| /* |
| * Copyright (C) 2013-2021 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #pragma once |
| |
| #if ENABLE(DFG_JIT) |
| |
| #include "ArrayConstructor.h" |
| #include "ArrayPrototype.h" |
| #include "CacheableIdentifierInlines.h" |
| #include "CheckPrivateBrandStatus.h" |
| #include "DFGAbstractInterpreter.h" |
| #include "DFGAbstractInterpreterClobberState.h" |
| #include "DOMJITGetterSetter.h" |
| #include "DOMJITSignature.h" |
| #include "GetByStatus.h" |
| #include "GetterSetter.h" |
| #include "HashMapImplInlines.h" |
| #include "JITOperations.h" |
| #include "JSAsyncGenerator.h" |
| #include "JSGenerator.h" |
| #include "JSImmutableButterfly.h" |
| #include "JSInternalPromise.h" |
| #include "JSInternalPromiseConstructor.h" |
| #include "JSPromiseConstructor.h" |
| #include "MathCommon.h" |
| #include "NumberConstructor.h" |
| #include "PutByStatus.h" |
| #include "RegExpObject.h" |
| #include "SetPrivateBrandStatus.h" |
| #include "StringObject.h" |
| #include "StructureCache.h" |
| #include "StructureRareDataInlines.h" |
| #include <wtf/BooleanLattice.h> |
| #include <wtf/CheckedArithmetic.h> |
| |
| namespace JSC { namespace DFG { |
| |
| template<typename AbstractStateType> |
| AbstractInterpreter<AbstractStateType>::AbstractInterpreter(Graph& graph, AbstractStateType& state) |
| : m_codeBlock(graph.m_codeBlock) |
| , m_graph(graph) |
| , m_vm(m_graph.m_vm) |
| , m_state(state) |
| { |
| if (m_graph.m_form == SSA) |
| m_phiChildren = makeUnique<PhiChildren>(m_graph); |
| } |
| |
| template<typename AbstractStateType> |
| AbstractInterpreter<AbstractStateType>::~AbstractInterpreter() |
| { |
| } |
| |
| template<typename AbstractStateType> |
| TriState AbstractInterpreter<AbstractStateType>::booleanResult(Node* node, AbstractValue& value) |
| { |
| JSValue childConst = value.value(); |
| if (childConst) { |
| if (childConst.toBoolean(m_codeBlock->globalObjectFor(node->origin.semantic))) |
| return TriState::True; |
| return TriState::False; |
| } |
| |
| // Next check if we can fold because we know that the source is an object or string and does not equal undefined. |
| if (isCellSpeculation(value.m_type) && !value.m_structure.isTop()) { |
| bool allTrue = true; |
| for (unsigned i = value.m_structure.size(); i--;) { |
| RegisteredStructure structure = value.m_structure[i]; |
| if (structure->masqueradesAsUndefined(m_codeBlock->globalObjectFor(node->origin.semantic)) || structure->typeInfo().type() == StringType || structure->typeInfo().type() == HeapBigIntType) { |
| allTrue = false; |
| break; |
| } |
| } |
| if (allTrue) |
| return TriState::True; |
| } |
| |
| return TriState::Indeterminate; |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::startExecuting() |
| { |
| ASSERT(m_state.block()); |
| ASSERT(m_state.isValid()); |
| |
| m_state.setClobberState(AbstractInterpreterClobberState::NotClobbered); |
| } |
| |
| template<typename AbstractStateType> |
| class AbstractInterpreterExecuteEdgesFunc { |
| public: |
| AbstractInterpreterExecuteEdgesFunc(AbstractInterpreter<AbstractStateType>& interpreter) |
| : m_interpreter(interpreter) |
| { |
| } |
| |
| // This func is manually written out so that we can put ALWAYS_INLINE on it. |
| ALWAYS_INLINE void operator()(Edge& edge) const |
| { |
| m_interpreter.filterEdgeByUse(edge); |
| } |
| |
| private: |
| AbstractInterpreter<AbstractStateType>& m_interpreter; |
| }; |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::executeEdges(Node* node) |
| { |
| m_graph.doToChildren(node, AbstractInterpreterExecuteEdgesFunc<AbstractStateType>(*this)); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::executeKnownEdgeTypes(Node* node) |
| { |
| // Some use kinds are required to not have checks, because we know somehow that the incoming |
| // value will already have the type we want. In those cases, AI may not be smart enough to |
| // prove that this is indeed the case. But the existance of the edge is enough to prove that |
| // it is indeed the case. Taking advantage of this is not optional, since otherwise the DFG |
| // and FTL backends may emit checks in a node that lacks a valid exit origin. |
| m_graph.doToChildren( |
| node, |
| [&] (Edge& edge) { |
| if (mayHaveTypeCheck(edge.useKind())) |
| return; |
| |
| filterEdgeByUse(edge); |
| }); |
| } |
| |
| template<typename AbstractStateType> |
| ALWAYS_INLINE void AbstractInterpreter<AbstractStateType>::filterByType(Edge& edge, SpeculatedType type) |
| { |
| AbstractValue& value = m_state.forNodeWithoutFastForward(edge); |
| if (value.isType(type)) { |
| m_state.setProofStatus(edge, IsProved); |
| return; |
| } |
| m_state.setProofStatus(edge, NeedsCheck); |
| m_state.fastForwardAndFilterUnproven(value, type); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::verifyEdge(Node* node, Edge edge) |
| { |
| if (!(m_state.forNodeWithoutFastForward(edge).m_type & ~typeFilterFor(edge.useKind()))) |
| return; |
| |
| DFG_CRASH(m_graph, node, toCString("Edge verification error: ", node, "->", edge, " was expected to have type ", SpeculationDump(typeFilterFor(edge.useKind())), " but has type ", SpeculationDump(forNode(edge).m_type), " (", forNode(edge).m_type, ")").data(), AbstractInterpreterInvalidType, node->op(), edge->op(), edge.useKind(), forNode(edge).m_type); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::verifyEdges(Node* node) |
| { |
| DFG_NODE_DO_TO_CHILDREN(m_graph, node, verifyEdge); |
| } |
| |
| enum class ToThisResult { |
| Identity, |
| Undefined, |
| GlobalThis, |
| Dynamic, |
| }; |
| inline ToThisResult isToThisAnIdentity(VM& vm, ECMAMode ecmaMode, AbstractValue& valueForNode) |
| { |
| // We look at the type first since that will cover most cases and does not require iterating all the structures. |
| if (ecmaMode.isStrict()) { |
| if (valueForNode.m_type && !(valueForNode.m_type & SpecObjectOther)) |
| return ToThisResult::Identity; |
| } else { |
| if (valueForNode.m_type && !(valueForNode.m_type & (~SpecObject | SpecObjectOther))) |
| return ToThisResult::Identity; |
| } |
| |
| if (JSValue value = valueForNode.value()) { |
| if (value.isCell()) { |
| auto* toThisMethod = value.asCell()->classInfo(vm)->methodTable.toThis; |
| if (toThisMethod == &JSObject::toThis) |
| return ToThisResult::Identity; |
| if (toThisMethod == &JSScope::toThis) { |
| if (ecmaMode.isStrict()) |
| return ToThisResult::Undefined; |
| return ToThisResult::GlobalThis; |
| } |
| } |
| } |
| |
| if ((ecmaMode.isStrict() || (valueForNode.m_type && !(valueForNode.m_type & ~SpecObject))) && valueForNode.m_structure.isFinite()) { |
| bool allStructuresAreJSScope = !valueForNode.m_structure.isClear(); |
| bool overridesToThis = false; |
| valueForNode.m_structure.forEach([&](RegisteredStructure structure) { |
| TypeInfo type = structure->typeInfo(); |
| ASSERT(type.isObject() || type.type() == StringType || type.type() == SymbolType || type.type() == HeapBigIntType); |
| if (!ecmaMode.isStrict()) |
| ASSERT(type.isObject()); |
| // We don't need to worry about strings/symbols here since either: |
| // 1) We are in strict mode and strings/symbols are not wrapped |
| // 2) The AI has proven that the type of this is a subtype of object |
| if (type.isObject() && type.overridesToThis()) |
| overridesToThis = true; |
| |
| // If all the structures are JSScope's ones, we know the details of JSScope::toThis() operation. |
| allStructuresAreJSScope &= structure->classInfo()->methodTable.toThis == JSScope::info()->methodTable.toThis; |
| }); |
| if (!overridesToThis) |
| return ToThisResult::Identity; |
| if (allStructuresAreJSScope) { |
| if (ecmaMode.isStrict()) |
| return ToThisResult::Undefined; |
| return ToThisResult::GlobalThis; |
| } |
| } |
| |
| return ToThisResult::Dynamic; |
| } |
| |
| template<typename AbstractStateType> |
| bool AbstractInterpreter<AbstractStateType>::handleConstantBinaryBitwiseOp(Node* node) |
| { |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| if (left && right && left.isInt32() && right.isInt32()) { |
| int32_t a = left.asInt32(); |
| int32_t b = right.asInt32(); |
| if (node->isBinaryUseKind(UntypedUse)) |
| didFoldClobberWorld(); |
| NodeType op = node->op(); |
| switch (op) { |
| case ValueBitAnd: |
| case ArithBitAnd: |
| setConstant(node, JSValue(a & b)); |
| break; |
| case ValueBitOr: |
| case ArithBitOr: |
| setConstant(node, JSValue(a | b)); |
| break; |
| case ValueBitXor: |
| case ArithBitXor: |
| setConstant(node, JSValue(a ^ b)); |
| break; |
| case ArithBitRShift: |
| case ValueBitRShift: |
| setConstant(node, JSValue(a >> (static_cast<uint32_t>(b) & 0x1f))); |
| break; |
| case ValueBitLShift: |
| case ArithBitLShift: |
| setConstant(node, JSValue(a << (static_cast<uint32_t>(b) & 0x1f))); |
| break; |
| case BitURShift: |
| setConstant(node, JSValue(static_cast<int32_t>(static_cast<uint32_t>(a) >> (static_cast<uint32_t>(b) & 0x1f)))); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| template<typename AbstractStateType> |
| bool AbstractInterpreter<AbstractStateType>::handleConstantDivOp(Node* node) |
| { |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| |
| if (left && right) { |
| NodeType op = node->op(); |
| bool isDivOperation = op == ValueDiv || op == ArithDiv; |
| |
| // Only possible case of ValueOp below is UntypedUse, |
| // so we need to reflect clobberize rules. |
| bool isClobbering = op == ValueDiv || op == ValueMod; |
| |
| if (left.isInt32() && right.isInt32()) { |
| double doubleResult; |
| if (isDivOperation) |
| doubleResult = left.asNumber() / right.asNumber(); |
| else |
| doubleResult = fmod(left.asNumber(), right.asNumber()); |
| |
| if (node->hasArithMode()) { |
| if (!shouldCheckOverflow(node->arithMode())) |
| doubleResult = toInt32(doubleResult); |
| else if (!shouldCheckNegativeZero(node->arithMode())) |
| doubleResult += 0; // Sanitizes zero. |
| } |
| |
| JSValue valueResult = jsNumber(doubleResult); |
| if (valueResult.isInt32()) { |
| if (isClobbering) |
| didFoldClobberWorld(); |
| setConstant(node, valueResult); |
| return true; |
| } |
| } else if (left.isNumber() && right.isNumber()) { |
| if (isClobbering) |
| didFoldClobberWorld(); |
| |
| if (isDivOperation) { |
| if (op == ValueDiv) |
| setConstant(node, jsNumber(left.asNumber() / right.asNumber())); |
| else |
| setConstant(node, jsDoubleNumber(left.asNumber() / right.asNumber())); |
| } else { |
| if (op == ValueMod) |
| setConstant(node, jsNumber(fmod(left.asNumber(), right.asNumber()))); |
| else |
| setConstant(node, jsDoubleNumber(fmod(left.asNumber(), right.asNumber()))); |
| } |
| |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| template<typename AbstractStateType> |
| bool AbstractInterpreter<AbstractStateType>::executeEffects(unsigned clobberLimit, Node* node) |
| { |
| verifyEdges(node); |
| |
| m_state.createValueForNode(node); |
| |
| switch (node->op()) { |
| case JSConstant: |
| case DoubleConstant: |
| case Int52Constant: { |
| setBuiltInConstant(node, *node->constant()); |
| break; |
| } |
| |
| case LazyJSConstant: { |
| LazyJSValue value = node->lazyJSValue(); |
| switch (value.kind()) { |
| case LazyJSValue::KnownValue: |
| setConstant(node, value.value()->value()); |
| break; |
| case LazyJSValue::SingleCharacterString: |
| case LazyJSValue::KnownStringImpl: |
| case LazyJSValue::NewStringImpl: |
| setTypeForNode(node, SpecString); |
| break; |
| } |
| break; |
| } |
| |
| case IdentityWithProfile: |
| case Identity: { |
| setForNode(node, forNode(node->child1())); |
| if (forNode(node).value()) |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| } |
| |
| case ExtractCatchLocal: |
| case ExtractOSREntryLocal: { |
| makeBytecodeTopForNode(node); |
| break; |
| } |
| |
| case GetLocal: { |
| VariableAccessData* variableAccessData = node->variableAccessData(); |
| AbstractValue value = m_state.operand(variableAccessData->operand()); |
| // The value in the local should already be checked. |
| DFG_ASSERT(m_graph, node, value.isType(typeFilterFor(variableAccessData->flushFormat()))); |
| if (value.value()) |
| m_state.setShouldTryConstantFolding(true); |
| setForNode(node, value); |
| break; |
| } |
| |
| case GetStack: { |
| StackAccessData* data = node->stackAccessData(); |
| AbstractValue value = m_state.operand(data->operand); |
| // The value in the local should already be checked. |
| DFG_ASSERT(m_graph, node, value.isType(typeFilterFor(data->format))); |
| if (value.value()) |
| m_state.setShouldTryConstantFolding(true); |
| setForNode(node, value); |
| break; |
| } |
| |
| case SetLocal: { |
| m_state.operand(node->operand()) = forNode(node->child1()); |
| break; |
| } |
| |
| case PutStack: { |
| m_state.operand(node->stackAccessData()->operand) = forNode(node->child1()); |
| break; |
| } |
| |
| case MovHint: { |
| // Don't need to do anything. A MovHint only informs us about what would have happened |
| // in bytecode, but this code is just concerned with what is actually happening during |
| // DFG execution. |
| break; |
| } |
| |
| case KillStack: { |
| // This is just a hint telling us that the OSR state of the local is no longer inside the |
| // flushed data. |
| break; |
| } |
| |
| case SetArgumentDefinitely: |
| case SetArgumentMaybe: |
| // Assert that the state of arguments has been set. SetArgumentDefinitely/SetArgumentMaybe means |
| // that someone set the argument values out-of-band, and currently this always means setting to a |
| // non-clear value. |
| ASSERT(!m_state.operand(node->operand()).isClear()); |
| break; |
| |
| case InitializeEntrypointArguments: { |
| unsigned entrypointIndex = node->entrypointIndex(); |
| const Vector<FlushFormat>& argumentFormats = m_graph.m_argumentFormats[entrypointIndex]; |
| for (unsigned argument = 0; argument < argumentFormats.size(); ++argument) { |
| AbstractValue& value = m_state.argument(argument); |
| switch (argumentFormats[argument]) { |
| case FlushedInt32: |
| value.setNonCellType(SpecInt32Only); |
| break; |
| case FlushedBoolean: |
| value.setNonCellType(SpecBoolean); |
| break; |
| case FlushedCell: |
| value.setType(m_graph, SpecCellCheck); |
| break; |
| case FlushedJSValue: |
| value.makeBytecodeTop(); |
| break; |
| default: |
| DFG_CRASH(m_graph, node, "Bad flush format for argument"); |
| break; |
| } |
| } |
| break; |
| } |
| |
| case VarargsLength: { |
| clobberWorld(); |
| setTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| |
| case LoadVarargs: |
| case ForwardVarargs: { |
| // FIXME: ForwardVarargs should check if the count becomes known, and if it does, it should turn |
| // itself into a straight-line sequence of GetStack/PutStack. |
| // https://bugs.webkit.org/show_bug.cgi?id=143071 |
| switch (node->op()) { |
| case LoadVarargs: |
| clobberWorld(); |
| break; |
| case ForwardVarargs: |
| break; |
| default: |
| DFG_CRASH(m_graph, node, "Bad opcode"); |
| break; |
| } |
| LoadVarargsData* data = node->loadVarargsData(); |
| m_state.operand(data->count).setNonCellType(SpecInt32Only); |
| for (unsigned i = data->limit - 1; i--;) |
| m_state.operand(data->start + i).makeHeapTop(); |
| break; |
| } |
| |
| case ValueBitNot: { |
| JSValue operand = forNode(node->child1()).value(); |
| if (operand && operand.isInt32()) { |
| didFoldClobberWorld(); |
| int32_t a = operand.asInt32(); |
| setConstant(node, JSValue(~a)); |
| break; |
| } |
| |
| if (node->child1().useKind() == BigInt32Use) { |
| #if USE(BIGINT32) |
| setTypeForNode(node, SpecBigInt32); |
| #else |
| RELEASE_ASSERT_NOT_REACHED(); |
| #endif |
| } else if (node->child1().useKind() == HeapBigIntUse) { |
| // FIXME: We will want an arithmetic mode here that allows us to speculate or dictate |
| // the format of our result: |
| // https://bugs.webkit.org/show_bug.cgi?id=210982 |
| setTypeForNode(node, SpecBigInt); |
| } else if (node->child1().useKind() == AnyBigIntUse) |
| setTypeForNode(node, SpecBigInt); |
| else { |
| clobberWorld(); |
| setTypeForNode(node, SpecInt32Only | SpecBigInt); |
| } |
| |
| break; |
| } |
| |
| case ArithBitNot: { |
| JSValue operand = forNode(node->child1()).value(); |
| if (operand && operand.isInt32()) { |
| int32_t a = operand.asInt32(); |
| setConstant(node, JSValue(~a)); |
| break; |
| } |
| |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| |
| case ValueBitXor: |
| case ValueBitAnd: |
| case ValueBitOr: |
| case ValueBitRShift: |
| case ValueBitLShift: { |
| if (handleConstantBinaryBitwiseOp(node)) |
| break; |
| |
| // FIXME: this use of binaryUseKind means that we cannot specialize to (for example) a HeapBigInt left-operand and a BigInt32 right-operand. |
| // https://bugs.webkit.org/show_bug.cgi?id=210977 |
| if (node->binaryUseKind() == BigInt32Use) { |
| #if USE(BIGINT32) |
| switch (node->op()) { |
| case ValueBitXor: |
| case ValueBitAnd: |
| case ValueBitOr: |
| setTypeForNode(node, SpecBigInt32); |
| break; |
| |
| // FIXME: We should have inlined implementation that always returns BigInt32. |
| // https://bugs.webkit.org/show_bug.cgi?id=210847 |
| case ValueBitRShift: |
| case ValueBitLShift: |
| setTypeForNode(node, SpecBigInt); |
| break; |
| default: |
| DFG_CRASH(m_graph, node, "Incorrect DFG op"); |
| } |
| #else |
| DFG_CRASH(m_graph, node, "No BigInt32 support"); |
| #endif |
| } else if (node->isBinaryUseKind(HeapBigIntUse)) { |
| // FIXME: We will want an arithmetic mode here that allows us to speculate or dictate |
| // the format of our result: |
| // https://bugs.webkit.org/show_bug.cgi?id=210982 |
| setTypeForNode(node, SpecBigInt); |
| } else if (node->binaryUseKind() == AnyBigIntUse) |
| setTypeForNode(node, SpecBigInt); |
| else { |
| clobberWorld(); |
| setTypeForNode(node, SpecInt32Only | SpecBigInt); |
| } |
| break; |
| } |
| |
| case ArithBitAnd: |
| case ArithBitOr: |
| case ArithBitXor: |
| case ArithBitRShift: |
| case ArithBitLShift: |
| case BitURShift: { |
| if (node->child1().useKind() == UntypedUse || node->child2().useKind() == UntypedUse) { |
| clobberWorld(); |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| |
| if (handleConstantBinaryBitwiseOp(node)) |
| break; |
| |
| if (node->op() == ArithBitAnd |
| && (isBoolInt32Speculation(forNode(node->child1()).m_type) || |
| isBoolInt32Speculation(forNode(node->child2()).m_type))) { |
| setNonCellTypeForNode(node, SpecBoolInt32); |
| break; |
| } |
| |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| |
| case UInt32ToNumber: { |
| JSValue child = forNode(node->child1()).value(); |
| if (doesOverflow(node->arithMode())) { |
| if (enableInt52()) { |
| if (child && child.isAnyInt()) { |
| int64_t machineInt = child.asAnyInt(); |
| setConstant(node, jsNumber(static_cast<uint32_t>(machineInt))); |
