blob: d48f498ea6add233c101bdc5d3845e91757dbb52 [file] [log] [blame]
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
* Copyright (C) 2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// A red-black tree, which is a form of a balanced binary tree. It
// supports efficient insertion, deletion and queries of comparable
// elements. The same element may be inserted multiple times. The
// algorithmic complexity of common operations is:
//
// Insertion: O(lg(n))
// Deletion: O(lg(n))
// Querying: O(lg(n))
//
// Type T must supply a default constructor, a copy constructor, and
// the "<" and "==" operators.
//
// In debug mode, printing of the data contained in the tree is
// enabled. This makes use of WTF::TextStream.
//
// Note that when complex types are stored in this red/black tree, it
// is possible that single invocations of the "<" and "==" operators
// will be insufficient to describe the ordering of elements in the
// tree during queries. As a concrete example, consider the case where
// intervals are stored in the tree sorted by low endpoint. The "<"
// operator on the Interval class only compares the low endpoint, but
// the "==" operator takes into account the high endpoint as well.
// This makes the necessary logic for querying and deletion somewhat
// more complex. In order to properly handle such situations, the
// template argument "needsFullOrderingComparisons" must be true.
//
// This red-black tree is designed to be _augmented_; subclasses can
// add additional and summary information to each node to efficiently
// store and index more complex data structures. A concrete example is
// the IntervalTree, which extends each node with a summary statistic
// to efficiently store one-dimensional intervals.
//
// The design of this red-black tree comes from Cormen, Leiserson,
// and Rivest, _Introduction to Algorithms_, MIT Press, 1990.
#pragma once
#include <wtf/Assertions.h>
#include <wtf/Noncopyable.h>
#ifndef NDEBUG
#include <wtf/text/StringBuilder.h>
#include <wtf/text/TextStream.h>
#endif
// FIXME: The prefix "POD" here isn't correct; this tree works with non-POD types too.
// FIXME: Remove the unusual needsFullOrderingComparisons feature by changing the interval tree to use full ordering, sorting based on low, high, and data.
// FIXME: Would be worthwhile to implement this on top of WTF::RedBlackTree rather than keeping two separate class templates around.
namespace WebCore {
template<typename T, typename NodeUpdaterType, bool needsFullOrderingComparisons>
class PODRedBlackTree {
WTF_MAKE_NONCOPYABLE(PODRedBlackTree);
public:
PODRedBlackTree() = default;
~PODRedBlackTree()
{
clear();
}
// Clearing will delete the contents of the tree.
void clear()
{
if (!m_root)
return;
Node* next;
for (Node* node = treeMinimum(m_root); node; node = next) {
next = treeSuccessorInPostOrder(node);
delete node;
}
m_root = nullptr;
}
void add(const T& data)
{
insertNode(new Node(T { data }));
}
void add(T&& data)
{
insertNode(new Node(WTFMove(data)));
}
// Returns true if the datum was found in the tree.
bool remove(const T& data)
{
Node* node = treeSearch(data);
if (node) {
deleteNode(node);
return true;
}
return false;
}
bool contains(const T& data) const
{
return treeSearch(data);
}
bool isEmpty() const
{
return !m_root;
}
#ifndef NDEBUG
bool checkInvariants() const
{
int blackCount;
return checkInvariantsFromNode(m_root, &blackCount);
}
// Dumps the tree's contents to the logging info stream for
// debugging purposes.
void dump() const
{
dumpFromNode(m_root, 0);
}
// Turns on or off verbose debugging of the tree, causing many
// messages to be logged during insertion and other operations in
// debug mode.
void setVerboseDebugging(bool verboseDebugging)
{
m_verboseDebugging = verboseDebugging;
}
#endif
protected:
enum Color { Red, Black };
// The base Node class which is stored in the tree. Nodes are only
// an internal concept; users of the tree deal only with the data
// they store in it.
class Node {
WTF_MAKE_FAST_ALLOCATED;
WTF_MAKE_NONCOPYABLE(Node);
public:
// Constructor. Newly-created nodes are colored red.
explicit Node(T&& data)
: m_data(WTFMove(data))
{
}
Color color() const { return m_color; }
void setColor(Color color) { m_color = color; }
T& data() { return m_data; }
void moveDataFrom(Node* src) { m_data = WTFMove(src->m_data); }
Node* left() const { return m_left; }
void setLeft(Node* node) { m_left = node; }
Node* right() const { return m_right; }
void setRight(Node* node) { m_right = node; }
Node* parent() const { return m_parent; }
void setParent(Node* node) { m_parent = node; }
private:
Node* m_left { nullptr };
Node* m_right { nullptr };
Node* m_parent { nullptr };
Color m_color { Red };
T m_data;
};
// Returns the root of the tree, which is needed by some subclasses.
