blob: 9e93f3d49fbbd9bd407b7f23d28e6ff093668982 [file] [log] [blame]
/*
* (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 2000 Gunnstein Lye (gunnstein@netcom.no)
* (C) 2000 Frederik Holljen (frederik.holljen@hig.no)
* (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2004-2020 Apple Inc. All rights reserved.
* Copyright (C) 2011 Motorola Mobility. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "Range.h"
#include "Comment.h"
#include "DOMRect.h"
#include "DOMRectList.h"
#include "DocumentFragment.h"
#include "ElementInlines.h"
#include "Event.h"
#include "Frame.h"
#include "FrameSelection.h"
#include "FrameView.h"
#include "GeometryUtilities.h"
#include "HTMLBodyElement.h"
#include "HTMLHtmlElement.h"
#include "HTMLNames.h"
#include "NodeTraversal.h"
#include "NodeWithIndex.h"
#include "ProcessingInstruction.h"
#include "ScopedEventQueue.h"
#include "TextIterator.h"
#include "VisibleUnits.h"
#include "markup.h"
#include <stdio.h>
#include <wtf/IsoMallocInlines.h>
#include <wtf/RefCountedLeakCounter.h>
#include <wtf/text/CString.h>
#include <wtf/text/StringBuilder.h>
namespace WebCore {
using namespace HTMLNames;
DEFINE_DEBUG_ONLY_GLOBAL(WTF::RefCountedLeakCounter, rangeCounter, ("Range"));
enum ContentsProcessDirection { ProcessContentsForward, ProcessContentsBackward };
static ExceptionOr<void> processNodes(Range::ActionType, Vector<Ref<Node>>&, Node* oldContainer, RefPtr<Node> newContainer);
static ExceptionOr<RefPtr<Node>> processContentsBetweenOffsets(Range::ActionType, RefPtr<DocumentFragment>, RefPtr<Node> container, unsigned startOffset, unsigned endOffset);
static ExceptionOr<RefPtr<Node>> processAncestorsAndTheirSiblings(Range::ActionType, Node* container, ContentsProcessDirection, ExceptionOr<RefPtr<Node>>&& passedClonedContainer, Node* commonRoot);
WTF_MAKE_ISO_ALLOCATED_IMPL(Range);
inline Range::Range(Document& ownerDocument)
: m_ownerDocument(ownerDocument)
, m_start(ownerDocument)
, m_end(ownerDocument)
{
#ifndef NDEBUG
rangeCounter.increment();
#endif
m_ownerDocument->attachRange(*this);
}
Ref<Range> Range::create(Document& ownerDocument)
{
return adoptRef(*new Range(ownerDocument));
}
Range::~Range()
{
ASSERT(!m_isAssociatedWithSelection);
m_ownerDocument->detachRange(*this);
#ifndef NDEBUG
rangeCounter.decrement();
#endif
}
Node* Range::commonAncestorContainer() const
{
return commonInclusiveAncestor(startContainer(), endContainer());
}
void Range::updateAssociatedSelection()
{
if (m_isAssociatedWithSelection)
m_ownerDocument->selection().updateFromAssociatedLiveRange();
}
void Range::updateDocument()
{
auto& document = startContainer().document();
if (m_ownerDocument.ptr() == &document)
return;
ASSERT(!m_isAssociatedWithSelection);
m_ownerDocument->detachRange(*this);
m_ownerDocument = document;
m_ownerDocument->attachRange(*this);
}
ExceptionOr<void> Range::setStart(Ref<Node>&& container, unsigned offset)
{
auto childNode = checkNodeOffsetPair(container, offset);
if (childNode.hasException())
return childNode.releaseException();
m_start.set(WTFMove(container), offset, childNode.releaseReturnValue());
if (!is_lteq(treeOrder(makeBoundaryPoint(m_start), makeBoundaryPoint(m_end))))
m_end = m_start;
updateAssociatedSelection();
updateDocument();
return { };
}
ExceptionOr<void> Range::setEnd(Ref<Node>&& container, unsigned offset)
{
auto childNode = checkNodeOffsetPair(container, offset);
if (childNode.hasException())
return childNode.releaseException();
m_end.set(WTFMove(container), offset, childNode.releaseReturnValue());
if (!is_lteq(treeOrder(makeBoundaryPoint(m_start), makeBoundaryPoint(m_end))))
m_start = m_end;
updateAssociatedSelection();
updateDocument();
return { };
}
void Range::collapse(bool toStart)
{
if (toStart)
m_end = m_start;
else
m_start = m_end;
updateAssociatedSelection();
}
ExceptionOr<bool> Range::isPointInRange(Node& container, unsigned offset)
{
if (auto checkResult = checkNodeOffsetPair(container, offset); checkResult.hasException()) {
// DOM specification requires this check be done first but since there are no side effects,
// we can do it in reverse order to avoid an extra root node check in the common case.
