blob: a1b594a61e241eff02ecf11338aae9fa82900e0f [file] [log] [blame]
#!/usr/bin/env python
# Copyright (C) 2011, 2012 Purdue University
# Written by Gregor Richards
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
import math
import os
import re
import sys
benchmarks = ["amazon/chrome", "amazon/firefox", "amazon/safari",
"facebook/chrome", "facebook/firefox", "facebook/safari",
"google/chrome", "google/firefox", "google/safari",
"twitter/chrome", "twitter/firefox", "twitter/safari",
"yahoo/chrome", "yahoo/firefox", "yahoo/safari"]
modes = {
"*": ["urem"],
"amazon/firefox": ["urm"],
"google/firefox": ["uem"]
}
runcount = 25
keepruns = 20
keepfrom = runcount - keepruns
if len(sys.argv) != 2:
print "Use: python harness.py <JS executable>"
exit(1)
js = sys.argv[1]
# standard t-distribution for normally distributed samples
tDistribution = [0, 0, 12.71, 4.30, 3.18, 2.78, 2.57, 2.45, 2.36, 2.31, 2.26,
2.23, 2.20, 2.18, 2.16, 2.14, 2.13, 2.12, 2.11, 2.10, 2.09, 2.09, 2.08, 2.07,
2.07, 2.06, 2.06, 2.06, 2.05, 2.05, 2.05, 2.04, 2.04, 2.04, 2.03, 2.03, 2.03,
2.03, 2.03, 2.02, 2.02, 2.02, 2.02, 2.02, 2.02, 2.02, 2.01, 2.01, 2.01, 2.01,
2.01, 2.01, 2.01, 2.01, 2.01, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00,
2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99,
1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99,
1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.98, 1.98, 1.98, 1.98, 1.98,
1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98,
1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98,
1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98,
1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98,
1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97,
1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.96]
def tDist(n):
if (n >= len(tDistribution)):
return tDistribution[-1]
return tDistribution[n]
results = {}
for benchmark in benchmarks:
results[benchmark] = {}
bmodes = modes["*"]
if benchmark in modes:
bmodes = modes[benchmark]
for mode in bmodes:
results[benchmark][mode] = []
for runno in range(runcount):
# Now run it and get the results
print(benchmark + " " + mode + " " + str(runno))
res = os.popen(js + " " + benchmark + "/" + mode + ".js").read()
time = float(re.match("Time: ([0-9]*)ms", res).group(1))
if runno >= keepfrom:
results[benchmark][mode].append(time)
# Collect the totals
sresults = {}
totals = {
"mean": 1,
"stddev": 1,
"sem": 1,
"ci": 1,
"runs": 0
}
for benchmark in benchmarks:
sresults[benchmark] = {}
bmodes = modes["*"]
if benchmark in modes:
bmodes = modes[benchmark]
for mode in bmodes:
sresults[benchmark][mode] = sresult = {}
result = results[benchmark][mode]
totals["runs"] = totals["runs"] + 1
sresult["mode"] = mode
mean = sresult["mean"] = sum(result) / len(result)
stddev = sresult["stddev"] = math.sqrt(
sum(
map(lambda e: math.pow(e - mean, 2), result)
) / (len(result) - 1)
)
sm = sresult["sm"] = stddev / mean
sem = sresult["sem"] = stddev / math.sqrt(len(result))
semm = sresult["semm"] = sem / mean
ci = sresult["ci"] = tDist(len(result)) * sem
cim = sresult["cim"] = ci / mean
totals["mean"] *= mean
totals["stddev"] *= stddev
totals["sem"] *= sem
totals["ci"] *= ci
power = 1 / totals["runs"]
totals["mean"] = math.pow(totals["mean"], power)
totals["stddev"] = math.pow(totals["stddev"], power)
totals["sm"] = totals["stddev"] / totals["mean"]
totals["sem"] = math.pow(totals["sem"], power)
totals["semm"] = totals["sem"] / totals["mean"]
totals["ci"] = math.pow(totals["ci"], power)
totals["cim"] = totals["ci"] / totals["mean"]
totals["sm"] *= 100
totals["semm"] *= 100
totals["cim"] *= 100
print "Final results:"
print u" %(mean)fms \u00b1 %(cim)f%% (lower is better)" % totals
print " Standard deviation = %(sm)f%% of mean" % totals
print " Standard error = %(semm)f%% of mean" % totals
print " %(runs)d runs" % {"runs": runcount}
print ""
print "Result breakdown:"
for benchmark in benchmarks:
print " %(benchmark)s:" % {"benchmark": benchmark}
bmodes = modes["*"]
if benchmark in modes:
bmodes = modes[benchmark]
for mode in bmodes:
print u" %(mode)s: %(mean)fms \u00b1 %(cim)f%% (stddev=%(sm)f%%, stderr=%(semm)f%%)" % sresults[benchmark][mode]
print ""
print "Raw results:"
for benchmark in benchmarks:
print " %(benchmark)s:" % {"benchmark": benchmark}
bmodes = modes["*"]
if benchmark in modes:
bmodes = modes[benchmark]
for mode in bmodes:
print " %(mode)s: %(results)s" % {
"mode": mode,
"results": results[benchmark][mode]
}