Node* root() const { return m_root; }
private:
// This is the hook that subclasses should use when
// augmenting the red-black tree with additional per-node summary
// information. For example, in the case of an interval tree, this
// is used to compute the maximum endpoint of the subtree below the
// given node based on the values in the left and right children. It
// is guaranteed that this will be called in the correct order to
// properly update such summary information based only on the values
// in the left and right children. This method should return true if
// the node's summary information changed.
bool updateNode(Node* node)
{
return NodeUpdaterType::update(*node);
}
//----------------------------------------------------------------------
// Generic binary search tree operations
//
// Searches the tree for the given datum.
Node* treeSearch(const T& data) const
{
if (needsFullOrderingComparisons)
return treeSearchFullComparisons(m_root, data);
return treeSearchNormal(m_root, data);
}
// Searches the tree using the normal comparison operations,
// suitable for simple data types such as numbers.
Node* treeSearchNormal(Node* current, const T& data) const
{
while (current) {
if (current->data() == data)
return current;
if (data < current->data())
current = current->left();
else
current = current->right();
}
return 0;
}
// Searches the tree using multiple comparison operations, required
// for data types with more complex behavior such as intervals.
Node* treeSearchFullComparisons(Node* current, const T& data) const
{
if (!current)
return 0;
if (data < current->data())
return treeSearchFullComparisons(current->left(), data);
if (current->data() < data)
return treeSearchFullComparisons(current->right(), data);
if (data == current->data())
return current;
// We may need to traverse both the left and right subtrees.
Node* result = treeSearchFullComparisons(current->left(), data);
if (!result)
result = treeSearchFullComparisons(current->right(), data);
return result;
}
void treeInsert(Node* z)
{
Node* y = 0;
Node* x = m_root;
while (x) {
y = x;
if (z->data() < x->data())
x = x->left();
else
x = x->right();
}
z->setParent(y);
if (!y)
m_root = z;
else {
if (z->data() < y->data())
y->setLeft(z);
else
y->setRight(z);
}
}
// Finds the node following the given one in sequential ordering of
// their data, or null if none exists.
static Node* treeSuccessor(Node* x)
{
if (x->right())
return treeMinimum(x->right());
Node* y = x->parent();
while (y && x == y->right()) {
x = y;
y = y->parent();
}
return y;
}
// Finds the minimum element in the sub-tree rooted at the given
// node.
static Node* treeMinimum(Node* x)
{
while (x->left())
x = x->left();
return x;
}
static Node* treeSuccessorInPostOrder(Node* x)
{
Node* y = x->parent();
if (y && x == y->left() && y->right())
return treeMinimum(y->right());
return y;
}
// Helper for maintaining the augmented red-black tree.
void propagateUpdates(Node* start)
{
bool shouldContinue = true;
while (start && shouldContinue) {
shouldContinue = updateNode(start);
start = start->parent();
}
}
//----------------------------------------------------------------------
// Red-Black tree operations
//
// Left-rotates the subtree rooted at x.
// Returns the new root of the subtree (x's right child).
Node* leftRotate(Node* x)
{
// Set y.
Node* y = x->right();
// Turn y's left subtree into x's right subtree.
x->setRight(y->left());
if (y->left())
y->left()->setParent(x);
// Link x's parent to y.
y->setParent(x->parent());
if (!x->parent())
m_root = y;
else {
if (x == x->parent()->left())
x->parent()->setLeft(y);
else
x->parent()->setRight(y);
}
// Put x on y's left.
y->setLeft(x);
x->setParent(y);
// Update nodes lowest to highest.
updateNode(x);
updateNode(y);
return y;
}
// Right-rotates the subtree rooted at y.