if (&container.rootNode() != &startContainer().rootNode())
return false;
return checkResult.releaseException();
}
return contains(makeSimpleRange(*this), { container, offset });
}
ExceptionOr<short> Range::comparePoint(Node& container, unsigned offset) const
{
if (auto checkResult = checkNodeOffsetPair(container, offset); checkResult.hasException()) {
// DOM specification requires this check be done first but since there are no side effects,
// we can do it in reverse order to avoid an extra root node check in the common case.
if (&container.rootNode() != &startContainer().rootNode())
return Exception { WrongDocumentError };
return checkResult.releaseException();
}
auto ordering = treeOrder({ container, offset }, makeSimpleRange(*this));
if (is_lt(ordering))
return -1;
if (is_eq(ordering))
return 0;
if (is_gt(ordering))
return 1;
return Exception { WrongDocumentError };
}
ExceptionOr<Range::CompareResults> Range::compareNode(Node& node) const
{
// FIXME: This deprecated function should be removed.
// We originally added it for interoperability with Firefox.
// Recent versions of Firefox have removed it.
// http://developer.mozilla.org/en/docs/DOM:range.compareNode
// This method returns 0, 1, 2, or 3 based on if the node is before, after,
// before and after(surrounds), or inside the range, respectively.
if (!node.isConnected() || &node.document() != m_ownerDocument.ptr()) {
// Match historical Firefox behavior.
return NODE_BEFORE;
}
auto nodeRange = makeRangeSelectingNode(node);
if (!nodeRange) {
// Match historical Firefox behavior.
return Exception { NotFoundError };
}
auto startOrdering = treeOrder(nodeRange->start, makeBoundaryPoint(m_start));
auto endOrdering = treeOrder(nodeRange->end, makeBoundaryPoint(m_end));
if (is_gteq(startOrdering) && is_lteq(endOrdering))
return NODE_INSIDE;
if (is_lteq(startOrdering) && is_gteq(endOrdering))
return NODE_BEFORE_AND_AFTER;
if (is_lteq(startOrdering))
return NODE_BEFORE;
if (is_gteq(endOrdering))
return NODE_AFTER;
return Exception { WrongDocumentError };
}
ExceptionOr<short> Range::compareBoundaryPoints(unsigned short how, const Range& sourceRange) const
{
const RangeBoundaryPoint* thisPoint;
const RangeBoundaryPoint* otherPoint;
switch (how) {
case START_TO_START:
thisPoint = &m_start;
otherPoint = &sourceRange.m_start;
break;
case START_TO_END:
thisPoint = &m_end;
otherPoint = &sourceRange.m_start;
break;
case END_TO_END:
thisPoint = &m_end;
otherPoint = &sourceRange.m_end;
break;
case END_TO_START:
thisPoint = &m_start;
otherPoint = &sourceRange.m_end;
break;
default:
return Exception { NotSupportedError };
}
auto ordering = treeOrder(makeBoundaryPoint(*thisPoint), makeBoundaryPoint(*otherPoint));
if (is_lt(ordering))
return -1;
if (is_eq(ordering))
return 0;
if (is_gt(ordering))
return 1;
return Exception { WrongDocumentError };
}
ExceptionOr<void> Range::deleteContents()
{
auto result = processContents(Delete);
if (result.hasException())
return result.releaseException();
return { };
}
bool Range::intersectsNode(Node& node) const
{
return intersects(makeSimpleRange(*this), node);
}
static inline Node* highestAncestorUnderCommonRoot(Node* node, Node* commonRoot)
{
if (node == commonRoot)
return 0;
ASSERT(commonRoot->contains(node));
while (node->parentNode() != commonRoot)
node = node->parentNode();
return node;
}
static inline Node* childOfCommonRootBeforeOffset(Node* container, unsigned offset, Node* commonRoot)
{
ASSERT(container);
ASSERT(commonRoot);
if (!commonRoot->contains(container))
return 0;
if (container == commonRoot) {
container = container->firstChild();
for (unsigned i = 0; container && i < offset; i++)
container = container->nextSibling();
} else {
while (container->parentNode() != commonRoot)
container = container->parentNode();
}
return container;
}
ExceptionOr<RefPtr<DocumentFragment>> Range::processContents(ActionType action)
{
RefPtr<DocumentFragment> fragment;
if (action == Extract || action == Clone)
fragment = DocumentFragment::create(m_ownerDocument);
if (collapsed())
return fragment;
RefPtr<Node> commonRoot = commonAncestorContainer();
ASSERT(commonRoot);
if (&startContainer() == &endContainer()) {
auto result = processContentsBetweenOffsets(action, fragment, &startContainer(), m_start.offset(), m_end.offset());
if (result.hasException())
return result.releaseException();
return fragment;
}
// Since mutation events can modify the range during the process, the boundary points need to be saved.
