blob: c2ce2aa786446b3087b8719a620dfc8ff2c6482b [file] [log] [blame]
/*
* Copyright (C) 1999-2002 Harri Porten (porten@kde.org)
* Copyright (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2012, 2013 Apple Inc. All rights reserved.
* Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca)
* Copyright (C) 2007 Maks Orlovich
* Copyright (C) 2007 Eric Seidel <eric@webkit.org>
* Copyright (C) 2012 Igalia, S.L.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "Nodes.h"
#include "NodeConstructors.h"
#include "BytecodeGenerator.h"
#include "CallFrame.h"
#include "Debugger.h"
#include "JIT.h"
#include "JSFunction.h"
#include "JSGlobalObject.h"
#include "JSNameScope.h"
#include "JSONObject.h"
#include "LabelScope.h"
#include "Lexer.h"
#include "JSCInlines.h"
#include "Parser.h"
#include "PropertyNameArray.h"
#include "RegExpCache.h"
#include "RegExpObject.h"
#include "SamplingTool.h"
#include "StackAlignment.h"
#include <wtf/Assertions.h>
#include <wtf/RefCountedLeakCounter.h>
#include <wtf/Threading.h>
using namespace WTF;
namespace JSC {
/*
Details of the emitBytecode function.
Return value: The register holding the production's value.
dst: An optional parameter specifying the most efficient destination at
which to store the production's value. The callee must honor dst.
The dst argument provides for a crude form of copy propagation. For example,
x = 1
becomes
load r[x], 1
instead of
load r0, 1
mov r[x], r0
because the assignment node, "x =", passes r[x] as dst to the number node, "1".
*/
void ExpressionNode::emitBytecodeInConditionContext(BytecodeGenerator& generator, Label* trueTarget, Label* falseTarget, FallThroughMode fallThroughMode)
{
RegisterID* result = generator.emitNode(this);
if (fallThroughMode == FallThroughMeansTrue)
generator.emitJumpIfFalse(result, falseTarget);
else
generator.emitJumpIfTrue(result, trueTarget);
}
// ------------------------------ ThrowableExpressionData --------------------------------
RegisterID* ThrowableExpressionData::emitThrowReferenceError(BytecodeGenerator& generator, const String& message)
{
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
generator.emitThrowReferenceError(message);
return generator.newTemporary();
}
// ------------------------------ ConstantNode ----------------------------------
void ConstantNode::emitBytecodeInConditionContext(BytecodeGenerator& generator, Label* trueTarget, Label* falseTarget, FallThroughMode fallThroughMode)
{
TriState value = jsValue(generator).pureToBoolean();
if (value == MixedTriState)
ExpressionNode::emitBytecodeInConditionContext(generator, trueTarget, falseTarget, fallThroughMode);
else if (value == TrueTriState && fallThroughMode == FallThroughMeansFalse)
generator.emitJump(trueTarget);
else if (value == FalseTriState && fallThroughMode == FallThroughMeansTrue)
generator.emitJump(falseTarget);
// All other cases are unconditional fall-throughs, like "if (true)".
}
RegisterID* ConstantNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (dst == generator.ignoredResult())
return 0;
return generator.emitLoad(dst, jsValue(generator));
}
JSValue StringNode::jsValue(BytecodeGenerator& generator) const
{
return generator.addStringConstant(m_value);
}
// ------------------------------ RegExpNode -----------------------------------
RegisterID* RegExpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (dst == generator.ignoredResult())
return 0;
return generator.emitNewRegExp(generator.finalDestination(dst), RegExp::create(*generator.vm(), m_pattern.string(), regExpFlags(m_flags.string())));
}
// ------------------------------ ThisNode -------------------------------------
RegisterID* ThisNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (dst == generator.ignoredResult())
return 0;
return generator.moveToDestinationIfNeeded(dst, generator.thisRegister());
}
// ------------------------------ ResolveNode ----------------------------------
bool ResolveNode::isPure(BytecodeGenerator& generator) const
{
return generator.local(m_ident).get();
}
RegisterID* ResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (Local local = generator.local(m_ident)) {
if (dst == generator.ignoredResult())
return 0;
return generator.moveToDestinationIfNeeded(dst, local.get());
}
JSTextPosition divot = m_start + m_ident.length();
generator.emitExpressionInfo(divot, m_start, divot);
RefPtr<RegisterID> scope = generator.emitResolveScope(generator.tempDestination(dst), m_ident);
return generator.emitGetFromScope(generator.finalDestination(dst), scope.get(), m_ident, ThrowIfNotFound);
}
// ------------------------------ ArrayNode ------------------------------------
RegisterID* ArrayNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
// FIXME: Should we put all of this code into emitNewArray?
unsigned length = 0;
ElementNode* firstPutElement;
for (firstPutElement = m_element; firstPutElement; firstPutElement = firstPutElement->next()) {
if (firstPutElement->elision() || firstPutElement->value()->isSpreadExpression())
break;
++length;
}
if (!firstPutElement && !m_elision)
return generator.emitNewArray(generator.finalDestination(dst), m_element, length);
RefPtr<RegisterID> array = generator.emitNewArray(generator.tempDestination(dst), m_element, length);
ElementNode* n = firstPutElement;
for (; n; n = n->next()) {
if (n->value()->isSpreadExpression())
goto handleSpread;
RegisterID* value = generator.emitNode(n->value());
length += n->elision();
generator.emitPutByIndex(array.get(), length++, value);
}
if (m_elision) {
RegisterID* value = generator.emitLoad(0, jsNumber(m_elision + length));
generator.emitPutById(array.get(), generator.propertyNames().length, value);
}
return generator.moveToDestinationIfNeeded(dst, array.get());
handleSpread:
RefPtr<RegisterID> index = generator.emitLoad(generator.newTemporary(), jsNumber(length));
auto spreader = [this, array, index](BytecodeGenerator& generator, RegisterID* value)
{
generator.emitDirectPutByVal(array.get(), index.get(), value);
generator.emitInc(index.get());
};
for (; n; n = n->next()) {
if (n->elision())
generator.emitBinaryOp(op_add, index.get(), index.get(), generator.emitLoad(0, jsNumber(n->elision())), OperandTypes(ResultType::numberTypeIsInt32(), ResultType::numberTypeIsInt32()));
if (n->value()->isSpreadExpression()) {
SpreadExpressionNode* spread = static_cast<SpreadExpressionNode*>(n->value());
generator.emitEnumeration(spread, spread->expression(), spreader);
} else {
generator.emitDirectPutByVal(array.get(), index.get(), generator.emitNode(n->value()));
generator.emitInc(index.get());
}
}
if (m_elision) {
generator.emitBinaryOp(op_add, index.get(), index.get(), generator.emitLoad(0, jsNumber(m_elision)), OperandTypes(ResultType::numberTypeIsInt32(), ResultType::numberTypeIsInt32()));
generator.emitPutById(array.get(), generator.propertyNames().length, index.get());
}
return generator.moveToDestinationIfNeeded(dst, array.get());
}
bool ArrayNode::isSimpleArray() const
{
if (m_elision || m_optional)
return false;
for (ElementNode* ptr = m_element; ptr; ptr = ptr->next()) {
if (ptr->elision())
return false;
}
return true;
}
ArgumentListNode* ArrayNode::toArgumentList(VM* vm, int lineNumber, int startPosition) const
{
ASSERT(!m_elision && !m_optional);
ElementNode* ptr = m_element;
if (!ptr)
return 0;
JSTokenLocation location;
location.line = lineNumber;
location.startOffset = startPosition;
ArgumentListNode* head = new (vm) ArgumentListNode(location, ptr->value());
ArgumentListNode* tail = head;
ptr = ptr->next();
for (; ptr; ptr = ptr->next()) {
ASSERT(!ptr->elision());
tail = new (vm) ArgumentListNode(location, tail, ptr->value());
}
return head;
}
// ------------------------------ ObjectLiteralNode ----------------------------
RegisterID* ObjectLiteralNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (!m_list) {
if (dst == generator.ignoredResult())
return 0;
return generator.emitNewObject(generator.finalDestination(dst));
}
return generator.emitNode(dst, m_list);
}
// ------------------------------ PropertyListNode -----------------------------
RegisterID* PropertyListNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> newObj = generator.tempDestination(dst);
generator.emitNewObject(newObj.get());
// Fast case: this loop just handles regular value properties.
PropertyListNode* p = this;
for (; p && p->m_node->m_type == PropertyNode::Constant; p = p->m_next) {
if (p->m_node->m_name) {
generator.emitDirectPutById(newObj.get(), *p->m_node->name(), generator.emitNode(p->m_node->m_assign));
continue;
}
RefPtr<RegisterID> propertyName = generator.emitNode(p->m_node->m_expression);
generator.emitDirectPutByVal(newObj.get(), propertyName.get(), generator.emitNode(p->m_node->m_assign));
}
// Were there any get/set properties?
if (p) {
typedef std::pair<PropertyNode*, PropertyNode*> GetterSetterPair;
typedef HashMap<StringImpl*, GetterSetterPair> GetterSetterMap;
GetterSetterMap map;
// Build a map, pairing get/set values together.
for (PropertyListNode* q = p; q; q = q->m_next) {
PropertyNode* node = q->m_node;
if (node->m_type == PropertyNode::Constant)
continue;
GetterSetterPair pair(node, static_cast<PropertyNode*>(0));
GetterSetterMap::AddResult result = map.add(node->name()->impl(), pair);
if (!result.isNewEntry)
result.iterator->value.second = node;
}
// Iterate over the remaining properties in the list.
for (; p; p = p->m_next) {
PropertyNode* node = p->m_node;
// Handle regular values.
if (node->m_type == PropertyNode::Constant) {
if (node->name()) {
generator.emitDirectPutById(newObj.get(), *node->name(), generator.emitNode(node->m_assign));
continue;
}
RefPtr<RegisterID> propertyName = generator.emitNode(p->m_node->m_expression);
generator.emitDirectPutByVal(newObj.get(), propertyName.get(), generator.emitNode(p->m_node->m_assign));
continue;
}
RegisterID* value = generator.emitNode(node->m_assign);
// This is a get/set property, find its entry in the map.
ASSERT(node->m_type == PropertyNode::Getter || node->m_type == PropertyNode::Setter);
GetterSetterMap::iterator it = map.find(node->name()->impl());
ASSERT(it != map.end());
GetterSetterPair& pair = it->value;
// Was this already generated as a part of its partner?
if (pair.second == node)
continue;
// Generate the paired node now.
