain1.append(current);
for (current = start2; current; current = current->parentNode())
chain2.append(current);
unsigned index1 = chain1.size();
unsigned index2 = chain2.size();
// If the two elements don't have a common root, they're not in the same tree.
if (chain1[index1 - 1] != chain2[index2 - 1])
return compareDetachedElementsPosition(*this, otherNode);
// Walk the two chains backwards and look for the first difference.
for (unsigned i = std::min(index1, index2); i; --i) {
Node* child1 = chain1[--index1];
Node* child2 = chain2[--index2];
if (child1 != child2) {
// If one of the children is an attribute, it wins.
if (child1->nodeType() == ATTRIBUTE_NODE)
return DOCUMENT_POSITION_FOLLOWING;
if (child2->nodeType() == ATTRIBUTE_NODE)
return DOCUMENT_POSITION_PRECEDING;
if (!child2->nextSibling())
return DOCUMENT_POSITION_FOLLOWING;
if (!child1->nextSibling())
return DOCUMENT_POSITION_PRECEDING;
// Otherwise we need to see which node occurs first. Crawl backwards from child2 looking for child1.
for (Node* child = child2->previousSibling(); child; child = child->previousSibling()) {
if (child == child1)
return DOCUMENT_POSITION_FOLLOWING;
}
return DOCUMENT_POSITION_PRECEDING;
}
}
// There was no difference between the two parent chains, i.e., one was a subset of the other. The shorter
// chain is the ancestor.
return index1 < index2 ?
DOCUMENT_POSITION_FOLLOWING | DOCUMENT_POSITION_CONTAINED_BY :
DOCUMENT_POSITION_PRECEDING | DOCUMENT_POSITION_CONTAINS;
}
FloatPoint Node::convertToPage(const FloatPoint& p) const
{
// If there is a renderer, just ask it to do the conversion
if (renderer())
return renderer()->localToAbsolute(p, UseTransforms);
// Otherwise go up the tree looking for a renderer
if (auto* parent = parentElement())
return parent->convertToPage(p);
// No parent - no conversion needed
return p;
}
FloatPoint Node::convertFromPage(const FloatPoint& p) const
{
// If there is a renderer, just ask it to do the conversion
if (renderer())
return renderer()->absoluteToLocal(p, UseTransforms);
// Otherwise go up the tree looking for a renderer
if (auto* parent = parentElement())
return parent->convertFromPage(p);
// No parent - no conversion needed
return p;
}
String Node::description() const
{
auto name = nodeName();
return makeString(name.isEmpty() ? "<none>" : "", name);
}
String Node::debugDescription() const
{
auto name = nodeName();
return makeString(name.isEmpty() ? "<none>" : "", name, " 0x"_s, hex(reinterpret_cast<uintptr_t>(this), Lowercase));
}
#if ENABLE(TREE_DEBUGGING)
static void appendAttributeDesc(const Node* node, StringBuilder& stringBuilder, const QualifiedName& name, const char* attrDesc)
{
if (!is<Element>(*node))
return;
const AtomString& attr = downcast<Element>(*node).getAttribute(name);
if (attr.isEmpty())
return;
stringBuilder.append(attrDesc);
stringBuilder.append(attr);
}
void Node::showNode(const char* prefix) const
{
if (!prefix)
prefix = "";
if (isTextNode()) {
String value = makeStringByReplacingAll(nodeValue(), '\\', "\\\\"_s);
value = makeStringByReplacingAll(value, '\n', "\\n"_s);
fprintf(stderr, "%s%s\t%p \"%s\"\n", prefix, nodeName().utf8().data(), this, value.utf8().data());
} else {
StringBuilder attrs;
appendAttributeDesc(this, attrs, classAttr, " CLASS=");
appendAttributeDesc(this, attrs, styleAttr, " STYLE=");
fprintf(stderr, "%s%s\t%p (renderer %p) %s%s%s\n", prefix, nodeName().utf8().data(), this, renderer(), attrs.toString().utf8().data(), needsStyleRecalc() ? " (needs style recalc)" : "", childNeedsStyleRecalc() ? " (child needs style recalc)" : "");
}
}
void Node::showTreeForThis() const
{
showTreeAndMark(this, "*");
}
void Node::showNodePathForThis() const
{
Vector<const Node*, 16> chain;
const Node* node = this;
while (node->parentOrShadowHostNode()) {
chain.append(node);
node = node->parentOrShadowHostNode();
}
for (unsigned index = chain.size(); index > 0; --index) {
const Node* node = chain[index - 1];
if (is<ShadowRoot>(*node)) {
int count = 0;
for (const ShadowRoot* shadowRoot = downcast<ShadowRoot>(node); shadowRoot && shadowRoot != node; shadowRoot = shadowRoot->shadowRoot())
++count;
fprintf(stderr, "/#shadow-root[%d]", count);
continue;
}
switch (node->nodeType()) {
case ELEMENT_NODE: {