RangeBoundaryPoint originalStart(m_start);
RangeBoundaryPoint originalEnd(m_end);
// what is the highest node that partially selects the start / end of the range?
RefPtr<Node> partialStart = highestAncestorUnderCommonRoot(&originalStart.container(), commonRoot.get());
RefPtr<Node> partialEnd = highestAncestorUnderCommonRoot(&originalEnd.container(), commonRoot.get());
// Start and end containers are different.
// There are three possibilities here:
// 1. Start container == commonRoot (End container must be a descendant)
// 2. End container == commonRoot (Start container must be a descendant)
// 3. Neither is commonRoot, they are both descendants
//
// In case 3, we grab everything after the start (up until a direct child
// of commonRoot) into leftContents, and everything before the end (up until
// a direct child of commonRoot) into rightContents. Then we process all
// commonRoot children between leftContents and rightContents
//
// In case 1 or 2, we skip either processing of leftContents or rightContents,
// in which case the last lot of nodes either goes from the first or last
// child of commonRoot.
//
// These are deleted, cloned, or extracted (i.e. both) depending on action.
// Note that we are verifying that our common root hierarchy is still intact
// after any DOM mutation event, at various stages below. See webkit bug 60350.
RefPtr<Node> leftContents;
if (&originalStart.container() != commonRoot && commonRoot->contains(&originalStart.container())) {
auto firstResult = processContentsBetweenOffsets(action, nullptr, &originalStart.container(), originalStart.offset(), originalStart.container().length());
auto secondResult = processAncestorsAndTheirSiblings(action, &originalStart.container(), ProcessContentsForward, WTFMove(firstResult), commonRoot.get());
// FIXME: A bit peculiar that we silently ignore the exception here, but we do have at least some regression tests that rely on this behavior.
if (!secondResult.hasException())
leftContents = secondResult.releaseReturnValue();
}
RefPtr<Node> rightContents;
if (&endContainer() != commonRoot && commonRoot->contains(&originalEnd.container())) {
auto firstResult = processContentsBetweenOffsets(action, nullptr, &originalEnd.container(), 0, originalEnd.offset());
auto secondResult = processAncestorsAndTheirSiblings(action, &originalEnd.container(), ProcessContentsBackward, WTFMove(firstResult), commonRoot.get());
// FIXME: A bit peculiar that we silently ignore the exception here, but we do have at least some regression tests that rely on this behavior.
if (!secondResult.hasException())
rightContents = secondResult.releaseReturnValue();
}
// delete all children of commonRoot between the start and end container
RefPtr<Node> processStart = childOfCommonRootBeforeOffset(&originalStart.container(), originalStart.offset(), commonRoot.get());
if (processStart && &originalStart.container() != commonRoot) // processStart contains nodes before m_start.
processStart = processStart->nextSibling();
RefPtr<Node> processEnd = childOfCommonRootBeforeOffset(&originalEnd.container(), originalEnd.offset(), commonRoot.get());
// Collapse the range, making sure that the result is not within a node that was partially selected.
if (action == Extract || action == Delete) {
if (partialStart && commonRoot->contains(partialStart.get())) {
auto result = setStart(*partialStart->parentNode(), partialStart->computeNodeIndex() + 1);
if (result.hasException())
return result.releaseException();
} else if (partialEnd && commonRoot->contains(partialEnd.get())) {
auto result = setStart(*partialEnd->parentNode(), partialEnd->computeNodeIndex());
if (result.hasException())
return result.releaseException();
}
collapse(true);
}
// Now add leftContents, stuff in between, and rightContents to the fragment
// (or just delete the stuff in between)
if ((action == Extract || action == Clone) && leftContents) {
auto result = fragment->appendChild(*leftContents);
if (result.hasException())
return result.releaseException();
}
if (processStart) {
Vector<Ref<Node>> nodes;
for (Node* node = processStart.get(); node && node != processEnd; node = node->nextSibling())
nodes.append(*node);
auto result = processNodes(action, nodes, commonRoot.get(), fragment.get());
if (result.hasException())
return result.releaseException();
}
if ((action == Extract || action == Clone) && rightContents) {
auto result = fragment->appendChild(*rightContents);
if (result.hasException())
return result.releaseException();
}
return fragment;
}
static inline ExceptionOr<void> deleteCharacterData(CharacterData& data, unsigned startOffset, unsigned endOffset)
{
if (data.length() - endOffset) {
auto result = data.deleteData(endOffset, data.length() - endOffset);
if (result.hasException())