RefPtr<RegisterID> getterReg;
RefPtr<RegisterID> setterReg;
if (node->m_type == PropertyNode::Getter) {
getterReg = value;
if (pair.second) {
ASSERT(pair.second->m_type == PropertyNode::Setter);
setterReg = generator.emitNode(pair.second->m_assign);
} else {
setterReg = generator.newTemporary();
generator.emitLoad(setterReg.get(), jsUndefined());
}
} else {
ASSERT(node->m_type == PropertyNode::Setter);
setterReg = value;
if (pair.second) {
ASSERT(pair.second->m_type == PropertyNode::Getter);
getterReg = generator.emitNode(pair.second->m_assign);
} else {
getterReg = generator.newTemporary();
generator.emitLoad(getterReg.get(), jsUndefined());
}
}
generator.emitPutGetterSetter(newObj.get(), *node->name(), getterReg.get(), setterReg.get());
}
}
return generator.moveToDestinationIfNeeded(dst, newObj.get());
}
// ------------------------------ BracketAccessorNode --------------------------------
RegisterID* BracketAccessorNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (m_base->isResolveNode()
&& generator.willResolveToArguments(static_cast<ResolveNode*>(m_base)->identifier())
&& !generator.symbolTable().slowArguments()) {
RegisterID* property = generator.emitNode(m_subscript);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
return generator.emitGetArgumentByVal(generator.finalDestination(dst), generator.uncheckedRegisterForArguments(), property);
}
RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(m_base, m_subscriptHasAssignments, m_subscript->isPure(generator));
RegisterID* property = generator.emitNode(m_subscript);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
return generator.emitGetByVal(generator.finalDestination(dst), base.get(), property);
}
// ------------------------------ DotAccessorNode --------------------------------
RegisterID* DotAccessorNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (m_ident == generator.propertyNames().length) {
if (!m_base->isResolveNode())
goto nonArgumentsPath;
ResolveNode* resolveNode = static_cast<ResolveNode*>(m_base);
if (!generator.willResolveToArguments(resolveNode->identifier()))
goto nonArgumentsPath;
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
return generator.emitGetArgumentsLength(generator.finalDestination(dst), generator.uncheckedRegisterForArguments());
}
nonArgumentsPath:
RegisterID* base = generator.emitNode(m_base);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
return generator.emitGetById(generator.finalDestination(dst), base, m_ident);
}
// ------------------------------ ArgumentListNode -----------------------------
RegisterID* ArgumentListNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
ASSERT(m_expr);
return generator.emitNode(dst, m_expr);
}
// ------------------------------ NewExprNode ----------------------------------
RegisterID* NewExprNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
ExpectedFunction expectedFunction;
if (m_expr->isResolveNode())
expectedFunction = generator.expectedFunctionForIdentifier(static_cast<ResolveNode*>(m_expr)->identifier());
else
expectedFunction = NoExpectedFunction;
RefPtr<RegisterID> func = generator.emitNode(m_expr);
RefPtr<RegisterID> returnValue = generator.finalDestination(dst, func.get());
CallArguments callArguments(generator, m_args);
return generator.emitConstruct(returnValue.get(), func.get(), expectedFunction, callArguments, divot(), divotStart(), divotEnd());
}
CallArguments::CallArguments(BytecodeGenerator& generator, ArgumentsNode* argumentsNode, unsigned additionalArguments)
: m_argumentsNode(argumentsNode)
, m_padding(0)
{
if (generator.shouldEmitProfileHooks())
m_profileHookRegister = generator.newTemporary();
size_t argumentCountIncludingThis = 1 + additionalArguments; // 'this' register.
if (argumentsNode) {
for (ArgumentListNode* node = argumentsNode->m_listNode; node; node = node->m_next)
++argumentCountIncludingThis;
}
m_argv.grow(argumentCountIncludingThis);
for (int i = argumentCountIncludingThis - 1; i >= 0; --i) {
m_argv[i] = generator.newTemporary();
ASSERT(static_cast<size_t>(i) == m_argv.size() - 1 || m_argv[i]->index() == m_argv[i + 1]->index() - 1);
}
while (stackOffset() % stackAlignmentRegisters()) {
m_argv.insert(0, generator.newTemporary());
m_padding++;
}
}
// ------------------------------ EvalFunctionCallNode ----------------------------------
RegisterID* EvalFunctionCallNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (Local local = generator.local(generator.propertyNames().eval)) {
RefPtr<RegisterID> func = generator.emitMove(generator.tempDestination(dst), local.get());
CallArguments callArguments(generator, m_args);
generator.emitLoad(callArguments.thisRegister(), jsUndefined());
return generator.emitCallEval(generator.finalDestination(dst, func.get()), func.get(), callArguments, divot(), divotStart(), divotEnd());
}
RefPtr<RegisterID> func = generator.newTemporary();
CallArguments callArguments(generator, m_args);
JSTextPosition newDivot = divotStart() + 4;
generator.emitExpressionInfo(newDivot, divotStart(), newDivot);
generator.emitResolveScope(callArguments.thisRegister(), generator.propertyNames().eval);
generator.emitGetFromScope(func.get(), callArguments.thisRegister(), generator.propertyNames().eval, ThrowIfNotFound);
return generator.emitCallEval(generator.finalDestination(dst, func.get()), func.get(), callArguments, divot(), divotStart(), divotEnd());
}
// ------------------------------ FunctionCallValueNode ----------------------------------
RegisterID* FunctionCallValueNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> func = generator.emitNode(m_expr);
RefPtr<RegisterID> returnValue = generator.finalDestination(dst, func.get());
CallArguments callArguments(generator, m_args);
generator.emitLoad(callArguments.thisRegister(), jsUndefined());
return generator.emitCall(returnValue.get(), func.get(), NoExpectedFunction, callArguments, divot(), divotStart(), divotEnd());
}
// ------------------------------ FunctionCallResolveNode ----------------------------------
RegisterID* FunctionCallResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
ExpectedFunction expectedFunction = generator.expectedFunctionForIdentifier(m_ident);
if (Local local = generator.local(m_ident)) {
RefPtr<RegisterID> func = generator.emitMove(generator.tempDestination(dst), local.get());
RefPtr<RegisterID> returnValue = generator.finalDestination(dst, func.get());
CallArguments callArguments(generator, m_args);
generator.emitLoad(callArguments.thisRegister(), jsUndefined());
// This passes NoExpectedFunction because we expect that if the function is in a
// local variable, then it's not one of our built-in constructors.
return generator.emitCall(returnValue.get(), func.get(), NoExpectedFunction, callArguments, divot(), divotStart(), divotEnd());
}
RefPtr<RegisterID> func = generator.newTemporary();
RefPtr<RegisterID> returnValue = generator.finalDestination(dst, func.get());
CallArguments callArguments(generator, m_args);
JSTextPosition newDivot = divotStart() + m_ident.length();
generator.emitExpressionInfo(newDivot, divotStart(), newDivot);
generator.emitResolveScope(callArguments.thisRegister(), m_ident);
generator.emitGetFromScope(func.get(), callArguments.thisRegister(), m_ident, ThrowIfNotFound);
return generator.emitCall(returnValue.get(), func.get(), expectedFunction, callArguments, divot(), divotStart(), divotEnd());
}
// ------------------------------ FunctionCallBracketNode ----------------------------------
RegisterID* FunctionCallBracketNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> base = generator.emitNode(m_base);
RegisterID* property = generator.emitNode(m_subscript);
generator.emitExpressionInfo(subexpressionDivot(), subexpressionStart(), subexpressionEnd());
RefPtr<RegisterID> function = generator.emitGetByVal(generator.tempDestination(dst), base.get(), property);
RefPtr<RegisterID> returnValue = generator.finalDestination(dst, function.get());
CallArguments callArguments(generator, m_args);
generator.emitMove(callArguments.thisRegister(), base.get());
return generator.emitCall(returnValue.get(), function.get(), NoExpectedFunction, callArguments, divot(), divotStart(), divotEnd());
}
// ------------------------------ FunctionCallDotNode ----------------------------------
RegisterID* FunctionCallDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> function = generator.tempDestination(dst);
RefPtr<RegisterID> returnValue = generator.finalDestination(dst, function.get());
CallArguments callArguments(generator, m_args);
generator.emitNode(callArguments.thisRegister(), m_base);
generator.emitExpressionInfo(subexpressionDivot(), subexpressionStart(), subexpressionEnd());
generator.emitGetById(function.get(), callArguments.thisRegister(), m_ident);
return generator.emitCall(returnValue.get(), function.get(), NoExpectedFunction, callArguments, divot(), divotStart(), divotEnd());
}
RegisterID* CallFunctionCallDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<Label> realCall = generator.newLabel();
RefPtr<Label> end = generator.newLabel();
RefPtr<RegisterID> base = generator.emitNode(m_base);
generator.emitExpressionInfo(subexpressionDivot(), subexpressionStart(), subexpressionEnd());
RefPtr<RegisterID> function = generator.emitGetById(generator.tempDestination(dst), base.get(), m_ident);
RefPtr<RegisterID> returnValue = generator.finalDestination(dst, function.get());
generator.emitJumpIfNotFunctionCall(function.get(), realCall.get());
{
if (m_args->m_listNode && m_args->m_listNode->m_expr) {
ArgumentListNode* oldList = m_args->m_listNode;
m_args->m_listNode = m_args->m_listNode->m_next;
RefPtr<RegisterID> realFunction = generator.emitMove(generator.tempDestination(dst), base.get());
CallArguments callArguments(generator, m_args);
generator.emitNode(callArguments.thisRegister(), oldList->m_expr);
generator.emitCall(returnValue.get(), realFunction.get(), NoExpectedFunction, callArguments, divot(), divotStart(), divotEnd());
generator.emitJump(end.get());
m_args->m_listNode = oldList;
} else {
RefPtr<RegisterID> realFunction = generator.emitMove(generator.tempDestination(dst), base.get());
CallArguments callArguments(generator, m_args);
generator.emitLoad(callArguments.thisRegister(), jsUndefined());
generator.emitCall(returnValue.get(), realFunction.get(), NoExpectedFunction, callArguments, divot(), divotStart(), divotEnd());
generator.emitJump(end.get());
}
}
generator.emitLabel(realCall.get());
{
CallArguments callArguments(generator, m_args);
generator.emitMove(callArguments.thisRegister(), base.get());
generator.emitCall(returnValue.get(), function.get(), NoExpectedFunction, callArguments, divot(), divotStart(), divotEnd());
}
generator.emitLabel(end.get());
return returnValue.get();
}
static bool areTrivialApplyArguments(ArgumentsNode* args)
{
return !args->m_listNode || !args->m_listNode->m_expr || !args->m_listNode->m_next
|| (!args->m_listNode->m_next->m_next && args->m_listNode->m_next->m_expr->isSimpleArray());
}
RegisterID* ApplyFunctionCallDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
// A few simple cases can be trivially handled as ordinary function calls.
// function.apply(), function.apply(arg) -> identical to function.call
// function.apply(thisArg, [arg0, arg1, ...]) -> can be trivially coerced into function.call(thisArg, arg0, arg1, ...) and saves object allocation
bool mayBeCall = areTrivialApplyArguments(m_args);
RefPtr<Label> realCall = generator.newLabel();
RefPtr<Label> end = generator.newLabel();
RefPtr<RegisterID> base = generator.emitNode(m_base);
generator.emitExpressionInfo(subexpressionDivot(), subexpressionStart(), subexpressionEnd());
RefPtr<RegisterID> function = generator.emitGetById(generator.tempDestination(dst), base.get(), m_ident);
RefPtr<RegisterID> returnValue = generator.finalDestination(dst, function.get());
generator.emitJumpIfNotFunctionApply(function.get(), realCall.get());
{
if (mayBeCall) {
if (m_args->m_listNode && m_args->m_listNode->m_expr) {
ArgumentListNode* oldList = m_args->m_listNode;
if (m_args->m_listNode->m_next) {
ASSERT(m_args->m_listNode->m_next->m_expr->isSimpleArray());
ASSERT(!m_args->m_listNode->m_next->m_next);
m_args->m_listNode = static_cast<ArrayNode*>(m_args->m_listNode->m_next->m_expr)->toArgumentList(generator.vm(), 0, 0);
RefPtr<RegisterID> realFunction = generator.emitMove(generator.tempDestination(dst), base.get());
CallArguments callArguments(generator, m_args);
generator.emitNode(callArguments.thisRegister(), oldList->m_expr);
generator.emitCall(returnValue.get(), realFunction.get(), NoExpectedFunction, callArguments, divot(), divotStart(), divotEnd());
} else {
m_args->m_listNode = m_args->m_listNode->m_next;
RefPtr<RegisterID> realFunction = generator.emitMove(generator.tempDestination(dst), base.get());
CallArguments callArguments(generator, m_args);
generator.emitNode(callArguments.thisRegister(), oldList->m_expr);
generator.emitCall(returnValue.get(), realFunction.get(), NoExpectedFunction, callArguments, divot(), divotStart(), divotEnd());
}
m_args->m_listNode = oldList;
} else {
RefPtr<RegisterID> realFunction = generator.emitMove(generator.tempDestination(dst), base.get());
CallArguments callArguments(generator, m_args);
generator.emitLoad(callArguments.thisRegister(), jsUndefined());
generator.emitCall(returnValue.get(), realFunction.get(), NoExpectedFunction, callArguments, divot(), divotStart(), divotEnd());
}
} else {
ASSERT(m_args->m_listNode && m_args->m_listNode->m_next);
RefPtr<RegisterID> profileHookRegister;
if (generator.shouldEmitProfileHooks())
profileHookRegister = generator.newTemporary();
RefPtr<RegisterID> realFunction = generator.emitMove(generator.tempDestination(dst), base.get());
RefPtr<RegisterID> thisRegister = generator.emitNode(m_args->m_listNode->m_expr);
RefPtr<RegisterID> argsRegister;
ArgumentListNode* args = m_args->m_listNode->m_next;
if (args->m_expr->isResolveNode() && generator.willResolveToArguments(static_cast<ResolveNode*>(args->m_expr)->identifier()))
argsRegister = generator.uncheckedRegisterForArguments();
else
argsRegister = generator.emitNode(args->m_expr);
// Function.prototype.apply ignores extra arguments, but we still
// need to evaluate them for side effects.
