blob: fb536b3d628f26ae4ff5991d91fbddab3dc1af65 [file] [log] [blame]
/*
* Copyright (C) 2009 Dirk Schulze <krit@webkit.org>
* Copyright (C) Research In Motion Limited 2011. All rights reserved.
* Copyright (C) 2016-2018 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "ImageBuffer.h"
#include "ColorUtilities.h"
#include "GraphicsContext.h"
#include "IntRect.h"
#include <wtf/IsoMallocInlines.h>
#include <wtf/MathExtras.h>
namespace WebCore {
static const float MaxClampedLength = 4096;
static const float MaxClampedArea = MaxClampedLength * MaxClampedLength;
WTF_MAKE_ISO_ALLOCATED_IMPL(ImageBuffer);
std::unique_ptr<ImageBuffer> ImageBuffer::create(const FloatSize& size, RenderingMode renderingMode, float resolutionScale, ColorSpace colorSpace, const HostWindow* hostWindow)
{
bool success = false;
std::unique_ptr<ImageBuffer> buffer(new ImageBuffer(size, resolutionScale, colorSpace, renderingMode, hostWindow, success));
if (!success)
return nullptr;
return buffer;
}
#if USE(DIRECT2D)
std::unique_ptr<ImageBuffer> ImageBuffer::create(const FloatSize& size, RenderingMode renderingMode, const GraphicsContext* targetContext, float resolutionScale, ColorSpace colorSpace, const HostWindow* hostWindow)
{
bool success = false;
std::unique_ptr<ImageBuffer> buffer(new ImageBuffer(size, resolutionScale, colorSpace, renderingMode, hostWindow, targetContext, success));
if (!success)
return nullptr;
return buffer;
}
#endif
bool ImageBuffer::sizeNeedsClamping(const FloatSize& size)
{
if (size.isEmpty())
return false;
return floorf(size.height()) * floorf(size.width()) > MaxClampedArea;
}
bool ImageBuffer::sizeNeedsClamping(const FloatSize& size, FloatSize& scale)
{
FloatSize scaledSize(size);
scaledSize.scale(scale.width(), scale.height());
if (!sizeNeedsClamping(scaledSize))
return false;
// The area of scaled size is bigger than the upper limit, adjust the scale to fit.
scale.scale(sqrtf(MaxClampedArea / (scaledSize.width() * scaledSize.height())));
ASSERT(!sizeNeedsClamping(size, scale));
return true;
}
FloatSize ImageBuffer::clampedSize(const FloatSize& size)
{
return size.shrunkTo(FloatSize(MaxClampedLength, MaxClampedLength));
}
FloatSize ImageBuffer::clampedSize(const FloatSize& size, FloatSize& scale)
{
if (size.isEmpty())
return size;
FloatSize clampedSize = ImageBuffer::clampedSize(size);
scale = clampedSize / size;
ASSERT(!sizeNeedsClamping(clampedSize));
ASSERT(!sizeNeedsClamping(size, scale));
return clampedSize;
}
FloatRect ImageBuffer::clampedRect(const FloatRect& rect)
{
return FloatRect(rect.location(), clampedSize(rect.size()));
}
#if !USE(CG) && !USE(CAIRO)
Vector<uint8_t> ImageBuffer::toBGRAData() const
{
// FIXME: Implement this for other backends.