fprintf(stderr, "/%s", node->nodeName().utf8().data());
const Element& element = downcast<Element>(*node);
const AtomString& idattr = element.getIdAttribute();
bool hasIdAttr = !idattr.isNull() && !idattr.isEmpty();
if (node->previousSibling() || node->nextSibling()) {
int count = 0;
for (Node* previous = node->previousSibling(); previous; previous = previous->previousSibling())
if (previous->nodeName() == node->nodeName())
++count;
if (hasIdAttr)
fprintf(stderr, "[@id=\"%s\" and position()=%d]", idattr.string().utf8().data(), count);
else
fprintf(stderr, "[%d]", count);
} else if (hasIdAttr)
fprintf(stderr, "[@id=\"%s\"]", idattr.string().utf8().data());
break;
}
case TEXT_NODE:
fprintf(stderr, "/text()");
break;
case ATTRIBUTE_NODE:
fprintf(stderr, "/@%s", node->nodeName().utf8().data());
break;
default:
break;
}
}
fprintf(stderr, "\n");
}
static void traverseTreeAndMark(const String& baseIndent, const Node* rootNode, const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2)
{
for (const Node* node = rootNode; node; node = NodeTraversal::next(*node)) {
if (node == markedNode1)
fprintf(stderr, "%s", markedLabel1);
if (node == markedNode2)
fprintf(stderr, "%s", markedLabel2);
StringBuilder indent;
indent.append(baseIndent);
for (const Node* tmpNode = node; tmpNode && tmpNode != rootNode; tmpNode = tmpNode->parentOrShadowHostNode())
indent.append('\t');
fprintf(stderr, "%s", indent.toString().utf8().data());
node->showNode();
indent.append('\t');
if (!node->isShadowRoot()) {
if (ShadowRoot* shadowRoot = node->shadowRoot())
traverseTreeAndMark(indent.toString(), shadowRoot, markedNode1, markedLabel1, markedNode2, markedLabel2);
}
}
}
void Node::showTreeAndMark(const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2) const
{
const Node* rootNode;
const Node* node = this;
while (node->parentOrShadowHostNode() && !node->hasTagName(bodyTag))
node = node->parentOrShadowHostNode();
rootNode = node;
String startingIndent;
traverseTreeAndMark(startingIndent, rootNode, markedNode1, markedLabel1, markedNode2, markedLabel2);
}
static ContainerNode* parentOrShadowHostOrFrameOwner(const Node* node)
{
ContainerNode* parent = node->parentOrShadowHostNode();
if (!parent && node->document().frame())
parent = node->document().frame()->ownerElement();
return parent;
}
static void showSubTreeAcrossFrame(const Node* node, const Node* markedNode, const String& indent)
{
if (node == markedNode)
fputs("*", stderr);
fputs(indent.utf8().data(), stderr);
node->showNode();
if (!node->isShadowRoot()) {
if (node->isFrameOwnerElement())
showSubTreeAcrossFrame(static_cast<const HTMLFrameOwnerElement*>(node)->contentDocument(), markedNode, indent + "\t");
if (ShadowRoot* shadowRoot = node->shadowRoot())
showSubTreeAcrossFrame(shadowRoot, markedNode, indent + "\t");
}
for (Node* child = node->firstChild(); child; child = child->nextSibling())
showSubTreeAcrossFrame(child, markedNode, indent + "\t");
}
void Node::showTreeForThisAcrossFrame() const
{
Node* rootNode = const_cast<Node*>(this);
while (parentOrShadowHostOrFrameOwner(rootNode))
rootNode = parentOrShadowHostOrFrameOwner(rootNode);
showSubTreeAcrossFrame(rootNode, this, emptyString());
}
#endif // ENABLE(TREE_DEBUGGING)
// --------
void NodeListsNodeData::invalidateCaches()
{
for (auto& atomName : m_atomNameCaches)
atomName.value->invalidateCache();
for (auto& collection : m_cachedCollections)
collection.value->invalidateCache();
for (auto& tagCollection : m_tagCollectionNSCache)
tagCollection.value->invalidateCache();
}
void NodeListsNodeData::invalidateCachesForAttribute(const QualifiedName& attrName)
{
for (auto& atomName : m_atomNameCaches)
atomName.value->invalidateCacheForAttribute(attrName);
for (auto& collection : m_cachedCollections)
collection.value->invalidateCacheForAttribute(attrName);
}
void Node::getSubresourceURLs(ListHashSet<URL>& urls) const
{
addSubresourceAttributeURLs(urls);
}
Element* Node::enclosingLinkEventParentOrSelf()
{
for (Node* node = this; node; node = node->parentInComposedTree()) {
// For imagemaps, the enclosing link element is the associated area element not the image itself.
// So we don't let images be the enclosing link element, even though isLink sometimes returns
// true for them.