| break; |
| } |
| setNonCellTypeForNode(node, SpecInt52Any); |
| break; |
| } |
| if (child && child.isInt32()) { |
| uint32_t value = child.asInt32(); |
| setConstant(node, jsNumber(value)); |
| break; |
| } |
| setNonCellTypeForNode(node, SpecAnyIntAsDouble); |
| break; |
| } |
| if (child && child.isInt32()) { |
| int32_t value = child.asInt32(); |
| if (value >= 0) { |
| setConstant(node, jsNumber(value)); |
| break; |
| } |
| } |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| |
| case BooleanToNumber: { |
| JSValue concreteValue = forNode(node->child1()).value(); |
| if (concreteValue) { |
| if (concreteValue.isBoolean()) |
| setConstant(node, jsNumber(concreteValue.asBoolean())); |
| else |
| setConstant(node, *m_graph.freeze(concreteValue)); |
| break; |
| } |
| AbstractValue& value = forNode(node); |
| value = forNode(node->child1()); |
| if (node->child1().useKind() == UntypedUse && !(value.m_type & ~SpecBoolean)) |
| m_state.setShouldTryConstantFolding(true); |
| if (value.m_type & SpecBoolean) { |
| value.merge(SpecBoolInt32); |
| value.filter(~SpecBoolean); |
| } |
| break; |
| } |
| |
| case DoubleAsInt32: { |
| JSValue child = forNode(node->child1()).value(); |
| if (child && child.isNumber()) { |
| double asDouble = child.asNumber(); |
| int32_t asInt = JSC::toInt32(asDouble); |
| if (bitwise_cast<int64_t>(static_cast<double>(asInt)) == bitwise_cast<int64_t>(asDouble)) { |
| setConstant(node, JSValue(asInt)); |
| break; |
| } |
| } |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| |
| case ValueToInt32: { |
| JSValue child = forNode(node->child1()).value(); |
| if (child) { |
| if (child.isNumber()) { |
| if (child.isInt32()) |
| setConstant(node, child); |
| else |
| setConstant(node, JSValue(JSC::toInt32(child.asDouble()))); |
| break; |
| } |
| if (child.isBoolean()) { |
| setConstant(node, jsNumber(child.asBoolean())); |
| break; |
| } |
| if (child.isUndefinedOrNull()) { |
| setConstant(node, jsNumber(0)); |
| break; |
| } |
| } |
| |
| if (isBooleanSpeculation(forNode(node->child1()).m_type)) { |
| setNonCellTypeForNode(node, SpecBoolInt32); |
| break; |
| } |
| |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| |
| case DoubleRep: { |
| JSValue child = forNode(node->child1()).value(); |
| if (std::optional<double> number = child.toNumberFromPrimitive()) { |
| setConstant(node, jsDoubleNumber(*number)); |
| break; |
| } |
| |
| SpeculatedType type = forNode(node->child1()).m_type; |
| switch (node->child1().useKind()) { |
| case NotCellNorBigIntUse: { |
| if (type & SpecOther) { |
| type &= ~SpecOther; |
| type |= SpecDoublePureNaN | SpecBoolInt32; // Null becomes zero, undefined becomes NaN. |
| } |
| if (type & SpecBoolean) { |
| type &= ~SpecBoolean; |
| type |= SpecBoolInt32; // True becomes 1, false becomes 0. |
| } |
| type &= SpecBytecodeNumber; |
| break; |
| } |
| |
| case Int52RepUse: |
| case NumberUse: |
| case RealNumberUse: |
| break; |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| setNonCellTypeForNode(node, type); |
| forNode(node).fixTypeForRepresentation(m_graph, node); |
| break; |
| } |
| |
| case Int52Rep: { |
| JSValue child = forNode(node->child1()).value(); |
| if (child && child.isAnyInt()) { |
| setConstant(node, child); |
| break; |
| } |
| |
| setTypeForNode(node, forNode(node->child1()).m_type); |
| forNode(node).fixTypeForRepresentation(m_graph, node); |
| break; |
| } |
| |
| case ValueRep: { |
| JSValue value = forNode(node->child1()).value(); |
| if (value) { |
| setConstant(node, value); |
| break; |
| } |
| |
| setTypeForNode(node, forNode(node->child1()).m_type & ~SpecDoubleImpureNaN); |
| forNode(node).fixTypeForRepresentation(m_graph, node); |
| break; |
| } |
| |
| case ValueSub: |
| case ValueAdd: { |
| if (node->isBinaryUseKind(HeapBigIntUse)) { |
| // FIXME: We will want an arithmetic mode here that allows us to speculate or dictate |
| // the format of our result: |
| // https://bugs.webkit.org/show_bug.cgi?id=210982 |
| setTypeForNode(node, SpecBigInt); |
| } else if (node->isBinaryUseKind(AnyBigIntUse)) |
| setTypeForNode(node, SpecBigInt); |
| else if (node->isBinaryUseKind(BigInt32Use)) |
| setTypeForNode(node, SpecBigInt32); |
| else { |
| DFG_ASSERT(m_graph, node, node->binaryUseKind() == UntypedUse); |
| clobberWorld(); |
| // FIXME: do we really need SpecString here for ValueSub? It seems like we only need it for ValueAdd. |
| setTypeForNode(node, SpecString | SpecBytecodeNumber | SpecBigInt); |
| } |
| break; |
| } |
| |
| case StrCat: { |
| setTypeForNode(node, SpecString); |
| break; |
| } |
| |
| case ArithAdd: { |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| switch (node->binaryUseKind()) { |
| case Int32Use: |
| if (left && right && left.isInt32() && right.isInt32()) { |
| if (!shouldCheckOverflow(node->arithMode())) { |
| setConstant(node, jsNumber(left.asInt32() + right.asInt32())); |
| break; |
| } |
| JSValue result = jsNumber(left.asNumber() + right.asNumber()); |
| if (result.isInt32()) { |
| setConstant(node, result); |
| break; |
| } |
| } |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case Int52RepUse: |
| if (left && right && left.isAnyInt() && right.isAnyInt()) { |
| JSValue result = jsNumber(left.asAnyInt() + right.asAnyInt()); |
| if (result.isAnyInt()) { |
| setConstant(node, result); |
| break; |
| } |
| } |
| setNonCellTypeForNode(node, SpecInt52Any); |
| break; |
| case DoubleRepUse: |
| if (left && right && left.isNumber() && right.isNumber()) { |
| setConstant(node, jsDoubleNumber(left.asNumber() + right.asNumber())); |
| break; |
| } |
| setNonCellTypeForNode(node, |
| typeOfDoubleSum( |
| forNode(node->child1()).m_type, forNode(node->child2()).m_type)); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| case AtomicsIsLockFree: { |
| if (m_graph.child(node, 0).useKind() != Int32Use) |
| clobberWorld(); |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| |
| case ArithClz32: { |
| JSValue operand = forNode(node->child1()).value(); |
| if (std::optional<double> number = operand.toNumberFromPrimitive()) { |
| switch (node->child1().useKind()) { |
| case Int32Use: |
| case KnownInt32Use: |
| break; |
| default: |
| didFoldClobberWorld(); |
| break; |
| } |
| uint32_t value = toUInt32(*number); |
| setConstant(node, jsNumber(clz(value))); |
| break; |
| } |
| switch (node->child1().useKind()) { |
| case Int32Use: |
| case KnownInt32Use: |
| break; |
| default: |
| clobberWorld(); |
| break; |
| } |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| |
| case MakeRope: { |
| unsigned numberOfRemovedChildren = 0; |
| for (unsigned i = 0; i < AdjacencyList::Size; ++i) { |
| Edge& edge = node->children.child(i); |
| if (!edge) |
| break; |
| JSValue childConstant = m_state.forNode(edge).value(); |
| if (!childConstant) |
| continue; |
| if (!childConstant.isString()) |
| continue; |
| if (asString(childConstant)->length()) |
| continue; |
| ++numberOfRemovedChildren; |
| } |
| |
| if (numberOfRemovedChildren) |
| m_state.setShouldTryConstantFolding(true); |
| setForNode(node, m_vm.stringStructure.get()); |
| break; |
| } |
| |
| case ArithSub: { |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| switch (node->binaryUseKind()) { |
| case Int32Use: |
| if (left && right && left.isInt32() && right.isInt32()) { |
| if (!shouldCheckOverflow(node->arithMode())) { |
| setConstant(node, jsNumber(left.asInt32() - right.asInt32())); |
| break; |
| } |
| JSValue result = jsNumber(left.asNumber() - right.asNumber()); |
| if (result.isInt32()) { |
| setConstant(node, result); |
| break; |
| } |
| } |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case Int52RepUse: |
| if (left && right && left.isAnyInt() && right.isAnyInt()) { |
| JSValue result = jsNumber(left.asAnyInt() - right.asAnyInt()); |
| if (result.isAnyInt()) { |
| setConstant(node, result); |
| break; |
| } |
| } |
| setNonCellTypeForNode(node, SpecInt52Any); |
| break; |
| case DoubleRepUse: |
| if (left && right && left.isNumber() && right.isNumber()) { |
| setConstant(node, jsDoubleNumber(left.asNumber() - right.asNumber())); |
| break; |
| } |
| setNonCellTypeForNode(node, |
| typeOfDoubleDifference( |
| forNode(node->child1()).m_type, forNode(node->child2()).m_type)); |
| break; |
| case UntypedUse: |
| clobberWorld(); |
| setNonCellTypeForNode(node, SpecBytecodeNumber); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| case ValueNegate: { |
| // FIXME: we could do much smarter things for BigInts, see ValueAdd/ValueSub. |
| clobberWorld(); |
| setTypeForNode(node, SpecBytecodeNumber | SpecBigInt); |
| break; |
| } |
| |
| case ArithNegate: { |
| JSValue child = forNode(node->child1()).value(); |
| switch (node->child1().useKind()) { |
| case Int32Use: |
| if (child && child.isInt32()) { |
| if (!shouldCheckOverflow(node->arithMode())) { |
| setConstant(node, jsNumber(-child.asInt32())); |
| break; |
| } |
| double doubleResult; |
| if (shouldCheckNegativeZero(node->arithMode())) |
| doubleResult = -child.asNumber(); |
| else |
| doubleResult = 0 - child.asNumber(); |
| JSValue valueResult = jsNumber(doubleResult); |
| if (valueResult.isInt32()) { |
| setConstant(node, valueResult); |
| break; |
| } |
| } |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case Int52RepUse: |
| if (child && child.isAnyInt()) { |
| double doubleResult; |
| if (shouldCheckNegativeZero(node->arithMode())) |
| doubleResult = -child.asNumber(); |
| else |
| doubleResult = 0 - child.asNumber(); |
| JSValue valueResult = jsNumber(doubleResult); |
| if (valueResult.isAnyInt()) { |
| setConstant(node, valueResult); |
| break; |
| } |
| } |
| setNonCellTypeForNode(node, SpecInt52Any); |
| break; |
| case DoubleRepUse: |
| if (child && child.isNumber()) { |
| setConstant(node, jsDoubleNumber(-child.asNumber())); |
| break; |
| } |
| setNonCellTypeForNode(node, |
| typeOfDoubleNegation( |
| forNode(node->child1()).m_type)); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| case Inc: |
| case Dec: { |
| // FIXME: support some form of constant folding here. |
| // https://bugs.webkit.org/show_bug.cgi?id=204258 |
| switch (node->child1().useKind()) { |
| case Int32Use: |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case Int52RepUse: |
| setNonCellTypeForNode(node, SpecInt52Any); |
| break; |
| case DoubleRepUse: |
| setNonCellTypeForNode(node, typeOfDoubleIncOrDec(forNode(node->child1()).m_type)); |
| break; |
| case HeapBigIntUse: |
| // FIXME: We will want an arithmetic mode here that allows us to speculate or dictate |
| // the format of our result: |
| // https://bugs.webkit.org/show_bug.cgi?id=210982 |
| setTypeForNode(node, SpecBigInt); |
| break; |
| case AnyBigIntUse: |
| case BigInt32Use: |
| setTypeForNode(node, SpecBigInt); |
| break; |
| default: |
| setTypeForNode(node, SpecBytecodeNumber | SpecBigInt); |
| clobberWorld(); // Because of the call to ToNumeric() |
| break; |
| } |
| break; |
| } |
| |
| case ValuePow: { |
| JSValue childX = forNode(node->child1()).value(); |
| JSValue childY = forNode(node->child2()).value(); |
| if (childX && childY && childX.isNumber() && childY.isNumber()) { |
| // We need to call `didFoldClobberWorld` here because this path is only possible |
| // when node->useKind is UntypedUse. In the case of AnyBigIntUse or friends, children will be |
| // cleared by `AbstractInterpreter::executeEffects`. |
| didFoldClobberWorld(); |
| // Our boxing scheme here matches what we do in operationValuePow. |
| setConstant(node, jsNumber(operationMathPow(childX.asNumber(), childY.asNumber()))); |
| break; |
| } |
| |
| if (node->isBinaryUseKind(HeapBigIntUse)) { |
| // FIXME: We will want an arithmetic mode here that allows us to speculate or dictate |
| // the format of our result: |
| // https://bugs.webkit.org/show_bug.cgi?id=210982 |
| setTypeForNode(node, SpecBigInt); |
| } else if (node->binaryUseKind() == AnyBigIntUse || node->binaryUseKind() == BigInt32Use) |
| setTypeForNode(node, SpecBigInt); |
| else { |
| clobberWorld(); |
| setTypeForNode(node, SpecBytecodeNumber | SpecBigInt); |
| } |
| break; |
| } |
| |
| case ValueMul: { |
| // FIXME: why is this code not shared with ValueSub? |
| if (node->isBinaryUseKind(HeapBigIntUse)) { |
| // FIXME: We will want an arithmetic mode here that allows us to speculate or dictate |
| // the format of our result: |
| // https://bugs.webkit.org/show_bug.cgi?id=210982 |
| setTypeForNode(node, SpecBigInt); |
| } else if (node->isBinaryUseKind(AnyBigIntUse)) |
| setTypeForNode(node, SpecBigInt); |
| else if (node->isBinaryUseKind(BigInt32Use)) |
| setTypeForNode(node, SpecBigInt32); |
| else { |
| clobberWorld(); |
| setTypeForNode(node, SpecBytecodeNumber | SpecBigInt); |
| } |
| break; |
| } |
| |
| case ArithMul: { |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| switch (node->binaryUseKind()) { |
| case Int32Use: |
| if (left && right && left.isInt32() && right.isInt32()) { |
| if (!shouldCheckOverflow(node->arithMode())) { |
| setConstant(node, jsNumber(left.asInt32() * right.asInt32())); |
| break; |
| } |
| double doubleResult = left.asNumber() * right.asNumber(); |
| if (!shouldCheckNegativeZero(node->arithMode())) |
| doubleResult += 0; // Sanitizes zero. |
| JSValue valueResult = jsNumber(doubleResult); |
| if (valueResult.isInt32()) { |
| setConstant(node, valueResult); |
| break; |
| } |
| } |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case Int52RepUse: |
| if (left && right && left.isAnyInt() && right.isAnyInt()) { |
| double doubleResult = left.asNumber() * right.asNumber(); |
| if (!shouldCheckNegativeZero(node->arithMode())) |
| doubleResult += 0; |
| JSValue valueResult = jsNumber(doubleResult); |
| if (valueResult.isAnyInt()) { |
| setConstant(node, valueResult); |
| break; |
| } |
| } |
| setNonCellTypeForNode(node, SpecInt52Any); |
| break; |
| case DoubleRepUse: |
| if (left && right && left.isNumber() && right.isNumber()) { |
| setConstant(node, jsDoubleNumber(left.asNumber() * right.asNumber())); |
| break; |
| } |
| setNonCellTypeForNode(node, |
| typeOfDoubleProduct( |
| forNode(node->child1()).m_type, forNode(node->child2()).m_type)); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| case ValueMod: |
| case ValueDiv: { |
| if (handleConstantDivOp(node)) |
| break; |
| |
| if (node->isBinaryUseKind(HeapBigIntUse)) { |
| // FIXME: We will want an arithmetic mode here that allows us to speculate or dictate |
| // the format of our result: |
| // https://bugs.webkit.org/show_bug.cgi?id=210982 |
| setTypeForNode(node, SpecBigInt); |
| } else if (node->binaryUseKind() == AnyBigIntUse || node->binaryUseKind() == BigInt32Use) |
| setTypeForNode(node, SpecBigInt); |
| else { |
| clobberWorld(); |
| setTypeForNode(node, SpecBytecodeNumber | SpecBigInt); |
| } |
| break; |
| } |
| |
| case ArithMod: |
| case ArithDiv: { |
| if (handleConstantDivOp(node)) |
| break; |
| |
| switch (node->binaryUseKind()) { |
| case Int32Use: |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case DoubleRepUse: |
| if (node->op() == ArithDiv) { |
| setNonCellTypeForNode(node, |
| typeOfDoubleQuotient( |
| forNode(node->child1()).m_type, forNode(node->child2()).m_type)); |
| } else { |
| setNonCellTypeForNode(node, |
| typeOfDoubleBinaryOp( |
| forNode(node->child1()).m_type, forNode(node->child2()).m_type)); |
| } |
| |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| case ArithMin: { |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| switch (node->binaryUseKind()) { |
| case Int32Use: |
| if (left && right && left.isInt32() && right.isInt32()) { |
| setConstant(node, jsNumber(std::min(left.asInt32(), right.asInt32()))); |
| break; |
| } |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case DoubleRepUse: |
| if (left && right && left.isNumber() && right.isNumber()) { |
| double a = left.asNumber(); |
| double b = right.asNumber(); |
| // The spec for Math.min states that +0 is considered to be larger than -0. |
| double result = a < b || (!a && !b && std::signbit(a)) ? a : (b <= a ? b : a + b); |
| setConstant(node, jsDoubleNumber(result)); |
| break; |
| } |
| setNonCellTypeForNode(node, |
| typeOfDoubleMinMax( |
| forNode(node->child1()).m_type, forNode(node->child2()).m_type)); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| case ArithMax: { |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| switch (node->binaryUseKind()) { |
| case Int32Use: |
| if (left && right && left.isInt32() && right.isInt32()) { |
| setConstant(node, jsNumber(std::max(left.asInt32(), right.asInt32()))); |
| break; |
| } |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case DoubleRepUse: |
| if (left && right && left.isNumber() && right.isNumber()) { |
| double a = left.asNumber(); |
| double b = right.asNumber(); |
| // The spec for Math.max states that +0 is considered to be larger than -0. |
| double result = a > b || (!a && !b && !std::signbit(a)) ? a : (b >= a ? b : a + b); |
| setConstant(node, jsDoubleNumber(result)); |
| break; |
| } |
| setNonCellTypeForNode(node, |
| typeOfDoubleMinMax( |
| forNode(node->child1()).m_type, forNode(node->child2()).m_type)); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| case ArithAbs: { |
| JSValue child = forNode(node->child1()).value(); |
| switch (node->child1().useKind()) { |
| case Int32Use: |
| if (std::optional<double> number = child.toNumberFromPrimitive()) { |
| JSValue result = jsNumber(fabs(*number)); |
| if (result.isInt32()) { |
| setConstant(node, result); |
| break; |
| } |
| } |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case DoubleRepUse: |
| if (std::optional<double> number = child.toNumberFromPrimitive()) { |
| setConstant(node, jsDoubleNumber(fabs(*number))); |
| break; |
| } |
| setNonCellTypeForNode(node, typeOfDoubleAbs(forNode(node->child1()).m_type)); |
| break; |
| default: |
| DFG_ASSERT(m_graph, node, node->child1().useKind() == UntypedUse, node->child1().useKind()); |
| clobberWorld(); |
| setNonCellTypeForNode(node, SpecBytecodeNumber); |
| break; |
| } |
| break; |
| } |
| |
| case ArithPow: { |
| JSValue childY = forNode(node->child2()).value(); |
| if (childY && childY.isNumber()) { |
| if (!childY.asNumber()) { |
| setConstant(node, jsDoubleNumber(1)); |
| break; |
| } |
| |
| JSValue childX = forNode(node->child1()).value(); |
| if (childX && childX.isNumber()) { |
| setConstant(node, jsDoubleNumber(operationMathPow(childX.asNumber(), childY.asNumber()))); |
| break; |
| } |
| } |
| setNonCellTypeForNode(node, typeOfDoublePow(forNode(node->child1()).m_type, forNode(node->child2()).m_type)); |
| break; |
| } |
| |
| case ArithRandom: { |
| setNonCellTypeForNode(node, SpecDoubleReal); |