while ((args = args->m_next))
generator.emitNode(args->m_expr);
generator.emitCallVarargs(returnValue.get(), realFunction.get(), thisRegister.get(), argsRegister.get(), generator.newTemporary(), profileHookRegister.get(), divot(), divotStart(), divotEnd());
}
generator.emitJump(end.get());
}
generator.emitLabel(realCall.get());
{
CallArguments callArguments(generator, m_args);
generator.emitMove(callArguments.thisRegister(), base.get());
generator.emitCall(returnValue.get(), function.get(), NoExpectedFunction, callArguments, divot(), divotStart(), divotEnd());
}
generator.emitLabel(end.get());
return returnValue.get();
}
// ------------------------------ PostfixNode ----------------------------------
static RegisterID* emitIncOrDec(BytecodeGenerator& generator, RegisterID* srcDst, Operator oper)
{
return (oper == OpPlusPlus) ? generator.emitInc(srcDst) : generator.emitDec(srcDst);
}
static RegisterID* emitPostIncOrDec(BytecodeGenerator& generator, RegisterID* dst, RegisterID* srcDst, Operator oper)
{
if (dst == srcDst)
return generator.emitToNumber(generator.finalDestination(dst), srcDst);
RefPtr<RegisterID> tmp = generator.emitToNumber(generator.tempDestination(dst), srcDst);
emitIncOrDec(generator, srcDst, oper);
return generator.moveToDestinationIfNeeded(dst, tmp.get());
}
RegisterID* PostfixNode::emitResolve(BytecodeGenerator& generator, RegisterID* dst)
{
if (dst == generator.ignoredResult())
return PrefixNode::emitResolve(generator, dst);
ASSERT(m_expr->isResolveNode());
ResolveNode* resolve = static_cast<ResolveNode*>(m_expr);
const Identifier& ident = resolve->identifier();
if (Local local = generator.local(ident)) {
RegisterID* localReg = local.get();
if (local.isReadOnly()) {
generator.emitReadOnlyExceptionIfNeeded();
localReg = generator.emitMove(generator.tempDestination(dst), localReg);
}
if (local.isCaptured()) {
RefPtr<RegisterID> tempDst = generator.finalDestination(dst);
ASSERT(dst != localReg);
RefPtr<RegisterID> tempDstSrc = generator.newTemporary();
generator.emitToNumber(tempDst.get(), localReg);
generator.emitMove(tempDstSrc.get(), localReg);
emitIncOrDec(generator, tempDstSrc.get(), m_operator);
generator.emitMove(localReg, tempDstSrc.get());
return tempDst.get();
}
return emitPostIncOrDec(generator, generator.finalDestination(dst), localReg, m_operator);
}
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
RefPtr<RegisterID> scope = generator.emitResolveScope(generator.newTemporary(), ident);
RefPtr<RegisterID> value = generator.emitGetFromScope(generator.newTemporary(), scope.get(), ident, ThrowIfNotFound);
RefPtr<RegisterID> oldValue = emitPostIncOrDec(generator, generator.finalDestination(dst), value.get(), m_operator);
generator.emitPutToScope(scope.get(), ident, value.get(), ThrowIfNotFound);
return oldValue.get();
}
RegisterID* PostfixNode::emitBracket(BytecodeGenerator& generator, RegisterID* dst)
{
if (dst == generator.ignoredResult())
return PrefixNode::emitBracket(generator, dst);
ASSERT(m_expr->isBracketAccessorNode());
BracketAccessorNode* bracketAccessor = static_cast<BracketAccessorNode*>(m_expr);
ExpressionNode* baseNode = bracketAccessor->base();
ExpressionNode* subscript = bracketAccessor->subscript();
RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(baseNode, bracketAccessor->subscriptHasAssignments(), subscript->isPure(generator));
RefPtr<RegisterID> property = generator.emitNode(subscript);
generator.emitExpressionInfo(bracketAccessor->divot(), bracketAccessor->divotStart(), bracketAccessor->divotEnd());
RefPtr<RegisterID> value = generator.emitGetByVal(generator.newTemporary(), base.get(), property.get());
RegisterID* oldValue = emitPostIncOrDec(generator, generator.tempDestination(dst), value.get(), m_operator);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
generator.emitPutByVal(base.get(), property.get(), value.get());
return generator.moveToDestinationIfNeeded(dst, oldValue);
}
RegisterID* PostfixNode::emitDot(BytecodeGenerator& generator, RegisterID* dst)
{
if (dst == generator.ignoredResult())
return PrefixNode::emitDot(generator, dst);
ASSERT(m_expr->isDotAccessorNode());
DotAccessorNode* dotAccessor = static_cast<DotAccessorNode*>(m_expr);
ExpressionNode* baseNode = dotAccessor->base();
const Identifier& ident = dotAccessor->identifier();
RefPtr<RegisterID> base = generator.emitNode(baseNode);
generator.emitExpressionInfo(dotAccessor->divot(), dotAccessor->divotStart(), dotAccessor->divotEnd());
RefPtr<RegisterID> value = generator.emitGetById(generator.newTemporary(), base.get(), ident);
RegisterID* oldValue = emitPostIncOrDec(generator, generator.tempDestination(dst), value.get(), m_operator);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
generator.emitPutById(base.get(), ident, value.get());
return generator.moveToDestinationIfNeeded(dst, oldValue);
}
RegisterID* PostfixNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (m_expr->isResolveNode())
return emitResolve(generator, dst);
if (m_expr->isBracketAccessorNode())
return emitBracket(generator, dst);
if (m_expr->isDotAccessorNode())
return emitDot(generator, dst);
return emitThrowReferenceError(generator, m_operator == OpPlusPlus
? "Postfix ++ operator applied to value that is not a reference."
: "Postfix -- operator applied to value that is not a reference.");
}
// ------------------------------ DeleteResolveNode -----------------------------------
RegisterID* DeleteResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (generator.local(m_ident).get())
return generator.emitLoad(generator.finalDestination(dst), false);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
RefPtr<RegisterID> base = generator.emitResolveScope(generator.tempDestination(dst), m_ident);
return generator.emitDeleteById(generator.finalDestination(dst, base.get()), base.get(), m_ident);
}
// ------------------------------ DeleteBracketNode -----------------------------------
RegisterID* DeleteBracketNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> r0 = generator.emitNode(m_base);
RegisterID* r1 = generator.emitNode(m_subscript);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
return generator.emitDeleteByVal(generator.finalDestination(dst), r0.get(), r1);
}
// ------------------------------ DeleteDotNode -----------------------------------
RegisterID* DeleteDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RegisterID* r0 = generator.emitNode(m_base);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
return generator.emitDeleteById(generator.finalDestination(dst), r0, m_ident);
}
// ------------------------------ DeleteValueNode -----------------------------------
RegisterID* DeleteValueNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitNode(generator.ignoredResult(), m_expr);
// delete on a non-location expression ignores the value and returns true
return generator.emitLoad(generator.finalDestination(dst), true);
}
// ------------------------------ VoidNode -------------------------------------
RegisterID* VoidNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (dst == generator.ignoredResult()) {
generator.emitNode(generator.ignoredResult(), m_expr);
return 0;
}
RefPtr<RegisterID> r0 = generator.emitNode(m_expr);
return generator.emitLoad(dst, jsUndefined());
}
// ------------------------------ TypeOfValueNode -----------------------------------
RegisterID* TypeOfResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (Local local = generator.local(m_ident)) {
if (dst == generator.ignoredResult())
return 0;
return generator.emitTypeOf(generator.finalDestination(dst), local.get());
}
RefPtr<RegisterID> scope = generator.emitResolveScope(generator.tempDestination(dst), m_ident);
RefPtr<RegisterID> value = generator.emitGetFromScope(generator.newTemporary(), scope.get(), m_ident, DoNotThrowIfNotFound);
if (dst == generator.ignoredResult())
return 0;
return generator.emitTypeOf(generator.finalDestination(dst, scope.get()), value.get());
}
// ------------------------------ TypeOfValueNode -----------------------------------
RegisterID* TypeOfValueNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (dst == generator.ignoredResult()) {
generator.emitNode(generator.ignoredResult(), m_expr);
return 0;
}
RefPtr<RegisterID> src = generator.emitNode(m_expr);
return generator.emitTypeOf(generator.finalDestination(dst), src.get());
}
// ------------------------------ PrefixNode ----------------------------------
RegisterID* PrefixNode::emitResolve(BytecodeGenerator& generator, RegisterID* dst)
{
ASSERT(m_expr->isResolveNode());
ResolveNode* resolve = static_cast<ResolveNode*>(m_expr);
const Identifier& ident = resolve->identifier();
if (Local local = generator.local(ident)) {
RegisterID* localReg = local.get();
if (local.isReadOnly()) {
generator.emitReadOnlyExceptionIfNeeded();
localReg = generator.emitMove(generator.tempDestination(dst), localReg);
}
if (local.isCaptured()) {
RefPtr<RegisterID> tempDst = generator.tempDestination(dst);
generator.emitMove(tempDst.get(), localReg);
emitIncOrDec(generator, tempDst.get(), m_operator);
generator.emitMove(localReg, tempDst.get());
return generator.moveToDestinationIfNeeded(dst, tempDst.get());
}
emitIncOrDec(generator, localReg, m_operator);
return generator.moveToDestinationIfNeeded(dst, localReg);
}
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
RefPtr<RegisterID> scope = generator.emitResolveScope(generator.tempDestination(dst), ident);
RefPtr<RegisterID> value = generator.emitGetFromScope(generator.newTemporary(), scope.get(), ident, ThrowIfNotFound);
emitIncOrDec(generator, value.get(), m_operator);
generator.emitPutToScope(scope.get(), ident, value.get(), ThrowIfNotFound);
return generator.moveToDestinationIfNeeded(dst, value.get());
}
RegisterID* PrefixNode::emitBracket(BytecodeGenerator& generator, RegisterID* dst)
{
ASSERT(m_expr->isBracketAccessorNode());
BracketAccessorNode* bracketAccessor = static_cast<BracketAccessorNode*>(m_expr);
ExpressionNode* baseNode = bracketAccessor->base();
ExpressionNode* subscript = bracketAccessor->subscript();
RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(baseNode, bracketAccessor->subscriptHasAssignments(), subscript->isPure(generator));
RefPtr<RegisterID> property = generator.emitNode(subscript);
RefPtr<RegisterID> propDst = generator.tempDestination(dst);
generator.emitExpressionInfo(bracketAccessor->divot(), bracketAccessor->divotStart(), bracketAccessor->divotEnd());
RegisterID* value = generator.emitGetByVal(propDst.get(), base.get(), property.get());
emitIncOrDec(generator, value, m_operator);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
generator.emitPutByVal(base.get(), property.get(), value);
return generator.moveToDestinationIfNeeded(dst, propDst.get());
}
RegisterID* PrefixNode::emitDot(BytecodeGenerator& generator, RegisterID* dst)
{
ASSERT(m_expr->isDotAccessorNode());
DotAccessorNode* dotAccessor = static_cast<DotAccessorNode*>(m_expr);
ExpressionNode* baseNode = dotAccessor->base();
const Identifier& ident = dotAccessor->identifier();
RefPtr<RegisterID> base = generator.emitNode(baseNode);
RefPtr<RegisterID> propDst = generator.tempDestination(dst);
generator.emitExpressionInfo(dotAccessor->divot(), dotAccessor->divotStart(), dotAccessor->divotEnd());
RegisterID* value = generator.emitGetById(propDst.get(), base.get(), ident);
emitIncOrDec(generator, value, m_operator);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
generator.emitPutById(base.get(), ident, value);
return generator.moveToDestinationIfNeeded(dst, propDst.get());
}
RegisterID* PrefixNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (m_expr->isResolveNode())
return emitResolve(generator, dst);
if (m_expr->isBracketAccessorNode())
return emitBracket(generator, dst);
if (m_expr->isDotAccessorNode())
return emitDot(generator, dst);
return emitThrowReferenceError(generator, m_operator == OpPlusPlus
? "Prefix ++ operator applied to value that is not a reference."
