| /* |
| * Copyright (C) 2013, 2015 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS |
| * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| * THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "BytecodeLivenessAnalysis.h" |
| |
| #include "BytecodeKills.h" |
| #include "BytecodeLivenessAnalysisInlines.h" |
| #include "BytecodeUseDef.h" |
| #include "CodeBlock.h" |
| #include "FullBytecodeLiveness.h" |
| #include "PreciseJumpTargets.h" |
| |
| namespace JSC { |
| |
| BytecodeLivenessAnalysis::BytecodeLivenessAnalysis(CodeBlock* codeBlock) |
| : m_codeBlock(codeBlock) |
| { |
| ASSERT(m_codeBlock); |
| compute(); |
| } |
| |
| static bool isValidRegisterForLiveness(CodeBlock* codeBlock, int operand) |
| { |
| if (codeBlock->isConstantRegisterIndex(operand)) |
| return false; |
| |
| VirtualRegister virtualReg(operand); |
| return virtualReg.isLocal(); |
| } |
| |
| static unsigned getLeaderOffsetForBasicBlock(std::unique_ptr<BytecodeBasicBlock>* basicBlock) |
| { |
| return (*basicBlock)->leaderBytecodeOffset(); |
| } |
| |
| static BytecodeBasicBlock* findBasicBlockWithLeaderOffset(Vector<std::unique_ptr<BytecodeBasicBlock>>& basicBlocks, unsigned leaderOffset) |
| { |
| return (*tryBinarySearch<std::unique_ptr<BytecodeBasicBlock>, unsigned>(basicBlocks, basicBlocks.size(), leaderOffset, getLeaderOffsetForBasicBlock)).get(); |
| } |
| |
| static bool blockContainsBytecodeOffset(BytecodeBasicBlock* block, unsigned bytecodeOffset) |
| { |
| unsigned leaderOffset = block->leaderBytecodeOffset(); |
| return bytecodeOffset >= leaderOffset && bytecodeOffset < leaderOffset + block->totalBytecodeLength(); |
| } |
| |
| static BytecodeBasicBlock* findBasicBlockForBytecodeOffset(Vector<std::unique_ptr<BytecodeBasicBlock>>& basicBlocks, unsigned bytecodeOffset) |
| { |
| /* |
| for (unsigned i = 0; i < basicBlocks.size(); i++) { |
| if (blockContainsBytecodeOffset(basicBlocks[i].get(), bytecodeOffset)) |
| return basicBlocks[i].get(); |
| } |
| return 0; |
| */ |
| std::unique_ptr<BytecodeBasicBlock>* basicBlock = approximateBinarySearch<std::unique_ptr<BytecodeBasicBlock>, unsigned>( |
| basicBlocks, basicBlocks.size(), bytecodeOffset, getLeaderOffsetForBasicBlock); |
| // We found the block we were looking for. |
| if (blockContainsBytecodeOffset((*basicBlock).get(), bytecodeOffset)) |
| return (*basicBlock).get(); |
| |
| // Basic block is to the left of the returned block. |
| if (bytecodeOffset < (*basicBlock)->leaderBytecodeOffset()) { |
| ASSERT(basicBlock - 1 >= basicBlocks.data()); |
| ASSERT(blockContainsBytecodeOffset(basicBlock[-1].get(), bytecodeOffset)); |
| return basicBlock[-1].get(); |
| } |
| |
| // Basic block is to the right of the returned block. |
| ASSERT(&basicBlock[1] <= &basicBlocks.last()); |
| ASSERT(blockContainsBytecodeOffset(basicBlock[1].get(), bytecodeOffset)); |
| return basicBlock[1].get(); |
| } |
| |
| // Simplified interface to bytecode use/def, which determines defs first and then uses, and includes |
| // exception handlers in the uses. |
| template<typename UseFunctor, typename DefFunctor> |
| static void stepOverInstruction(CodeBlock* codeBlock, BytecodeBasicBlock* block, Vector<std::unique_ptr<BytecodeBasicBlock>>& basicBlocks, unsigned bytecodeOffset, const UseFunctor& use, const DefFunctor& def) |
| { |
| // This abstractly execute the instruction in reverse. Instructions logically first use operands and |
| // then define operands. This logical ordering is necessary for operations that use and def the same |
| // operand, like: |
| // |
| // op_add loc1, loc1, loc2 |
| // |
| // The use of loc1 happens before the def of loc1. That's a semantic requirement since the add |
| // operation cannot travel forward in time to read the value that it will produce after reading that |
| // value. Since we are executing in reverse, this means that we must do defs before uses (reverse of |
| // uses before defs). |
| // |