| break; |
| } |
| |
| case ArithRound: |
| case ArithFloor: |
| case ArithCeil: |
| case ArithTrunc: { |
| JSValue operand = forNode(node->child1()).value(); |
| if (std::optional<double> number = operand.toNumberFromPrimitive()) { |
| if (node->child1().useKind() != DoubleRepUse) |
| didFoldClobberWorld(); |
| |
| double roundedValue = 0; |
| if (node->op() == ArithRound) |
| roundedValue = Math::roundDouble(*number); |
| else if (node->op() == ArithFloor) |
| roundedValue = Math::floorDouble(*number); |
| else if (node->op() == ArithCeil) |
| roundedValue = Math::ceilDouble(*number); |
| else { |
| ASSERT(node->op() == ArithTrunc); |
| roundedValue = trunc(*number); |
| } |
| |
| if (node->child1().useKind() == UntypedUse) { |
| setConstant(node, jsNumber(roundedValue)); |
| break; |
| } |
| if (producesInteger(node->arithRoundingMode())) { |
| int32_t roundedValueAsInt32 = static_cast<int32_t>(roundedValue); |
| if (roundedValueAsInt32 == roundedValue) { |
| if (shouldCheckNegativeZero(node->arithRoundingMode())) { |
| if (roundedValueAsInt32 || !std::signbit(roundedValue)) { |
| setConstant(node, jsNumber(roundedValueAsInt32)); |
| break; |
| } |
| } else { |
| setConstant(node, jsNumber(roundedValueAsInt32)); |
| break; |
| } |
| } |
| } else { |
| setConstant(node, jsDoubleNumber(roundedValue)); |
| break; |
| } |
| } |
| if (node->child1().useKind() == DoubleRepUse) { |
| if (producesInteger(node->arithRoundingMode())) |
| setNonCellTypeForNode(node, SpecInt32Only); |
| else if (node->child1().useKind() == DoubleRepUse) |
| setNonCellTypeForNode(node, typeOfDoubleRounding(forNode(node->child1()).m_type)); |
| } else { |
| DFG_ASSERT(m_graph, node, node->child1().useKind() == UntypedUse, node->child1().useKind()); |
| clobberWorld(); |
| setNonCellTypeForNode(node, SpecBytecodeNumber); |
| } |
| break; |
| } |
| |
| case ArithSqrt: |
| executeDoubleUnaryOpEffects(node, sqrt); |
| break; |
| |
| case ArithFRound: |
| executeDoubleUnaryOpEffects(node, [](double value) -> double { return static_cast<float>(value); }); |
| break; |
| |
| case ArithUnary: |
| executeDoubleUnaryOpEffects(node, arithUnaryFunction(node->arithUnaryType())); |
| break; |
| |
| case ToBoolean: |
| case LogicalNot: { |
| TriState result = booleanResult(node, forNode(node->child1())); |
| if (result == TriState::Indeterminate) { |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| |
| bool resultAsBool = result == TriState::True; |
| if (node->op() == LogicalNot) |
| resultAsBool = !resultAsBool; |
| setConstant(node, jsBoolean(resultAsBool)); |
| break; |
| } |
| |
| case MapHash: { |
| if (JSValue key = forNode(node->child1()).value()) { |
| if (std::optional<uint32_t> hash = concurrentJSMapHash(key)) { |
| // Although C++ code uses uint32_t for the hash, the closest type in DFG IR is Int32 |
| // and that's what MapHash returns. So, we have to cast to int32_t to avoid large |
| // unsigned values becoming doubles. This casting between signed and unsigned |
| // happens in the assembly code we emit when we don't constant fold this node. |
| setConstant(node, jsNumber(static_cast<int32_t>(*hash))); |
| break; |
| } |
| } |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| |
| case NormalizeMapKey: { |
| if (JSValue key = forNode(node->child1()).value()) { |
| setConstant(node, *m_graph.freeze(normalizeMapKey(key))); |
| break; |
| } |
| |
| SpeculatedType typesNeedingNormalization = (SpecFullNumber & ~SpecInt32Only) | SpecHeapBigInt; |
| if (!(forNode(node->child1()).m_type & typesNeedingNormalization)) { |
| m_state.setShouldTryConstantFolding(true); |
| forNode(node) = forNode(node->child1()); |
| break; |
| } |
| |
| makeHeapTopForNode(node); |
| break; |
| } |
| |
| case StringValueOf: { |
| clobberWorld(); |
| setTypeForNode(node, SpecString); |
| break; |
| } |
| |
| case StringSlice: { |
| setTypeForNode(node, SpecString); |
| break; |
| } |
| |
| case ToLowerCase: { |
| setTypeForNode(node, SpecString); |
| break; |
| } |
| |
| case LoadKeyFromMapBucket: |
| case LoadValueFromMapBucket: |
| case ExtractValueFromWeakMapGet: |
| makeHeapTopForNode(node); |
| break; |
| |
| case GetMapBucket: |
| case GetMapBucketHead: |
| if (node->child1().useKind() == MapObjectUse) |
| setForNode(node, m_vm.hashMapBucketMapStructure.get()); |
| else { |
| ASSERT(node->child1().useKind() == SetObjectUse); |
| setForNode(node, m_vm.hashMapBucketSetStructure.get()); |
| } |
| break; |
| |
| case GetMapBucketNext: |
| if (node->bucketOwnerType() == BucketOwnerType::Map) |
| setForNode(node, m_vm.hashMapBucketMapStructure.get()); |
| else { |
| ASSERT(node->bucketOwnerType() == BucketOwnerType::Set); |
| setForNode(node, m_vm.hashMapBucketSetStructure.get()); |
| } |
| break; |
| |
| case SetAdd: |
| setForNode(node, m_vm.hashMapBucketSetStructure.get()); |
| break; |
| |
| case MapSet: |
| setForNode(node, m_vm.hashMapBucketMapStructure.get()); |
| break; |
| |
| case WeakSetAdd: |
| case WeakMapSet: |
| break; |
| |
| case WeakMapGet: |
| makeBytecodeTopForNode(node); |
| break; |
| |
| case IsEmpty: |
| case TypeOfIsUndefined: |
| case TypeOfIsObject: |
| case TypeOfIsFunction: |
| case IsUndefinedOrNull: |
| case IsBoolean: |
| case IsNumber: |
| case IsBigInt: |
| case NumberIsInteger: |
| case IsObject: |
| case IsCallable: |
| case IsConstructor: |
| case IsCellWithType: |
| case IsTypedArrayView: { |
| AbstractValue child = forNode(node->child1()); |
| if (child.value()) { |
| bool constantWasSet = true; |
| switch (node->op()) { |
| case IsCellWithType: |
| setConstant(node, jsBoolean(child.value().isCell() && child.value().asCell()->type() == node->queriedType())); |
| break; |
| case TypeOfIsUndefined: |
| setConstant(node, jsBoolean( |
| child.value().isCell() |
| ? child.value().asCell()->structure(m_vm)->masqueradesAsUndefined(m_codeBlock->globalObjectFor(node->origin.semantic)) |
| : child.value().isUndefined())); |
| break; |
| case TypeOfIsObject: { |
| TriState result = jsTypeofIsObjectWithConcurrency<Concurrency::ConcurrentThread>(m_codeBlock->globalObjectFor(node->origin.semantic), child.value()); |
| if (result != TriState::Indeterminate) |
| setConstant(node, jsBoolean(result == TriState::True)); |
| else |
| constantWasSet = false; |
| break; |
| } |
| case TypeOfIsFunction: { |
| TriState result = jsTypeofIsFunctionWithConcurrency<Concurrency::ConcurrentThread>(m_codeBlock->globalObjectFor(node->origin.semantic), child.value()); |
| if (result != TriState::Indeterminate) |
| setConstant(node, jsBoolean(result == TriState::True)); |
| else |
| constantWasSet = false; |
| break; |
| } |
| case IsUndefinedOrNull: |
| setConstant(node, jsBoolean(child.value().isUndefinedOrNull())); |
| break; |
| case IsBoolean: |
| setConstant(node, jsBoolean(child.value().isBoolean())); |
| break; |
| case IsNumber: |
| setConstant(node, jsBoolean(child.value().isNumber())); |
| break; |
| case IsBigInt: |
| setConstant(node, jsBoolean(child.value().isBigInt())); |
| break; |
| case NumberIsInteger: |
| setConstant(node, jsBoolean(NumberConstructor::isIntegerImpl(child.value()))); |
| break; |
| case IsObject: |
| setConstant(node, jsBoolean(child.value().isObject())); |
| break; |
| case IsCallable: { |
| TriState result = child.value().isCallableWithConcurrency<Concurrency::ConcurrentThread>(m_vm); |
| if (result != TriState::Indeterminate) |
| setConstant(node, jsBoolean(result == TriState::True)); |
| else |
| constantWasSet = false; |
| break; |
| } |
| case IsConstructor: { |
| TriState result = child.value().isConstructorWithConcurrency<Concurrency::ConcurrentThread>(m_vm); |
| if (result != TriState::Indeterminate) |
| setConstant(node, jsBoolean(result == TriState::True)); |
| else |
| constantWasSet = false; |
| break; |
| } |
| case IsEmpty: |
| setConstant(node, jsBoolean(child.value().isEmpty())); |
| break; |
| case IsTypedArrayView: |
| setConstant(node, jsBoolean(child.value().isObject() && isTypedView(child.value().getObject()->classInfo(m_vm)->typedArrayStorageType))); |
| break; |
| default: |
| constantWasSet = false; |
| break; |
| } |
| if (constantWasSet) |
| break; |
| } |
| |
| if (!(child.m_type & ~SpecCell)) { |
| if (child.m_structure.isFinite()) { |
| bool constantWasSet = false; |
| switch (node->op()) { |
| case IsCellWithType: { |
| bool ok = true; |
| std::optional<bool> result; |
| child.m_structure.forEach( |
| [&] (RegisteredStructure structure) { |
| bool matched = structure->typeInfo().type() == node->queriedType(); |
| if (!result) |
| result = matched; |
| else { |
| if (result.value() != matched) |
| ok = false; |
| } |
| }); |
| if (ok && result) { |
| setConstant(node, jsBoolean(result.value())); |
| constantWasSet = true; |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| if (constantWasSet) |
| break; |
| } |
| } |
| |
| // FIXME: This code should really use AbstractValue::isType() and |
| // AbstractValue::couldBeType(). |
| // https://bugs.webkit.org/show_bug.cgi?id=146870 |
| |
| bool constantWasSet = false; |
| switch (node->op()) { |
| case IsEmpty: { |
| if (child.m_type && !(child.m_type & SpecEmpty)) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| |
| if (child.m_type && !(child.m_type & ~SpecEmpty)) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| |
| break; |
| } |
| case TypeOfIsUndefined: |
| // FIXME: Use the masquerades-as-undefined watchpoint thingy. |
| // https://bugs.webkit.org/show_bug.cgi?id=144456 |
| |
| if (!(child.m_type & (SpecOther | SpecObjectOther))) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| |
| break; |
| case TypeOfIsObject: |
| // FIXME: Use the masquerades-as-undefined watchpoint thingy. |
| // https://bugs.webkit.org/show_bug.cgi?id=144456 |
| |
| // These expressions are complicated to parse. A helpful way to parse this is that |
| // "!(T & ~S)" means "T is a subset of S". Conversely, "!(T & S)" means "T is a |
| // disjoint set from S". Things like "T - S" means that, provided that S is a |
| // subset of T, it's the "set of all things in T but not in S". Things like "T | S" |
| // mean the "union of T and S". |
| |
| // Is the child's type an object that isn't an other-object (i.e. object that could |
| // have masquaredes-as-undefined traps) and isn't a function? Then: we should fold |
| // this to true. |
| if (!(child.m_type & ~(SpecObject - SpecTypeofMightBeFunction))) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| |
| // Is the child's type definitely not either of: an object that isn't a function, |
| // or either undefined or null? Then: we should fold this to false. This means |
| // for example that if it's any non-function object, including those that have |
| // masquerades-as-undefined traps, then we don't fold. It also means we won't fold |
| // if it's undefined-or-null, since the type bits don't distinguish between |
| // undefined (which should fold to false) and null (which should fold to true). |
| if (!(child.m_type & ((SpecObject - SpecFunction) | SpecOther))) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| |
| break; |
| case IsUndefinedOrNull: |
| if (!(child.m_type & ~SpecOther)) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| |
| if (!(child.m_type & SpecOther)) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| break; |
| case IsBoolean: |
| if (!(child.m_type & ~SpecBoolean)) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| |
| if (!(child.m_type & SpecBoolean)) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| |
| break; |
| case IsNumber: |
| if (!(child.m_type & ~SpecFullNumber)) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| |
| if (!(child.m_type & SpecFullNumber)) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| |
| break; |
| case IsBigInt: |
| if (!(child.m_type & ~SpecBigInt)) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| |
| if (!(child.m_type & SpecBigInt)) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| |
| // FIXME: if the SpeculatedType informs us that we won't have a BigInt32 (or that we won't have a HeapBigInt), then we can transform this node into a IsCellWithType(HeapBigIntType) (or a hypothetical IsBigInt32 node). |
| |
| break; |
| case NumberIsInteger: |
| if (!(child.m_type & ~SpecInt32Only)) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| |
| if (!(child.m_type & SpecFullNumber)) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| |
| break; |
| |
| case IsObject: |
| if (!(child.m_type & ~SpecObject)) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| |
| if (!(child.m_type & SpecObject)) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| |
| break; |
| case TypeOfIsFunction: |
| case IsCallable: |
| if (!(child.m_type & ~SpecFunction)) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| |
| if (!(child.m_type & SpecTypeofMightBeFunction)) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| break; |
| |
| case IsConstructor: |
| // FIXME: We can speculate constructability from child's m_structure. |
| // https://bugs.webkit.org/show_bug.cgi?id=211796 |
| break; |
| |
| case IsCellWithType: { |
| std::optional<SpeculatedType> filter = node->speculatedTypeForQuery(); |
| if (!filter) { |
| if (!(child.m_type & SpecCell)) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| } |
| break; |
| } |
| if (!(child.m_type & ~filter.value())) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| if (!(child.m_type & filter.value())) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| break; |
| } |
| |
| case IsTypedArrayView: |
| if (!(child.m_type & ~SpecTypedArrayView)) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| if (!(child.m_type & SpecTypedArrayView)) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| if (constantWasSet) |
| break; |
| |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| |
| case TypeOf: { |
| JSValue child = forNode(node->child1()).value(); |
| AbstractValue& abstractChild = forNode(node->child1()); |
| if (child) { |
| if (JSString* typeString = jsTypeStringForValueWithConcurrency(m_vm, m_codeBlock->globalObjectFor(node->origin.semantic), child, Concurrency::ConcurrentThread)) { |
| setConstant(node, *m_graph.freeze(typeString)); |
| break; |
| } |
| } |
| |
| if (isFullNumberSpeculation(abstractChild.m_type)) { |
| setConstant(node, *m_graph.freeze(m_vm.smallStrings.numberString())); |
| break; |
| } |
| |
| if (isStringSpeculation(abstractChild.m_type)) { |
| setConstant(node, *m_graph.freeze(m_vm.smallStrings.stringString())); |
| break; |
| } |
| |
| // FIXME: We could use the masquerades-as-undefined watchpoint here. |
| // https://bugs.webkit.org/show_bug.cgi?id=144456 |
| if (!(abstractChild.m_type & ~(SpecObject - SpecTypeofMightBeFunction))) { |
| setConstant(node, *m_graph.freeze(m_vm.smallStrings.objectString())); |
| break; |
| } |
| |
| if (isFunctionSpeculation(abstractChild.m_type)) { |
| setConstant(node, *m_graph.freeze(m_vm.smallStrings.functionString())); |
| break; |
| } |
| |
| if (isBooleanSpeculation(abstractChild.m_type)) { |
| setConstant(node, *m_graph.freeze(m_vm.smallStrings.booleanString())); |
| break; |
| } |
| |
| if (isSymbolSpeculation(abstractChild.m_type)) { |
| setConstant(node, *m_graph.freeze(m_vm.smallStrings.symbolString())); |
| break; |
| } |
| |
| if (isBigIntSpeculation(abstractChild.m_type)) { |
| setConstant(node, *m_graph.freeze(m_vm.smallStrings.bigintString())); |
| break; |
| } |
| |
| setTypeForNode(node, SpecStringIdent); |
| break; |
| } |
| |
| case CompareBelow: |
| case CompareBelowEq: { |
| JSValue leftConst = forNode(node->child1()).value(); |
| JSValue rightConst = forNode(node->child2()).value(); |
| if (leftConst && rightConst) { |
| if (leftConst.isInt32() && rightConst.isInt32()) { |
| uint32_t a = static_cast<uint32_t>(leftConst.asInt32()); |
| uint32_t b = static_cast<uint32_t>(rightConst.asInt32()); |
| switch (node->op()) { |
| case CompareBelow: |
| setConstant(node, jsBoolean(a < b)); |
| break; |
| case CompareBelowEq: |
| setConstant(node, jsBoolean(a <= b)); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| } |
| |
| if (node->child1() == node->child2()) { |
| switch (node->op()) { |
| case CompareBelow: |
| setConstant(node, jsBoolean(false)); |
| break; |
| case CompareBelowEq: |
| setConstant(node, jsBoolean(true)); |
| break; |
| default: |
| DFG_CRASH(m_graph, node, "Unexpected node type"); |
| break; |
| } |
| break; |
| } |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| |
| case CompareLess: |
| case CompareLessEq: |
| case CompareGreater: |
| case CompareGreaterEq: |
| case CompareEq: { |
| bool isClobbering = node->isBinaryUseKind(UntypedUse); |
| |
| if (isClobbering) |
| didFoldClobberWorld(); |
| |
| JSValue leftConst = forNode(node->child1()).value(); |
| JSValue rightConst = forNode(node->child2()).value(); |
| if (leftConst && rightConst) { |
| if (leftConst.isNumber() && rightConst.isNumber()) { |
| auto compareNumber = [&](double a, double b) { |
| switch (node->op()) { |
| case CompareLess: |
| return jsBoolean(a < b); |
| case CompareLessEq: |
| return jsBoolean(a <= b); |
| case CompareGreater: |
| return jsBoolean(a > b); |
| case CompareGreaterEq: |
| return jsBoolean(a >= b); |
| case CompareEq: |
| return jsBoolean(a == b); |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| }; |
| double a = leftConst.asNumber(); |
| double b = rightConst.asNumber(); |
| setConstant(node, compareNumber(a, b)); |
| break; |
| } |
| |
| if (leftConst.isBigInt() && rightConst.isBigInt()) { |
| switch (node->op()) { |
| case CompareLess: |
| setConstant(node, jsBoolean(bigIntCompareResult(compareBigInt(leftConst, rightConst), JSBigInt::ComparisonMode::LessThan))); |
| break; |
| case CompareLessEq: |
| setConstant(node, jsBoolean(bigIntCompareResult(compareBigInt(leftConst, rightConst), JSBigInt::ComparisonMode::LessThanOrEqual))); |
| break; |
| case CompareGreater: |
| setConstant(node, jsBoolean(bigIntCompareResult(compareBigInt(rightConst, leftConst), JSBigInt::ComparisonMode::LessThan))); |
| break; |
| case CompareGreaterEq: |
| setConstant(node, jsBoolean(bigIntCompareResult(compareBigInt(rightConst, leftConst), JSBigInt::ComparisonMode::LessThanOrEqual))); |
| break; |
| case CompareEq: |
| setConstant(node, jsBoolean(compareBigInt(leftConst, rightConst) == JSBigInt::ComparisonResult::Equal)); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| if (leftConst.isString() && rightConst.isString()) { |
| const StringImpl* a = asString(leftConst)->tryGetValueImpl(); |
| const StringImpl* b = asString(rightConst)->tryGetValueImpl(); |
| if (a && b) { |
| bool result; |
| if (node->op() == CompareEq) |
| result = WTF::equal(a, b); |