: "Prefix -- operator applied to value that is not a reference.");
}
// ------------------------------ Unary Operation Nodes -----------------------------------
RegisterID* UnaryOpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RegisterID* src = generator.emitNode(m_expr);
generator.emitExpressionInfo(position(), position(), position());
return generator.emitUnaryOp(opcodeID(), generator.finalDestination(dst), src);
}
// ------------------------------ BitwiseNotNode -----------------------------------
RegisterID* BitwiseNotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> src2 = generator.emitLoad(generator.newTemporary(), jsNumber(-1));
RegisterID* src1 = generator.emitNode(m_expr);
return generator.emitBinaryOp(op_bitxor, generator.finalDestination(dst, src1), src1, src2.get(), OperandTypes(m_expr->resultDescriptor(), ResultType::numberTypeIsInt32()));
}
// ------------------------------ LogicalNotNode -----------------------------------
void LogicalNotNode::emitBytecodeInConditionContext(BytecodeGenerator& generator, Label* trueTarget, Label* falseTarget, FallThroughMode fallThroughMode)
{
// reverse the true and false targets
generator.emitNodeInConditionContext(expr(), falseTarget, trueTarget, invert(fallThroughMode));
}
// ------------------------------ Binary Operation Nodes -----------------------------------
// BinaryOpNode::emitStrcat:
//
// This node generates an op_strcat operation. This opcode can handle concatenation of three or
// more values, where we can determine a set of separate op_add operations would be operating on
// string values.
//
// This function expects to be operating on a graph of AST nodes looking something like this:
//
// (a)... (b)
// \ /
// (+) (c)
// \ /
// [d] ((+))
// \ /
// [+=]
//
// The assignment operation is optional, if it exists the register holding the value on the
// lefthand side of the assignment should be passing as the optional 'lhs' argument.
//
// The method should be called on the node at the root of the tree of regular binary add
// operations (marked in the diagram with a double set of parentheses). This node must
// be performing a string concatenation (determined by statically detecting that at least
// one child must be a string).
//
// Since the minimum number of values being concatenated together is expected to be 3, if
// a lhs to a concatenating assignment is not provided then the root add should have at
// least one left child that is also an add that can be determined to be operating on strings.
//
RegisterID* BinaryOpNode::emitStrcat(BytecodeGenerator& generator, RegisterID* dst, RegisterID* lhs, ReadModifyResolveNode* emitExpressionInfoForMe)
{
ASSERT(isAdd());
ASSERT(resultDescriptor().definitelyIsString());
// Create a list of expressions for all the adds in the tree of nodes we can convert into
// a string concatenation. The rightmost node (c) is added first. The rightmost node is
// added first, and the leftmost child is never added, so the vector produced for the
// example above will be [ c, b ].
Vector<ExpressionNode*, 16> reverseExpressionList;
reverseExpressionList.append(m_expr2);
// Examine the left child of the add. So long as this is a string add, add its right-child
// to the list, and keep processing along the left fork.
ExpressionNode* leftMostAddChild = m_expr1;
while (leftMostAddChild->isAdd() && leftMostAddChild->resultDescriptor().definitelyIsString()) {
reverseExpressionList.append(static_cast<AddNode*>(leftMostAddChild)->m_expr2);
leftMostAddChild = static_cast<AddNode*>(leftMostAddChild)->m_expr1;
}
Vector<RefPtr<RegisterID>, 16> temporaryRegisters;
// If there is an assignment, allocate a temporary to hold the lhs after conversion.
// We could possibly avoid this (the lhs is converted last anyway, we could let the
// op_strcat node handle its conversion if required).
if (lhs)
temporaryRegisters.append(generator.newTemporary());
// Emit code for the leftmost node ((a) in the example).
temporaryRegisters.append(generator.newTemporary());
RegisterID* leftMostAddChildTempRegister = temporaryRegisters.last().get();
generator.emitNode(leftMostAddChildTempRegister, leftMostAddChild);
// Note on ordering of conversions:
//
// We maintain the same ordering of conversions as we would see if the concatenations
// was performed as a sequence of adds (otherwise this optimization could change
// behaviour should an object have been provided a valueOf or toString method).
//
// Considering the above example, the sequnce of execution is:
// * evaluate operand (a)
// * evaluate operand (b)
// * convert (a) to primitive <- (this would be triggered by the first add)
// * convert (b) to primitive <- (ditto)
// * evaluate operand (c)
// * convert (c) to primitive <- (this would be triggered by the second add)
// And optionally, if there is an assignment:
// * convert (d) to primitive <- (this would be triggered by the assigning addition)
//
// As such we do not plant an op to convert the leftmost child now. Instead, use
// 'leftMostAddChildTempRegister' as a flag to trigger generation of the conversion
// once the second node has been generated. However, if the leftmost child is an
// immediate we can trivially determine that no conversion will be required.
// If this is the case
if (leftMostAddChild->isString())
leftMostAddChildTempRegister = 0;
while (reverseExpressionList.size()) {
ExpressionNode* node = reverseExpressionList.last();
reverseExpressionList.removeLast();
// Emit the code for the current node.
temporaryRegisters.append(generator.newTemporary());
generator.emitNode(temporaryRegisters.last().get(), node);
// On the first iteration of this loop, when we first reach this point we have just
// generated the second node, which means it is time to convert the leftmost operand.
if (leftMostAddChildTempRegister) {
generator.emitToPrimitive(leftMostAddChildTempRegister, leftMostAddChildTempRegister);
leftMostAddChildTempRegister = 0; // Only do this once.
}
// Plant a conversion for this node, if necessary.
if (!node->isString())
generator.emitToPrimitive(temporaryRegisters.last().get(), temporaryRegisters.last().get());
}
ASSERT(temporaryRegisters.size() >= 3);
// Certain read-modify nodes require expression info to be emitted *after* m_right has been generated.
// If this is required the node is passed as 'emitExpressionInfoForMe'; do so now.
if (emitExpressionInfoForMe)
generator.emitExpressionInfo(emitExpressionInfoForMe->divot(), emitExpressionInfoForMe->divotStart(), emitExpressionInfoForMe->divotEnd());
// If there is an assignment convert the lhs now. This will also copy lhs to
// the temporary register we allocated for it.
if (lhs)
generator.emitToPrimitive(temporaryRegisters[0].get(), lhs);
return generator.emitStrcat(generator.finalDestination(dst, temporaryRegisters[0].get()), temporaryRegisters[0].get(), temporaryRegisters.size());
}
void BinaryOpNode::emitBytecodeInConditionContext(BytecodeGenerator& generator, Label* trueTarget, Label* falseTarget, FallThroughMode fallThroughMode)
{
TriState branchCondition;
ExpressionNode* branchExpression;
tryFoldToBranch(generator, branchCondition, branchExpression);
if (branchCondition == MixedTriState)
ExpressionNode::emitBytecodeInConditionContext(generator, trueTarget, falseTarget, fallThroughMode);
else if (branchCondition == TrueTriState)
generator.emitNodeInConditionContext(branchExpression, trueTarget, falseTarget, fallThroughMode);
else
generator.emitNodeInConditionContext(branchExpression, falseTarget, trueTarget, invert(fallThroughMode));
}
static inline bool canFoldToBranch(OpcodeID opcodeID, ExpressionNode* branchExpression, JSValue constant)
{
ResultType expressionType = branchExpression->resultDescriptor();
if (expressionType.definitelyIsBoolean() && constant.isBoolean())
return true;
else if (expressionType.definitelyIsBoolean() && constant.isInt32() && (constant.asInt32() == 0 || constant.asInt32() == 1))
return opcodeID == op_eq || opcodeID == op_neq; // Strict equality is false in the case of type mismatch.