if (node->isLink() && !is<HTMLImageElement>(*node))
return downcast<Element>(node);
}
return nullptr;
}
EventTargetInterface Node::eventTargetInterface() const
{
return NodeEventTargetInterfaceType;
}
template <typename MoveNodeFunction, typename MoveShadowRootFunction>
static void traverseSubtreeToUpdateTreeScope(Node& root, MoveNodeFunction moveNode, MoveShadowRootFunction moveShadowRoot)
{
for (Node* node = &root; node; node = NodeTraversal::next(*node, &root)) {
moveNode(*node);
if (!is<Element>(*node))
continue;
Element& element = downcast<Element>(*node);
if (element.hasSyntheticAttrChildNodes()) {
for (auto& attr : element.attrNodeList())
moveNode(*attr);
}
if (auto* shadow = element.shadowRoot())
moveShadowRoot(*shadow);
}
}
inline void Node::moveShadowTreeToNewDocument(ShadowRoot& shadowRoot, Document& oldDocument, Document& newDocument)
{
traverseSubtreeToUpdateTreeScope(shadowRoot, [&oldDocument, &newDocument](Node& node) {
node.moveNodeToNewDocument(oldDocument, newDocument);
}, [&oldDocument, &newDocument](ShadowRoot& innerShadowRoot) {
RELEASE_ASSERT_WITH_SECURITY_IMPLICATION(&innerShadowRoot.document() == &oldDocument);
innerShadowRoot.moveShadowRootToNewDocument(newDocument);
moveShadowTreeToNewDocument(innerShadowRoot, oldDocument, newDocument);
});
}
void Node::moveTreeToNewScope(Node& root, TreeScope& oldScope, TreeScope& newScope)
{
ASSERT(&oldScope != &newScope);
Document& oldDocument = oldScope.documentScope();
Document& newDocument = newScope.documentScope();
if (&oldDocument != &newDocument) {
oldDocument.incrementReferencingNodeCount();
traverseSubtreeToUpdateTreeScope(root, [&](Node& node) {
ASSERT(!node.isTreeScope());
RELEASE_ASSERT_WITH_SECURITY_IMPLICATION(&node.treeScope() == &oldScope);
node.setTreeScope(newScope);
node.moveNodeToNewDocument(oldDocument, newDocument);
}, [&](ShadowRoot& shadowRoot) {
ASSERT_WITH_SECURITY_IMPLICATION(&shadowRoot.document() == &oldDocument);
shadowRoot.moveShadowRootToNewParentScope(newScope, newDocument);
moveShadowTreeToNewDocument(shadowRoot, oldDocument, newDocument);
});
RELEASE_ASSERT_WITH_SECURITY_IMPLICATION(&oldScope.documentScope() == &oldDocument && &newScope.documentScope() == &newDocument);
oldDocument.decrementReferencingNodeCount();
} else {
traverseSubtreeToUpdateTreeScope(root, [&](Node& node) {
ASSERT(!node.isTreeScope());
RELEASE_ASSERT_WITH_SECURITY_IMPLICATION(&node.treeScope() == &oldScope);
node.setTreeScope(newScope);
if (UNLIKELY(!node.hasRareData()))
return;
if (auto* nodeLists = node.rareData()->nodeLists())
nodeLists->adoptTreeScope();
}, [&newScope](ShadowRoot& shadowRoot) {
shadowRoot.setParentTreeScope(newScope);
});
}
}
void Node::moveNodeToNewDocument(Document& oldDocument, Document& newDocument)
{
newDocument.incrementReferencingNodeCount();
oldDocument.decrementReferencingNodeCount();
if (hasRareData()) {
if (auto* nodeLists = rareData()->nodeLists())
nodeLists->adoptDocument(oldDocument, newDocument);
if (auto* registry = mutationObserverRegistry()) {
for (auto& registration : *registry)
newDocument.addMutationObserverTypes(registration->mutationTypes());
}
if (auto* transientRegistry = transientMutationObserverRegistry()) {
for (auto& registration : *transientRegistry)
newDocument.addMutationObserverTypes(registration->mutationTypes());
}
} else {
ASSERT(!mutationObserverRegistry());
ASSERT(!transientMutationObserverRegistry());
}
oldDocument.moveNodeIteratorsToNewDocument(*this, newDocument);
if (!parentNode())
oldDocument.parentlessNodeMovedToNewDocument(*this);
if (AXObjectCache::accessibilityEnabled()) {
if (auto* cache = oldDocument.existingAXObjectCache())
cache->remove(*this);
}
auto* textManipulationController = oldDocument.textManipulationControllerIfExists();
if (UNLIKELY(textManipulationController))
textManipulationController->removeNode(*this);
if (auto* eventTargetData = this->eventTargetData()) {
auto& eventNames = WebCore::eventNames();
if (!eventTargetData->eventListenerMap.isEmpty()) {
for (auto& type : eventTargetData->eventListenerMap.eventTypes())
newDocument.addListenerTypeIfNeeded(type);
}
unsigned numWheelEventHandlers = eventListeners(eventNames.mousewheelEvent).size() + eventListeners(eventNames.wheelEvent).size();
for (unsigned i = 0; i < numWheelEventHandlers; ++i) {
oldDocument.didRemoveWheelEventHandler(*this);
newDocument.didAddWheelEventHandler(*this);
}
unsigned numTouchEventListeners = 0;
#if ENABLE(TOUCH_EVENTS)
if (newDocument.quirks().shouldDispatchSimulatedMouseEvents(this)) {
for (auto& name : eventNames.extendedTouchRelatedEventNames())
numTouchEventListeners += eventListeners(name).size();
} else {
#endif
for (auto& name : eventNames.touchRelatedEventNames())
numTouchEventListeners += eventListeners(name).size();
#if ENABLE(TOUCH_EVENTS)
}
#endif
for (unsigned i = 0; i < numTouchEventListeners; ++i) {
oldDocument.didRemoveTouchEventHandler(*this);