| else if (node->op() == CompareLess) |
| result = codePointCompare(a, b) < 0; |
| else if (node->op() == CompareLessEq) |
| result = codePointCompare(a, b) <= 0; |
| else if (node->op() == CompareGreater) |
| result = codePointCompare(a, b) > 0; |
| else if (node->op() == CompareGreaterEq) |
| result = codePointCompare(a, b) >= 0; |
| else |
| RELEASE_ASSERT_NOT_REACHED(); |
| setConstant(node, jsBoolean(result)); |
| break; |
| } |
| } |
| |
| if (node->op() == CompareEq && leftConst.isSymbol() && rightConst.isSymbol()) { |
| setConstant(node, jsBoolean(asSymbol(leftConst) == asSymbol(rightConst))); |
| break; |
| } |
| } |
| |
| if (node->op() == CompareEq) { |
| SpeculatedType leftType = forNode(node->child1()).m_type; |
| SpeculatedType rightType = forNode(node->child2()).m_type; |
| if (!valuesCouldBeEqual(leftType, rightType)) { |
| setConstant(node, jsBoolean(false)); |
| break; |
| } |
| |
| if (leftType == SpecOther) |
| std::swap(leftType, rightType); |
| if (rightType == SpecOther) { |
| // Undefined and Null are always equal when compared to eachother. |
| if (!(leftType & ~SpecOther)) { |
| setConstant(node, jsBoolean(true)); |
| break; |
| } |
| |
| // Any other type compared to Null or Undefined is always false |
| // as long as the MasqueradesAsUndefined watchpoint is valid. |
| // |
| // MasqueradesAsUndefined only matters for SpecObjectOther, other |
| // cases are always "false". |
| if (!(leftType & (SpecObjectOther | SpecOther))) { |
| setConstant(node, jsBoolean(false)); |
| break; |
| } |
| |
| if (!(leftType & SpecOther) && m_graph.masqueradesAsUndefinedWatchpointIsStillValid(node->origin.semantic)) { |
| JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
| m_graph.watchpoints().addLazily(globalObject->masqueradesAsUndefinedWatchpoint()); |
| setConstant(node, jsBoolean(false)); |
| break; |
| } |
| } |
| } |
| |
| if (node->child1() == node->child2()) { |
| if (node->isBinaryUseKind(Int32Use) || |
| node->isBinaryUseKind(Int52RepUse) || |
| node->isBinaryUseKind(BigInt32Use) || |
| node->isBinaryUseKind(HeapBigIntUse) || |
| node->isBinaryUseKind(AnyBigIntUse) || |
| node->isBinaryUseKind(StringUse) || |
| node->isBinaryUseKind(BooleanUse) || |
| node->isBinaryUseKind(SymbolUse) || |
| node->isBinaryUseKind(StringIdentUse) || |
| node->isBinaryUseKind(ObjectUse) || |
| node->isBinaryUseKind(ObjectUse, ObjectOrOtherUse) || |
| node->isBinaryUseKind(ObjectOrOtherUse, ObjectUse)) { |
| switch (node->op()) { |
| case CompareLess: |
| case CompareGreater: |
| setConstant(node, jsBoolean(false)); |
| break; |
| case CompareLessEq: |
| case CompareGreaterEq: |
| case CompareEq: |
| setConstant(node, jsBoolean(true)); |
| break; |
| default: |
| DFG_CRASH(m_graph, node, "Unexpected node type"); |
| break; |
| } |
| break; |
| } |
| } |
| |
| if (isClobbering) |
| clobberWorld(); |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| |
| case CompareStrictEq: |
| case SameValue: { |
| Node* leftNode = node->child1().node(); |
| Node* rightNode = node->child2().node(); |
| JSValue left = forNode(leftNode).value(); |
| JSValue right = forNode(rightNode).value(); |
| if (left && right) { |
| if (left.isString() && right.isString()) { |
| // We need this case because JSValue::strictEqual is otherwise too racy for |
| // string comparisons. |
| const StringImpl* a = asString(left)->tryGetValueImpl(); |
| const StringImpl* b = asString(right)->tryGetValueImpl(); |
| if (a && b) { |
| setConstant(node, jsBoolean(WTF::equal(a, b))); |
| break; |
| } |
| } else { |
| if (node->op() == CompareStrictEq) |
| setConstant(node, jsBoolean(JSValue::strictEqual(nullptr, left, right))); |
| else |
| setConstant(node, jsBoolean(sameValue(nullptr, left, right))); |
| break; |
| } |
| } |
| |
| // FIXME: why is this check here, and not later (after the type-based replacement by false). |
| // Saam seems to agree that the two checks could be switched, I'll try that in a separate patch |
| if (node->isBinaryUseKind(UntypedUse)) { |
| auto isNonStringAndNonBigIntCellConstant = [] (JSValue value) { |
| return value && value.isCell() && !value.isString() && !value.isHeapBigInt(); |
| }; |
| |
| if (isNonStringAndNonBigIntCellConstant(left) || isNonStringAndNonBigIntCellConstant(right)) { |
| m_state.setShouldTryConstantFolding(true); |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| } |
| |
| SpeculatedType leftLUB = leastUpperBoundOfStrictlyEquivalentSpeculations(forNode(leftNode).m_type); |
| SpeculatedType rightLUB = leastUpperBoundOfStrictlyEquivalentSpeculations(forNode(rightNode).m_type); |
| if (!(leftLUB & rightLUB)) { |
| setConstant(node, jsBoolean(false)); |
| break; |
| } |
| |
| if (node->child1() == node->child2()) { |
| // FIXME: Is there any case not involving NaN where x === x is not guaranteed to return true? |
| // If not I might slightly simplify that check. |
| if (node->isBinaryUseKind(BooleanUse) |
| || node->isBinaryUseKind(Int32Use) |
| || node->isBinaryUseKind(Int52RepUse) |
| || node->isBinaryUseKind(StringUse) |
| || node->isBinaryUseKind(StringIdentUse) |
| || node->isBinaryUseKind(SymbolUse) |
| || node->isBinaryUseKind(ObjectUse) |
| || node->isBinaryUseKind(MiscUse, UntypedUse) |
| || node->isBinaryUseKind(UntypedUse, MiscUse) |
| || node->isBinaryUseKind(StringIdentUse, NotStringVarUse) |
| || node->isBinaryUseKind(NotStringVarUse, StringIdentUse) |
| || node->isBinaryUseKind(StringUse, UntypedUse) |
| || node->isBinaryUseKind(UntypedUse, StringUse) |
| || node->isBinaryUseKind(BigInt32Use) |
| || node->isBinaryUseKind(HeapBigIntUse) |
| || node->isBinaryUseKind(AnyBigIntUse)) { |
| setConstant(node, jsBoolean(true)); |
| break; |
| } |
| } |
| |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| |
| case CompareEqPtr: { |
| Node* childNode = node->child1().node(); |
| JSValue childValue = forNode(childNode).value(); |
| if (childValue) { |
| setConstant(node, jsBoolean(childValue.isCell() && childValue.asCell() == node->cellOperand()->cell())); |
| break; |
| } |
| |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| |
| case StringCharCodeAt: |
| case StringCodePointAt: |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| |
| case StringFromCharCode: |
| switch (node->child1().useKind()) { |
| case Int32Use: |
| break; |
| case UntypedUse: |
| clobberWorld(); |
| break; |
| default: |
| DFG_CRASH(m_graph, node, "Bad use kind"); |
| break; |
| } |
| setTypeForNode(node, SpecString); |
| break; |
| |
| case StringCharAt: |
| setForNode(node, m_vm.stringStructure.get()); |
| break; |
| |
| case EnumeratorGetByVal: { |
| // FIXME: This should be able to do code motion for OwnStructureMode but we'd need to teach AI about the enumerator's cached structure for that to be profitable. |
| clobberWorld(); |
| makeHeapTopForNode(node); |
| break; |
| } |
| |
| case GetByVal: |
| case AtomicsAdd: |
| case AtomicsAnd: |
| case AtomicsCompareExchange: |
| case AtomicsExchange: |
| case AtomicsLoad: |
| case AtomicsOr: |
| case AtomicsStore: |
| case AtomicsSub: |
| case AtomicsXor: { |
| if (node->op() == GetByVal) { |
| auto foldGetByValOnConstantProperty = [&] (Edge& arrayEdge, Edge& indexEdge) { |
| // FIXME: We can expand this for non x86 environments. |
| // https://bugs.webkit.org/show_bug.cgi?id=134641 |
| if (!isX86()) |
| return false; |
| |
| AbstractValue& arrayValue = forNode(arrayEdge); |
| |
| // Check the structure set is finite. This means that this constant's structure is watched and guaranteed the one of this set. |
| // When the structure is changed, this code should be invalidated. This is important since the following code relies on the |
| // constant object's is not changed. |
| if (!arrayValue.m_structure.isFinite()) |
| return false; |
| |
| JSValue arrayConstant = arrayValue.value(); |
| if (!arrayConstant) |
| return false; |
| |
| JSObject* array = jsDynamicCast<JSObject*>(m_vm, arrayConstant); |
| if (!array) |
| return false; |
| |
| JSValue indexConstant = forNode(indexEdge).value(); |
| if (!indexConstant || !indexConstant.isInt32() || indexConstant.asInt32() < 0) |
| return false; |
| uint32_t index = indexConstant.asUInt32(); |
| |
| // Check that the early StructureID is not nuked, get the butterfly, and check the late StructureID again. |
| // And we check the indexing mode of the structure. If the indexing mode is CoW, the butterfly is |
| // definitely JSImmutableButterfly. |
| StructureID structureIDEarly = array->structureID(); |
| if (isNuked(structureIDEarly)) |
| return false; |
| |
| if (node->arrayMode().arrayClass() == Array::OriginalCopyOnWriteArray) { |
| |
| WTF::loadLoadFence(); |
| Butterfly* butterfly = array->butterfly(); |
| |
| WTF::loadLoadFence(); |
| StructureID structureIDLate = array->structureID(); |
| |
| if (structureIDEarly != structureIDLate) |
| return false; |
| |
| Structure* structure = m_vm.getStructure(structureIDLate); |
| switch (node->arrayMode().type()) { |
| case Array::Int32: |
| case Array::Contiguous: |
| case Array::Double: |
| if (structure->indexingMode() != (toIndexingShape(node->arrayMode().type()) | CopyOnWrite | IsArray)) |
| return false; |
| break; |
| default: |
| return false; |
| } |
| ASSERT(isCopyOnWrite(structure->indexingMode())); |
| |
| JSImmutableButterfly* immutableButterfly = JSImmutableButterfly::fromButterfly(butterfly); |
| if (index < immutableButterfly->length()) { |
| JSValue value = immutableButterfly->get(index); |
| ASSERT(value); |
| if (value.isCell()) |
| setConstant(node, *m_graph.freeze(value.asCell())); |
| else |
| setConstant(node, value); |
| return true; |
| } |
| |
| if (node->arrayMode().isOutOfBounds()) { |
| JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
| Structure* arrayPrototypeStructure = globalObject->arrayPrototype()->structure(m_vm); |
| Structure* objectPrototypeStructure = globalObject->objectPrototype()->structure(m_vm); |
| if (arrayPrototypeStructure->transitionWatchpointSetIsStillValid() |
| && objectPrototypeStructure->transitionWatchpointSetIsStillValid() |
| && globalObject->arrayPrototypeChainIsSaneConcurrently(arrayPrototypeStructure, objectPrototypeStructure)) { |
| m_graph.registerAndWatchStructureTransition(arrayPrototypeStructure); |
| m_graph.registerAndWatchStructureTransition(objectPrototypeStructure); |
| if (node->arrayMode().type() == Array::Double && node->arrayMode().isOutOfBoundsSaneChain() && !(node->flags() & NodeBytecodeUsesAsOther)) |
| setConstant(node, jsNumber(PNaN)); |
| else |
| setConstant(node, jsUndefined()); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| if (node->arrayMode().type() == Array::ArrayStorage || node->arrayMode().type() == Array::SlowPutArrayStorage) { |
| JSValue value; |
| { |
| // ArrayStorage's Butterfly can be half-broken state. |
| Locker locker { array->cellLock() }; |
| |
| WTF::loadLoadFence(); |
| Butterfly* butterfly = array->butterfly(); |
| |
| WTF::loadLoadFence(); |
| StructureID structureIDLate = array->structureID(); |
| |
| if (structureIDEarly != structureIDLate) |
| return false; |
| |
| Structure* structure = m_vm.getStructure(structureIDLate); |
| if (!hasAnyArrayStorage(structure->indexingMode())) |
| return false; |
| |
| if (structure->typeInfo().interceptsGetOwnPropertySlotByIndexEvenWhenLengthIsNotZero()) |
| return false; |
| |
| ArrayStorage* storage = butterfly->arrayStorage(); |
| if (index >= storage->length()) |
| return false; |
| |
| if (index < storage->vectorLength()) |
| return false; |
| |
| SparseArrayValueMap* map = storage->m_sparseMap.get(); |
| if (!map) |
| return false; |
| |
| value = map->getConcurrently(index); |
| } |
| if (!value) |
| return false; |
| |
| if (value.isCell()) |
| setConstant(node, *m_graph.freeze(value.asCell())); |
| else |
| setConstant(node, value); |
| return true; |
| } |
| |
| return false; |
| }; |
| |
| bool didFold = false; |
| switch (node->arrayMode().type()) { |
| case Array::Generic: |
| case Array::Int32: |
| case Array::Double: |
| case Array::Contiguous: |
| case Array::ArrayStorage: |
| case Array::SlowPutArrayStorage: |
| if (foldGetByValOnConstantProperty(m_graph.child(node, 0), m_graph.child(node, 1))) { |
| if (node->arrayMode().isEffectfulOutOfBounds()) |
| didFoldClobberWorld(); |
| didFold = true; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| if (didFold) |
| break; |
| } |
| |
| if (node->op() != GetByVal) { |
| unsigned numExtraArgs = numExtraAtomicsArgs(node->op()); |
| Edge storageEdge = m_graph.child(node, 2 + numExtraArgs); |
| if (!storageEdge) |
| clobberWorld(); |
| } |
| |
| if (node->op() == AtomicsStore) { |
| // The returned value from Atomics.store does not rely on typed array types. It is relying |
| // on input's UseKind. For example, |
| // |
| // Atomics.store(uint8Array, /* index */ 0, Infinity) // => returned value is Infinity |
| // |
| // Since the other ReadModifyWrite atomics return values stored in the typed array previously, |
| // the returned values rely on the typed array types. On the other hand, Atomics.store's |
| // returned value is input value. This means that Atomics.store + Uint8Array can return doubles |
| // while the typed array is Uint8Array (the above one is the example). |
| switch (node->arrayMode().type()) { |
| case Array::Generic: |
| clobberWorld(); |
| makeHeapTopForNode(node); |
| break; |
| default: { |
| Edge operand = m_graph.child(node, 2); |
| switch (operand.useKind()) { |
| case Int32Use: |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case Int52RepUse: |
| setNonCellTypeForNode(node, SpecInt52Any); |
| break; |
| case DoubleRepUse: |
| setNonCellTypeForNode(node, SpecFullDouble); |
| break; |
| default: |
| DFG_CRASH(m_graph, node, "Bad use kind"); |
| break; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| |
| switch (node->arrayMode().type()) { |
| case Array::SelectUsingPredictions: |
| case Array::Unprofiled: |
| case Array::SelectUsingArguments: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| case Array::ForceExit: |
| m_state.setIsValid(false); |
| break; |
| case Array::Undecided: { |
| JSValue index = forNode(m_graph.child(node, 1)).value(); |
| if (index && index.isInt32() && index.asInt32() >= 0) { |
| setConstant(node, jsUndefined()); |
| break; |
| } |
| setNonCellTypeForNode(node, SpecOther); |
| break; |
| } |
| case Array::Generic: |
| clobberWorld(); |
| makeHeapTopForNode(node); |
| break; |
| case Array::String: |
| if (node->arrayMode().isOutOfBounds()) { |
| // If the watchpoint was still valid we could totally set this to be |
| // SpecString | SpecOther. Except that we'd have to be careful. If we |
| // tested the watchpoint state here then it could change by the time |
| // we got to the backend. So to do this right, we'd have to get the |
| // fixup phase to check the watchpoint state and then bake into the |
| // GetByVal operation the fact that we're using a watchpoint, using |
| // something like Array::InBoundsSaneChain (except not quite, because that |
| // implies an in-bounds access). None of this feels like it's worth it, |
| // so we're going with TOP for now. The same thing applies to |
| // clobbering the world. |
| clobberWorld(); |
| makeHeapTopForNode(node); |
| } else |
| setForNode(node, m_vm.stringStructure.get()); |
| break; |
| case Array::DirectArguments: |
| case Array::ScopedArguments: |
| if (node->arrayMode().isOutOfBounds()) |
| clobberWorld(); |
| makeHeapTopForNode(node); |
| break; |
| case Array::Int32: |
| if (node->arrayMode().isEffectfulOutOfBounds()) { |
| clobberWorld(); |
| makeHeapTopForNode(node); |
| } else if (node->arrayMode().isOutOfBoundsSaneChain()) |
| setNonCellTypeForNode(node, SpecInt32Only | SpecOther); |
| else |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case Array::Double: |
| if (node->arrayMode().isEffectfulOutOfBounds()) { |
| clobberWorld(); |
| makeHeapTopForNode(node); |
| } else if (node->arrayMode().isInBoundsSaneChain()) |
| setNonCellTypeForNode(node, SpecBytecodeDouble); |
| else if (node->arrayMode().isOutOfBoundsSaneChain()) { |
| if (!!(node->flags() & NodeBytecodeUsesAsOther)) |
| setNonCellTypeForNode(node, SpecBytecodeDouble | SpecOther); |
| else |
| setNonCellTypeForNode(node, SpecBytecodeDouble); |
| } else |
| setNonCellTypeForNode(node, SpecDoubleReal); |
| break; |
| case Array::Contiguous: |
| case Array::ArrayStorage: |
| case Array::SlowPutArrayStorage: |
| if (node->arrayMode().isEffectfulOutOfBounds()) |
| clobberWorld(); |
| makeHeapTopForNode(node); |
| break; |
| case Array::Int8Array: |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case Array::Int16Array: |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case Array::Int32Array: |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case Array::Uint8Array: |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case Array::Uint8ClampedArray: |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case Array::Uint16Array: |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| case Array::Uint32Array: |
| if (node->shouldSpeculateInt32()) |
| setNonCellTypeForNode(node, SpecInt32Only); |
| else if (node->shouldSpeculateInt52()) |
| setNonCellTypeForNode(node, SpecInt52Any); |
| else |
| setNonCellTypeForNode(node, SpecAnyIntAsDouble); |
| break; |
| case Array::Float32Array: |
| setNonCellTypeForNode(node, SpecFullDouble); |
| break; |
| case Array::Float64Array: |
| setNonCellTypeForNode(node, SpecFullDouble); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| case PutByValDirect: |
| case PutByVal: |
| case PutByValAlias: { |
| switch (node->arrayMode().modeForPut().type()) { |
| case Array::ForceExit: |
| m_state.setIsValid(false); |
| break; |
| case Array::Generic: |
| clobberWorld(); |
| break; |
| case Array::Int32: |
| if (node->arrayMode().isOutOfBounds()) |
| clobberWorld(); |
| break; |
| case Array::Double: |
| if (node->arrayMode().isOutOfBounds()) |
| clobberWorld(); |
| break; |
| case Array::Contiguous: |
| case Array::ArrayStorage: |
| if (node->arrayMode().isOutOfBounds()) |
| clobberWorld(); |
| break; |
| case Array::SlowPutArrayStorage: |
| if (node->arrayMode().mayStoreToHole()) |
| clobberWorld(); |
| break; |
| default: |
| break; |
| } |
| break; |
| } |
| |
| case ArrayPush: |
| clobberWorld(); |
| setNonCellTypeForNode(node, SpecBytecodeNumber); |
| break; |
| |
| case ArraySlice: { |
| JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
| |
| // FIXME: We could do better here if we prove that the |
| // incoming value has only a single structure. |
| RegisteredStructureSet structureSet; |
| structureSet.add(m_graph.registerStructure(globalObject->originalArrayStructureForIndexingType(ArrayWithInt32))); |