else if (expressionType.isInt32() && constant.isInt32() && constant.asInt32() == 0)
return true;
return false;
}
void BinaryOpNode::tryFoldToBranch(BytecodeGenerator& generator, TriState& branchCondition, ExpressionNode*& branchExpression)
{
branchCondition = MixedTriState;
branchExpression = 0;
ConstantNode* constant = 0;
if (m_expr1->isConstant()) {
constant = static_cast<ConstantNode*>(m_expr1);
branchExpression = m_expr2;
} else if (m_expr2->isConstant()) {
constant = static_cast<ConstantNode*>(m_expr2);
branchExpression = m_expr1;
}
if (!constant)
return;
ASSERT(branchExpression);
OpcodeID opcodeID = this->opcodeID();
JSValue value = constant->jsValue(generator);
bool canFoldToBranch = JSC::canFoldToBranch(opcodeID, branchExpression, value);
if (!canFoldToBranch)
return;
if (opcodeID == op_eq || opcodeID == op_stricteq)
branchCondition = triState(value.pureToBoolean());
else if (opcodeID == op_neq || opcodeID == op_nstricteq)
branchCondition = triState(!value.pureToBoolean());
}
RegisterID* BinaryOpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
OpcodeID opcodeID = this->opcodeID();
if (opcodeID == op_add && m_expr1->isAdd() && m_expr1->resultDescriptor().definitelyIsString()) {
generator.emitExpressionInfo(position(), position(), position());
return emitStrcat(generator, dst);
}
if (opcodeID == op_neq) {
if (m_expr1->isNull() || m_expr2->isNull()) {
RefPtr<RegisterID> src = generator.tempDestination(dst);
generator.emitNode(src.get(), m_expr1->isNull() ? m_expr2 : m_expr1);
return generator.emitUnaryOp(op_neq_null, generator.finalDestination(dst, src.get()), src.get());
}
}
ExpressionNode* left = m_expr1;
ExpressionNode* right = m_expr2;
if (opcodeID == op_neq || opcodeID == op_nstricteq) {
if (left->isString())
std::swap(left, right);
}
RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(left, m_rightHasAssignments, right->isPure(generator));
bool wasTypeof = generator.m_lastOpcodeID == op_typeof;
RegisterID* src2 = generator.emitNode(right);
generator.emitExpressionInfo(position(), position(), position());
if (wasTypeof && (opcodeID == op_neq || opcodeID == op_nstricteq)) {
RefPtr<RegisterID> tmp = generator.tempDestination(dst);
if (opcodeID == op_neq)
generator.emitEqualityOp(op_eq, generator.finalDestination(tmp.get(), src1.get()), src1.get(), src2);
else if (opcodeID == op_nstricteq)
generator.emitEqualityOp(op_stricteq, generator.finalDestination(tmp.get(), src1.get()), src1.get(), src2);
else
RELEASE_ASSERT_NOT_REACHED();
return generator.emitUnaryOp(op_not, generator.finalDestination(dst, tmp.get()), tmp.get());
}
RegisterID* result = generator.emitBinaryOp(opcodeID, generator.finalDestination(dst, src1.get()), src1.get(), src2, OperandTypes(left->resultDescriptor(), right->resultDescriptor()));
if (opcodeID == op_urshift && dst != generator.ignoredResult())
return generator.emitUnaryOp(op_unsigned, result, result);
return result;
}
RegisterID* EqualNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (m_expr1->isNull() || m_expr2->isNull()) {
RefPtr<RegisterID> src = generator.tempDestination(dst);
generator.emitNode(src.get(), m_expr1->isNull() ? m_expr2 : m_expr1);
return generator.emitUnaryOp(op_eq_null, generator.finalDestination(dst, src.get()), src.get());
}
ExpressionNode* left = m_expr1;
ExpressionNode* right = m_expr2;
if (left->isString())
std::swap(left, right);
RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(left, m_rightHasAssignments, m_expr2->isPure(generator));
RegisterID* src2 = generator.emitNode(right);
return generator.emitEqualityOp(op_eq, generator.finalDestination(dst, src1.get()), src1.get(), src2);
}
RegisterID* StrictEqualNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
ExpressionNode* left = m_expr1;
ExpressionNode* right = m_expr2;
if (left->isString())
std::swap(left, right);
RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(left, m_rightHasAssignments, m_expr2->isPure(generator));
RegisterID* src2 = generator.emitNode(right);
return generator.emitEqualityOp(op_stricteq, generator.finalDestination(dst, src1.get()), src1.get(), src2);
}
RegisterID* ThrowableBinaryOpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(m_expr1, m_rightHasAssignments, m_expr2->isPure(generator));
RegisterID* src2 = generator.emitNode(m_expr2);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
return generator.emitBinaryOp(opcodeID(), generator.finalDestination(dst, src1.get()), src1.get(), src2, OperandTypes(m_expr1->resultDescriptor(), m_expr2->resultDescriptor()));
}
RegisterID* InstanceOfNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(m_expr1, m_rightHasAssignments, m_expr2->isPure(generator));
RefPtr<RegisterID> src2 = generator.emitNode(m_expr2);
RefPtr<RegisterID> prototype = generator.newTemporary();
RefPtr<RegisterID> dstReg = generator.finalDestination(dst, src1.get());
RefPtr<Label> target = generator.newLabel();
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
generator.emitCheckHasInstance(dstReg.get(), src1.get(), src2.get(), target.get());
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
generator.emitGetById(prototype.get(), src2.get(), generator.vm()->propertyNames->prototype);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
RegisterID* result = generator.emitInstanceOf(dstReg.get(), src1.get(), prototype.get());
generator.emitLabel(target.get());
return result;
}
// ------------------------------ LogicalOpNode ----------------------------
RegisterID* LogicalOpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> temp = generator.tempDestination(dst);
RefPtr<Label> target = generator.newLabel();
generator.emitNode(temp.get(), m_expr1);
if (m_operator == OpLogicalAnd)
generator.emitJumpIfFalse(temp.get(), target.get());
else
generator.emitJumpIfTrue(temp.get(), target.get());
generator.emitNode(temp.get(), m_expr2);
generator.emitLabel(target.get());
return generator.moveToDestinationIfNeeded(dst, temp.get());
}
void LogicalOpNode::emitBytecodeInConditionContext(BytecodeGenerator& generator, Label* trueTarget, Label* falseTarget, FallThroughMode fallThroughMode)
{
RefPtr<Label> afterExpr1 = generator.newLabel();
if (m_operator == OpLogicalAnd)
generator.emitNodeInConditionContext(m_expr1, afterExpr1.get(), falseTarget, FallThroughMeansTrue);
else
generator.emitNodeInConditionContext(m_expr1, trueTarget, afterExpr1.get(), FallThroughMeansFalse);
generator.emitLabel(afterExpr1.get());
generator.emitNodeInConditionContext(m_expr2, trueTarget, falseTarget, fallThroughMode);
}
// ------------------------------ ConditionalNode ------------------------------
RegisterID* ConditionalNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> newDst = generator.finalDestination(dst);
RefPtr<Label> beforeElse = generator.newLabel();
RefPtr<Label> afterElse = generator.newLabel();
RefPtr<Label> beforeThen = generator.newLabel();
generator.emitNodeInConditionContext(m_logical, beforeThen.get(), beforeElse.get(), FallThroughMeansTrue);
generator.emitLabel(beforeThen.get());
generator.emitNode(newDst.get(), m_expr1);
generator.emitJump(afterElse.get());
generator.emitLabel(beforeElse.get());
generator.emitNode(newDst.get(), m_expr2);
generator.emitLabel(afterElse.get());
return newDst.get();
}
// ------------------------------ ReadModifyResolveNode -----------------------------------
// FIXME: should this be moved to be a method on BytecodeGenerator?
static ALWAYS_INLINE RegisterID* emitReadModifyAssignment(BytecodeGenerator& generator, RegisterID* dst, RegisterID* src1, ExpressionNode* m_right, Operator oper, OperandTypes types, ReadModifyResolveNode* emitExpressionInfoForMe = 0)
{
OpcodeID opcodeID;
switch (oper) {
case OpMultEq:
opcodeID = op_mul;
break;
case OpDivEq:
opcodeID = op_div;
break;
case OpPlusEq:
if (m_right->isAdd() && m_right->resultDescriptor().definitelyIsString())
return static_cast<AddNode*>(m_right)->emitStrcat(generator, dst, src1, emitExpressionInfoForMe);
opcodeID = op_add;
break;
case OpMinusEq:
opcodeID = op_sub;
break;
case OpLShift:
opcodeID = op_lshift;
break;
case OpRShift:
opcodeID = op_rshift;
break;
case OpURShift:
opcodeID = op_urshift;
break;
case OpAndEq:
opcodeID = op_bitand;
break;
case OpXOrEq:
opcodeID = op_bitxor;
break;
case OpOrEq:
opcodeID = op_bitor;
break;
case OpModEq:
opcodeID = op_mod;
break;
default:
RELEASE_ASSERT_NOT_REACHED();
return dst;
}
RegisterID* src2 = generator.emitNode(m_right);
// Certain read-modify nodes require expression info to be emitted *after* m_right has been generated.
// If this is required the node is passed as 'emitExpressionInfoForMe'; do so now.
if (emitExpressionInfoForMe)
generator.emitExpressionInfo(emitExpressionInfoForMe->divot(), emitExpressionInfoForMe->divotStart(), emitExpressionInfoForMe->divotEnd());
RegisterID* result = generator.emitBinaryOp(opcodeID, dst, src1, src2, types);
if (oper == OpURShift)
return generator.emitUnaryOp(op_unsigned, result, result);
return result;
}
RegisterID* ReadModifyResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (Local local = generator.local(m_ident)) {
if (local.isReadOnly()) {
generator.emitReadOnlyExceptionIfNeeded();
return emitReadModifyAssignment(generator, generator.finalDestination(dst), local.get(), m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));
}
if (local.isCaptured()
|| generator.leftHandSideNeedsCopy(m_rightHasAssignments, m_right->isPure(generator))) {
RefPtr<RegisterID> result = generator.newTemporary();
generator.emitMove(result.get(), local.get());
emitReadModifyAssignment(generator, result.get(), result.get(), m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));
generator.emitMove(local.get(), result.get());
return generator.moveToDestinationIfNeeded(dst, result.get());
}
RegisterID* result = emitReadModifyAssignment(generator, local.get(), local.get(), m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));
return generator.moveToDestinationIfNeeded(dst, result);
}
JSTextPosition newDivot = divotStart() + m_ident.length();
generator.emitExpressionInfo(newDivot, divotStart(), newDivot);
RefPtr<RegisterID> scope = generator.emitResolveScope(generator.newTemporary(), m_ident);
RefPtr<RegisterID> value = generator.emitGetFromScope(generator.newTemporary(), scope.get(), m_ident, ThrowIfNotFound);
RefPtr<RegisterID> result = emitReadModifyAssignment(generator, generator.finalDestination(dst, value.get()), value.get(), m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()), this);
return generator.emitPutToScope(scope.get(), m_ident, result.get(), ThrowIfNotFound);
}
// ------------------------------ AssignResolveNode -----------------------------------
RegisterID* AssignResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (Local local = generator.local(m_ident)) {
if (local.isReadOnly()) {
generator.emitReadOnlyExceptionIfNeeded();
return generator.emitNode(dst, m_right);
}
if (local.isCaptured()) {
RefPtr<RegisterID> tempDst = generator.tempDestination(dst);
generator.emitNode(tempDst.get(), m_right);
generator.emitMove(local.get(), tempDst.get());
return generator.moveToDestinationIfNeeded(dst, tempDst.get());
}
RegisterID* result = generator.emitNode(local.get(), m_right);
return generator.moveToDestinationIfNeeded(dst, result);
}
if (generator.isStrictMode())
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
RefPtr<RegisterID> scope = generator.emitResolveScope(generator.newTemporary(), m_ident);
if (dst == generator.ignoredResult())
dst = 0;
RefPtr<RegisterID> result = generator.emitNode(dst, m_right);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
return generator.emitPutToScope(scope.get(), m_ident, result.get(), generator.isStrictMode() ? ThrowIfNotFound : DoNotThrowIfNotFound);
}
// ------------------------------ AssignDotNode -----------------------------------
RegisterID* AssignDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(m_base, m_rightHasAssignments, m_right->isPure(generator));
RefPtr<RegisterID> value = generator.destinationForAssignResult(dst);
RegisterID* result = generator.emitNode(value.get(), m_right);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
RegisterID* forwardResult = (dst == generator.ignoredResult()) ? result : generator.moveToDestinationIfNeeded(generator.tempDestination(result), result);
generator.emitPutById(base.get(), m_ident, forwardResult);
return generator.moveToDestinationIfNeeded(dst, forwardResult);
}
// ------------------------------ ReadModifyDotNode -----------------------------------
RegisterID* ReadModifyDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(m_base, m_rightHasAssignments, m_right->isPure(generator));
generator.emitExpressionInfo(subexpressionDivot(), subexpressionStart(), subexpressionEnd());
RefPtr<RegisterID> value = generator.emitGetById(generator.tempDestination(dst), base.get(), m_ident);
RegisterID* updatedValue = emitReadModifyAssignment(generator, generator.finalDestination(dst, value.get()), value.get(), m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
return generator.emitPutById(base.get(), m_ident, updatedValue);
}
// ------------------------------ AssignErrorNode -----------------------------------
RegisterID* AssignErrorNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
return emitThrowReferenceError(generator, "Left side of assignment is not a reference.");
}
// ------------------------------ AssignBracketNode -----------------------------------
RegisterID* AssignBracketNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(m_base, m_subscriptHasAssignments || m_rightHasAssignments, m_subscript->isPure(generator) && m_right->isPure(generator));
RefPtr<RegisterID> property = generator.emitNodeForLeftHandSide(m_subscript, m_rightHasAssignments, m_right->isPure(generator));
RefPtr<RegisterID> value = generator.destinationForAssignResult(dst);
RegisterID* result = generator.emitNode(value.get(), m_right);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
RegisterID* forwardResult = (dst == generator.ignoredResult()) ? result : generator.moveToDestinationIfNeeded(generator.tempDestination(result), result);
generator.emitPutByVal(base.get(), property.get(), forwardResult);
return generator.moveToDestinationIfNeeded(dst, forwardResult);
}
// ------------------------------ ReadModifyBracketNode -----------------------------------
RegisterID* ReadModifyBracketNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(m_base, m_subscriptHasAssignments || m_rightHasAssignments, m_subscript->isPure(generator) && m_right->isPure(generator));
RefPtr<RegisterID> property = generator.emitNodeForLeftHandSide(m_subscript, m_rightHasAssignments, m_right->isPure(generator));
generator.emitExpressionInfo(subexpressionDivot(), subexpressionStart(), subexpressionEnd());
RefPtr<RegisterID> value = generator.emitGetByVal(generator.tempDestination(dst), base.get(), property.get());
RegisterID* updatedValue = emitReadModifyAssignment(generator, generator.finalDestination(dst, value.get()), value.get(), m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
generator.emitPutByVal(base.get(), property.get(), updatedValue);
return updatedValue;
}
// ------------------------------ CommaNode ------------------------------------
RegisterID* CommaNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
ASSERT(m_expressions.size() > 1);
for (size_t i = 0; i < m_expressions.size() - 1; i++)
generator.emitNode(generator.ignoredResult(), m_expressions[i]);
return generator.emitNode(dst, m_expressions.last());
}
// ------------------------------ ConstDeclNode ------------------------------------
RegisterID* ConstDeclNode::emitCodeSingle(BytecodeGenerator& generator)
{
// FIXME: This code does not match the behavior of const in Firefox.
if (Local local = generator.constLocal(m_ident)) {
if (!m_init)
return local.get();
if (local.isCaptured()) {
RefPtr<RegisterID> tempDst = generator.newTemporary();
generator.emitNode(tempDst.get(), m_init);
return generator.emitMove(local.get(), tempDst.get());
}
return generator.emitNode(local.get(), m_init);
}
RefPtr<RegisterID> value = m_init ? generator.emitNode(m_init) : generator.emitLoad(0, jsUndefined());
if (generator.codeType() == GlobalCode)
return generator.emitInitGlobalConst(m_ident, value.get());
if (generator.codeType() != EvalCode)
return value.get();
// FIXME: This will result in incorrect assignment if m_ident exists in an intervening with scope.