return result.releaseException();
}
if (startOffset) {
auto result = data.deleteData(0, startOffset);
if (result.hasException())
return result.releaseException();
}
return { };
}
static ExceptionOr<RefPtr<Node>> processContentsBetweenOffsets(Range::ActionType action, RefPtr<DocumentFragment> fragment, RefPtr<Node> container, unsigned startOffset, unsigned endOffset)
{
ASSERT(container);
ASSERT(startOffset <= endOffset);
RefPtr<Node> result;
switch (container->nodeType()) {
case Node::TEXT_NODE:
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
endOffset = std::min(endOffset, downcast<CharacterData>(*container).length());
startOffset = std::min(startOffset, endOffset);
if (action == Range::Extract || action == Range::Clone) {
Ref<CharacterData> characters = downcast<CharacterData>(container->cloneNode(true).get());
auto deleteResult = deleteCharacterData(characters, startOffset, endOffset);
if (deleteResult.hasException())
return deleteResult.releaseException();
if (fragment) {
result = fragment;
auto appendResult = result->appendChild(characters);
if (appendResult.hasException())
return appendResult.releaseException();
} else
result = WTFMove(characters);
}
if (action == Range::Extract || action == Range::Delete) {
auto deleteResult = downcast<CharacterData>(*container).deleteData(startOffset, endOffset - startOffset);
if (deleteResult.hasException())
return deleteResult.releaseException();
}
break;
case Node::PROCESSING_INSTRUCTION_NODE: {
auto& instruction = downcast<ProcessingInstruction>(*container);
endOffset = std::min(endOffset, downcast<ProcessingInstruction>(*container).data().length());
startOffset = std::min(startOffset, endOffset);
if (action == Range::Extract || action == Range::Clone) {
Ref<ProcessingInstruction> processingInstruction = downcast<ProcessingInstruction>(container->cloneNode(true).get());
processingInstruction->setData(processingInstruction->data().substring(startOffset, endOffset - startOffset));
if (fragment) {
result = fragment;
auto appendResult = result->appendChild(processingInstruction);
if (appendResult.hasException())
return appendResult.releaseException();
} else
result = WTFMove(processingInstruction);
}
if (action == Range::Extract || action == Range::Delete) {
String data { instruction.data() };
data.remove(startOffset, endOffset - startOffset);
instruction.setData(data);
}
break;
}
case Node::ELEMENT_NODE:
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
// FIXME: Should we assert that some nodes never appear here?
if (action == Range::Extract || action == Range::Clone) {
if (fragment)
result = fragment;
else
result = container->cloneNode(false);
}
Vector<Ref<Node>> nodes;
Node* n = container->firstChild();
for (unsigned i = startOffset; n && i; i--)
n = n->nextSibling();
for (unsigned i = startOffset; n && i < endOffset; i++, n = n->nextSibling()) {
if (action != Range::Delete && n->isDocumentTypeNode()) {
return Exception { HierarchyRequestError };
}
nodes.append(*n);
}
auto processResult = processNodes(action, nodes, container.get(), result);
if (processResult.hasException())
return processResult.releaseException();
break;
}
return result;
}
static ExceptionOr<void> processNodes(Range::ActionType action, Vector<Ref<Node>>& nodes, Node* oldContainer, RefPtr<Node> newContainer)
{
for (auto& node : nodes) {
switch (action) {
case Range::Delete: {
auto result = oldContainer->removeChild(node);
if (result.hasException())
return result.releaseException();
break;
}
case Range::Extract: {
auto result = newContainer->appendChild(node); // will remove node from its parent
if (result.hasException())
return result.releaseException();
break;
}
case Range::Clone: {
auto result = newContainer->appendChild(node->cloneNode(true));
if (result.hasException())
return result.releaseException();
break;
}
}
}
return { };
}
ExceptionOr<RefPtr<Node>> processAncestorsAndTheirSiblings(Range::ActionType action, Node* container, ContentsProcessDirection direction, ExceptionOr<RefPtr<Node>>&& passedClonedContainer, Node* commonRoot)
{
if (passedClonedContainer.hasException())
return WTFMove(passedClonedContainer);
RefPtr<Node> clonedContainer = passedClonedContainer.releaseReturnValue();
Vector<Ref<ContainerNode>> ancestors;
for (ContainerNode* ancestor = container->parentNode(); ancestor && ancestor != commonRoot; ancestor = ancestor->parentNode())
ancestors.append(*ancestor);
RefPtr<Node> firstChildInAncestorToProcess = direction == ProcessContentsForward ? container->nextSibling() : container->previousSibling();
for (auto& ancestor : ancestors) {
if (action == Range::Extract || action == Range::Clone) {
auto clonedAncestor = ancestor->cloneNode(false); // Might have been removed already during mutation event.