// Returns the new root of the subtree (y's left child).
Node* rightRotate(Node* y)
{
// Set x.
Node* x = y->left();
// Turn x's right subtree into y's left subtree.
y->setLeft(x->right());
if (x->right())
x->right()->setParent(y);
// Link y's parent to x.
x->setParent(y->parent());
if (!y->parent())
m_root = x;
else {
if (y == y->parent()->left())
y->parent()->setLeft(x);
else
y->parent()->setRight(x);
}
// Put y on x's right.
x->setRight(y);
y->setParent(x);
// Update nodes lowest to highest.
updateNode(y);
updateNode(x);
return x;
}
// Inserts the given node into the tree.
void insertNode(Node* x)
{
treeInsert(x);
x->setColor(Red);
updateNode(x);
logIfVerbose(" PODRedBlackTree::InsertNode");
// The node from which to start propagating updates upwards.
Node* updateStart = x->parent();
while (x != m_root && x->parent()->color() == Red) {
if (x->parent() == x->parent()->parent()->left()) {
Node* y = x->parent()->parent()->right();
if (y && y->color() == Red) {
// Case 1
logIfVerbose(" Case 1/1");
x->parent()->setColor(Black);
y->setColor(Black);
x->parent()->parent()->setColor(Red);
updateNode(x->parent());
x = x->parent()->parent();
updateNode(x);
updateStart = x->parent();
} else {
if (x == x->parent()->right()) {
logIfVerbose(" Case 1/2");
// Case 2
x = x->parent();
leftRotate(x);
}
// Case 3
logIfVerbose(" Case 1/3");
x->parent()->setColor(Black);
x->parent()->parent()->setColor(Red);
Node* newSubTreeRoot = rightRotate(x->parent()->parent());
updateStart = newSubTreeRoot->parent();
}
} else {
// Same as "then" clause with "right" and "left" exchanged.
Node* y = x->parent()->parent()->left();
if (y && y->color() == Red) {
// Case 1
logIfVerbose(" Case 2/1");
x->parent()->setColor(Black);
y->setColor(Black);
x->parent()->parent()->setColor(Red);
updateNode(x->parent());
x = x->parent()->parent();
updateNode(x);
updateStart = x->parent();
} else {
if (x == x->parent()->left()) {
// Case 2
logIfVerbose(" Case 2/2");
x = x->parent();
rightRotate(x);
}
// Case 3
logIfVerbose(" Case 2/3");
x->parent()->setColor(Black);
x->parent()->parent()->setColor(Red);
Node* newSubTreeRoot = leftRotate(x->parent()->parent());
updateStart = newSubTreeRoot->parent();
}
}
}
propagateUpdates(updateStart);
m_root->setColor(Black);
}
// Restores the red-black property to the tree after splicing out
// a node. Note that x may be null, which is why xParent must be
// supplied.
void deleteFixup(Node* x, Node* xParent)
{
while (x != m_root && (!x || x->color() == Black)) {
if (x == xParent->left()) {
// Note: the text points out that w can not be null.
// The reason is not obvious from simply looking at
// the code; it comes about from the properties of the
// red-black tree.
Node* w = xParent->right();
ASSERT(w); // x's sibling should not be null.
if (w->color() == Red) {
// Case 1
w->setColor(Black);
xParent->setColor(Red);
leftRotate(xParent);
w = xParent->right();
}
if ((!w->left() || w->left()->color() == Black)
&& (!w->right() || w->right()->color() == Black)) {
// Case 2
w->setColor(Red);
x = xParent;
xParent = x->parent();
} else {
if (!w->right() || w->right()->color() == Black) {
// Case 3
w->left()->setColor(Black);
w->setColor(Red);
rightRotate(w);
w = xParent->right();
}
// Case 4
w->setColor(xParent->color());
xParent->setColor(Black);
if (w->right())
w->right()->setColor(Black);
leftRotate(xParent);
x = m_root;
xParent = x->parent();
}
} else {
// Same as "then" clause with "right" and "left"
// exchanged.
// Note: the text points out that w can not be null.
// The reason is not obvious from simply looking at
// the code; it comes about from the properties of the
// red-black tree.