RefPtr<RegisterID> scope = generator.emitResolveScope(generator.newTemporary(), m_ident);
return generator.emitPutToScope(scope.get(), m_ident, value.get(), DoNotThrowIfNotFound);
}
RegisterID* ConstDeclNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
RegisterID* result = 0;
for (ConstDeclNode* n = this; n; n = n->m_next)
result = n->emitCodeSingle(generator);
return result;
}
// ------------------------------ ConstStatementNode -----------------------------
void ConstStatementNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
generator.emitNode(m_next);
}
// ------------------------------ SourceElements -------------------------------
inline StatementNode* SourceElements::lastStatement() const
{
size_t size = m_statements.size();
return size ? m_statements[size - 1] : 0;
}
inline void SourceElements::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
size_t size = m_statements.size();
for (size_t i = 0; i < size; ++i)
generator.emitNode(dst, m_statements[i]);
}
// ------------------------------ BlockNode ------------------------------------
inline StatementNode* BlockNode::lastStatement() const
{
return m_statements ? m_statements->lastStatement() : 0;
}
inline StatementNode* BlockNode::singleStatement() const
{
return m_statements ? m_statements->singleStatement() : 0;
}
void BlockNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (!m_statements)
return;
m_statements->emitBytecode(generator, dst);
}
// ------------------------------ EmptyStatementNode ---------------------------
void EmptyStatementNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
}
// ------------------------------ DebuggerStatementNode ---------------------------
void DebuggerStatementNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
generator.emitDebugHook(DidReachBreakpoint, lastLine(), startOffset(), lineStartOffset());
}
// ------------------------------ ExprStatementNode ----------------------------
void ExprStatementNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
ASSERT(m_expr);
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
generator.emitNode(dst, m_expr);
}
// ------------------------------ VarStatementNode ----------------------------
void VarStatementNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
ASSERT(m_expr);
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
generator.emitNode(m_expr);
}
// ------------------------------ IfElseNode ---------------------------------------
static inline StatementNode* singleStatement(StatementNode* statementNode)
{
if (statementNode->isBlock())
return static_cast<BlockNode*>(statementNode)->singleStatement();
return statementNode;
}
bool IfElseNode::tryFoldBreakAndContinue(BytecodeGenerator& generator, StatementNode* ifBlock,
Label*& trueTarget, FallThroughMode& fallThroughMode)
{
StatementNode* singleStatement = JSC::singleStatement(ifBlock);
if (!singleStatement)
return false;
if (singleStatement->isBreak()) {
BreakNode* breakNode = static_cast<BreakNode*>(singleStatement);
Label* target = breakNode->trivialTarget(generator);
if (!target)
return false;
trueTarget = target;
fallThroughMode = FallThroughMeansFalse;
return true;
}
if (singleStatement->isContinue()) {
ContinueNode* continueNode = static_cast<ContinueNode*>(singleStatement);
Label* target = continueNode->trivialTarget(generator);
if (!target)
return false;
trueTarget = target;
fallThroughMode = FallThroughMeansFalse;
return true;
}
return false;
}
void IfElseNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
RefPtr<Label> beforeThen = generator.newLabel();
RefPtr<Label> beforeElse = generator.newLabel();
RefPtr<Label> afterElse = generator.newLabel();
Label* trueTarget = beforeThen.get();
Label* falseTarget = beforeElse.get();
FallThroughMode fallThroughMode = FallThroughMeansTrue;
bool didFoldIfBlock = tryFoldBreakAndContinue(generator, m_ifBlock, trueTarget, fallThroughMode);
generator.emitNodeInConditionContext(m_condition, trueTarget, falseTarget, fallThroughMode);
generator.emitLabel(beforeThen.get());
if (!didFoldIfBlock) {
generator.emitNode(dst, m_ifBlock);
if (m_elseBlock)
generator.emitJump(afterElse.get());
}
generator.emitLabel(beforeElse.get());
if (m_elseBlock)
generator.emitNode(dst, m_elseBlock);
generator.emitLabel(afterElse.get());
}
// ------------------------------ DoWhileNode ----------------------------------
void DoWhileNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
LabelScopePtr scope = generator.newLabelScope(LabelScope::Loop);
RefPtr<Label> topOfLoop = generator.newLabel();
generator.emitLabel(topOfLoop.get());
generator.emitLoopHint();
generator.emitDebugHook(WillExecuteStatement, lastLine(), startOffset(), lineStartOffset());
generator.emitNode(dst, m_statement);
generator.emitLabel(scope->continueTarget());
generator.emitDebugHook(WillExecuteStatement, lastLine(), startOffset(), lineStartOffset());
generator.emitNodeInConditionContext(m_expr, topOfLoop.get(), scope->breakTarget(), FallThroughMeansFalse);
generator.emitLabel(scope->breakTarget());
}
// ------------------------------ WhileNode ------------------------------------
void WhileNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
LabelScopePtr scope = generator.newLabelScope(LabelScope::Loop);
RefPtr<Label> topOfLoop = generator.newLabel();
generator.emitDebugHook(WillExecuteStatement, m_expr->lineNo(), m_expr->startOffset(), m_expr->lineStartOffset());
generator.emitNodeInConditionContext(m_expr, topOfLoop.get(), scope->breakTarget(), FallThroughMeansTrue);
generator.emitLabel(topOfLoop.get());
generator.emitLoopHint();
generator.emitNode(dst, m_statement);
generator.emitLabel(scope->continueTarget());
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
generator.emitNodeInConditionContext(m_expr, topOfLoop.get(), scope->breakTarget(), FallThroughMeansFalse);
generator.emitLabel(scope->breakTarget());
}
// ------------------------------ ForNode --------------------------------------
void ForNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
LabelScopePtr scope = generator.newLabelScope(LabelScope::Loop);
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
if (m_expr1)
generator.emitNode(generator.ignoredResult(), m_expr1);
RefPtr<Label> topOfLoop = generator.newLabel();
if (m_expr2)
generator.emitNodeInConditionContext(m_expr2, topOfLoop.get(), scope->breakTarget(), FallThroughMeansTrue);
generator.emitLabel(topOfLoop.get());
generator.emitLoopHint();
generator.emitNode(dst, m_statement);
generator.emitLabel(scope->continueTarget());
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
if (m_expr3)
generator.emitNode(generator.ignoredResult(), m_expr3);
if (m_expr2)
generator.emitNodeInConditionContext(m_expr2, topOfLoop.get(), scope->breakTarget(), FallThroughMeansFalse);
else
generator.emitJump(topOfLoop.get());
generator.emitLabel(scope->breakTarget());
}
// ------------------------------ ForInNode ------------------------------------
void ForInNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
LabelScopePtr scope = generator.newLabelScope(LabelScope::Loop);
if (!m_lexpr->isLocation()) {
emitThrowReferenceError(generator, "Left side of for-in statement is not a reference.");
return;
}
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
RefPtr<RegisterID> base = generator.newTemporary();
generator.emitNode(base.get(), m_expr);
RefPtr<RegisterID> i = generator.newTemporary();
RefPtr<RegisterID> size = generator.newTemporary();
RefPtr<RegisterID> expectedSubscript;
RefPtr<RegisterID> iter = generator.emitGetPropertyNames(generator.newTemporary(), base.get(), i.get(), size.get(), scope->breakTarget());
generator.emitJump(scope->continueTarget());
RefPtr<Label> loopStart = generator.newLabel();
generator.emitLabel(loopStart.get());
generator.emitLoopHint();
RegisterID* propertyName;
bool optimizedForinAccess = false;
if (m_lexpr->isResolveNode()) {
const Identifier& ident = static_cast<ResolveNode*>(m_lexpr)->identifier();
Local local = generator.local(ident);
if (!local.get()) {
propertyName = generator.newTemporary();
RefPtr<RegisterID> protect = propertyName;
if (generator.isStrictMode())
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
RegisterID* scope = generator.emitResolveScope(generator.newTemporary(), ident);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
generator.emitPutToScope(scope, ident, propertyName, generator.isStrictMode() ? ThrowIfNotFound : DoNotThrowIfNotFound);
} else {
expectedSubscript = generator.newTemporary();
propertyName = expectedSubscript.get();
generator.emitMove(local.get(), propertyName);
generator.pushOptimisedForIn(expectedSubscript.get(), iter.get(), i.get(), local.get());
optimizedForinAccess = true;
}
} else if (m_lexpr->isDotAccessorNode()) {
DotAccessorNode* assignNode = static_cast<DotAccessorNode*>(m_lexpr);
const Identifier& ident = assignNode->identifier();
propertyName = generator.newTemporary();
RefPtr<RegisterID> protect = propertyName;
RegisterID* base = generator.emitNode(assignNode->base());
generator.emitExpressionInfo(assignNode->divot(), assignNode->divotStart(), assignNode->divotEnd());
generator.emitPutById(base, ident, propertyName);
} else if (m_lexpr->isBracketAccessorNode()) {
BracketAccessorNode* assignNode = static_cast<BracketAccessorNode*>(m_lexpr);
propertyName = generator.newTemporary();
RefPtr<RegisterID> protect = propertyName;
RefPtr<RegisterID> base = generator.emitNode(assignNode->base());
RegisterID* subscript = generator.emitNode(assignNode->subscript());
generator.emitExpressionInfo(assignNode->divot(), assignNode->divotStart(), assignNode->divotEnd());
generator.emitPutByVal(base.get(), subscript, propertyName);
} else {
ASSERT(m_lexpr->isDeconstructionNode());
DeconstructingAssignmentNode* assignNode = static_cast<DeconstructingAssignmentNode*>(m_lexpr);
auto binding = assignNode->bindings();
if (binding->isBindingNode()) {
auto simpleBinding = static_cast<BindingNode*>(binding);
Identifier ident = simpleBinding->boundProperty();
Local local = generator.local(ident);
propertyName = local.get();
if (!propertyName || local.isCaptured())
goto genericBinding;
expectedSubscript = generator.emitMove(generator.newTemporary(), propertyName);
generator.pushOptimisedForIn(expectedSubscript.get(), iter.get(), i.get(), propertyName);
optimizedForinAccess = true;
goto completedSimpleBinding;
} else {
genericBinding:
propertyName = generator.newTemporary();
RefPtr<RegisterID> protect(propertyName);
assignNode->bindings()->bindValue(generator, propertyName);
}
completedSimpleBinding:
;
}
generator.emitNode(dst, m_statement);
if (optimizedForinAccess)
generator.popOptimisedForIn();
generator.emitLabel(scope->continueTarget());
generator.emitNextPropertyName(propertyName, base.get(), i.get(), size.get(), iter.get(), loopStart.get());
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
generator.emitLabel(scope->breakTarget());
}
// ------------------------------ ForOfNode ------------------------------------
void ForOfNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (!m_lexpr->isLocation()) {
emitThrowReferenceError(generator, "Left side of for-of statement is not a reference.");
return;
}
LabelScopePtr scope = generator.newLabelScope(LabelScope::Loop);