if (clonedContainer) {
auto result = clonedAncestor->appendChild(*clonedContainer);
if (result.hasException())
return result.releaseException();
}
clonedContainer = WTFMove(clonedAncestor);
}
// Copy siblings of an ancestor of start/end containers
// FIXME: This assertion may fail if DOM is modified during mutation event
// FIXME: Share code with Range::processNodes
ASSERT(!firstChildInAncestorToProcess || firstChildInAncestorToProcess->parentNode() == ancestor.ptr());
Vector<Ref<Node>> nodes;
for (Node* child = firstChildInAncestorToProcess.get(); child;
child = (direction == ProcessContentsForward) ? child->nextSibling() : child->previousSibling())
nodes.append(*child);
for (auto& child : nodes) {
switch (action) {
case Range::Delete: {
auto result = ancestor->removeChild(child);
if (result.hasException())
return result.releaseException();
break;
}
case Range::Extract: // will remove child from ancestor
if (direction == ProcessContentsForward) {
auto result = clonedContainer->appendChild(child);
if (result.hasException())
return result.releaseException();
} else {
auto result = clonedContainer->insertBefore(child, clonedContainer->firstChild());
if (result.hasException())
return result.releaseException();
}
break;
case Range::Clone:
if (direction == ProcessContentsForward) {
auto result = clonedContainer->appendChild(child->cloneNode(true));
if (result.hasException())
return result.releaseException();
} else {
auto result = clonedContainer->insertBefore(child->cloneNode(true), clonedContainer->firstChild());
if (result.hasException())
return result.releaseException();
}
break;
}
}
firstChildInAncestorToProcess = direction == ProcessContentsForward ? ancestor->nextSibling() : ancestor->previousSibling();
}
return clonedContainer;
}
ExceptionOr<Ref<DocumentFragment>> Range::extractContents()
{
auto result = processContents(Extract);
if (result.hasException())
return result.releaseException();
return result.releaseReturnValue().releaseNonNull();
}
ExceptionOr<Ref<DocumentFragment>> Range::cloneContents()
{
auto result = processContents(Clone);
if (result.hasException())
return result.releaseException();
return result.releaseReturnValue().releaseNonNull();
}
ExceptionOr<void> Range::insertNode(Ref<Node>&& node)
{
auto startContainerNodeType = startContainer().nodeType();
if (startContainerNodeType == Node::COMMENT_NODE || startContainerNodeType == Node::PROCESSING_INSTRUCTION_NODE)
return Exception { HierarchyRequestError };
bool startIsText = startContainerNodeType == Node::TEXT_NODE;
if (startIsText && !startContainer().parentNode())
return Exception { HierarchyRequestError };
if (node.ptr() == &startContainer())
return Exception { HierarchyRequestError };
RefPtr<Node> referenceNode = startIsText ? &startContainer() : startContainer().traverseToChildAt(startOffset());
Node* parentNode = referenceNode ? referenceNode->parentNode() : &startContainer();
if (!is<ContainerNode>(parentNode))
return Exception { HierarchyRequestError };
Ref<ContainerNode> parent = downcast<ContainerNode>(*parentNode);
auto result = parent->ensurePreInsertionValidity(node, referenceNode.get());
if (result.hasException())
return result.releaseException();
EventQueueScope scope;
if (startIsText) {
auto result = downcast<Text>(startContainer()).splitText(startOffset());
if (result.hasException())
return result.releaseException();
referenceNode = result.releaseReturnValue();
}
if (referenceNode == node.ptr())
referenceNode = referenceNode->nextSibling();
auto removeResult = node->remove();
if (removeResult.hasException())
return removeResult.releaseException();
unsigned newOffset = referenceNode ? referenceNode->computeNodeIndex() : parent->countChildNodes();
if (is<DocumentFragment>(node))
newOffset += downcast<DocumentFragment>(node.get()).countChildNodes();
else
++newOffset;
auto insertResult = parent->insertBefore(node, referenceNode.get());
if (insertResult.hasException())
return insertResult.releaseException();
if (collapsed())
return setEnd(WTFMove(parent), newOffset);
return { };
}
String Range::toString() const
{
auto range = makeSimpleRange(*this);
StringBuilder builder;
for (auto& node : intersectingNodes(range)) {
if (is<Text>(node)) {
auto offsetRange = characterDataOffsetRange(range, node);
builder.appendSubstring(downcast<Text>(node).data(), offsetRange.start, offsetRange.end - offsetRange.start);
}
}
return builder.toString();
}
// https://w3c.github.io/DOM-Parsing/#widl-Range-createContextualFragment-DocumentFragment-DOMString-fragment