| structureSet.add(m_graph.registerStructure(globalObject->originalArrayStructureForIndexingType(ArrayWithContiguous))); |
| structureSet.add(m_graph.registerStructure(globalObject->originalArrayStructureForIndexingType(ArrayWithDouble))); |
| |
| setForNode(node, structureSet); |
| break; |
| } |
| |
| case ArrayIndexOf: { |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| |
| case ArrayPop: |
| clobberWorld(); |
| makeHeapTopForNode(node); |
| break; |
| |
| case GetMyArgumentByVal: |
| case GetMyArgumentByValOutOfBounds: { |
| JSValue index = forNode(node->child2()).m_value; |
| InlineCallFrame* inlineCallFrame = node->child1()->origin.semantic.inlineCallFrame(); |
| |
| if (index && index.isUInt32()) { |
| // This pretends to return TOP for accesses that are actually proven out-of-bounds because |
| // that's the conservative thing to do. Otherwise we'd need to write more code to mark such |
| // paths as unreachable, or to return undefined. We could implement that eventually. |
| |
| CheckedUint32 argumentIndexChecked = index.asUInt32(); |
| argumentIndexChecked += node->numberOfArgumentsToSkip(); |
| if (!argumentIndexChecked.hasOverflowed()) { |
| unsigned argumentIndex = argumentIndexChecked; |
| if (inlineCallFrame) { |
| if (argumentIndex < static_cast<unsigned>(inlineCallFrame->argumentCountIncludingThis - 1)) { |
| setForNode(node, m_state.operand( |
| virtualRegisterForArgumentIncludingThis(argumentIndex + 1) + inlineCallFrame->stackOffset)); |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| } |
| } else { |
| if (argumentIndex < m_state.numberOfArguments() - 1) { |
| setForNode(node, m_state.argument(argumentIndex + 1)); |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| } |
| } |
| } |
| } |
| |
| if (inlineCallFrame) { |
| // We have a bound on the types even though it's random access. Take advantage of this. |
| |
| AbstractValue result; |
| for (unsigned i = 1 + node->numberOfArgumentsToSkip(); i < inlineCallFrame->argumentCountIncludingThis; ++i) { |
| result.merge( |
| m_state.operand( |
| virtualRegisterForArgumentIncludingThis(i) + inlineCallFrame->stackOffset)); |
| } |
| |
| if (node->op() == GetMyArgumentByValOutOfBounds) |
| result.merge(SpecOther); |
| |
| if (result.value()) |
| m_state.setShouldTryConstantFolding(true); |
| |
| setForNode(node, result); |
| break; |
| } |
| |
| makeHeapTopForNode(node); |
| break; |
| } |
| |
| case RegExpExec: |
| case RegExpExecNonGlobalOrSticky: |
| if (node->op() == RegExpExec) { |
| // Even if we've proven known input types as RegExpObject and String, |
| // accessing lastIndex is effectful if it's a global regexp. |
| clobberWorld(); |
| } |
| |
| if (JSValue globalObjectValue = forNode(node->child1()).m_value) { |
| if (JSGlobalObject* globalObject = jsDynamicCast<JSGlobalObject*>(m_vm, globalObjectValue)) { |
| if (!globalObject->isHavingABadTime()) { |
| m_graph.watchpoints().addLazily(globalObject->havingABadTimeWatchpoint()); |
| RegisteredStructureSet structureSet; |
| structureSet.add(m_graph.registerStructure(globalObject->regExpMatchesArrayStructure())); |
| structureSet.add(m_graph.registerStructure(globalObject->regExpMatchesArrayWithIndicesStructure())); |
| setForNode(node, structureSet); |
| forNode(node).merge(SpecOther); |
| break; |
| } |
| } |
| } |
| setTypeForNode(node, SpecOther | SpecArray); |
| break; |
| |
| case RegExpTest: |
| case RegExpTestInline: |
| // Even if we've proven known input types as RegExpObject and String, |
| // accessing lastIndex is effectful if it's a global regexp. |
| clobberWorld(); |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| |
| case RegExpMatchFast: |
| ASSERT(node->child2().useKind() == RegExpObjectUse); |
| ASSERT(node->child3().useKind() == StringUse || node->child3().useKind() == KnownStringUse); |
| setTypeForNode(node, SpecOther | SpecArray); |
| break; |
| |
| case RegExpMatchFastGlobal: |
| ASSERT(node->child2().useKind() == StringUse || node->child2().useKind() == KnownStringUse); |
| setTypeForNode(node, SpecOther | SpecArray); |
| break; |
| |
| case StringReplace: |
| case StringReplaceRegExp: |
| if (node->child1().useKind() == StringUse |
| && node->child2().useKind() == RegExpObjectUse |
| && node->child3().useKind() == StringUse) { |
| // This doesn't clobber the world. It just reads and writes regexp state. |
| } else |
| clobberWorld(); |
| setForNode(node, m_vm.stringStructure.get()); |
| break; |
| |
| case Jump: |
| break; |
| |
| case Branch: { |
| Node* child = node->child1().node(); |
| switch (booleanResult(node, forNode(child))) { |
| case TriState::True: |
| m_state.setBranchDirection(TakeTrue); |
| break; |
| case TriState::False: |
| m_state.setBranchDirection(TakeFalse); |
| break; |
| case TriState::Indeterminate: |
| // FIXME: The above handles the trivial cases of sparse conditional |
| // constant propagation, but we can do better: |
| // We can specialize the source variable's value on each direction of |
| // the branch. |
| m_state.setBranchDirection(TakeBoth); |
| break; |
| } |
| break; |
| } |
| |
| case Switch: { |
| // Nothing to do for now. |
| // FIXME: Do sparse conditional things. |
| break; |
| } |
| |
| case EntrySwitch: |
| break; |
| |
| case Return: |
| m_state.setIsValid(false); |
| break; |
| |
| case Throw: |
| case ThrowStaticError: |
| case TailCall: |
| case DirectTailCall: |
| case TailCallVarargs: |
| case TailCallForwardVarargs: |
| clobberWorld(); |
| m_state.setIsValid(false); |
| break; |
| |
| case ToPrimitive: { |
| JSValue childConst = forNode(node->child1()).value(); |
| if (childConst && childConst.isNumber()) { |
| didFoldClobberWorld(); |
| setConstant(node, childConst); |
| break; |
| } |
| |
| ASSERT(node->child1().useKind() == UntypedUse); |
| |
| if (!(forNode(node->child1()).m_type & ~(SpecFullNumber | SpecBoolean | SpecString | SpecSymbol | SpecBigInt))) { |
| m_state.setShouldTryConstantFolding(true); |
| didFoldClobberWorld(); |
| setForNode(node, forNode(node->child1())); |
| break; |
| } |
| |
| clobberWorld(); |
| |
| setTypeForNode(node, SpecHeapTop & ~SpecObject); |
| break; |
| } |
| |
| case ToPropertyKey: { |
| if (!(forNode(node->child1()).m_type & ~(SpecString | SpecSymbol))) { |
| m_state.setShouldTryConstantFolding(true); |
| didFoldClobberWorld(); |
| setForNode(node, forNode(node->child1())); |
| break; |
| } |
| |
| clobberWorld(); |
| |
| setTypeForNode(node, SpecString | SpecSymbol); |
| break; |
| } |
| |
| case ToNumber: { |
| JSValue childConst = forNode(node->child1()).value(); |
| if (childConst && childConst.isNumber()) { |
| didFoldClobberWorld(); |
| setConstant(node, childConst); |
| break; |
| } |
| |
| ASSERT(node->child1().useKind() == UntypedUse); |
| |
| if (!(forNode(node->child1()).m_type & ~SpecBytecodeNumber)) { |
| m_state.setShouldTryConstantFolding(true); |
| didFoldClobberWorld(); |
| setForNode(node, forNode(node->child1())); |
| break; |
| } |
| |
| clobberWorld(); |
| setNonCellTypeForNode(node, SpecBytecodeNumber); |
| break; |
| } |
| |
| case ToNumeric: { |
| JSValue childConst = forNode(node->child1()).value(); |
| if (childConst && (childConst.isNumber() || childConst.isBigInt())) { |
| didFoldClobberWorld(); |
| if (childConst.isCell()) |
| setConstant(node, *m_graph.freeze(childConst.asCell())); |
| else |
| setConstant(node, childConst); |
| break; |
| } |
| |
| ASSERT(node->child1().useKind() == UntypedUse); |
| |
| if (!(forNode(node->child1()).m_type & ~(SpecBytecodeNumber | SpecBigInt))) { |
| m_state.setShouldTryConstantFolding(true); |
| didFoldClobberWorld(); |
| setForNode(node, forNode(node->child1())); |
| break; |
| } |
| |
| clobberWorld(); |
| setTypeForNode(node, SpecBytecodeNumber | SpecBigInt); |
| break; |
| } |
| |
| case CallNumberConstructor: { |
| JSValue childConst = forNode(node->child1()).value(); |
| if (childConst) { |
| if (childConst.isNumber()) { |
| if (node->child1().useKind() == UntypedUse) |
| didFoldClobberWorld(); |
| setConstant(node, childConst); |
| break; |
| } |
| #if USE(BIGINT32) |
| if (childConst.isBigInt32()) { |
| if (node->child1().useKind() == UntypedUse) |
| didFoldClobberWorld(); |
| setConstant(node, jsNumber(childConst.bigInt32AsInt32())); |
| break; |
| } |
| #endif |
| } |
| |
| ASSERT(node->child1().useKind() == UntypedUse || node->child1().useKind() == BigInt32Use); |
| |
| if (!(forNode(node->child1()).m_type & ~SpecBytecodeNumber)) { |
| m_state.setShouldTryConstantFolding(true); |
| if (node->child1().useKind() == UntypedUse) |
| didFoldClobberWorld(); |
| setForNode(node, forNode(node->child1())); |
| break; |
| } |
| |
| if (node->child1().useKind() == BigInt32Use) { |
| setTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| |
| clobberWorld(); |
| setNonCellTypeForNode(node, SpecBytecodeNumber); |
| break; |
| } |
| |
| case ToString: |
| case CallStringConstructor: { |
| switch (node->child1().useKind()) { |
| case StringObjectUse: |
| case StringOrStringObjectUse: |
| case Int32Use: |
| case Int52RepUse: |
| case DoubleRepUse: |
| case NotCellUse: |
| break; |
| case CellUse: |
| case UntypedUse: |
| clobberWorld(); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| setForNode(node, m_vm.stringStructure.get()); |
| break; |
| } |
| |
| case FunctionToString: { |
| JSValue value = m_state.forNode(node->child1()).value(); |
| if (value) { |
| JSFunction* function = jsDynamicCast<JSFunction*>(m_vm, value); |
| if (JSString* asString = function->asStringConcurrently(m_vm)) { |
| setConstant(node, *m_graph.freeze(asString)); |
| break; |
| } |
| } |
| setForNode(node, m_vm.stringStructure.get()); |
| break; |
| } |
| |
| case NumberToStringWithRadix: { |
| JSValue radixValue = forNode(node->child2()).m_value; |
| if (radixValue && radixValue.isInt32()) { |
| int32_t radix = radixValue.asInt32(); |
| if (2 <= radix && radix <= 36) { |
| m_state.setShouldTryConstantFolding(true); |
| didFoldClobberWorld(); |
| setForNode(node, m_graph.m_vm.stringStructure.get()); |
| break; |
| } |
| } |
| clobberWorld(); |
| setForNode(node, m_graph.m_vm.stringStructure.get()); |
| break; |
| } |
| |
| case NumberToStringWithValidRadixConstant: { |
| setForNode(node, m_graph.m_vm.stringStructure.get()); |
| break; |
| } |
| |
| case NewStringObject: { |
| ASSERT(node->structure()->classInfo() == StringObject::info()); |
| setForNode(node, node->structure()); |
| break; |
| } |
| |
| case NewSymbol: { |
| if (node->child1() && node->child1().useKind() != StringUse) |
| clobberWorld(); |
| setForNode(node, m_vm.symbolStructure.get()); |
| break; |
| } |
| |
| case NewArray: |
| ASSERT(node->indexingMode() == node->indexingType()); // Copy on write arrays should only be created by NewArrayBuffer. |
| setForNode(node, |
| m_graph.globalObjectFor(node->origin.semantic)->arrayStructureForIndexingTypeDuringAllocation(node->indexingType())); |
| break; |
| |
| case NewArrayWithSpread: |
| if (m_graph.isWatchingHavingABadTimeWatchpoint(node)) { |
| // We've compiled assuming we're not having a bad time, so to be consistent |
| // with StructureRegisterationPhase we must say we produce an original array |
| // allocation structure. |
| #if USE(JSVALUE64) |
| BitVector* bitVector = node->bitVector(); |
| if (node->numChildren() == 1 && bitVector->get(0)) { |
| Edge use = m_graph.varArgChild(node, 0); |
| if (use->op() == PhantomSpread) { |
| if (use->child1()->op() == PhantomNewArrayBuffer) { |
| auto* immutableButterfly = use->child1()->castOperand<JSImmutableButterfly*>(); |
| if (hasContiguous(immutableButterfly->indexingType())) { |
| m_state.setShouldTryConstantFolding(true); |
| setForNode(node, m_graph.globalObjectFor(node->origin.semantic)->originalArrayStructureForIndexingType(CopyOnWriteArrayWithContiguous)); |
| break; |
| } |
| } |
| } else { |
| setForNode(node, m_graph.globalObjectFor(node->origin.semantic)->originalArrayStructureForIndexingType(CopyOnWriteArrayWithContiguous)); |
| break; |
| } |
| } |
| #endif |
| setForNode(node, m_graph.globalObjectFor(node->origin.semantic)->originalArrayStructureForIndexingType(ArrayWithContiguous)); |
| } else { |
| setForNode(node, |
| m_graph.globalObjectFor(node->origin.semantic)->arrayStructureForIndexingTypeDuringAllocation(ArrayWithContiguous)); |
| } |
| |
| break; |
| |
| case Spread: |
| switch (node->child1()->op()) { |
| case PhantomNewArrayBuffer: |
| case PhantomCreateRest: |
| break; |
| default: |
| if (!m_graph.canDoFastSpread(node, forNode(node->child1()))) |
| clobberWorld(); |
| else |
| didFoldClobberWorld(); |
| break; |
| } |
| |
| setForNode(node, m_vm.immutableButterflyStructures[arrayIndexFromIndexingType(CopyOnWriteArrayWithContiguous) - NumberOfIndexingShapes].get()); |
| break; |
| |
| case NewArrayBuffer: |
| setForNode(node, |
| m_graph.globalObjectFor(node->origin.semantic)->arrayStructureForIndexingTypeDuringAllocation(node->indexingMode())); |
| break; |
| |
| case NewArrayWithSize: |
| setTypeForNode(node, SpecArray); |
| break; |
| |
| case NewTypedArray: |
| switch (node->child1().useKind()) { |
| case Int32Use: |
| case Int52RepUse: |
| break; |
| case UntypedUse: |
| clobberWorld(); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| setForNode(node, |
| m_graph.globalObjectFor(node->origin.semantic)->typedArrayStructureConcurrently( |
| node->typedArrayType())); |
| break; |
| |
| case NewRegexp: |
| setForNode(node, m_graph.globalObjectFor(node->origin.semantic)->regExpStructure()); |
| break; |
| |
| case ToThis: { |
| AbstractValue& source = forNode(node->child1()); |
| AbstractValue& destination = forNode(node); |
| ECMAMode ecmaMode = node->ecmaMode(); |
| |
| ToThisResult result = isToThisAnIdentity(m_vm, ecmaMode, source); |
| switch (result) { |
| case ToThisResult::Identity: |
| m_state.setShouldTryConstantFolding(true); |
| destination = source; |
| break; |
| case ToThisResult::Undefined: |
| setConstant(node, jsUndefined()); |
| break; |
| case ToThisResult::GlobalThis: |
| m_state.setShouldTryConstantFolding(true); |
| destination.setType(m_graph, SpecObject); |
| break; |
| case ToThisResult::Dynamic: |
| if (ecmaMode.isStrict()) |
| destination.makeHeapTop(); |
| else { |
| destination = source; |
| destination.merge(SpecObject); |
| } |
| break; |
| } |
| break; |
| } |
| |
| case CreateThis: { |
| if (JSValue base = forNode(node->child1()).m_value) { |
| if (auto* function = jsDynamicCast<JSFunction*>(m_vm, base)) { |
| if (FunctionRareData* rareData = function->rareData()) { |
| if (rareData->allocationProfileWatchpointSet().isStillValid()) { |
| if (Structure* structure = rareData->objectAllocationStructure()) { |
| m_graph.freeze(rareData); |
| m_graph.watchpoints().addLazily(rareData->allocationProfileWatchpointSet()); |
| m_state.setShouldTryConstantFolding(true); |
| didFoldClobberWorld(); |
| setForNode(node, structure); |
| break; |
| } |
| } |
| } |
| } |
| } |
| clobberWorld(); |
| setTypeForNode(node, SpecFinalObject); |
| break; |
| } |
| |
| case CreatePromise: { |
| JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
| if (JSValue base = forNode(node->child1()).m_value) { |
| if (base == (node->isInternalPromise() ? globalObject->internalPromiseConstructor() : globalObject->promiseConstructor())) { |
| m_state.setShouldTryConstantFolding(true); |
| didFoldClobberWorld(); |
| setForNode(node, node->isInternalPromise() ? globalObject->internalPromiseStructure() : globalObject->promiseStructure()); |
| break; |
| } |
| if (auto* function = jsDynamicCast<JSFunction*>(m_graph.m_vm, base)) { |
| if (FunctionRareData* rareData = function->rareData()) { |
| if (rareData->allocationProfileWatchpointSet().isStillValid()) { |
| Structure* structure = rareData->internalFunctionAllocationStructure(); |
| if (structure |
| && structure->classInfo() == (node->isInternalPromise() ? JSInternalPromise::info() : JSPromise::info()) |
| && structure->globalObject() == globalObject) { |
| m_graph.freeze(rareData); |
| m_graph.watchpoints().addLazily(rareData->allocationProfileWatchpointSet()); |
| m_state.setShouldTryConstantFolding(true); |
| didFoldClobberWorld(); |
| setForNode(node, structure); |
| break; |
| } |
| } |
| } |
| } |
| } |
| clobberWorld(); |
| setTypeForNode(node, SpecPromiseObject); |
| break; |
| } |
| |
| case CreateGenerator: |
| case CreateAsyncGenerator: { |
| auto tryToFold = [&] (const ClassInfo* classInfo) -> bool { |
| JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
| if (JSValue base = forNode(node->child1()).m_value) { |
| if (auto* function = jsDynamicCast<JSFunction*>(m_graph.m_vm, base)) { |
| if (FunctionRareData* rareData = function->rareData()) { |
| if (rareData->allocationProfileWatchpointSet().isStillValid()) { |
| Structure* structure = rareData->internalFunctionAllocationStructure(); |
| if (structure |
| && structure->classInfo() == classInfo |
| && structure->globalObject() == globalObject) { |
| m_graph.freeze(rareData); |
| m_graph.watchpoints().addLazily(rareData->allocationProfileWatchpointSet()); |
| m_state.setShouldTryConstantFolding(true); |
| didFoldClobberWorld(); |
| setForNode(node, structure); |
| return true; |
| } |
| } |
| } |
| } |
| } |
| return false; |
| }; |
| |
| bool found = false; |
| switch (node->op()) { |
| case CreateGenerator: |
| found = tryToFold(JSGenerator::info()); |
| break; |
| case CreateAsyncGenerator: |
| found = tryToFold(JSAsyncGenerator::info()); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| if (found) |
| break; |
| clobberWorld(); |
| setTypeForNode(node, SpecObjectOther); |
| break; |
| } |
| |
| case NewGenerator: |
| case NewAsyncGenerator: |
| case NewInternalFieldObject: |
| case NewObject: |
| case MaterializeNewInternalFieldObject: |
| ASSERT(!!node->structure().get()); |
| setForNode(node, node->structure()); |
| break; |
| |
| case ObjectAssign: { |
| clobberWorld(); |
| break; |
| } |
| |
| case ObjectCreate: { |
| if (JSValue base = forNode(node->child1()).m_value) { |
| JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
| Structure* structure = nullptr; |
| if (base.isNull()) |
| structure = globalObject->nullPrototypeObjectStructure(); |
| else if (base.isObject()) { |
| // Having a bad time clears the structureCache, and so it should invalidate this structure. |
| bool isHavingABadTime = globalObject->isHavingABadTime(); |
| // Normally, we would always install a watchpoint. In this case, however, if we haveABadTime, we |
| // still want to optimize. There is no watchpoint for that case though, so we need to make sure this load |
| // does not get hoisted above the check. |
| WTF::loadLoadFence(); |
| if (!isHavingABadTime) |