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
auto extractor = [this, dst](BytecodeGenerator& generator, RegisterID* value)
{
if (m_lexpr->isResolveNode()) {
const Identifier& ident = static_cast<ResolveNode*>(m_lexpr)->identifier();
if (Local local = generator.local(ident))
generator.emitMove(local.get(), value);
else {
if (generator.isStrictMode())
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
RegisterID* scope = generator.emitResolveScope(generator.newTemporary(), ident);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
generator.emitPutToScope(scope, ident, value, generator.isStrictMode() ? ThrowIfNotFound : DoNotThrowIfNotFound);
}
} else if (m_lexpr->isDotAccessorNode()) {
DotAccessorNode* assignNode = static_cast<DotAccessorNode*>(m_lexpr);
const Identifier& ident = assignNode->identifier();
RefPtr<RegisterID> base = generator.emitNode(assignNode->base());
generator.emitExpressionInfo(assignNode->divot(), assignNode->divotStart(), assignNode->divotEnd());
generator.emitPutById(base.get(), ident, value);
} else if (m_lexpr->isBracketAccessorNode()) {
BracketAccessorNode* assignNode = static_cast<BracketAccessorNode*>(m_lexpr);
RefPtr<RegisterID> base = generator.emitNode(assignNode->base());
RegisterID* subscript = generator.emitNode(assignNode->subscript());
generator.emitExpressionInfo(assignNode->divot(), assignNode->divotStart(), assignNode->divotEnd());
generator.emitPutByVal(base.get(), subscript, value);
} else {
ASSERT(m_lexpr->isDeconstructionNode());
DeconstructingAssignmentNode* assignNode = static_cast<DeconstructingAssignmentNode*>(m_lexpr);
assignNode->bindings()->bindValue(generator, value);
}
generator.emitNode(dst, m_statement);
};
generator.emitEnumeration(this, m_expr, extractor);
}
// ------------------------------ ContinueNode ---------------------------------
Label* ContinueNode::trivialTarget(BytecodeGenerator& generator)
{
if (generator.shouldEmitDebugHooks())
return 0;
LabelScope* scope = generator.continueTarget(m_ident);
ASSERT(scope);
if (generator.scopeDepth() != scope->scopeDepth())
return 0;
return scope->continueTarget();
}
void ContinueNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
LabelScope* scope = generator.continueTarget(m_ident);
ASSERT(scope);
generator.emitPopScopes(scope->scopeDepth());
generator.emitJump(scope->continueTarget());
}
// ------------------------------ BreakNode ------------------------------------
Label* BreakNode::trivialTarget(BytecodeGenerator& generator)
{
if (generator.shouldEmitDebugHooks())
return 0;
LabelScope* scope = generator.breakTarget(m_ident);
ASSERT(scope);
if (generator.scopeDepth() != scope->scopeDepth())
return 0;
return scope->breakTarget();
}
void BreakNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
LabelScope* scope = generator.breakTarget(m_ident);
ASSERT(scope);
generator.emitPopScopes(scope->scopeDepth());
generator.emitJump(scope->breakTarget());
}
// ------------------------------ ReturnNode -----------------------------------
void ReturnNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
ASSERT(generator.codeType() == FunctionCode);
if (dst == generator.ignoredResult())
dst = 0;
RefPtr<RegisterID> returnRegister = m_value ? generator.emitNode(dst, m_value) : generator.emitLoad(dst, jsUndefined());
if (generator.scopeDepth()) {
returnRegister = generator.emitMove(generator.newTemporary(), returnRegister.get());
generator.emitPopScopes(0);
}
generator.emitDebugHook(WillLeaveCallFrame, lastLine(), startOffset(), lineStartOffset());
generator.emitReturn(returnRegister.get());
}
// ------------------------------ WithNode -------------------------------------
void WithNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
RefPtr<RegisterID> scope = generator.emitNode(m_expr);
generator.emitExpressionInfo(m_divot, m_divot - m_expressionLength, m_divot);
generator.emitPushWithScope(scope.get());
generator.emitNode(dst, m_statement);
generator.emitPopScope();
}
// ------------------------------ CaseClauseNode --------------------------------
inline void CaseClauseNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (!m_statements)
return;
m_statements->emitBytecode(generator, dst);
}
// ------------------------------ CaseBlockNode --------------------------------
enum SwitchKind {
SwitchUnset = 0,
SwitchNumber = 1,
SwitchString = 2,
SwitchNeither = 3
};
static void processClauseList(ClauseListNode* list, Vector<ExpressionNode*, 8>& literalVector, SwitchKind& typeForTable, bool& singleCharacterSwitch, int32_t& min_num, int32_t& max_num)
{
for (; list; list = list->getNext()) {
ExpressionNode* clauseExpression = list->getClause()->expr();
literalVector.append(clauseExpression);
if (clauseExpression->isNumber()) {
double value = static_cast<NumberNode*>(clauseExpression)->value();
int32_t intVal = static_cast<int32_t>(value);
if ((typeForTable & ~SwitchNumber) || (intVal != value)) {
typeForTable = SwitchNeither;
break;
}
if (intVal < min_num)
min_num = intVal;
if (intVal > max_num)
max_num = intVal;
typeForTable = SwitchNumber;
continue;
}
if (clauseExpression->isString()) {
if (typeForTable & ~SwitchString) {
typeForTable = SwitchNeither;
break;
}
const String& value = static_cast<StringNode*>(clauseExpression)->value().string();
if (singleCharacterSwitch &= value.length() == 1) {
int32_t intVal = value[0];
if (intVal < min_num)
min_num = intVal;
if (intVal > max_num)
max_num = intVal;
}
typeForTable = SwitchString;
continue;
}
typeForTable = SwitchNeither;
break;
}
}
static inline size_t length(ClauseListNode* list1, ClauseListNode* list2)
{
size_t length = 0;
for (ClauseListNode* node = list1; node; node = node->getNext())
++length;
for (ClauseListNode* node = list2; node; node = node->getNext())
++length;
return length;
}
SwitchInfo::SwitchType CaseBlockNode::tryTableSwitch(Vector<ExpressionNode*, 8>& literalVector, int32_t& min_num, int32_t& max_num)
{
if (length(m_list1, m_list2) < s_tableSwitchMinimum)
return SwitchInfo::SwitchNone;
SwitchKind typeForTable = SwitchUnset;
bool singleCharacterSwitch = true;
processClauseList(m_list1, literalVector, typeForTable, singleCharacterSwitch, min_num, max_num);
processClauseList(m_list2, literalVector, typeForTable, singleCharacterSwitch, min_num, max_num);
if (typeForTable == SwitchUnset || typeForTable == SwitchNeither)
return SwitchInfo::SwitchNone;
if (typeForTable == SwitchNumber) {
int32_t range = max_num - min_num;
if (min_num <= max_num && range <= 1000 && (range / literalVector.size()) < 10)
return SwitchInfo::SwitchImmediate;
return SwitchInfo::SwitchNone;
}
ASSERT(typeForTable == SwitchString);
if (singleCharacterSwitch) {
int32_t range = max_num - min_num;
if (min_num <= max_num && range <= 1000 && (range / literalVector.size()) < 10)
return SwitchInfo::SwitchCharacter;
}
return SwitchInfo::SwitchString;
}
void CaseBlockNode::emitBytecodeForBlock(BytecodeGenerator& generator, RegisterID* switchExpression, RegisterID* dst)
{
RefPtr<Label> defaultLabel;
Vector<RefPtr<Label>, 8> labelVector;
Vector<ExpressionNode*, 8> literalVector;
int32_t min_num = std::numeric_limits<int32_t>::max();
int32_t max_num = std::numeric_limits<int32_t>::min();
SwitchInfo::SwitchType switchType = tryTableSwitch(literalVector, min_num, max_num);
if (switchType != SwitchInfo::SwitchNone) {
// Prepare the various labels
for (uint32_t i = 0; i < literalVector.size(); i++)
labelVector.append(generator.newLabel());
defaultLabel = generator.newLabel();
generator.beginSwitch(switchExpression, switchType);
} else {
// Setup jumps
for (ClauseListNode* list = m_list1; list; list = list->getNext()) {
RefPtr<RegisterID> clauseVal = generator.newTemporary();
generator.emitNode(clauseVal.get(), list->getClause()->expr());
generator.emitBinaryOp(op_stricteq, clauseVal.get(), clauseVal.get(), switchExpression, OperandTypes());
labelVector.append(generator.newLabel());
generator.emitJumpIfTrue(clauseVal.get(), labelVector[labelVector.size() - 1].get());
}
for (ClauseListNode* list = m_list2; list; list = list->getNext()) {
RefPtr<RegisterID> clauseVal = generator.newTemporary();
generator.emitNode(clauseVal.get(), list->getClause()->expr());
generator.emitBinaryOp(op_stricteq, clauseVal.get(), clauseVal.get(), switchExpression, OperandTypes());
labelVector.append(generator.newLabel());
generator.emitJumpIfTrue(clauseVal.get(), labelVector[labelVector.size() - 1].get());
}
defaultLabel = generator.newLabel();
generator.emitJump(defaultLabel.get());
}
size_t i = 0;
for (ClauseListNode* list = m_list1; list; list = list->getNext()) {
generator.emitLabel(labelVector[i++].get());
list->getClause()->emitBytecode(generator, dst);
}
if (m_defaultClause) {
generator.emitLabel(defaultLabel.get());
m_defaultClause->emitBytecode(generator, dst);
}
for (ClauseListNode* list = m_list2; list; list = list->getNext()) {
generator.emitLabel(labelVector[i++].get());
list->getClause()->emitBytecode(generator, dst);
}
if (!m_defaultClause)
generator.emitLabel(defaultLabel.get());
ASSERT(i == labelVector.size());
if (switchType != SwitchInfo::SwitchNone) {
ASSERT(labelVector.size() == literalVector.size());
generator.endSwitch(labelVector.size(), labelVector.data(), literalVector.data(), defaultLabel.get(), min_num, max_num);
}
}
// ------------------------------ SwitchNode -----------------------------------
void SwitchNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
LabelScopePtr scope = generator.newLabelScope(LabelScope::Switch);
RefPtr<RegisterID> r0 = generator.emitNode(m_expr);
m_block->emitBytecodeForBlock(generator, r0.get(), dst);
generator.emitLabel(scope->breakTarget());
}
// ------------------------------ LabelNode ------------------------------------
void LabelNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
ASSERT(!generator.breakTarget(m_name));
LabelScopePtr scope = generator.newLabelScope(LabelScope::NamedLabel, &m_name);
generator.emitNode(dst, m_statement);
generator.emitLabel(scope->breakTarget());
}
// ------------------------------ ThrowNode ------------------------------------
void ThrowNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
if (dst == generator.ignoredResult())
dst = 0;
RefPtr<RegisterID> expr = generator.emitNode(m_expr);
generator.emitExpressionInfo(divot(), divotStart(), divotEnd());
generator.emitThrow(expr.get());
}
// ------------------------------ TryNode --------------------------------------
void TryNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
// NOTE: The catch and finally blocks must be labeled explicitly, so the
// optimizer knows they may be jumped to from anywhere.
generator.emitDebugHook(WillExecuteStatement, firstLine(), startOffset(), lineStartOffset());
ASSERT(m_catchBlock || m_finallyBlock);
RefPtr<Label> tryStartLabel = generator.newLabel();
generator.emitLabel(tryStartLabel.get());
if (m_finallyBlock)
generator.pushFinallyContext(m_finallyBlock);
TryData* tryData = generator.pushTry(tryStartLabel.get());
generator.emitNode(dst, m_tryBlock);
if (m_catchBlock) {
RefPtr<Label> catchEndLabel = generator.newLabel();
// Normal path: jump over the catch block.
generator.emitJump(catchEndLabel.get());
// Uncaught exception path: the catch block.