ExceptionOr<Ref<DocumentFragment>> Range::createContextualFragment(const String& markup)
{
Node& node = startContainer();
RefPtr<Element> element;
if (is<Document>(node) || is<DocumentFragment>(node))
element = nullptr;
else if (is<Element>(node))
element = &downcast<Element>(node);
else
element = node.parentElement();
if (!element || (element->document().isHTMLDocument() && is<HTMLHtmlElement>(*element)))
element = HTMLBodyElement::create(node.document());
return WebCore::createContextualFragment(*element, markup, AllowScriptingContentAndDoNotMarkAlreadyStarted);
}
ExceptionOr<Node*> Range::checkNodeOffsetPair(Node& node, unsigned offset)
{
switch (node.nodeType()) {
case Node::DOCUMENT_TYPE_NODE:
return Exception { InvalidNodeTypeError };
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::TEXT_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
if (offset > downcast<CharacterData>(node).length())
return Exception { IndexSizeError };
return nullptr;
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::ELEMENT_NODE:
if (!offset)
return nullptr;
auto childBefore = node.traverseToChildAt(offset - 1);
if (!childBefore)
return Exception { IndexSizeError };
return childBefore;
}
ASSERT_NOT_REACHED();
return Exception { InvalidNodeTypeError };
}
Ref<Range> Range::cloneRange() const
{
auto result = create(m_ownerDocument);
result->setStart(startContainer(), m_start.offset());
result->setEnd(endContainer(), m_end.offset());
return result;
}
ExceptionOr<void> Range::setStartAfter(Node& node)
{
auto parent = node.parentNode();
if (!parent)
return Exception { InvalidNodeTypeError };
return setStart(*parent, node.computeNodeIndex() + 1);
}
ExceptionOr<void> Range::setEndBefore(Node& node)
{
auto parent = node.parentNode();
if (!parent)
return Exception { InvalidNodeTypeError };
return setEnd(*parent, node.computeNodeIndex());
}
ExceptionOr<void> Range::setEndAfter(Node& node)
{
auto parent = node.parentNode();
if (!parent)
return Exception { InvalidNodeTypeError };
return setEnd(*parent, node.computeNodeIndex() + 1);
}
ExceptionOr<void> Range::selectNode(Node& node)
{
auto parent = node.parentNode();
if (!parent)
return Exception { InvalidNodeTypeError };
unsigned index = node.computeNodeIndex();
auto result = setStart(*parent, index);
if (result.hasException())
return result.releaseException();
return setEnd(*parent, index + 1);
}
ExceptionOr<void> Range::selectNodeContents(Node& node)
{
if (node.isDocumentTypeNode())
return Exception { InvalidNodeTypeError };
m_start.setToBeforeContents(node);
m_end.setToAfterContents(node);
updateAssociatedSelection();
updateDocument();
return { };
}
// https://dom.spec.whatwg.org/#dom-range-surroundcontents
ExceptionOr<void> Range::surroundContents(Node& newParent)
{
Ref<Node> protectedNewParent(newParent);
// Step 1: If a non-Text node is partially contained in the context object, then throw an InvalidStateError.
Node* startNonTextContainer = &startContainer();
if (startNonTextContainer->nodeType() == Node::TEXT_NODE)
startNonTextContainer = startNonTextContainer->parentNode();
Node* endNonTextContainer = &endContainer();
if (endNonTextContainer->nodeType() == Node::TEXT_NODE)
endNonTextContainer = endNonTextContainer->parentNode();
if (startNonTextContainer != endNonTextContainer)
return Exception { InvalidStateError };
// Step 2: If newParent is a Document, DocumentType, or DocumentFragment node, then throw an InvalidNodeTypeError.
switch (newParent.nodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
return Exception { InvalidNodeTypeError };
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::ELEMENT_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
break;
}
// Step 3: Let fragment be the result of extracting context object.
auto fragment = extractContents();
if (fragment.hasException())
return fragment.releaseException();
// Step 4: If newParent has children, replace all with null within newParent.
if (newParent.hasChildNodes())
downcast<ContainerNode>(newParent).replaceAll(nullptr);
// Step 5: Insert newParent into context object.
auto insertResult = insertNode(newParent);
if (insertResult.hasException())
return insertResult.releaseException();
// Step 6: Append fragment to newParent.
auto appendResult = newParent.appendChild(fragment.releaseReturnValue());
if (appendResult.hasException())
return appendResult.releaseException();
// Step 7: Select newParent within context object.