| m_graph.watchpoints().addLazily(globalObject->havingABadTimeWatchpoint()); |
| structure = m_vm.structureCache.emptyObjectStructureConcurrently(globalObject, base.getObject(), JSFinalObject::defaultInlineCapacity()); |
| } |
| |
| if (structure) { |
| m_state.setShouldTryConstantFolding(true); |
| if (node->child1().useKind() == UntypedUse) |
| didFoldClobberWorld(); |
| setForNode(node, structure); |
| break; |
| } |
| } |
| if (node->child1().useKind() == UntypedUse) |
| clobberWorld(); |
| setTypeForNode(node, SpecFinalObject); |
| break; |
| } |
| |
| case ObjectGetOwnPropertyNames: |
| case ObjectKeys: { |
| if (node->child1().useKind() == ObjectUse) { |
| auto& structureSet = forNode(node->child1()).m_structure; |
| if (structureSet.isFinite() && structureSet.size() == 1) { |
| RegisteredStructure structure = structureSet.onlyStructure(); |
| if (auto* rareData = structure->rareDataConcurrently()) { |
| if (!!rareData->cachedPropertyNamesConcurrently(node->op() == ObjectGetOwnPropertyNames ? CachedPropertyNamesKind::GetOwnPropertyNames : CachedPropertyNamesKind::Keys)) { |
| if (m_graph.isWatchingHavingABadTimeWatchpoint(node)) { |
| m_state.setShouldTryConstantFolding(true); |
| didFoldClobberWorld(); |
| setTypeForNode(node, SpecArray); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| clobberWorld(); |
| setTypeForNode(node, SpecArray); |
| break; |
| } |
| |
| case ToObject: |
| case CallObjectConstructor: { |
| AbstractValue& source = forNode(node->child1()); |
| AbstractValue& destination = forNode(node); |
| |
| if (!(source.m_type & ~SpecObject)) { |
| m_state.setShouldTryConstantFolding(true); |
| if (node->op() == ToObject) |
| didFoldClobberWorld(); |
| destination = source; |
| break; |
| } |
| |
| if (node->op() == ToObject) |
| clobberWorld(); |
| setTypeForNode(node, SpecObject); |
| break; |
| } |
| |
| case PhantomNewObject: |
| case PhantomNewFunction: |
| case PhantomNewGeneratorFunction: |
| case PhantomNewAsyncGeneratorFunction: |
| case PhantomNewAsyncFunction: |
| case PhantomCreateActivation: |
| case PhantomDirectArguments: |
| case PhantomClonedArguments: |
| case PhantomCreateRest: |
| case PhantomSpread: |
| case PhantomNewArrayWithSpread: |
| case PhantomNewArrayBuffer: |
| case PhantomNewInternalFieldObject: |
| case PhantomNewRegexp: |
| case BottomValue: { |
| clearForNode(node); |
| break; |
| } |
| |
| case PutHint: |
| break; |
| |
| case MaterializeNewObject: { |
| setForNode(node, node->structureSet()); |
| break; |
| } |
| |
| case PushWithScope: |
| // We don't use the more precise withScopeStructure() here because it is a LazyProperty and may not yet be allocated. |
| setTypeForNode(node, SpecObjectOther); |
| break; |
| |
| case CreateActivation: |
| case MaterializeCreateActivation: |
| setForNode(node, |
| m_codeBlock->globalObjectFor(node->origin.semantic)->activationStructure()); |
| break; |
| |
| case CreateDirectArguments: |
| setForNode(node, m_codeBlock->globalObjectFor(node->origin.semantic)->directArgumentsStructure()); |
| break; |
| |
| case CreateScopedArguments: |
| setForNode(node, m_codeBlock->globalObjectFor(node->origin.semantic)->scopedArgumentsStructure()); |
| break; |
| |
| case CreateClonedArguments: |
| if (!m_graph.isWatchingHavingABadTimeWatchpoint(node)) { |
| setTypeForNode(node, SpecObject); |
| break; |
| } |
| setForNode(node, m_codeBlock->globalObjectFor(node->origin.semantic)->clonedArgumentsStructure()); |
| break; |
| |
| case CreateArgumentsButterfly: |
| setForNode(node, m_vm.immutableButterflyStructures[arrayIndexFromIndexingType(CopyOnWriteArrayWithContiguous) - NumberOfIndexingShapes].get()); |
| break; |
| |
| case NewGeneratorFunction: |
| setForNode(node, |
| m_codeBlock->globalObjectFor(node->origin.semantic)->generatorFunctionStructure()); |
| break; |
| |
| case NewAsyncGeneratorFunction: |
| setForNode(node, |
| m_codeBlock->globalObjectFor(node->origin.semantic)->asyncGeneratorFunctionStructure()); |
| break; |
| |
| case NewAsyncFunction: |
| setForNode(node, |
| m_codeBlock->globalObjectFor(node->origin.semantic)->asyncFunctionStructure()); |
| break; |
| |
| case NewFunction: { |
| JSGlobalObject* globalObject = m_codeBlock->globalObjectFor(node->origin.semantic); |
| Structure* structure = JSFunction::selectStructureForNewFuncExp(globalObject, node->castOperand<FunctionExecutable*>()); |
| setForNode(node, structure); |
| break; |
| } |
| |
| case GetCallee: |
| if (FunctionExecutable* executable = jsDynamicCast<FunctionExecutable*>(m_vm, m_codeBlock->ownerExecutable())) { |
| if (JSFunction* function = executable->singleton().inferredValue()) { |
| m_graph.watchpoints().addLazily(executable); |
| setConstant(node, *m_graph.freeze(function)); |
| break; |
| } |
| } |
| setTypeForNode(node, SpecFunction | SpecObjectOther); |
| break; |
| |
| case GetArgumentCountIncludingThis: |
| setTypeForNode(node, SpecInt32Only); |
| break; |
| |
| case SetCallee: |
| case SetArgumentCountIncludingThis: |
| break; |
| |
| case GetRestLength: |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| |
| case GetGetter: { |
| if (JSValue base = forNode(node->child1()).m_value) { |
| GetterSetter* getterSetter = jsDynamicCast<GetterSetter*>(m_vm, base); |
| if (getterSetter && !getterSetter->isGetterNull()) { |
| setConstant(node, *m_graph.freeze(getterSetter->getterConcurrently())); |
| break; |
| } |
| } |
| |
| setTypeForNode(node, SpecObject); |
| break; |
| } |
| |
| case GetSetter: { |
| if (JSValue base = forNode(node->child1()).m_value) { |
| GetterSetter* getterSetter = jsDynamicCast<GetterSetter*>(m_vm, base); |
| if (getterSetter && !getterSetter->isSetterNull()) { |
| setConstant(node, *m_graph.freeze(getterSetter->setterConcurrently())); |
| break; |
| } |
| } |
| |
| setTypeForNode(node, SpecObject); |
| break; |
| } |
| |
| case GetScope: |
| if (JSValue base = forNode(node->child1()).m_value) { |
| if (JSFunction* function = jsDynamicCast<JSFunction*>(m_vm, base)) { |
| setConstant(node, *m_graph.freeze(function->scope())); |
| break; |
| } |
| } |
| setTypeForNode(node, SpecObjectOther); |
| break; |
| |
| case SkipScope: { |
| if (JSValue child = forNode(node->child1()).value()) { |
| if (JSScope* scope = jsDynamicCast<JSScope*>(m_vm, child)) { |
| if (JSScope* nextScope = scope->next()) { |
| setConstant(node, *m_graph.freeze(JSValue(nextScope))); |
| break; |
| } |
| } |
| } |
| setTypeForNode(node, SpecObjectOther); |
| break; |
| } |
| |
| case GetGlobalObject: { |
| JSValue child = forNode(node->child1()).value(); |
| if (child) { |
| setConstant(node, *m_graph.freeze(JSValue(asObject(child)->globalObject(m_vm)))); |
| break; |
| } |
| |
| if (forNode(node->child1()).m_structure.isFinite()) { |
| JSGlobalObject* globalObject = nullptr; |
| bool ok = true; |
| forNode(node->child1()).m_structure.forEach( |
| [&] (RegisteredStructure structure) { |
| if (!globalObject) |
| globalObject = structure->globalObject(); |
| else if (globalObject != structure->globalObject()) |
| ok = false; |
| }); |
| if (globalObject && ok) { |
| setConstant(node, *m_graph.freeze(JSValue(globalObject))); |
| break; |
| } |
| } |
| |
| setTypeForNode(node, SpecObjectOther); |
| break; |
| } |
| |
| case GetGlobalThis: { |
| setTypeForNode(node, SpecObject); |
| break; |
| } |
| |
| case GetClosureVar: |
| if (JSValue value = m_graph.tryGetConstantClosureVar(forNode(node->child1()), node->scopeOffset())) { |
| setConstant(node, *m_graph.freeze(value)); |
| break; |
| } |
| makeBytecodeTopForNode(node); |
| break; |
| |
| case PutClosureVar: |
| break; |
| |
| case GetInternalField: |
| makeBytecodeTopForNode(node); |
| break; |
| |
| case PutInternalField: |
| break; |
| |
| |
| case GetRegExpObjectLastIndex: |
| makeHeapTopForNode(node); |
| break; |
| |
| case SetRegExpObjectLastIndex: |
| case RecordRegExpCachedResult: |
| break; |
| |
| case GetFromArguments: |
| makeHeapTopForNode(node); |
| break; |
| |
| case PutToArguments: |
| break; |
| |
| case GetArgument: |
| makeHeapTopForNode(node); |
| break; |
| |
| case TryGetById: |
| // FIXME: This should constant fold at least as well as the normal GetById case. |
| // https://bugs.webkit.org/show_bug.cgi?id=156422 |
| clobberWorld(); |
| makeHeapTopForNode(node); |
| break; |
| |
| case GetPrivateNameById: |
| case GetByIdDirect: |
| case GetByIdDirectFlush: |
| case GetById: |
| case GetByIdFlush: { |
| AbstractValue& value = forNode(node->child1()); |
| |
| if (Options::useAccessInlining() |
| && value.m_structure.isFinite() |
| && (node->child1().useKind() == CellUse || !(value.m_type & ~SpecCell))) { |
| UniquedStringImpl* uid = node->cacheableIdentifier().uid(); |
| GetByStatus status = GetByStatus::computeFor(value.m_structure.toStructureSet(), uid); |
| if (status.isSimple()) { |
| // Figure out what the result is going to be - is it TOP, a constant, or maybe |
| // something more subtle? |
| AbstractValue result; |
| for (unsigned i = status.numVariants(); i--;) { |
| // This thing won't give us a variant that involves prototypes. If it did, we'd |
| // have more work to do here. |
| DFG_ASSERT(m_graph, node, status[i].conditionSet().isEmpty()); |
| |
| result.merge( |
| m_graph.inferredValueForProperty( |
| value, status[i].offset(), m_state.structureClobberState())); |
| } |
| |
| m_state.setShouldTryConstantFolding(true); |
| didFoldClobberWorld(); |
| forNode(node) = result; |
| break; |
| } |
| } |
| |
| clobberWorld(); |
| makeHeapTopForNode(node); |
| break; |
| } |
| |
| case GetPrivateName: |
| case GetByValWithThis: |
| case GetByIdWithThis: |
| clobberWorld(); |
| makeHeapTopForNode(node); |
| break; |
| |
| case GetArrayLength: { |
| JSArrayBufferView* view = m_graph.tryGetFoldableView( |
| forNode(node->child1()).m_value, node->arrayMode()); |
| if (view && isInBounds<int32_t>(view->length())) { |
| setConstant(node, jsNumber(view->length())); |
| break; |
| } |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| |
| case GetTypedArrayLengthAsInt52: { |
| JSArrayBufferView* view = m_graph.tryGetFoldableView( |
| forNode(node->child1()).m_value, node->arrayMode()); |
| if (view) { |
| setConstant(node, jsNumber(view->length())); |
| break; |
| } |
| setNonCellTypeForNode(node, SpecInt52Any); |
| break; |
| } |
| |
| case GetVectorLength: { |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| |
| case DeleteById: |
| case DeleteByVal: { |
| // FIXME: This could decide if the delete will be successful based on the set of structures that |
| // we get from our base value. https://bugs.webkit.org/show_bug.cgi?id=156611 |
| clobberWorld(); |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| |
| case CheckStructure: { |
| AbstractValue& value = forNode(node->child1()); |
| |
| const RegisteredStructureSet& set = node->structureSet(); |
| |
| // It's interesting that we could have proven that the object has a larger structure set |
| // that includes the set we're testing. In that case we could make the structure check |
| // more efficient. We currently don't. |
| |
| if (value.m_structure.isSubsetOf(set)) |
| m_state.setShouldTryConstantFolding(true); |
| |
| SpeculatedType admittedTypes = SpecNone; |
| switch (node->child1().useKind()) { |
| case CellUse: |
| case KnownCellUse: |
| admittedTypes = SpecNone; |
| break; |
| case CellOrOtherUse: |
| admittedTypes = SpecOther; |
| break; |
| default: |
| DFG_CRASH(m_graph, node, "Bad use kind"); |
| break; |
| } |
| |
| filter(value, set, admittedTypes); |
| break; |
| } |
| |
| case CheckStructureOrEmpty: { |
| AbstractValue& value = forNode(node->child1()); |
| |
| bool mayBeEmpty = value.m_type & SpecEmpty; |
| if (!mayBeEmpty) |
| m_state.setShouldTryConstantFolding(true); |
| |
| SpeculatedType admittedTypes = mayBeEmpty ? SpecEmpty : SpecNone; |
| filter(value, node->structureSet(), admittedTypes); |
| break; |
| } |
| |
| case CheckStructureImmediate: { |
| // FIXME: This currently can only reason about one structure at a time. |
| // https://bugs.webkit.org/show_bug.cgi?id=136988 |
| |
| AbstractValue& value = forNode(node->child1()); |
| const RegisteredStructureSet& set = node->structureSet(); |
| |
| if (value.value()) { |
| if (Structure* structure = jsDynamicCast<Structure*>(m_vm, value.value())) { |
| if (set.contains(m_graph.registerStructure(structure))) { |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| } |
| } |
| m_state.setIsValid(false); |
| break; |
| } |
| |
| if (m_phiChildren) { |
| bool allGood = true; |
| m_phiChildren->forAllTransitiveIncomingValues( |
| node, |
| [&] (Node* incoming) { |
| if (Structure* structure = incoming->dynamicCastConstant<Structure*>(m_vm)) { |
| if (set.contains(m_graph.registerStructure(structure))) |
| return; |
| } |
| allGood = false; |
| }); |
| if (allGood) { |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| } |
| } |
| |
| if (RegisteredStructure structure = set.onlyStructure()) { |
| filterByValue(node->child1(), *m_graph.freeze(structure.get())); |
| break; |
| } |
| |
| // Aw shucks, we can't do anything! |
| break; |
| } |
| |
| case PutStructure: |
| if (!forNode(node->child1()).m_structure.isClear()) { |
| if (forNode(node->child1()).m_structure.onlyStructure() == node->transition()->next) { |
| didFoldClobberStructures(); |
| m_state.setShouldTryConstantFolding(true); |
| } else { |
| observeTransition( |
| clobberLimit, node->transition()->previous, node->transition()->next); |
| forNode(node->child1()).changeStructure(m_graph, node->transition()->next); |
| } |
| } else { |
| // We're going to exit before we get here, but for the sake of validation, we've folded our write to StructureID. |
| didFoldClobberStructures(); |
| } |
| break; |
| case GetButterfly: |
| case AllocatePropertyStorage: |
| case ReallocatePropertyStorage: |
| case NukeStructureAndSetButterfly: |
| // FIXME: We don't model the fact that the structureID is nuked, simply because currently |
| // nobody would currently benefit from having that information. But it's a bug nonetheless. |
| if (node->op() == NukeStructureAndSetButterfly) |
| didFoldClobberStructures(); |
| clearForNode(node); // The result is not a JS value. |
| break; |
| case CheckJSCast: { |
| const ClassInfo* classInfo = node->classInfo(); |
| JSValue constant = forNode(node->child1()).value(); |
| if (constant) { |
| if (constant.isCell() && constant.asCell()->inherits(m_vm, classInfo)) { |
| ASSERT(!classInfo->inheritsJSTypeRange || classInfo->inheritsJSTypeRange->contains(constant.asCell()->type())); |
| m_state.setShouldTryConstantFolding(true); |
| ASSERT(constant); |
| break; |
| } |
| } |
| |
| AbstractValue& value = forNode(node->child1()); |
| |
| if (value.m_structure.isSubClassOf(classInfo)) |
| m_state.setShouldTryConstantFolding(true); |
| |
| filterClassInfo(value, classInfo); |
| break; |
| } |
| case CheckNotJSCast: { |
| const ClassInfo* classInfo = node->classInfo(); |
| JSValue constant = forNode(node->child1()).value(); |
| if (constant) { |
| if (constant.isCell() && !constant.asCell()->inherits(m_vm, classInfo)) { |
| ASSERT(!classInfo->inheritsJSTypeRange || !classInfo->inheritsJSTypeRange->contains(constant.asCell()->type())); |
| m_state.setShouldTryConstantFolding(true); |
| ASSERT(constant); |
| break; |
| } |
| } |
| |
| AbstractValue& value = forNode(node->child1()); |
| |
| if (value.m_structure.isNotSubClassOf(classInfo)) |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| } |
| |
| case CallDOMGetter: { |
| CallDOMGetterData* callDOMGetterData = node->callDOMGetterData(); |
| DOMJIT::CallDOMGetterSnippet* snippet = callDOMGetterData->snippet; |
| if (!snippet || snippet->effect.writes) |
| clobberWorld(); |
| if (callDOMGetterData->domJIT) |
| setTypeForNode(node, callDOMGetterData->domJIT->resultType()); |
| else |
| makeBytecodeTopForNode(node); |
| break; |
| } |
| case CallDOM: { |
| const DOMJIT::Signature* signature = node->signature(); |
| if (signature->effect.writes) |
| clobberWorld(); |
| setTypeForNode(node, signature->result); |
| break; |
| } |
| |
| case CheckArrayOrEmpty: |
| case CheckArray: { |
| AbstractValue& value = forNode(node->child1()); |
| |
| SpeculatedType admittedTypes = SpecNone; |
| if (node->op() == CheckArrayOrEmpty) { |
| bool mayBeEmpty = value.m_type & SpecEmpty; |
| if (!mayBeEmpty) |
| m_state.setShouldTryConstantFolding(true); |
| else |
| admittedTypes = SpecEmpty; |
| } |
| |
| if (node->arrayMode().alreadyChecked(m_graph, node, value)) { |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| } |
| |
| switch (node->arrayMode().type()) { |
| case Array::String: |
| filter(node->child1(), SpecString | admittedTypes); |
| break; |
| case Array::Int32: |
| case Array::Double: |
| case Array::Contiguous: |
| case Array::Undecided: |
| case Array::ArrayStorage: |
| case Array::SlowPutArrayStorage: |
| break; |
| case Array::DirectArguments: |
| filter(node->child1(), SpecDirectArguments | admittedTypes); |
| break; |
| case Array::ScopedArguments: |
| filter(node->child1(), SpecScopedArguments | admittedTypes); |
| break; |
| case Array::Int8Array: |
| filter(node->child1(), SpecInt8Array | admittedTypes); |
| break; |
| case Array::Int16Array: |
| filter(node->child1(), SpecInt16Array | admittedTypes); |
| break; |
| case Array::Int32Array: |
| filter(node->child1(), SpecInt32Array | admittedTypes); |
| break; |
| case Array::Uint8Array: |
| filter(node->child1(), SpecUint8Array | admittedTypes); |
| break; |
| case Array::Uint8ClampedArray: |
| filter(node->child1(), SpecUint8ClampedArray | admittedTypes); |
| break; |
| case Array::Uint16Array: |
| filter(node->child1(), SpecUint16Array | admittedTypes); |
| break; |
| case Array::Uint32Array: |
| filter(node->child1(), SpecUint32Array | admittedTypes); |
| break; |
| case Array::Float32Array: |
| filter(node->child1(), SpecFloat32Array | admittedTypes); |
| break; |
| case Array::Float64Array: |
| filter(node->child1(), SpecFloat64Array | admittedTypes); |
| break; |
| case Array::BigInt64Array: |
| filter(node->child1(), SpecBigInt64Array | admittedTypes); |
| break; |
| case Array::BigUint64Array: |
| filter(node->child1(), SpecBigUint64Array | admittedTypes); |
| break; |
| case Array::AnyTypedArray: |
| filter(node->child1(), SpecTypedArrayView | admittedTypes); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| filterArrayModes(node->child1(), node->arrayMode().arrayModesThatPassFiltering(), admittedTypes); |
| break; |
| } |
| |
| case Arrayify: { |
| if (node->arrayMode().alreadyChecked(m_graph, node, forNode(node->child1()))) { |
| didFoldClobberStructures(); |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| } |