RefPtr<Label> here = generator.emitLabel(generator.newLabel().get());
RefPtr<RegisterID> exceptionRegister = generator.popTryAndEmitCatch(tryData, generator.newTemporary(), here.get());
if (m_finallyBlock) {
// If the catch block throws an exception and we have a finally block, then the finally
// block should "catch" that exception.
tryData = generator.pushTry(here.get());
}
generator.emitPushCatchScope(m_exceptionIdent, exceptionRegister.get(), DontDelete);
generator.emitNode(dst, m_catchBlock);
generator.emitPopScope();
generator.emitLabel(catchEndLabel.get());
}
if (m_finallyBlock) {
RefPtr<Label> preFinallyLabel = generator.emitLabel(generator.newLabel().get());
generator.popFinallyContext();
RefPtr<Label> finallyEndLabel = generator.newLabel();
// Normal path: run the finally code, and jump to the end.
generator.emitNode(dst, m_finallyBlock);
generator.emitJump(finallyEndLabel.get());
// Uncaught exception path: invoke the finally block, then re-throw the exception.
RefPtr<RegisterID> tempExceptionRegister = generator.popTryAndEmitCatch(tryData, generator.newTemporary(), preFinallyLabel.get());
generator.emitNode(dst, m_finallyBlock);
generator.emitThrow(tempExceptionRegister.get());
generator.emitLabel(finallyEndLabel.get());
}
}
// ------------------------------ ScopeNode -----------------------------
inline void ScopeNode::emitStatementsBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (!m_statements)
return;
m_statements->emitBytecode(generator, dst);
}
// ------------------------------ ProgramNode -----------------------------
void ProgramNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
generator.emitDebugHook(WillExecuteProgram, startLine(), startStartOffset(), startLineStartOffset());
RefPtr<RegisterID> dstRegister = generator.newTemporary();
generator.emitLoad(dstRegister.get(), jsUndefined());
emitStatementsBytecode(generator, dstRegister.get());
generator.emitDebugHook(DidExecuteProgram, lastLine(), startOffset(), lineStartOffset());
generator.emitEnd(dstRegister.get());
}
// ------------------------------ EvalNode -----------------------------
void EvalNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
generator.emitDebugHook(WillExecuteProgram, startLine(), startStartOffset(), startLineStartOffset());
RefPtr<RegisterID> dstRegister = generator.newTemporary();
generator.emitLoad(dstRegister.get(), jsUndefined());
emitStatementsBytecode(generator, dstRegister.get());
generator.emitDebugHook(DidExecuteProgram, lastLine(), startOffset(), lineStartOffset());
generator.emitEnd(dstRegister.get());
}
// ------------------------------ FunctionBodyNode -----------------------------
void FunctionBodyNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
generator.emitDebugHook(DidEnterCallFrame, startLine(), startStartOffset(), startLineStartOffset());
emitStatementsBytecode(generator, generator.ignoredResult());
StatementNode* singleStatement = this->singleStatement();
ReturnNode* returnNode = 0;
// Check for a return statement at the end of a function composed of a single block.
if (singleStatement && singleStatement->isBlock()) {
StatementNode* lastStatementInBlock = static_cast<BlockNode*>(singleStatement)->lastStatement();
if (lastStatementInBlock && lastStatementInBlock->isReturnNode())
returnNode = static_cast<ReturnNode*>(lastStatementInBlock);
}
// If there is no return we must automatically insert one.
if (!returnNode) {
RegisterID* r0 = generator.isConstructor() ? generator.thisRegister() : generator.emitLoad(0, jsUndefined());
ASSERT(startOffset() >= lineStartOffset());
generator.emitDebugHook(WillLeaveCallFrame, lastLine(), startOffset(), lineStartOffset());
generator.emitReturn(r0);
return;
}
// If there is a return statment, and it is the only statement in the function, check if this is a numeric compare.
if (static_cast<BlockNode*>(singleStatement)->singleStatement()) {
ExpressionNode* returnValueExpression = returnNode->value();
if (returnValueExpression && returnValueExpression->isSubtract()) {
ExpressionNode* lhsExpression = static_cast<SubNode*>(returnValueExpression)->lhs();
ExpressionNode* rhsExpression = static_cast<SubNode*>(returnValueExpression)->rhs();
if (lhsExpression->isResolveNode()
&& rhsExpression->isResolveNode()
&& generator.isArgumentNumber(static_cast<ResolveNode*>(lhsExpression)->identifier(), 0)
&& generator.isArgumentNumber(static_cast<ResolveNode*>(rhsExpression)->identifier(), 1)) {
generator.setIsNumericCompareFunction(true);
}
}
}
}
// ------------------------------ FuncDeclNode ---------------------------------
void FuncDeclNode::emitBytecode(BytecodeGenerator&, RegisterID*)
{
}
// ------------------------------ FuncExprNode ---------------------------------
RegisterID* FuncExprNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
return generator.emitNewFunctionExpression(generator.finalDestination(dst), this);
}
// ------------------------------ DeconstructingAssignmentNode -----------------
RegisterID* DeconstructingAssignmentNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (RegisterID* result = m_bindings->emitDirectBinding(generator, dst, m_initializer))
return result;
RefPtr<RegisterID> initializer = generator.tempDestination(dst);
generator.emitNode(initializer.get(), m_initializer);
m_bindings->bindValue(generator, initializer.get());
return generator.moveToDestinationIfNeeded(dst, initializer.get());
}
DeconstructionPatternNode::~DeconstructionPatternNode()
{
}
void ArrayPatternNode::bindValue(BytecodeGenerator& generator, RegisterID* rhs) const
{
for (size_t i = 0; i < m_targetPatterns.size(); i++) {
auto target = m_targetPatterns[i];
if (!target)
continue;
RefPtr<RegisterID> temp = generator.newTemporary();
generator.emitLoad(temp.get(), jsNumber(i));
generator.emitGetByVal(temp.get(), rhs, temp.get());
target->bindValue(generator, temp.get());
}
}
RegisterID* ArrayPatternNode::emitDirectBinding(BytecodeGenerator& generator, RegisterID* dst, ExpressionNode* rhs)
{
if (rhs->isResolveNode()
&& generator.willResolveToArguments(static_cast<ResolveNode*>(rhs)->identifier())
&& !generator.symbolTable().slowArguments()) {
for (size_t i = 0; i < m_targetPatterns.size(); i++) {
auto target = m_targetPatterns[i];
if (!target)
continue;
RefPtr<RegisterID> temp = generator.newTemporary();
generator.emitLoad(temp.get(), jsNumber(i));
generator.emitGetArgumentByVal(temp.get(), generator.uncheckedRegisterForArguments(), temp.get());
target->bindValue(generator, temp.get());
}
if (dst == generator.ignoredResult() || !dst)
return generator.emitLoad(generator.finalDestination(dst), jsUndefined());
Local local = generator.local(generator.vm()->propertyNames->arguments);
return generator.moveToDestinationIfNeeded(dst, local.get());
}
if (!rhs->isSimpleArray())
return 0;
RefPtr<RegisterID> resultRegister;
if (dst && dst != generator.ignoredResult())
resultRegister = generator.emitNewArray(generator.newTemporary(), 0, 0);
ElementNode* elementNodes = static_cast<ArrayNode*>(rhs)->elements();
Vector<ExpressionNode*> elements;
for (; elementNodes; elementNodes = elementNodes->next())
elements.append(elementNodes->value());
if (m_targetPatterns.size() != elements.size())
return 0;
Vector<RefPtr<RegisterID>> registers;
registers.reserveCapacity(m_targetPatterns.size());
for (size_t i = 0; i < m_targetPatterns.size(); i++) {
registers.uncheckedAppend(generator.newTemporary());
generator.emitNode(registers.last().get(), elements[i]);
if (resultRegister)
generator.emitPutByIndex(resultRegister.get(), i, registers.last().get());
}
for (size_t i = 0; i < m_targetPatterns.size(); i++) {
if (m_targetPatterns[i])
m_targetPatterns[i]->bindValue(generator, registers[i].get());
}
if (resultRegister)
return generator.moveToDestinationIfNeeded(dst, resultRegister.get());
return generator.emitLoad(generator.finalDestination(dst), jsUndefined());
}
void ArrayPatternNode::toString(StringBuilder& builder) const
{
builder.append('[');
for (size_t i = 0; i < m_targetPatterns.size(); i++) {
if (!m_targetPatterns[i]) {
builder.append(',');
continue;
}
m_targetPatterns[i]->toString(builder);
if (i < m_targetPatterns.size() - 1)
builder.append(',');
}
builder.append(']');
}
void ArrayPatternNode::collectBoundIdentifiers(Vector<Identifier>& identifiers) const
{
for (size_t i = 0; i < m_targetPatterns.size(); i++) {
if (DeconstructionPatternNode* node = m_targetPatterns[i].get())
node->collectBoundIdentifiers(identifiers);
}
}
void ObjectPatternNode::toString(StringBuilder& builder) const
{
builder.append('{');
for (size_t i = 0; i < m_targetPatterns.size(); i++) {
if (m_targetPatterns[i].wasString) {
builder.append('"');
escapeStringToBuilder(builder, m_targetPatterns[i].propertyName.string());
builder.append('"');
} else
builder.append(m_targetPatterns[i].propertyName.string());
builder.append(":");
m_targetPatterns[i].pattern->toString(builder);
if (i < m_targetPatterns.size() - 1)
builder.append(',');
}
builder.append('}');
}
void ObjectPatternNode::bindValue(BytecodeGenerator& generator, RegisterID* rhs) const
{
for (size_t i = 0; i < m_targetPatterns.size(); i++) {
auto& target = m_targetPatterns[i];
RefPtr<RegisterID> temp = generator.newTemporary();
generator.emitGetById(temp.get(), rhs, target.propertyName);
target.pattern->bindValue(generator, temp.get());
}
}
void ObjectPatternNode::collectBoundIdentifiers(Vector<Identifier>& identifiers) const
{
for (size_t i = 0; i < m_targetPatterns.size(); i++)
m_targetPatterns[i].pattern->collectBoundIdentifiers(identifiers);
}
void BindingNode::bindValue(BytecodeGenerator& generator, RegisterID* value) const
{
if (Local local = generator.local(m_boundProperty)) {
if (local.isReadOnly()) {
generator.emitReadOnlyExceptionIfNeeded();
return;
}
generator.emitMove(local.get(), value);
return;
}
if (generator.isStrictMode())
generator.emitExpressionInfo(divotEnd(), divotStart(), divotEnd());
RegisterID* scope = generator.emitResolveScope(generator.newTemporary(), m_boundProperty);
generator.emitExpressionInfo(divotEnd(), divotStart(), divotEnd());
generator.emitPutToScope(scope, m_boundProperty, value, generator.isStrictMode() ? ThrowIfNotFound : DoNotThrowIfNotFound);
return;
}
void BindingNode::toString(StringBuilder& builder) const
{
builder.append(m_boundProperty.string());
}
void BindingNode::collectBoundIdentifiers(Vector<Identifier>& identifiers) const
{
identifiers.append(m_boundProperty);
}
RegisterID* SpreadExpressionNode::emitBytecode(BytecodeGenerator&, RegisterID*)
{
RELEASE_ASSERT_NOT_REACHED();
return 0;
}
} // namespace JSC