return selectNode(newParent);
}
ExceptionOr<void> Range::setStartBefore(Node& node)
{
auto parent = node.parentNode();
if (!parent)
return Exception { InvalidNodeTypeError };
return setStart(*parent, node.computeNodeIndex());
}
#if ENABLE(TREE_DEBUGGING)
String Range::debugDescription() const
{
return makeString("from offset ", m_start.offset(), " of ", startContainer().debugDescription(), " to offset ", m_end.offset(), " of ", endContainer().debugDescription());
}
#endif
static inline void boundaryNodeChildrenChanged(RangeBoundaryPoint& boundary, ContainerNode& container)
{
if (boundary.childBefore() && &boundary.container() == &container)
boundary.invalidateOffset();
}
void Range::nodeChildrenChanged(ContainerNode& container)
{
ASSERT(&container.document() == m_ownerDocument.ptr());
boundaryNodeChildrenChanged(m_start, container);
boundaryNodeChildrenChanged(m_end, container);
}
static inline void boundaryNodeChildrenWillBeRemoved(RangeBoundaryPoint& boundary, ContainerNode& containerOfNodesToBeRemoved)
{
if (containerOfNodesToBeRemoved.contains(&boundary.container()))
boundary.setToBeforeContents(containerOfNodesToBeRemoved);
}
void Range::nodeChildrenWillBeRemoved(ContainerNode& container)
{
ASSERT(&container.document() == m_ownerDocument.ptr());
boundaryNodeChildrenWillBeRemoved(m_start, container);
boundaryNodeChildrenWillBeRemoved(m_end, container);
}
static inline void boundaryNodeWillBeRemoved(RangeBoundaryPoint& boundary, Node& nodeToBeRemoved)
{
if (boundary.childBefore() == &nodeToBeRemoved)
boundary.childBeforeWillBeRemoved();
else if (nodeToBeRemoved.contains(&boundary.container()))
boundary.setToBeforeNode(nodeToBeRemoved);
}
void Range::nodeWillBeRemoved(Node& node)
{
ASSERT(&node.document() == m_ownerDocument.ptr());
ASSERT(&node != m_ownerDocument.ptr());
ASSERT(node.parentNode());
boundaryNodeWillBeRemoved(m_start, node);
boundaryNodeWillBeRemoved(m_end, node);
}
bool Range::parentlessNodeMovedToNewDocumentAffectsRange(Node& node)
{
return node.containsIncludingShadowDOM(&m_start.container());
}
void Range::updateRangeForParentlessNodeMovedToNewDocument(Node& node)
{
m_ownerDocument->detachRange(*this);
m_ownerDocument = node.document();
m_ownerDocument->attachRange(*this);
}
static inline void boundaryTextInserted(RangeBoundaryPoint& boundary, Node& text, unsigned offset, unsigned length)
{
if (&boundary.container() != &text)
return;
unsigned boundaryOffset = boundary.offset();
if (offset >= boundaryOffset)
return;
boundary.setOffset(boundaryOffset + length);
}
void Range::textInserted(Node& text, unsigned offset, unsigned length)
{
ASSERT(&text.document() == m_ownerDocument.ptr());
boundaryTextInserted(m_start, text, offset, length);
boundaryTextInserted(m_end, text, offset, length);
}
static inline void boundaryTextRemoved(RangeBoundaryPoint& boundary, Node& text, unsigned offset, unsigned length)
{
if (&boundary.container() != &text)
return;
unsigned boundaryOffset = boundary.offset();
if (offset >= boundaryOffset)
return;
if (offset + length >= boundaryOffset)
boundary.setOffset(offset);
else
boundary.setOffset(boundaryOffset - length);
}
void Range::textRemoved(Node& text, unsigned offset, unsigned length)
{
ASSERT(&text.document() == m_ownerDocument.ptr());
boundaryTextRemoved(m_start, text, offset, length);
boundaryTextRemoved(m_end, text, offset, length);
}
static inline void boundaryTextNodesMerged(RangeBoundaryPoint& boundary, NodeWithIndex& oldNode, unsigned offset)
{
if (&boundary.container() == oldNode.node())
boundary.set(*oldNode.node()->previousSibling(), boundary.offset() + offset, 0);
else if (&boundary.container() == oldNode.node()->parentNode() && boundary.offset() == static_cast<unsigned>(oldNode.index()))
boundary.set(*oldNode.node()->previousSibling(), offset, 0);
}
void Range::textNodesMerged(NodeWithIndex& oldNode, unsigned offset)
{
ASSERT(oldNode.node());
ASSERT(&oldNode.node()->document() == m_ownerDocument.ptr());
ASSERT(oldNode.node()->parentNode());
ASSERT(oldNode.node()->isTextNode());
ASSERT(oldNode.node()->previousSibling());
ASSERT(oldNode.node()->previousSibling()->isTextNode());
boundaryTextNodesMerged(m_start, oldNode, offset);