newDocument.didAddTouchEventHandler(*this);
#if ENABLE(TOUCH_EVENTS) && PLATFORM(IOS_FAMILY)
oldDocument.removeTouchEventListener(*this);
newDocument.addTouchEventListener(*this);
#endif
}
#if ENABLE(TOUCH_EVENTS) && ENABLE(IOS_GESTURE_EVENTS)
unsigned numGestureEventListeners = 0;
for (auto& name : eventNames.gestureEventNames())
numGestureEventListeners += eventListeners(name).size();
for (unsigned i = 0; i < numGestureEventListeners; ++i) {
oldDocument.removeTouchEventHandler(*this);
newDocument.addTouchEventHandler(*this);
}
#endif
}
#if ASSERT_ENABLED || ENABLE(SECURITY_ASSERTIONS)
#if ENABLE(TOUCH_EVENTS) && PLATFORM(IOS_FAMILY)
ASSERT_WITH_SECURITY_IMPLICATION(!oldDocument.touchEventListenersContain(*this));
ASSERT_WITH_SECURITY_IMPLICATION(!oldDocument.touchEventHandlersContain(*this));
#endif
#if ENABLE(TOUCH_EVENTS) && ENABLE(IOS_GESTURE_EVENTS)
ASSERT_WITH_SECURITY_IMPLICATION(!oldDocument.touchEventTargetsContain(*this));
#endif
#endif
if (is<Element>(*this))
downcast<Element>(*this).didMoveToNewDocument(oldDocument, newDocument);
}
static inline bool tryAddEventListener(Node* targetNode, const AtomString& eventType, Ref<EventListener>&& listener, const AddEventListenerOptions& options)
{
if (!targetNode->EventTarget::addEventListener(eventType, listener.copyRef(), options))
return false;
targetNode->document().addListenerTypeIfNeeded(eventType);
auto& eventNames = WebCore::eventNames();
if (eventNames.isWheelEventType(eventType))
targetNode->document().didAddWheelEventHandler(*targetNode);
else if (eventNames.isTouchRelatedEventType(eventType, *targetNode))
targetNode->document().didAddTouchEventHandler(*targetNode);
#if PLATFORM(IOS_FAMILY)
if (targetNode == &targetNode->document() && eventType == eventNames.scrollEvent) {
if (auto* window = targetNode->document().domWindow())
window->incrementScrollEventListenersCount();
}
#if ENABLE(TOUCH_EVENTS)
if (eventNames.isTouchRelatedEventType(eventType, *targetNode))
targetNode->document().addTouchEventListener(*targetNode);
#endif
#endif // PLATFORM(IOS_FAMILY)
#if ENABLE(IOS_GESTURE_EVENTS) && ENABLE(TOUCH_EVENTS)
if (eventNames.isGestureEventType(eventType))
targetNode->document().addTouchEventHandler(*targetNode);
#endif
return true;
}
bool Node::addEventListener(const AtomString& eventType, Ref<EventListener>&& listener, const AddEventListenerOptions& options)
{
return tryAddEventListener(this, eventType, WTFMove(listener), options);
}
static inline bool tryRemoveEventListener(Node* targetNode, const AtomString& eventType, EventListener& listener, const EventListenerOptions& options)
{
if (!targetNode->EventTarget::removeEventListener(eventType, listener, options))
return false;
// FIXME: Notify Document that the listener has vanished. We need to keep track of a number of
// listeners for each type, not just a bool - see https://bugs.webkit.org/show_bug.cgi?id=33861
auto& eventNames = WebCore::eventNames();
if (eventNames.isWheelEventType(eventType))
targetNode->document().didRemoveWheelEventHandler(*targetNode);
else if (eventNames.isTouchRelatedEventType(eventType, *targetNode))
targetNode->document().didRemoveTouchEventHandler(*targetNode);
#if PLATFORM(IOS_FAMILY)
if (targetNode == &targetNode->document() && eventType == eventNames.scrollEvent) {
if (auto* window = targetNode->document().domWindow())
window->decrementScrollEventListenersCount();
}
#if ENABLE(TOUCH_EVENTS)
if (eventNames.isTouchRelatedEventType(eventType, *targetNode))
targetNode->document().removeTouchEventListener(*targetNode);
#endif
#endif // PLATFORM(IOS_FAMILY)
#if ENABLE(IOS_GESTURE_EVENTS) && ENABLE(TOUCH_EVENTS)
if (eventNames.isGestureEventType(eventType))
targetNode->document().removeTouchEventHandler(*targetNode);
#endif
return true;
}
bool Node::removeEventListener(const AtomString& eventType, EventListener& listener, const EventListenerOptions& options)
{
return tryRemoveEventListener(this, eventType, listener, options);
}
typedef HashMap<Node*, std::unique_ptr<EventTargetData>> EventTargetDataMap;
static EventTargetDataMap& eventTargetDataMap()
{
static NeverDestroyed<EventTargetDataMap> map;
return map;
}
static Lock s_eventTargetDataMapLock;
EventTargetData* Node::eventTargetData()
{
return hasEventTargetData() ? eventTargetDataMap().get(this) : nullptr;
}
EventTargetData* Node::eventTargetDataConcurrently()
{
// Not holding the lock when the world is stopped accelerates parallel constraint solving, which
// calls this function from many threads. Parallel constraint solving can happen with the world
// running or stopped, but if we do it with a running world, then we're usually mixing constraint
// solving with other work. Therefore, the most likely time for contention on this lock is when the
// world is stopped. We don't have to hold the lock when the world is stopped, because a stopped world
// means that we will never mutate the event target data map.