return { };
}
#endif
#if !(USE(CG) || USE(DIRECT2D))
FloatSize ImageBuffer::sizeForDestinationSize(FloatSize size) const
{
return size;
}
void ImageBuffer::transformColorSpace(ColorSpace srcColorSpace, ColorSpace dstColorSpace)
{
if (srcColorSpace == dstColorSpace)
return;
// only sRGB <-> linearRGB are supported at the moment
if ((srcColorSpace != ColorSpaceLinearRGB && srcColorSpace != ColorSpaceSRGB)
|| (dstColorSpace != ColorSpaceLinearRGB && dstColorSpace != ColorSpaceSRGB))
return;
if (dstColorSpace == ColorSpaceLinearRGB) {
static const std::array<uint8_t, 256> linearRgbLUT = [] {
std::array<uint8_t, 256> array;
for (unsigned i = 0; i < 256; i++) {
float color = i / 255.0f;
color = sRGBToLinearColorComponent(color);
array[i] = static_cast<uint8_t>(round(color * 255));
}
return array;
}();
platformTransformColorSpace(linearRgbLUT);
} else if (dstColorSpace == ColorSpaceSRGB) {
static const std::array<uint8_t, 256> deviceRgbLUT= [] {
std::array<uint8_t, 256> array;
for (unsigned i = 0; i < 256; i++) {
float color = i / 255.0f;
color = linearToSRGBColorComponent(color);
array[i] = static_cast<uint8_t>(round(color * 255));
}
return array;
}();
platformTransformColorSpace(deviceRgbLUT);
}
}
#endif // USE(CG)
inline void ImageBuffer::genericConvertToLuminanceMask()
{
IntRect luminanceRect(IntPoint(), internalSize());
auto srcPixelArray = getUnmultipliedImageData(luminanceRect);
if (!srcPixelArray)
return;
unsigned pixelArrayLength = srcPixelArray->length();
for (unsigned pixelOffset = 0; pixelOffset < pixelArrayLength; pixelOffset += 4) {
uint8_t a = srcPixelArray->item(pixelOffset + 3);
if (!a)
continue;
uint8_t r = srcPixelArray->item(pixelOffset);
uint8_t g = srcPixelArray->item(pixelOffset + 1);
uint8_t b = srcPixelArray->item(pixelOffset + 2);
double luma = (r * 0.2125 + g * 0.7154 + b * 0.0721) * ((double)a / 255.0);
srcPixelArray->set(pixelOffset + 3, luma);
}
putByteArray(*srcPixelArray, AlphaPremultiplication::Unpremultiplied, luminanceRect.size(), luminanceRect, IntPoint());
}
void ImageBuffer::convertToLuminanceMask()
{
// Add platform specific functions with platformConvertToLuminanceMask here later.
genericConvertToLuminanceMask();
}
#if !USE(CAIRO)
PlatformLayer* ImageBuffer::platformLayer() const
{
return 0;
}
bool ImageBuffer::copyToPlatformTexture(GraphicsContext3D&, GC3Denum, Platform3DObject, GC3Denum, bool, bool)
{
return false;
}
#endif
std::unique_ptr<ImageBuffer> ImageBuffer::copyRectToBuffer(const FloatRect& rect, ColorSpace colorSpace, const GraphicsContext& context)
{
if (rect.isEmpty())
return nullptr;
IntSize scaledSize = ImageBuffer::compatibleBufferSize(rect.size(), context);
auto buffer = ImageBuffer::createCompatibleBuffer(scaledSize, 1, colorSpace, context);
if (!buffer)
return nullptr;
buffer->context().drawImageBuffer(*this, -rect.location());
return buffer;
}
std::unique_ptr<ImageBuffer> ImageBuffer::createCompatibleBuffer(const FloatSize& size, ColorSpace colorSpace, const GraphicsContext& context)
{
if (size.isEmpty())
return nullptr;
IntSize scaledSize = ImageBuffer::compatibleBufferSize(size, context);
auto buffer = ImageBuffer::createCompatibleBuffer(scaledSize, 1, colorSpace, context);
if (!buffer)
return nullptr;
// Set up a corresponding scale factor on the graphics context.
buffer->context().scale(scaledSize / size);
return buffer;
}
std::unique_ptr<ImageBuffer> ImageBuffer::createCompatibleBuffer(const FloatSize& size, float resolutionScale, ColorSpace colorSpace, const GraphicsContext& context)
{
#if USE(DIRECT2D)
return create(size, context.renderingMode(), &context, resolutionScale, colorSpace);
#else
return create(size, context.renderingMode(), resolutionScale, colorSpace);
#endif
}
IntSize ImageBuffer::compatibleBufferSize(const FloatSize& size, const GraphicsContext& context)
{
// Enlarge the buffer size if the context's transform is scaling it so we need a higher
// resolution than one pixel per unit.
return expandedIntSize(size * context.scaleFactor());
}
bool ImageBuffer::isCompatibleWithContext(const GraphicsContext& context) const
{
return areEssentiallyEqual(context.scaleFactor(), this->context().scaleFactor());
}
#if !USE(IOSURFACE_CANVAS_BACKING_STORE)
size_t ImageBuffer::memoryCost() const
{
// memoryCost() may be invoked concurrently from a GC thread, and we need to be careful about what data we access here and how.
// It's safe to access internalSize() because it doesn't do any pointer chasing.
return 4 * internalSize().width() * internalSize().height();
}
size_t ImageBuffer::externalMemoryCost() const
{
return 0;
}
#endif
}