boundaryTextNodesMerged(m_end, oldNode, offset);
}
static inline void boundaryTextNodesSplit(RangeBoundaryPoint& boundary, Text& oldNode)
{
auto* parent = oldNode.parentNode();
if (&boundary.container() == &oldNode) {
unsigned splitOffset = oldNode.length();
unsigned boundaryOffset = boundary.offset();
if (boundaryOffset > splitOffset) {
if (parent)
boundary.set(*oldNode.nextSibling(), boundaryOffset - splitOffset, 0);
else
boundary.setOffset(splitOffset);
}
return;
}
if (!parent)
return;
if (&boundary.container() == parent && boundary.childBefore() == &oldNode) {
auto* newChild = oldNode.nextSibling();
ASSERT(newChild);
boundary.setToAfterNode(*newChild);
}
}
void Range::textNodeSplit(Text& oldNode)
{
ASSERT(&oldNode.document() == m_ownerDocument.ptr());
ASSERT(!oldNode.parentNode() || oldNode.nextSibling());
ASSERT(!oldNode.parentNode() || oldNode.nextSibling()->isTextNode());
boundaryTextNodesSplit(m_start, oldNode);
boundaryTextNodesSplit(m_end, oldNode);
}
ExceptionOr<void> Range::expand(const String& unit)
{
auto start = VisiblePosition { makeContainerOffsetPosition(&startContainer(), startOffset()) };
auto end = VisiblePosition { makeContainerOffsetPosition(&endContainer(), endOffset()) };
if (unit == "word") {
start = startOfWord(start);
end = endOfWord(end);
} else if (unit == "sentence") {
start = startOfSentence(start);
end = endOfSentence(end);
} else if (unit == "block") {
start = startOfParagraph(start);
end = endOfParagraph(end);
} else if (unit == "document") {
start = startOfDocument(start);
end = endOfDocument(end);
} else
return { };
auto* startContainer = start.deepEquivalent().containerNode();
if (!startContainer)
return Exception { TypeError };
auto result = setStart(*startContainer, start.deepEquivalent().computeOffsetInContainerNode());
if (result.hasException())
return result.releaseException();
auto* endContainer = end.deepEquivalent().containerNode();
if (!endContainer)
return Exception { TypeError };
return setEnd(*endContainer, end.deepEquivalent().computeOffsetInContainerNode());
}
Ref<DOMRectList> Range::getClientRects() const
{
startContainer().document().updateLayout();
return DOMRectList::create(RenderObject::clientBorderAndTextRects(makeSimpleRange(*this)));
}
Ref<DOMRect> Range::getBoundingClientRect() const
{
startContainer().document().updateLayout();
return DOMRect::create(unionRectIgnoringZeroRects(RenderObject::clientBorderAndTextRects(makeSimpleRange(*this))));
}
static void setBothEndpoints(Range& range, const SimpleRange& value)
{
auto startContainer = value.start.container;
range.setStart(WTFMove(startContainer), value.start.offset);
auto endContainer = value.end.container;
range.setEnd(WTFMove(endContainer), value.end.offset);
}
void Range::updateFromSelection(const SimpleRange& value)
{
ASSERT(m_isAssociatedWithSelection);
m_isAssociatedWithSelection = false;
setBothEndpoints(*this, value);
m_isAssociatedWithSelection = true;
}
DOMWindow* Range::window() const
{
return m_isAssociatedWithSelection ? m_ownerDocument->domWindow() : nullptr;
}
SimpleRange makeSimpleRange(const Range& range)
{
return { { range.startContainer(), range.startOffset() }, { range.endContainer(), range.endOffset() } };
}
SimpleRange makeSimpleRange(const Ref<Range>& range)
{
return makeSimpleRange(range.get());
}
std::optional<SimpleRange> makeSimpleRange(const Range* range)
{
if (!range)
return std::nullopt;
return makeSimpleRange(*range);
}
std::optional<SimpleRange> makeSimpleRange(const RefPtr<Range>& range)
{
return makeSimpleRange(range.get());
}
Ref<Range> createLiveRange(const SimpleRange& range)
{
auto result = Range::create(range.start.document());
setBothEndpoints(result, range);
return result;
}
RefPtr<Range> createLiveRange(const std::optional<SimpleRange>& range)
{
if (!range)
return nullptr;
return createLiveRange(*range);
}
} // namespace WebCore
#if ENABLE(TREE_DEBUGGING)
void showTree(const WebCore::Range* range)
{
if (range) {
range->startContainer().showTreeAndMark(&range->startContainer(), "S", &range->endContainer(), "E");
fprintf(stderr, "start offset: %d, end offset: %d\n", range->startOffset(), range->endOffset());
}
}
#endif