JSC::VM* vm = commonVMOrNull();
if (vm && vm->heap.worldIsRunning()) {
Locker locker { s_eventTargetDataMapLock };
return hasEventTargetData() ? eventTargetDataMap().get(this) : nullptr;
}
return hasEventTargetData() ? eventTargetDataMap().get(this) : nullptr;
}
EventTargetData& Node::ensureEventTargetData()
{
if (hasEventTargetData())
return *eventTargetDataMap().get(this);
JSC::VM* vm = commonVMOrNull();
RELEASE_ASSERT(!vm || vm->heap.worldIsRunning());
Locker locker { s_eventTargetDataMapLock };
setHasEventTargetData(true);
return *eventTargetDataMap().add(this, makeUnique<EventTargetData>()).iterator->value;
}
void Node::clearEventTargetData()
{
JSC::VM* vm = commonVMOrNull();
RELEASE_ASSERT(!vm || vm->heap.worldIsRunning());
Locker locker { s_eventTargetDataMapLock };
eventTargetDataMap().remove(this);
}
Vector<std::unique_ptr<MutationObserverRegistration>>* Node::mutationObserverRegistry()
{
if (!hasRareData())
return nullptr;
auto* data = rareData()->mutationObserverData();
if (!data)
return nullptr;
return &data->registry;
}
HashSet<MutationObserverRegistration*>* Node::transientMutationObserverRegistry()
{
if (!hasRareData())
return nullptr;
auto* data = rareData()->mutationObserverData();
if (!data)
return nullptr;
return &data->transientRegistry;
}
template<typename Registry> static inline void collectMatchingObserversForMutation(HashMap<Ref<MutationObserver>, MutationRecordDeliveryOptions>& observers, Registry* registry, Node& target, MutationObserverOptionType type, const QualifiedName* attributeName)
{
if (!registry)
return;
for (auto& registration : *registry) {
if (registration->shouldReceiveMutationFrom(target, type, attributeName)) {
auto deliveryOptions = registration->deliveryOptions();
auto result = observers.add(registration->observer(), deliveryOptions);
if (!result.isNewEntry)
result.iterator->value.add(deliveryOptions);
}
}
}
HashMap<Ref<MutationObserver>, MutationRecordDeliveryOptions> Node::registeredMutationObservers(MutationObserverOptionType type, const QualifiedName* attributeName)
{
HashMap<Ref<MutationObserver>, MutationRecordDeliveryOptions> result;
ASSERT((type == MutationObserverOptionType::Attributes && attributeName) || !attributeName);
collectMatchingObserversForMutation(result, mutationObserverRegistry(), *this, type, attributeName);
collectMatchingObserversForMutation(result, transientMutationObserverRegistry(), *this, type, attributeName);
for (Node* node = parentNode(); node; node = node->parentNode()) {
collectMatchingObserversForMutation(result, node->mutationObserverRegistry(), *this, type, attributeName);
collectMatchingObserversForMutation(result, node->transientMutationObserverRegistry(), *this, type, attributeName);
}
return result;
}
void Node::registerMutationObserver(MutationObserver& observer, MutationObserverOptions options, const MemoryCompactLookupOnlyRobinHoodHashSet<AtomString>& attributeFilter)
{
MutationObserverRegistration* registration = nullptr;
auto& registry = ensureRareData().ensureMutationObserverData().registry;
for (auto& candidateRegistration : registry) {
if (&candidateRegistration->observer() == &observer) {
registration = candidateRegistration.get();
registration->resetObservation(options, attributeFilter);
}
}
if (!registration) {
registry.append(makeUnique<MutationObserverRegistration>(observer, *this, options, attributeFilter));
registration = registry.last().get();
}
document().addMutationObserverTypes(registration->mutationTypes());
}
void Node::unregisterMutationObserver(MutationObserverRegistration& registration)
{
auto* registry = mutationObserverRegistry();
ASSERT(registry);
if (!registry)
return;
registry->removeFirstMatching([&registration] (auto& current) {
return current.get() == &registration;
});
}
void Node::registerTransientMutationObserver(MutationObserverRegistration& registration)
{
ensureRareData().ensureMutationObserverData().transientRegistry.add(&registration);
}
void Node::unregisterTransientMutationObserver(MutationObserverRegistration& registration)
{
auto* transientRegistry = transientMutationObserverRegistry();
ASSERT(transientRegistry);
if (!transientRegistry)
return;
ASSERT(transientRegistry->contains(&registration));
transientRegistry->remove(&registration);
}
void Node::notifyMutationObserversNodeWillDetach()
{
if (!document().hasMutationObservers())
return;
for (Node* node = parentNode(); node; node = node->parentNode()) {
if (auto* registry = node->mutationObserverRegistry()) {
for (auto& registration : *registry)
registration->observedSubtreeNodeWillDetach(*this);
}
if (auto* transientRegistry = node->transientMutationObserverRegistry()) {