| ASSERT(node->arrayMode().conversion() == Array::Convert); |
| clobberStructures(); |
| filterArrayModes(node->child1(), node->arrayMode().arrayModesThatPassFiltering()); |
| break; |
| } |
| case ArrayifyToStructure: { |
| AbstractValue& value = forNode(node->child1()); |
| if (value.m_structure.isSubsetOf(RegisteredStructureSet(node->structure()))) |
| m_state.setShouldTryConstantFolding(true); |
| clobberStructures(); |
| |
| // We have a bunch of options of how to express the abstract set at this point. Let set S |
| // be the set of structures that the value had before clobbering and assume that all of |
| // them are watchable. The new value should be the least expressible upper bound of the |
| // intersection of "values that currently have structure = node->structure()" and "values |
| // that have structure in S plus any structure transition-reachable from S". Assume that |
| // node->structure() is not in S but it is transition-reachable from S. Then we would |
| // like to say that the result is "values that have structure = node->structure() until |
| // we invalidate", but there is no way to express this using the AbstractValue syntax. So |
| // we must choose between: |
| // |
| // 1) "values that currently have structure = node->structure()". This is a valid |
| // superset of the value that we really want, and it's specific enough to satisfy the |
| // preconditions of the array access that this is guarding. It's also specific enough |
| // to allow relevant optimizations in the case that we didn't have a contradiction |
| // like in this example. Notice that in the abscence of any contradiction, this result |
| // is precise rather than being a conservative LUB. |
| // |
| // 2) "values that currently hava structure in S plus any structure transition-reachable |
| // from S". This is also a valid superset of the value that we really want, but it's |
| // not specific enough to satisfy the preconditions of the array access that this is |
| // guarding - so playing such shenanigans would preclude us from having assertions on |
| // the typing preconditions of any array accesses. This would also not be a desirable |
| // answer in the absence of a contradiction. |
| // |
| // Note that it's tempting to simply say that the resulting value is BOTTOM because of |
| // the contradiction. That would be wrong, since we haven't hit an invalidation point, |
| // yet. |
| forNode(node->child1()).set(m_graph, node->structure()); |
| break; |
| } |
| case GetIndexedPropertyStorage: { |
| JSArrayBufferView* view = m_graph.tryGetFoldableView( |
| forNode(node->child1()).m_value, node->arrayMode()); |
| if (view) |
| m_state.setShouldTryConstantFolding(true); |
| clearForNode(node); |
| break; |
| } |
| case ConstantStoragePointer: { |
| clearForNode(node); |
| break; |
| } |
| |
| case GetTypedArrayByteOffset: { |
| JSArrayBufferView* view = m_graph.tryGetFoldableView(forNode(node->child1()).m_value); |
| if (view) { |
| std::optional<size_t> byteOffset = view->byteOffsetConcurrently(); |
| if (byteOffset && isInBounds<int32_t>(byteOffset)) { |
| setConstant(node, jsNumber(*byteOffset)); |
| break; |
| } |
| } |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| |
| case GetTypedArrayByteOffsetAsInt52: { |
| JSArrayBufferView* view = m_graph.tryGetFoldableView(forNode(node->child1()).m_value); |
| if (view) { |
| std::optional<size_t> byteOffset = view->byteOffsetConcurrently(); |
| if (byteOffset) { |
| setConstant(node, jsNumber(*byteOffset)); |
| break; |
| } |
| } |
| setNonCellTypeForNode(node, SpecInt52Any); |
| break; |
| } |
| |
| case GetPrototypeOf: { |
| AbstractValue& value = forNode(node->child1()); |
| if ((value.m_type && !(value.m_type & ~SpecObject)) && value.m_structure.isFinite()) { |
| bool canFold = !value.m_structure.isClear(); |
| JSValue prototype; |
| value.m_structure.forEach([&] (RegisteredStructure structure) { |
| if (structure->typeInfo().overridesGetPrototype()) { |
| canFold = false; |
| return; |
| } |
| |
| if (structure->hasPolyProto()) { |
| canFold = false; |
| return; |
| } |
| if (!prototype) |
| prototype = structure->storedPrototype(); |
| else if (prototype != structure->storedPrototype()) |
| canFold = false; |
| }); |
| |
| if (prototype && canFold) { |
| switch (node->child1().useKind()) { |
| case ArrayUse: |
| case FunctionUse: |
| case FinalObjectUse: |
| break; |
| default: |
| didFoldClobberWorld(); |
| break; |
| } |
| setConstant(node, *m_graph.freeze(prototype)); |
| break; |
| } |
| } |
| |
| switch (node->child1().useKind()) { |
| case ArrayUse: |
| case FunctionUse: |
| case FinalObjectUse: |
| break; |
| default: |
| clobberWorld(); |
| break; |
| } |
| setTypeForNode(node, SpecObject | SpecOther); |
| break; |
| } |
| |
| case GetByOffset: { |
| StorageAccessData& data = node->storageAccessData(); |
| |
| // FIXME: The part of this that handles inferred property types relies on AI knowing the structure |
| // right now. That's probably not optimal. In some cases, we may perform an optimization (usually |
| // by something other than AI, maybe by CSE for example) that obscures AI's view of the structure |
| // at the point where GetByOffset runs. Currently, when that happens, we'll have to rely entirely |
| // on the type that ByteCodeParser was able to prove. |
| AbstractValue value = m_graph.inferredValueForProperty( |
| forNode(node->child2()), data.offset, m_state.structureClobberState()); |
| |
| // If we decide that there does not exist any value that this can return, then it's probably |
| // because the compilation was already invalidated. |
| if (value.isClear()) |
| m_state.setIsValid(false); |
| |
| setForNode(node, value); |
| if (value.m_value) |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| } |
| |
| case GetGetterSetterByOffset: { |
| StorageAccessData& data = node->storageAccessData(); |
| AbstractValue base = forNode(node->child2()); |
| JSValue result = m_graph.tryGetConstantProperty(base, data.offset); |
| if (result && jsDynamicCast<GetterSetter*>(m_vm, result)) { |
| setConstant(node, *m_graph.freeze(result)); |
| break; |
| } |
| |
| setForNode(node, m_vm.getterSetterStructure.get()); |
| break; |
| } |
| |
| case MultiGetByOffset: { |
| // This code will filter the base value in a manner that is possibly different (either more |
| // or less precise) than the way it would be filtered if this was strength-reduced to a |
| // CheckStructure. This is fine. It's legal for different passes over the code to prove |
| // different things about the code, so long as all of them are sound. That even includes |
| // one guy proving that code should never execute (due to a contradiction) and another guy |
| // not finding that contradiction. If someone ever proved that there would be a |
| // contradiction then there must always be a contradiction even if subsequent passes don't |
| // realize it. This is the case here. |
| |
| // Ordinarily you have to be careful with calling setShouldTryConstantFolding() |
| // because of the effect on compile times, but this node is FTL-only. |
| m_state.setShouldTryConstantFolding(true); |
| |
| AbstractValue base = forNode(node->child1()); |
| RegisteredStructureSet baseSet; |
| AbstractValue result; |
| for (const MultiGetByOffsetCase& getCase : node->multiGetByOffsetData().cases) { |
| RegisteredStructureSet set = getCase.set(); |
| set.filter(base); |
| if (set.isEmpty()) |
| continue; |
| baseSet.merge(set); |
| |
| switch (getCase.method().kind()) { |
| case GetByOffsetMethod::Constant: { |
| AbstractValue thisResult; |
| thisResult.set( |
| m_graph, |
| *getCase.method().constant(), |
| m_state.structureClobberState()); |
| result.merge(thisResult); |
| break; |
| } |
| |
| default: { |
| result.makeHeapTop(); |
| break; |
| } } |
| } |
| |
| if (forNode(node->child1()).changeStructure(m_graph, baseSet) == Contradiction) |
| m_state.setIsValid(false); |
| |
| setForNode(node, result); |
| break; |
| } |
| |
| case PutByOffset: { |
| break; |
| } |
| |
| case MultiPutByOffset: { |
| RegisteredStructureSet newSet; |
| TransitionVector transitions; |
| |
| // Ordinarily you have to be careful with calling setShouldTryConstantFolding() |
| // because of the effect on compile times, but this node is FTL-only. |
| m_state.setShouldTryConstantFolding(true); |
| |
| AbstractValue base = forNode(node->child1()); |
| AbstractValue originalValue = forNode(node->child2()); |
| AbstractValue resultingValue; |
| |
| if (node->multiPutByOffsetData().writesStructures()) |
| didFoldClobberStructures(); |
| |
| for (unsigned i = node->multiPutByOffsetData().variants.size(); i--;) { |
| const PutByVariant& variant = node->multiPutByOffsetData().variants[i]; |
| RegisteredStructureSet thisSet = *m_graph.addStructureSet(variant.oldStructure()); |
| thisSet.filter(base); |
| if (thisSet.isEmpty()) |
| continue; |
| |
| AbstractValue thisValue = originalValue; |
| resultingValue.merge(thisValue); |
| |
| if (variant.kind() == PutByVariant::Transition) { |
| RegisteredStructure newStructure = m_graph.registerStructure(variant.newStructure()); |
| if (thisSet.onlyStructure() != newStructure) { |
| transitions.append( |
| Transition(m_graph.registerStructure(variant.oldStructureForTransition()), newStructure)); |
| } // else this is really a replace. |
| newSet.add(newStructure); |
| } else { |
| ASSERT(variant.kind() == PutByVariant::Replace); |
| newSet.merge(thisSet); |
| } |
| } |
| |
| // We need to order AI executing these effects in the same order as they're executed |
| // at runtime. This is critical when you have JS code like `o.f = o;`. We first |
| // filter types on o, then transition o. Not the other way around. If we got |
| // this ordering wrong, we could end up with the wrong type representing o. |
| setForNode(node->child2(), resultingValue); |
| if (!!originalValue && !resultingValue) |
| m_state.setIsValid(false); |
| |
| observeTransitions(clobberLimit, transitions); |
| if (forNode(node->child1()).changeStructure(m_graph, newSet) == Contradiction) |
| m_state.setIsValid(false); |
| break; |
| } |
| |
| case MultiDeleteByOffset: { |
| RegisteredStructureSet newSet; |
| TransitionVector transitions; |
| |
| // Ordinarily you have to be careful with calling setShouldTryConstantFolding() |
| // because of the effect on compile times, but this node is FTL-only. |
| m_state.setShouldTryConstantFolding(true); |
| |
| AbstractValue base = forNode(node->child1()); |
| |
| if (node->multiDeleteByOffsetData().writesStructures()) |
| didFoldClobberStructures(); |
| |
| for (unsigned i = node->multiDeleteByOffsetData().variants.size(); i--;) { |
| const DeleteByVariant& variant = node->multiDeleteByOffsetData().variants[i]; |
| RegisteredStructureSet thisSet = *m_graph.addStructureSet(variant.oldStructure()); |
| thisSet.filter(base); |
| if (thisSet.isEmpty()) |
| continue; |
| |
| if (variant.newStructure()) { |
| RegisteredStructure newStructure = m_graph.registerStructure(variant.newStructure()); |
| transitions.append( |
| Transition(m_graph.registerStructure(variant.oldStructure()), newStructure)); |
| newSet.add(newStructure); |
| } else |
| newSet.merge(thisSet); |
| } |
| |
| observeTransitions(clobberLimit, transitions); |
| if (forNode(node->child1()).changeStructure(m_graph, newSet) == Contradiction) |
| m_state.setIsValid(false); |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| |
| case GetExecutable: { |
| JSValue value = forNode(node->child1()).value(); |
| if (value) { |
| JSFunction* function = jsDynamicCast<JSFunction*>(m_vm, value); |
| if (function) { |
| setConstant(node, *m_graph.freeze(function->executable())); |
| break; |
| } |
| } |
| setTypeForNode(node, SpecCellOther); |
| break; |
| } |
| |
| case CheckIsConstant: { |
| AbstractValue& value = forNode(node->child1()); |
| if (value.value() == node->constant()->value() && (value.value() || value.m_type == SpecEmpty)) { |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| } |
| filterByValue(node->child1(), *node->constant()); |
| break; |
| } |
| |
| case AssertNotEmpty: |
| case CheckNotEmpty: { |
| AbstractValue& value = forNode(node->child1()); |
| if (!(value.m_type & SpecEmpty)) { |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| } |
| |
| filter(value, ~SpecEmpty); |
| break; |
| } |
| |
| case CheckIdent: { |
| AbstractValue& value = forNode(node->child1()); |
| UniquedStringImpl* uid = node->uidOperand(); |
| |
| JSValue childConstant = value.value(); |
| if (childConstant) { |
| if (childConstant.isString()) { |
| if (asString(childConstant)->tryGetValueImpl() == uid) { |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| } |
| } else if (childConstant.isSymbol()) { |
| if (&jsCast<Symbol*>(childConstant)->uid() == uid) { |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| } |
| } |
| } |
| |
| if (node->child1().useKind() == StringIdentUse) |
| filter(value, SpecStringIdent); |
| else |
| filter(value, SpecSymbol); |
| break; |
| } |
| |
| case AssertInBounds: |
| break; |
| |
| case CheckInBounds: { |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| if (left && right && left.isInt32() && right.isInt32() && static_cast<uint32_t>(left.asInt32()) < static_cast<uint32_t>(right.asInt32())) |
| m_state.setShouldTryConstantFolding(true); |
| |
| // We claim we result in Int32. It's not really important what our result is (though we |
| // don't want to claim we may result in the empty value), other nodes with data flow edges |
| // to us just do that to maintain the invariant that they can't be hoisted higher than us. |
| // So we just arbitrarily pick Int32. In some ways, StorageResult may be the more correct |
| // thing to do here. We pick NodeResultJS because it makes converting this to an identity |
| // easier. |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| case CheckInBoundsInt52: { |
| // See the CheckInBounds case, it does not really matter what we put here. |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| |
| case CheckPrivateBrand: |
| case SetPrivateBrand: |
| case PutPrivateName: { |
| clobberWorld(); |
| break; |
| } |
| |
| case PutPrivateNameById: |
| case PutById: |
| case PutByIdFlush: |
| case PutByIdDirect: { |
| AbstractValue& value = forNode(node->child1()); |
| if (Options::useAccessInlining() && value.m_structure.isFinite()) { |
| bool isDirect = node->op() == PutByIdDirect || node->op() == PutPrivateNameById; |
| auto privateFieldPutKind = node->op() == PutPrivateNameById ? node->privateFieldPutKind() : PrivateFieldPutKind::none(); |
| PutByStatus status = PutByStatus::computeFor( |
| m_graph.globalObjectFor(node->origin.semantic), |
| value.m_structure.toStructureSet(), |
| node->cacheableIdentifier(), |
| isDirect, privateFieldPutKind); |
| |
| bool allGood = true; |
| if (status.isSimple()) { |
| RegisteredStructureSet newSet; |
| TransitionVector transitions; |
| |
| for (const PutByVariant& variant : status.variants()) { |
| for (const ObjectPropertyCondition& condition : variant.conditionSet()) { |
| if (!m_graph.watchCondition(condition)) { |
| allGood = false; |
| break; |
| } |
| } |
| |
| if (!allGood) |
| break; |
| |
| if (variant.kind() == PutByVariant::Transition) { |
| RegisteredStructure newStructure = m_graph.registerStructure(variant.newStructure()); |
| transitions.append( |
| Transition( |
| m_graph.registerStructure(variant.oldStructureForTransition()), newStructure)); |
| newSet.add(newStructure); |
| } else { |
| ASSERT(variant.kind() == PutByVariant::Replace); |
| newSet.merge(*m_graph.addStructureSet(variant.oldStructure())); |
| } |
| } |
| |
| if (status.numVariants() == 1 || m_graph.m_plan.isFTL()) |
| m_state.setShouldTryConstantFolding(true); |
| |
| if (allGood) { |
| didFoldClobberWorld(); |
| observeTransitions(clobberLimit, transitions); |
| if (forNode(node->child1()).changeStructure(m_graph, newSet) == Contradiction) |
| m_state.setIsValid(false); |
| break; |
| } |
| } |
| } |
| |
| clobberWorld(); |
| break; |
| } |
| |
| case PutByValWithThis: |
| case PutByIdWithThis: |
| clobberWorld(); |
| break; |
| |
| case PutGetterById: |
| case PutSetterById: |
| case PutGetterSetterById: |
| case PutGetterByVal: |
| case PutSetterByVal: { |
| clobberWorld(); |
| break; |
| } |
| |
| case DefineDataProperty: |
| case DefineAccessorProperty: |
| clobberWorld(); |
| break; |
| |
| case InById: { |
| // FIXME: We can determine when the property definitely exists based on abstract |
| // value information. |
| clobberWorld(); |
| filter(node->child1(), SpecObject); |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| |
| case InByVal: { |
| AbstractValue& property = forNode(node->child2()); |
| if (JSValue constant = property.value()) { |
| if (constant.isString()) { |
| JSString* string = asString(constant); |
| if (CacheableIdentifier::isCacheableIdentifierCell(string) && !parseIndex(CacheableIdentifier::createFromCell(string).uid())) |
| m_state.setShouldTryConstantFolding(true); |
| } |
| } |
| |
| // FIXME: We can determine when the property definitely exists based on abstract |
| // value information. |
| clobberWorld(); |
| filter(node->child1(), SpecObject); |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| |
| case HasPrivateName: |
| case HasPrivateBrand: { |
| clobberWorld(); |
| filter(node->child1(), SpecObject); |
| filter(node->child2(), SpecSymbol); |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| |
| case HasOwnProperty: { |
| clobberWorld(); |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| |
| case HasIndexedProperty: { |
| ArrayMode mode = node->arrayMode(); |
| switch (mode.type()) { |
| case Array::Int32: |
| case Array::Double: |
| case Array::Contiguous: |
| case Array::ArrayStorage: { |
| if (mode.isInBounds()) |
| break; |
| FALLTHROUGH; |
| } |
| default: { |
| clobberWorld(); |
| break; |
| } |
| } |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| |
| case GetPropertyEnumerator: { |
| setTypeForNode(node, SpecCell); |
| clobberWorld(); |
| break; |
| } |
| |
| case EnumeratorNextUpdateIndexAndMode: { |
| ArrayMode arrayMode = node->arrayMode(); |
| if (node->enumeratorMetadata() == JSPropertyNameEnumerator::OwnStructureMode && m_graph.varArgChild(node, 0).useKind() == CellUse) { |
| // Do nothing. |
| } else if (node->enumeratorMetadata() != JSPropertyNameEnumerator::IndexedMode) |
| clobberWorld(); |
| else { |
| switch (arrayMode.type()) { |
| case Array::Int32: |
| case Array::Double: |
| case Array::Contiguous: |
| case Array::ArrayStorage: { |
| if (arrayMode.isInBounds()) |
| break; |
| FALLTHROUGH; |
| } |
| default: { |
