blob: 37215b2a928dea6c565dcd65682869db957a71cd [file] [log] [blame]
/*
* Copyright (C) 2013 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGAbstractValue.h"
#if ENABLE(DFG_JIT)
#include "DFGGraph.h"
#include "Operations.h"
namespace JSC { namespace DFG {
void AbstractValue::setMostSpecific(Graph& graph, JSValue value)
{
if (!!value && value.isCell()) {
Structure* structure = value.asCell()->structure();
m_currentKnownStructure = structure;
setFuturePossibleStructure(graph, structure);
m_arrayModes = asArrayModes(structure->indexingType());
} else {
m_currentKnownStructure.clear();
m_futurePossibleStructure.clear();
m_arrayModes = 0;
}
m_type = speculationFromValue(value);
m_value = value;
checkConsistency();
}
void AbstractValue::set(Graph& graph, JSValue value)
{
if (!!value && value.isCell()) {
m_currentKnownStructure.makeTop();
Structure* structure = value.asCell()->structure();
setFuturePossibleStructure(graph, structure);
m_arrayModes = asArrayModes(structure->indexingType());
clobberArrayModes();
} else {
m_currentKnownStructure.clear();
m_futurePossibleStructure.clear();
m_arrayModes = 0;
}
m_type = speculationFromValue(value);
if (m_type == SpecInt52AsDouble)
m_type = SpecInt52;
m_value = value;
checkConsistency();
}
void AbstractValue::set(Graph& graph, Structure* structure)
{
m_currentKnownStructure = structure;
setFuturePossibleStructure(graph, structure);
m_arrayModes = asArrayModes(structure->indexingType());
m_type = speculationFromStructure(structure);
m_value = JSValue();
checkConsistency();
}
FiltrationResult AbstractValue::filter(Graph& graph, const StructureSet& other)
{
if (isClear())
return FiltrationOK;
// FIXME: This could be optimized for the common case of m_type not
// having structures, array modes, or a specific value.
// https://bugs.webkit.org/show_bug.cgi?id=109663
m_type &= other.speculationFromStructures();
m_arrayModes &= other.arrayModesFromStructures();
m_currentKnownStructure.filter(other);
// It's possible that prior to the above two statements we had (Foo, TOP), where
// Foo is a SpeculatedType that is disjoint with the passed StructureSet. In that
// case, we will now have (None, [someStructure]). In general, we need to make
// sure that new information gleaned from the SpeculatedType needs to be fed back
// into the information gleaned from the StructureSet.
m_currentKnownStructure.filter(m_type);
if (m_currentKnownStructure.hasSingleton())
setFuturePossibleStructure(graph, m_currentKnownStructure.singleton());
filterArrayModesByType();
filterValueByType();
return normalizeClarity();
}
FiltrationResult AbstractValue::filterArrayModes(ArrayModes arrayModes)
{
ASSERT(arrayModes);
if (isClear())
return FiltrationOK;
m_type &= SpecCell;
m_arrayModes &= arrayModes;
return normalizeClarity();
}
FiltrationResult AbstractValue::filter(SpeculatedType type)
{
if ((m_type & type) == m_type)
return FiltrationOK;
m_type &= type;
// It's possible that prior to this filter() call we had, say, (Final, TOP), and
// the passed type is Array. At this point we'll have (None, TOP). The best way
// to ensure that the structure filtering does the right thing is to filter on
// the new type (None) rather than the one passed (Array).
m_currentKnownStructure.filter(m_type);
m_futurePossibleStructure.filter(m_type);
filterArrayModesByType();
filterValueByType();
return normalizeClarity();
}
FiltrationResult AbstractValue::filterByValue(JSValue value)
{
FiltrationResult result = filter(speculationFromValue(value));
if (m_type)
m_value = value;
return result;
}
void AbstractValue::setFuturePossibleStructure(Graph& graph, Structure* structure)
{
if (graph.watchpoints().isStillValid(structure->transitionWatchpointSet()))
m_futurePossibleStructure = structure;
else
m_futurePossibleStructure.makeTop();
}
void AbstractValue::filterValueByType()
{
// We could go further, and ensure that if the futurePossibleStructure contravenes
// the value, then we could clear both of those things. But that's unlikely to help
// in any realistic scenario, so we don't do it. Simpler is better.
if (!!m_type) {
// The type is still non-empty. It may be that the new type renders
// the value empty because it contravenes the constant value we had.
if (m_value && !validateType(m_value))
clear();
return;
}
// The type has been rendered empty. That means that the value must now be invalid,
// as well.
ASSERT(!m_value || !validateType(m_value));
m_value = JSValue();
}
void AbstractValue::filterArrayModesByType()
{
if (!(m_type & SpecCell))
m_arrayModes = 0;
else if (!(m_type & ~SpecArray))
m_arrayModes &= ALL_ARRAY_ARRAY_MODES;
// NOTE: If m_type doesn't have SpecArray set, that doesn't mean that the
// array modes have to be a subset of ALL_NON_ARRAY_ARRAY_MODES, since
// in the speculated type type-system, RegExpMatchesArry and ArrayPrototype
// are Otherobj (since they are not *exactly* JSArray) but in the ArrayModes
// type system they are arrays (since they expose the magical length
// property and are otherwise allocated using array allocation). Hence the
// following would be wrong:
//
// if (!(m_type & SpecArray))
// m_arrayModes &= ALL_NON_ARRAY_ARRAY_MODES;
}
bool AbstractValue::shouldBeClear() const
{
if (m_type == SpecNone)
return true;
if (!(m_type & ~SpecCell)
&& (!m_arrayModes
|| m_currentKnownStructure.isClear()))
return true;
return false;
}
FiltrationResult AbstractValue::normalizeClarity()
{
// It's useful to be able to quickly check if an abstract value is clear.
// This normalizes everything to make that easy.
FiltrationResult result;
if (shouldBeClear()) {
clear();
result = Contradiction;
} else
result = FiltrationOK;
checkConsistency();
return result;
}
#if !ASSERT_DISABLED
void AbstractValue::checkConsistency() const
{
if (!(m_type & SpecCell)) {
ASSERT(m_currentKnownStructure.isClear());
ASSERT(m_futurePossibleStructure.isClear());
ASSERT(!m_arrayModes);
}
if (isClear())
ASSERT(!m_value);
if (!!m_value) {
SpeculatedType type = m_type;
if (type & SpecInt52)
type |= SpecInt52AsDouble;
ASSERT(mergeSpeculations(type, speculationFromValue(m_value)) == type);
}
// Note that it's possible for a prediction like (Final, []). This really means that
// the value is bottom and that any code that uses the value is unreachable. But
// we don't want to get pedantic about this as it would only increase the computational
// complexity of the code.
}
#endif
void AbstractValue::dump(PrintStream& out) const
{
dumpInContext(out, 0);
}
void AbstractValue::dumpInContext(PrintStream& out, DumpContext* context) const
{
out.print("(", SpeculationDump(m_type));
if (m_type & SpecCell) {
out.print(
", ", ArrayModesDump(m_arrayModes), ", ",
inContext(m_currentKnownStructure, context), ", ",
inContext(m_futurePossibleStructure, context));
}
if (!!m_value)
out.print(", ", inContext(m_value, context));
out.print(")");
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)