for (auto* registration : *transientRegistry)
registration->observedSubtreeNodeWillDetach(*this);
}
}
}
void Node::dispatchScopedEvent(Event& event)
{
EventDispatcher::dispatchScopedEvent(*this, event);
}
void Node::dispatchEvent(Event& event)
{
EventDispatcher::dispatchEvent(*this, event);
}
void Node::dispatchSubtreeModifiedEvent()
{
if (isInShadowTree())
return;
ASSERT_WITH_SECURITY_IMPLICATION(ScriptDisallowedScope::InMainThread::isEventDispatchAllowedInSubtree(*this));
if (!document().hasListenerType(Document::DOMSUBTREEMODIFIED_LISTENER))
return;
const AtomString& subtreeModifiedEventName = eventNames().DOMSubtreeModifiedEvent;
if (!parentNode() && !hasEventListeners(subtreeModifiedEventName))
return;
dispatchScopedEvent(MutationEvent::create(subtreeModifiedEventName, Event::CanBubble::Yes));
}
void Node::dispatchDOMActivateEvent(Event& underlyingClickEvent)
{
ASSERT_WITH_SECURITY_IMPLICATION(ScriptDisallowedScope::InMainThread::isScriptAllowed());
int detail = is<UIEvent>(underlyingClickEvent) ? downcast<UIEvent>(underlyingClickEvent).detail() : 0;
auto event = UIEvent::create(eventNames().DOMActivateEvent, Event::CanBubble::Yes, Event::IsCancelable::Yes, Event::IsComposed::Yes, document().windowProxy(), detail);
event->setUnderlyingEvent(&underlyingClickEvent);
dispatchScopedEvent(event);
if (event->defaultHandled())
underlyingClickEvent.setDefaultHandled();
}
void Node::dispatchInputEvent()
{
dispatchScopedEvent(Event::create(eventNames().inputEvent, Event::CanBubble::Yes, Event::IsCancelable::No, Event::IsComposed::Yes));
}
void Node::defaultEventHandler(Event& event)
{
if (event.target() != this)
return;
auto& eventType = event.type();
auto& eventNames = WebCore::eventNames();
if (eventType == eventNames.keydownEvent || eventType == eventNames.keypressEvent || eventType == eventNames.keyupEvent) {
if (is<KeyboardEvent>(event)) {
if (Frame* frame = document().frame())
frame->eventHandler().defaultKeyboardEventHandler(downcast<KeyboardEvent>(event));
}
} else if (eventType == eventNames.clickEvent) {
dispatchDOMActivateEvent(event);
#if ENABLE(CONTEXT_MENUS)
} else if (eventType == eventNames.contextmenuEvent) {
if (Frame* frame = document().frame())
if (Page* page = frame->page())
page->contextMenuController().handleContextMenuEvent(event);
#endif
} else if (eventType == eventNames.textInputEvent) {
if (is<TextEvent>(event)) {
if (Frame* frame = document().frame())
frame->eventHandler().defaultTextInputEventHandler(downcast<TextEvent>(event));
}
#if ENABLE(PAN_SCROLLING)
} else if (eventType == eventNames.mousedownEvent && is<MouseEvent>(event)) {
if (downcast<MouseEvent>(event).button() == MiddleButton) {
if (enclosingLinkEventParentOrSelf())
return;
RenderObject* renderer = this->renderer();
while (renderer && (!is<RenderBox>(*renderer) || !downcast<RenderBox>(*renderer).canBeScrolledAndHasScrollableArea()))
renderer = renderer->parent();
if (renderer) {
if (Frame* frame = document().frame())
frame->eventHandler().startPanScrolling(downcast<RenderBox>(*renderer));
}
}
#endif
} else if (eventNames.isWheelEventType(eventType) && is<WheelEvent>(event)) {
// If we don't have a renderer, send the wheel event to the first node we find with a renderer.
// This is needed for <option> and <optgroup> elements so that <select>s get a wheel scroll.
Node* startNode = this;
while (startNode && !startNode->renderer())
startNode = startNode->parentOrShadowHostNode();
if (startNode && startNode->renderer()) {
if (Frame* frame = document().frame())
frame->eventHandler().defaultWheelEventHandler(startNode, downcast<WheelEvent>(event));
}
#if ENABLE(TOUCH_EVENTS) && PLATFORM(IOS_FAMILY)
} else if (is<TouchEvent>(event) && eventNames.isTouchRelatedEventType(eventType, *this)) {
// Capture the target node's visibility state before dispatching touchStart.
if (is<Element>(*this) && eventType == eventNames.touchstartEvent) {
#if ENABLE(CONTENT_CHANGE_OBSERVER)
auto& contentChangeObserver = document().contentChangeObserver();
if (ContentChangeObserver::isVisuallyHidden(*this))
contentChangeObserver.setHiddenTouchTarget(downcast<Element>(*this));
else
contentChangeObserver.resetHiddenTouchTarget();
#endif
}
RenderObject* renderer = this->renderer();
while (renderer && (!is<RenderBox>(*renderer) || !downcast<RenderBox>(*renderer).canBeScrolledAndHasScrollableArea()))
renderer = renderer->parent();
if (renderer && renderer->node()) {
if (Frame* frame = document().frame())
frame->eventHandler().defaultTouchEventHandler(*renderer->node(), downcast<TouchEvent>(event));
}
#endif
}
}
bool Node::willRespondToMouseMoveEvents() const
{
// FIXME: Why is the iOS code path different from the non-iOS code path?