| clobberWorld(); |
| break; |
| } |
| } |
| } |
| setNonCellTypeForNode(node, SpecBytecodeNumber); |
| break; |
| } |
| |
| case EnumeratorNextExtractMode: { |
| if (node->child1()->enumeratorMetadata() == JSPropertyNameEnumerator::IndexedMode) { |
| setConstant(node, jsNumber(static_cast<uint8_t>(JSPropertyNameEnumerator::IndexedMode))); |
| break; |
| } |
| |
| if (node->child1()->enumeratorMetadata() == JSPropertyNameEnumerator::OwnStructureMode && m_graph.varArgChild(node->child1().node(), 0).useKind() == CellUse) { |
| setConstant(node, jsNumber(static_cast<uint8_t>(JSPropertyNameEnumerator::OwnStructureMode))); |
| break; |
| } |
| |
| FALLTHROUGH; |
| } |
| case EnumeratorNextExtractIndex: { |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| |
| case EnumeratorNextUpdatePropertyName: { |
| setTypeForNode(node, SpecStringIdent); |
| break; |
| } |
| |
| case EnumeratorInByVal: |
| case EnumeratorHasOwnProperty: { |
| // FIXME: We can determine when the property definitely exists based on abstract |
| // value information. |
| clobberWorld(); |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| |
| case GetGlobalVar: |
| makeHeapTopForNode(node); |
| break; |
| |
| case GetGlobalLexicalVariable: |
| makeBytecodeTopForNode(node); |
| break; |
| |
| case GetDynamicVar: |
| clobberWorld(); |
| makeBytecodeTopForNode(node); |
| break; |
| |
| case PutDynamicVar: |
| clobberWorld(); |
| break; |
| |
| case ResolveScope: |
| clobberWorld(); |
| setTypeForNode(node, SpecObject); |
| break; |
| |
| case ResolveScopeForHoistingFuncDeclInEval: |
| clobberWorld(); |
| makeBytecodeTopForNode(node); |
| break; |
| |
| case PutGlobalVariable: |
| case NotifyWrite: |
| break; |
| |
| case OverridesHasInstance: |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| |
| case InstanceOf: |
| clobberWorld(); |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| |
| case InstanceOfCustom: |
| clobberWorld(); |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| |
| case MatchStructure: { |
| AbstractValue base = forNode(node->child1()); |
| RegisteredStructureSet baseSet; |
| |
| BooleanLattice result = BooleanLattice::Bottom; |
| for (MatchStructureVariant& variant : node->matchStructureData().variants) { |
| RegisteredStructure structure = variant.structure; |
| if (!base.contains(structure)) { |
| m_state.setShouldTryConstantFolding(true); |
| continue; |
| } |
| |
| baseSet.add(structure); |
| result = leastUpperBoundOfBooleanLattices( |
| result, variant.result ? BooleanLattice::True : BooleanLattice::False); |
| } |
| |
| if (forNode(node->child1()).changeStructure(m_graph, baseSet) == Contradiction) |
| m_state.setIsValid(false); |
| |
| switch (result) { |
| case BooleanLattice::False: |
| setConstant(node, jsBoolean(false)); |
| break; |
| case BooleanLattice::True: |
| setConstant(node, jsBoolean(true)); |
| break; |
| default: |
| setNonCellTypeForNode(node, SpecBoolean); |
| break; |
| } |
| break; |
| } |
| |
| case Phi: |
| RELEASE_ASSERT(m_graph.m_form == SSA); |
| setForNode(node, forNode(NodeFlowProjection(node, NodeFlowProjection::Shadow))); |
| // The state of this node would have already been decided, but it may have become a |
| // constant, in which case we'd like to know. |
| if (forNode(node).m_value) |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| |
| case Upsilon: { |
| NodeFlowProjection shadow(node->phi(), NodeFlowProjection::Shadow); |
| if (shadow.isStillValid()) { |
| m_state.createValueForNode(shadow); |
| setForNode(shadow, forNode(node->child1())); |
| } |
| break; |
| } |
| |
| case Flush: |
| case PhantomLocal: |
| break; |
| |
| case Call: |
| case TailCallInlinedCaller: |
| case Construct: |
| case CallVarargs: |
| case CallForwardVarargs: |
| case TailCallVarargsInlinedCaller: |
| case ConstructVarargs: |
| case ConstructForwardVarargs: |
| case TailCallForwardVarargsInlinedCaller: |
| case CallEval: |
| case DirectCall: |
| case DirectConstruct: |
| case DirectTailCallInlinedCaller: |
| clobberWorld(); |
| makeHeapTopForNode(node); |
| break; |
| |
| case ForceOSRExit: |
| case CheckBadValue: |
| m_state.setIsValid(false); |
| break; |
| |
| case InvalidationPoint: |
| m_state.setStructureClobberState(StructuresAreWatched); |
| m_state.observeInvalidationPoint(); |
| break; |
| |
| case CPUIntrinsic: |
| if (node->intrinsic() == CPURdtscIntrinsic) |
| setNonCellTypeForNode(node, SpecInt32Only); |
| else |
| setNonCellTypeForNode(node, SpecOther); |
| break; |
| |
| case CheckTraps: |
| case LogShadowChickenPrologue: |
| case LogShadowChickenTail: |
| case ProfileType: |
| case ProfileControlFlow: |
| case Phantom: |
| case CountExecution: |
| case CheckTierUpInLoop: |
| case CheckTierUpAtReturn: |
| case CheckDetached: |
| case SuperSamplerBegin: |
| case SuperSamplerEnd: |
| case CheckTierUpAndOSREnter: |
| case LoopHint: |
| case ExitOK: |
| case FilterCallLinkStatus: |
| case FilterGetByStatus: |
| case FilterPutByStatus: |
| case FilterInByStatus: |
| case FilterDeleteByStatus: |
| case FilterCheckPrivateBrandStatus: |
| case FilterSetPrivateBrandStatus: |
| case ClearCatchLocals: |
| break; |
| |
| case CheckTypeInfoFlags: { |
| const AbstractValue& abstractValue = forNode(node->child1()); |
| unsigned bits = node->typeInfoOperand(); |
| ASSERT(bits); |
| if (bits == ImplementsDefaultHasInstance) { |
| if (abstractValue.m_type == SpecFunctionWithDefaultHasInstance) { |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| } |
| } |
| |
| if (JSValue value = abstractValue.value()) { |
| if (value.isCell()) { |
| // This works because if we see a cell here, we know it's fully constructed |
| // and we can read its inline type info flags. These flags don't change over the |
| // object's lifetime. |
| if ((value.asCell()->inlineTypeFlags() & bits) == bits) { |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| } |
| } |
| } |
| |
| if (abstractValue.m_structure.isFinite()) { |
| bool ok = true; |
| abstractValue.m_structure.forEach([&] (RegisteredStructure structure) { |
| ok &= (structure->typeInfo().inlineTypeFlags() & bits) == bits; |
| }); |
| if (ok) { |
| m_state.setShouldTryConstantFolding(true); |
| break; |
| } |
| } |
| |
| break; |
| } |
| |
| case ParseInt: { |
| AbstractValue value = forNode(node->child1()); |
| if (value.m_type && !(value.m_type & ~SpecInt32Only)) { |
| JSValue radix; |
| if (!node->child2()) |
| radix = jsNumber(0); |
| else |
| radix = forNode(node->child2()).m_value; |
| |
| if (radix.isNumber() |
| && (radix.asNumber() == 0 || radix.asNumber() == 10)) { |
| m_state.setShouldTryConstantFolding(true); |
| if (node->child1().useKind() == UntypedUse) |
| didFoldClobberWorld(); |
| setNonCellTypeForNode(node, SpecInt32Only); |
| break; |
| } |
| } |
| |
| if (node->child1().useKind() == UntypedUse) |
| clobberWorld(); |
| setNonCellTypeForNode(node, SpecBytecodeNumber); |
| break; |
| } |
| |
| case CreateRest: |
| if (!m_graph.isWatchingHavingABadTimeWatchpoint(node)) { |
| // This means we're already having a bad time. |
| clobberWorld(); |
| setTypeForNode(node, SpecArray); |
| break; |
| } |
| setForNode(node, |
| m_graph.globalObjectFor(node->origin.semantic)->restParameterStructure()); |
| break; |
| |
| case CheckVarargs: |
| case Check: { |
| // Simplify out checks that don't actually do checking. |
| m_graph.doToChildren(node, [&] (Edge edge) { |
| if (!edge) |
| return; |
| if (edge.isProved() || edge.willNotHaveCheck()) |
| m_state.setShouldTryConstantFolding(true); |
| }); |
| break; |
| } |
| |
| case SetFunctionName: { |
| clobberWorld(); |
| break; |
| } |
| |
| case StoreBarrier: |
| case FencedStoreBarrier: { |
| filter(node->child1(), SpecCell); |
| break; |
| } |
| |
| case DataViewGetInt: { |
| DataViewData data = node->dataViewData(); |
| if (data.byteSize < 4) |
| setNonCellTypeForNode(node, SpecInt32Only); |
| else { |
| ASSERT(data.byteSize == 4); |
| if (data.isSigned) |
| setNonCellTypeForNode(node, SpecInt32Only); |
| else |
| setNonCellTypeForNode(node, SpecInt52Any); |
| } |
| break; |
| } |
| |
| case DataViewGetFloat: { |
| setNonCellTypeForNode(node, SpecFullDouble); |
| break; |
| } |
| |
| case DateGetInt32OrNaN: { |
| setNonCellTypeForNode(node, SpecInt32Only | SpecDoublePureNaN); |
| break; |
| } |
| |
| case DateGetTime: { |
| setNonCellTypeForNode(node, SpecFullDouble); |
| break; |
| } |
| |
| case DataViewSet: { |
| break; |
| } |
| |
| case Unreachable: |
| // It may be that during a previous run of AI we proved that something was unreachable, but |
| // during this run of AI we forget that it's unreachable. AI's proofs don't have to get |
| // monotonically stronger over time. So, we don't assert that AI doesn't reach the |
| // Unreachable. We have no choice but to take our past proof at face value. Otherwise we'll |
| // crash whenever AI fails to be as powerful on run K as it was on run K-1. |
| m_state.setIsValid(false); |
| break; |
| |
| case LastNodeType: |
| case ArithIMul: |
| case FiatInt52: |
| DFG_CRASH(m_graph, node, "Unexpected node type"); |
| break; |
| } |
| |
| return m_state.isValid(); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::filterICStatus(Node* node) |
| { |
| switch (node->op()) { |
| case FilterCallLinkStatus: |
| if (JSValue value = forNode(node->child1()).m_value) |
| node->callLinkStatus()->filter(m_vm, value); |
| break; |
| |
| case FilterGetByStatus: { |
| AbstractValue& value = forNode(node->child1()); |
| if (value.m_structure.isFinite()) |
| node->getByStatus()->filter(value.m_structure.toStructureSet()); |
| break; |
| } |
| |
| case FilterInByStatus: { |
| AbstractValue& value = forNode(node->child1()); |
| if (value.m_structure.isFinite()) |
| node->inByStatus()->filter(value.m_structure.toStructureSet()); |
| break; |
| } |
| |
| case FilterPutByStatus: { |
| AbstractValue& value = forNode(node->child1()); |
| if (value.m_structure.isFinite()) |
| node->putByStatus()->filter(value.m_structure.toStructureSet()); |
| break; |
| } |
| |
| case FilterDeleteByStatus: { |
| AbstractValue& value = forNode(node->child1()); |
| if (value.m_structure.isFinite()) |
| node->deleteByStatus()->filter(value.m_structure.toStructureSet()); |
| break; |
| } |
| |
| case FilterCheckPrivateBrandStatus: { |
| AbstractValue& value = forNode(node->child1()); |
| if (value.m_structure.isFinite()) |
| node->checkPrivateBrandStatus()->filter(value.m_structure.toStructureSet()); |
| break; |
| } |
| |
| case FilterSetPrivateBrandStatus: { |
| AbstractValue& value = forNode(node->child1()); |
| if (value.m_structure.isFinite()) |
| node->setPrivateBrandStatus()->filter(value.m_structure.toStructureSet()); |
| break; |
| } |
| |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| } |
| |
| template<typename AbstractStateType> |
| bool AbstractInterpreter<AbstractStateType>::executeEffects(unsigned indexInBlock) |
| { |
| return executeEffects(indexInBlock, m_state.block()->at(indexInBlock)); |
| } |
| |
| template<typename AbstractStateType> |
| bool AbstractInterpreter<AbstractStateType>::execute(unsigned indexInBlock) |
| { |
| Node* node = m_state.block()->at(indexInBlock); |
| |
| startExecuting(); |
| executeEdges(node); |
| return executeEffects(indexInBlock, node); |
| } |
| |
| template<typename AbstractStateType> |
| bool AbstractInterpreter<AbstractStateType>::execute(Node* node) |
| { |
| startExecuting(); |
| executeEdges(node); |
| return executeEffects(UINT_MAX, node); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::clobberWorld() |
| { |
| clobberStructures(); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::didFoldClobberWorld() |
| { |
| didFoldClobberStructures(); |
| } |
| |
| template<typename AbstractStateType> |
| template<typename Functor> |
| void AbstractInterpreter<AbstractStateType>::forAllValues( |
| unsigned clobberLimit, Functor& functor) |
| { |
| if (clobberLimit >= m_state.block()->size()) |
| clobberLimit = m_state.block()->size(); |
| else |
| clobberLimit++; |
| ASSERT(clobberLimit <= m_state.block()->size()); |
| for (size_t i = clobberLimit; i--;) { |
| NodeFlowProjection::forEach( |
| m_state.block()->at(i), |
| [&] (NodeFlowProjection nodeProjection) { |
| functor(forNode(nodeProjection)); |
| }); |
| } |
| if (m_graph.m_form == SSA) { |
| for (NodeFlowProjection node : m_state.block()->ssa->liveAtHead) { |
| if (node.isStillValid()) |
| functor(forNode(node)); |
| } |
| } |
| for (size_t i = m_state.size(); i--;) |
| functor(m_state.atIndex(i)); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::clobberStructures() |
| { |
| m_state.clobberStructures(); |
| m_state.mergeClobberState(AbstractInterpreterClobberState::ClobberedStructures); |
| m_state.setStructureClobberState(StructuresAreClobbered); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::didFoldClobberStructures() |
| { |
| m_state.mergeClobberState(AbstractInterpreterClobberState::FoldedClobber); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::observeTransition( |
| unsigned clobberLimit, RegisteredStructure from, RegisteredStructure to) |
| { |
| // Stop performing precise structure transition tracking. |
| // Precise structure transition tracking shows quadratic complexity for # of nodes in a basic block. |
| // If it is too large, we conservatively clobber all the structures. |
| if (m_state.block()->size() > Options::maxDFGNodesInBasicBlockForPreciseAnalysis()) { |
| clobberStructures(); |
| return; |
| } |
| |
| AbstractValue::TransitionObserver transitionObserver(from, to); |
| forAllValues(clobberLimit, transitionObserver); |
| |
| ASSERT(!from->dfgShouldWatch()); // We don't need to claim to be in a clobbered state because 'from' was never watchable (during the time we were compiling), hence no constants ever introduced into the DFG IR that ever had a watchable structure would ever have the same structure as from. |
| |
| m_state.mergeClobberState(AbstractInterpreterClobberState::ObservedTransitions); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::observeTransitions( |
| unsigned clobberLimit, const TransitionVector& vector) |
| { |
| if (vector.isEmpty()) |
| return; |
| |
| // Stop performing precise structure transition tracking. |
| // Precise structure transition tracking shows quadratic complexity for # of nodes in a basic block. |
| // If it is too large, we conservatively clobber all the structures. |
| if (m_state.block()->size() > Options::maxDFGNodesInBasicBlockForPreciseAnalysis()) { |
| clobberStructures(); |
| return; |
| } |
| |
| AbstractValue::TransitionsObserver transitionsObserver(vector); |
| forAllValues(clobberLimit, transitionsObserver); |
| |
| if (ASSERT_ENABLED) { |
| // We don't need to claim to be in a clobbered state because none of the Transition::previous structures are watchable. |
| for (unsigned i = vector.size(); i--;) |
| ASSERT(!vector[i].previous->dfgShouldWatch()); |
| } |
| |
| m_state.mergeClobberState(AbstractInterpreterClobberState::ObservedTransitions); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::dump(PrintStream& out) const |
| { |
| const_cast<AbstractInterpreter<AbstractStateType>*>(this)->dump(out); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::dump(PrintStream& out) |
| { |
| CommaPrinter comma(" "); |
| HashSet<NodeFlowProjection> seen; |
| if (m_graph.m_form == SSA) { |
| for (NodeFlowProjection node : m_state.block()->ssa->liveAtHead) { |
| seen.add(node); |
| AbstractValue& value = forNode(node); |
| if (value.isClear()) |
| continue; |
| out.print(comma, node, ":", value); |
| } |
| } |
| for (size_t i = 0; i < m_state.block()->size(); ++i) { |
| NodeFlowProjection::forEach( |
| m_state.block()->at(i), [&] (NodeFlowProjection nodeProjection) { |
| seen.add(nodeProjection); |
| AbstractValue& value = forNode(nodeProjection); |
| if (value.isClear()) |
| return; |
| out.print(comma, nodeProjection, ":", value); |
| }); |
| } |
| if (m_graph.m_form == SSA) { |
| for (NodeFlowProjection node : m_state.block()->ssa->liveAtTail) { |
| if (seen.contains(node)) |
| continue; |
| AbstractValue& value = forNode(node); |
| if (value.isClear()) |
| continue; |
| out.print(comma, node, ":", value); |
| } |
| } |
| } |
| |
| template<typename AbstractStateType> |
| FiltrationResult AbstractInterpreter<AbstractStateType>::filter( |
| AbstractValue& value, const RegisteredStructureSet& set, SpeculatedType admittedTypes) |
| { |
| if (value.filter(m_graph, set, admittedTypes) == FiltrationOK) |
| return FiltrationOK; |
| m_state.setIsValid(false); |
| return Contradiction; |
| } |
| |
| template<typename AbstractStateType> |
| FiltrationResult AbstractInterpreter<AbstractStateType>::filterArrayModes( |
| AbstractValue& value, ArrayModes arrayModes, SpeculatedType admittedTypes) |
| { |
| if (value.filterArrayModes(arrayModes, admittedTypes) == FiltrationOK) |
| return FiltrationOK; |
| m_state.setIsValid(false); |
| return Contradiction; |
| } |
| |
| template<typename AbstractStateType> |
| FiltrationResult AbstractInterpreter<AbstractStateType>::filter( |
| AbstractValue& value, SpeculatedType type) |
| { |
| if (value.filter(type) == FiltrationOK) |
| return FiltrationOK; |
| m_state.setIsValid(false); |
| return Contradiction; |
| } |
| |
| template<typename AbstractStateType> |
| FiltrationResult AbstractInterpreter<AbstractStateType>::filterByValue( |
| AbstractValue& abstractValue, FrozenValue concreteValue) |
| { |
| if (abstractValue.filterByValue(concreteValue) == FiltrationOK) |
| return FiltrationOK; |
| m_state.setIsValid(false); |
| return Contradiction; |
| } |
| |
| template<typename AbstractStateType> |
| FiltrationResult AbstractInterpreter<AbstractStateType>::filterClassInfo( |
| AbstractValue& value, const ClassInfo* classInfo) |
| { |
| if (value.filterClassInfo(m_graph, classInfo) == FiltrationOK) |
| return FiltrationOK; |
| m_state.setIsValid(false); |
| return Contradiction; |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::executeDoubleUnaryOpEffects(Node* node, double(*equivalentFunction)(double)) |
| { |
| JSValue child = forNode(node->child1()).value(); |
| if (std::optional<double> number = child.toNumberFromPrimitive()) { |
| if (node->child1().useKind() != DoubleRepUse) |
| didFoldClobberWorld(); |
| setConstant(node, jsDoubleNumber(equivalentFunction(*number))); |
| return; |
| } |
| SpeculatedType type; |
| if (node->child1().useKind() == DoubleRepUse) |
| type = typeOfDoubleUnaryOp(forNode(node->child1()).m_type); |
| else { |
| clobberWorld(); |
| type = SpecBytecodeNumber; |
| } |
| setNonCellTypeForNode(node, type); |
| } |
| |
| } } // namespace JSC::DFG |
| |
| #endif // ENABLE(DFG_JIT) |