Node* w = xParent->left();
ASSERT(w); // x's sibling should not be null.
if (w->color() == Red) {
// Case 1
w->setColor(Black);
xParent->setColor(Red);
rightRotate(xParent);
w = xParent->left();
}
if ((!w->right() || w->right()->color() == Black)
&& (!w->left() || w->left()->color() == Black)) {
// Case 2
w->setColor(Red);
x = xParent;
xParent = x->parent();
} else {
if (!w->left() || w->left()->color() == Black) {
// Case 3
w->right()->setColor(Black);
w->setColor(Red);
leftRotate(w);
w = xParent->left();
}
// Case 4
w->setColor(xParent->color());
xParent->setColor(Black);
if (w->left())
w->left()->setColor(Black);
rightRotate(xParent);
x = m_root;
xParent = x->parent();
}
}
}
if (x)
x->setColor(Black);
}
// Deletes the given node from the tree. Note that this
// particular node may not actually be removed from the tree;
// instead, another node might be removed and its contents
// copied into z.
void deleteNode(Node* z)
{
// Y is the node to be unlinked from the tree.
Node* y;
if (!z->left() || !z->right())
y = z;
else
y = treeSuccessor(z);
// Y is guaranteed to be non-null at this point.
Node* x;
if (y->left())
x = y->left();
else
x = y->right();
// X is the child of y which might potentially replace y in
// the tree. X might be null at this point.
Node* xParent;
if (x) {
x->setParent(y->parent());
xParent = x->parent();
} else
xParent = y->parent();
if (!y->parent())
m_root = x;
else {
if (y == y->parent()->left())
y->parent()->setLeft(x);
else
y->parent()->setRight(x);
}
if (y != z) {
z->moveDataFrom(y);
// This node has changed location in the tree and must be updated.
updateNode(z);
// The parent and its parents may now be out of date.
propagateUpdates(z->parent());
}
// If we haven't already updated starting from xParent, do so now.
if (xParent && xParent != y && xParent != z)
propagateUpdates(xParent);
if (y->color() == Black)
deleteFixup(x, xParent);
delete y;
}
//----------------------------------------------------------------------
// Verification and debugging routines
//
#ifndef NDEBUG
// Returns in the "blackCount" parameter the number of black
// children along all paths to all leaves of the given node.
bool checkInvariantsFromNode(Node* node, int* blackCount) const
{
// Base case is a leaf node.
if (!node) {
*blackCount = 1;
return true;
}
// Each node is either red or black.
if (!(node->color() == Red || node->color() == Black))
return false;
// Every leaf (or null) is black.
if (node->color() == Red) {
// Both of its children are black.
if (!((!node->left() || node->left()->color() == Black)))
return false;
if (!((!node->right() || node->right()->color() == Black)))
return false;
}
// Every simple path to a leaf node contains the same number of
// black nodes.
int leftCount = 0, rightCount = 0;
bool leftValid = checkInvariantsFromNode(node->left(), &leftCount);
bool rightValid = checkInvariantsFromNode(node->right(), &rightCount);
if (!leftValid || !rightValid)
return false;
*blackCount = leftCount + (node->color() == Black ? 1 : 0);
return leftCount == rightCount;
}
#endif
#ifdef NDEBUG
void logIfVerbose(const char*) const { }
#else
void logIfVerbose(const char* output) const
{
if (m_verboseDebugging)
LOG_ERROR("%s", output);
}
#endif
#ifndef NDEBUG
// Dumps the subtree rooted at the given node.
void dumpFromNode(Node* node, int indentation) const
{
StringBuilder builder;
for (int i = 0; i < indentation; i++)
builder.append(' ');
builder.append('-');
if (node) {
builder.append(' ');
TextStream stream;
stream << node->data();
builder.append(stream.release());
builder.append((node->color() == Black) ? " (black)" : " (red)");
}
LOG_ERROR("%s", builder.toString().utf8().data());
if (node) {
dumpFromNode(node->left(), indentation + 2);
dumpFromNode(node->right(), indentation + 2);
}
}
#endif
//----------------------------------------------------------------------
// Data members
Node* m_root { nullptr };
#ifndef NDEBUG
bool m_verboseDebugging { false };
#endif
};
} // namespace WebCore