#if !PLATFORM(IOS_FAMILY)
if (!is<Element>(*this))
return false;
if (downcast<Element>(*this).isDisabledFormControl())
return false;
#endif
auto& eventNames = WebCore::eventNames();
return hasEventListeners(eventNames.mousemoveEvent) || hasEventListeners(eventNames.mouseoverEvent) || hasEventListeners(eventNames.mouseoutEvent);
}
bool Node::willRespondToTouchEvents() const
{
auto& eventNames = WebCore::eventNames();
return eventTypes().containsIf([&](const auto& type) {
return eventNames.isTouchRelatedEventType(type, *this);
});
}
Node::Editability Node::computeEditabilityForMouseClickEvents(const RenderStyle* style) const
{
// FIXME: Why is the iOS code path different from the non-iOS code path?
#if PLATFORM(IOS_FAMILY)
auto userSelectAllTreatment = UserSelectAllDoesNotAffectEditability;
#else
auto userSelectAllTreatment = UserSelectAllIsAlwaysNonEditable;
#endif
return computeEditabilityWithStyle(style, userSelectAllTreatment, style ? ShouldUpdateStyle::DoNotUpdate : ShouldUpdateStyle::Update);
}
bool Node::willRespondToMouseClickEvents() const
{
return willRespondToMouseClickEventsWithEditability(computeEditabilityForMouseClickEvents());
}
bool Node::willRespondToMouseClickEventsWithEditability(Editability editability) const
{
// FIXME: Why is the iOS code path different from the non-iOS code path?
#if !PLATFORM(IOS_FAMILY)
if (!is<Element>(*this))
return false;
if (downcast<Element>(*this).isDisabledFormControl())
return false;
#endif
if (editability != Editability::ReadOnly)
return true;
auto& eventNames = WebCore::eventNames();
return hasEventListeners(eventNames.mouseupEvent)
|| hasEventListeners(eventNames.mousedownEvent)
|| hasEventListeners(eventNames.clickEvent)
#if !PLATFORM(IOS_FAMILY)
|| hasEventListeners(eventNames.DOMActivateEvent)
#endif
;
}
bool Node::willRespondToMouseWheelEvents() const
{
return hasEventListeners(eventNames().mousewheelEvent);
}
// It's important not to inline removedLastRef, because we don't want to inline the code to
// delete a Node at each deref call site.
void Node::removedLastRef()
{
ASSERT(m_refCountAndParentBit == s_refCountIncrement);
// An explicit check for Document here is better than a virtual function since it is
// faster for non-Document nodes, and because the call to removedLastRef that is inlined
// at all deref call sites is smaller if it's a non-virtual function.
if (is<Document>(*this)) {
downcast<Document>(*this).removedLastRef();
return;
}
// Now it is time to detach the SVGElement from all its properties. These properties
// may outlive the SVGElement. The only difference after the detach is no commit will
// be carried out unless these properties are attached to another owner.
if (is<SVGElement>(*this))
downcast<SVGElement>(*this).detachAllProperties();
#if ASSERT_ENABLED
m_deletionHasBegun = true;
#endif
delete this;
}
void Node::incrementConnectedSubframeCount(unsigned amount)
{
static_assert(RareDataBitFields { Page::maxNumberOfFrames, 0, 0 }.connectedSubframeCount == Page::maxNumberOfFrames, "connectedSubframeCount must fit Page::maxNumberOfFrames");
ASSERT(isContainerNode());
auto bitfields = rareDataBitfields();
bitfields.connectedSubframeCount += amount;
RELEASE_ASSERT(bitfields.connectedSubframeCount == rareDataBitfields().connectedSubframeCount + amount);
setRareDataBitfields(bitfields);
}
void Node::decrementConnectedSubframeCount(unsigned amount)
{
ASSERT(isContainerNode());
auto bitfields = rareDataBitfields();
RELEASE_ASSERT(amount <= bitfields.connectedSubframeCount);
bitfields.connectedSubframeCount -= amount;
setRareDataBitfields(bitfields);
}
void Node::updateAncestorConnectedSubframeCountForRemoval() const
{
unsigned count = connectedSubframeCount();
if (!count)
return;
for (Node* node = parentOrShadowHostNode(); node; node = node->parentOrShadowHostNode())
node->decrementConnectedSubframeCount(count);
}
void Node::updateAncestorConnectedSubframeCountForInsertion() const
{
unsigned count = connectedSubframeCount();
if (!count)
return;
for (Node* node = parentOrShadowHostNode(); node; node = node->parentOrShadowHostNode())
node->incrementConnectedSubframeCount(count);
}
bool Node::inRenderedDocument() const
{
return isConnected() && document().hasLivingRenderTree();
}
WebCoreOpaqueRoot Node::traverseToOpaqueRoot() const
{
ASSERT_WITH_MESSAGE(!isConnected(), "Call opaqueRoot() or document() when the node is connected");
const Node* node = this;
for (;;) {
const Node* nextNode = node->parentOrShadowHostNode();
if (!nextNode)
break;
node = nextNode;
}
return WebCoreOpaqueRoot { const_cast<Node*>(node) };
}
template<> ContainerNode* parent<Tree>(const Node& node)
{
return node.parentNode();
}
template<> ContainerNode* parent<ShadowIncludingTree>(const Node& node)
{
return node.parentOrShadowHostNode();
}
template<> ContainerNode* parent<ComposedTree>(const Node& node)
{
return node.parentInComposedTree();
}
template<TreeType treeType> size_t depth(const Node& node)
{
size_t depth = 0;
auto ancestor = &node;
while ((ancestor = parent<treeType>(*ancestor)))
++depth;
return depth;
}
struct AncestorAndChildren {
const Node* commonAncestor;
const Node* distinctAncestorA;
const Node* distinctAncestorB;
};
template<TreeType treeType> AncestorAndChildren commonInclusiveAncestorAndChildren(const Node& a, const Node& b)
{
// This check isn't needed for correctness, but it is cheap and likely to be
// common enough to be worth optimizing so we don't have to walk to the root.
if (&a == &b)
return { &a, nullptr, nullptr };
// FIXME: Could optimize cases where nodes are both in the same shadow tree.
// FIXME: Could optimize cases where nodes are in different documents to quickly return false.
// FIXME: Could optimize cases where one node is connected and the other is not to quickly return false.
auto [depthA, depthB] = std::make_tuple(depth<treeType>(a), depth<treeType>(b));
auto [x, y, difference] = depthA >= depthB
? std::make_tuple(&a, &b, depthA - depthB)
: std::make_tuple(&b, &a, depthB - depthA);
decltype(x) distinctAncestorA = nullptr;
for (decltype(difference) i = 0; i < difference; ++i) {
distinctAncestorA = x;
x = parent<treeType>(*x);
}
decltype(y) distinctAncestorB = nullptr;
while (x != y) {
distinctAncestorA = x;
distinctAncestorB = y;
x = parent<treeType>(*x);
y = parent<treeType>(*y);
}
if (depthA < depthB)
std::swap(distinctAncestorA, distinctAncestorB);
return { x, distinctAncestorA, distinctAncestorB };
}
template<TreeType treeType> Node* commonInclusiveAncestor(const Node& a, const Node& b)
{
return const_cast<Node*>(commonInclusiveAncestorAndChildren<treeType>(a, b).commonAncestor);
}
template Node* commonInclusiveAncestor<Tree>(const Node&, const Node&);
template Node* commonInclusiveAncestor<ComposedTree>(const Node&, const Node&);
template Node* commonInclusiveAncestor<ShadowIncludingTree>(const Node&, const Node&);
static bool isSiblingSubsequent(const Node& siblingA, const Node& siblingB)
{
ASSERT(siblingA.parentNode());
ASSERT(siblingA.parentNode() == siblingB.parentNode());
ASSERT(&siblingA != &siblingB);
for (auto sibling = &siblingA; sibling; sibling = sibling->nextSibling()) {
if (sibling == &siblingB)
return true;
}
return false;
}
template<TreeType treeType> PartialOrdering treeOrder(const Node& a, const Node& b)
{
if (&a == &b)
return PartialOrdering::equivalent;
auto result = commonInclusiveAncestorAndChildren<treeType>(a, b);
if (!result.commonAncestor)
return PartialOrdering::unordered;
if (!result.distinctAncestorA)
return PartialOrdering::less;
if (!result.distinctAncestorB)
return PartialOrdering::greater;
bool isShadowRootA = result.distinctAncestorA->isShadowRoot();
bool isShadowRootB = result.distinctAncestorB->isShadowRoot();
if (isShadowRootA || isShadowRootB) {
if (!isShadowRootB)
return PartialOrdering::less;
if (!isShadowRootA)
return PartialOrdering::greater;
ASSERT_NOT_REACHED();
return PartialOrdering::unordered;
}
return isSiblingSubsequent(*result.distinctAncestorA, *result.distinctAncestorB) ? PartialOrdering::less : PartialOrdering::greater;
}
template PartialOrdering treeOrder<Tree>(const Node&, const Node&);
template PartialOrdering treeOrder<ShadowIncludingTree>(const Node&, const Node&);
template PartialOrdering treeOrder<ComposedTree>(const Node&, const Node&);
PartialOrdering treeOrderForTesting(TreeType type, const Node& a, const Node& b)
{
switch (type) {
case Tree:
return treeOrder<Tree>(a, b);
case ShadowIncludingTree:
return treeOrder<ShadowIncludingTree>(a, b);
case ComposedTree:
return treeOrder<ComposedTree>(a, b);
}
ASSERT_NOT_REACHED();
return PartialOrdering::unordered;
}
TextStream& operator<<(TextStream& ts, const Node& node)
{
ts << "node " << &node << " " << node.debugDescription();
return ts;
}
} // namespace WebCore
#if ENABLE(TREE_DEBUGGING)
void showTree(const WebCore::Node* node)
{
if (node)
node->showTreeForThis();
}
void showNodePath(const WebCore::Node* node)
{
if (node)
node->showNodePathForThis();
}
#endif // ENABLE(TREE_DEBUGGING)