| // Since this is a liveness analysis, this ordering ends up being particularly important: if we did |
| // uses before defs, then the add operation above would appear to not have loc1 live, since we'd |
| // first add it to the out set (the use), and then we'd remove it (the def). |
| |
| computeDefsForBytecodeOffset( |
| codeBlock, block, bytecodeOffset, |
| [&] (CodeBlock* codeBlock, Instruction*, OpcodeID, int operand) { |
| if (isValidRegisterForLiveness(codeBlock, operand)) |
| def(VirtualRegister(operand).toLocal()); |
| }); |
| |
| computeUsesForBytecodeOffset( |
| codeBlock, block, bytecodeOffset, |
| [&] (CodeBlock* codeBlock, Instruction*, OpcodeID, int operand) { |
| if (isValidRegisterForLiveness(codeBlock, operand)) |
| use(VirtualRegister(operand).toLocal()); |
| }); |
| |
| // If we have an exception handler, we want the live-in variables of the |
| // exception handler block to be included in the live-in of this particular bytecode. |
| if (HandlerInfo* handler = codeBlock->handlerForBytecodeOffset(bytecodeOffset)) { |
| BytecodeBasicBlock* handlerBlock = findBasicBlockWithLeaderOffset(basicBlocks, handler->target); |
| ASSERT(handlerBlock); |
| handlerBlock->in().forEachSetBit(use); |
| } |
| } |
| |
| static void stepOverInstruction(CodeBlock* codeBlock, BytecodeBasicBlock* block, Vector<std::unique_ptr<BytecodeBasicBlock>>& basicBlocks, unsigned bytecodeOffset, FastBitVector& out) |
| { |
| stepOverInstruction( |
| codeBlock, block, basicBlocks, bytecodeOffset, |
| [&] (unsigned bitIndex) { |
| // This is the use functor, so we set the bit. |
| out.set(bitIndex); |
| }, |
| [&] (unsigned bitIndex) { |
| // This is the def functor, so we clear the bit. |
| out.clear(bitIndex); |
| }); |
| } |
| |
| static void computeLocalLivenessForBytecodeOffset(CodeBlock* codeBlock, BytecodeBasicBlock* block, Vector<std::unique_ptr<BytecodeBasicBlock>>& basicBlocks, unsigned targetOffset, FastBitVector& result) |
| { |
| ASSERT(!block->isExitBlock()); |
| ASSERT(!block->isEntryBlock()); |
| |
| FastBitVector out = block->out(); |
| |
| for (int i = block->bytecodeOffsets().size() - 1; i >= 0; i--) { |
| unsigned bytecodeOffset = block->bytecodeOffsets()[i]; |
| if (targetOffset > bytecodeOffset) |
| break; |
| |
| stepOverInstruction(codeBlock, block, basicBlocks, bytecodeOffset, out); |
| } |
| |
| result.set(out); |
| } |
| |
| static void computeLocalLivenessForBlock(CodeBlock* codeBlock, BytecodeBasicBlock* block, Vector<std::unique_ptr<BytecodeBasicBlock>>& basicBlocks) |
| { |
| if (block->isExitBlock() || block->isEntryBlock()) |
| return; |
| computeLocalLivenessForBytecodeOffset(codeBlock, block, basicBlocks, block->leaderBytecodeOffset(), block->in()); |
| } |
| |
| void BytecodeLivenessAnalysis::runLivenessFixpoint() |
| { |
| UnlinkedCodeBlock* unlinkedCodeBlock = m_codeBlock->unlinkedCodeBlock(); |
| unsigned numberOfVariables = unlinkedCodeBlock->m_numCalleeLocals; |
| |
| for (unsigned i = 0; i < m_basicBlocks.size(); i++) { |
| BytecodeBasicBlock* block = m_basicBlocks[i].get(); |
| block->in().resize(numberOfVariables); |
| block->out().resize(numberOfVariables); |
| } |
| |
| bool changed; |
| m_basicBlocks.last()->in().clearAll(); |
| m_basicBlocks.last()->out().clearAll(); |
| FastBitVector newOut; |
| newOut.resize(m_basicBlocks.last()->out().numBits()); |
| do { |
| changed = false; |
| for (unsigned i = m_basicBlocks.size() - 1; i--;) { |
| BytecodeBasicBlock* block = m_basicBlocks[i].get(); |
| newOut.clearAll(); |
| for (unsigned j = 0; j < block->successors().size(); j++) |
| newOut.merge(block->successors()[j]->in()); |
| bool outDidChange = block->out().setAndCheck(newOut); |
| computeLocalLivenessForBlock(m_codeBlock, block, m_basicBlocks); |
| changed |= outDidChange; |
| } |
| } while (changed); |
| } |
| |
| void BytecodeLivenessAnalysis::getLivenessInfoAtBytecodeOffset(unsigned bytecodeOffset, FastBitVector& result) |
| { |
| BytecodeBasicBlock* block = findBasicBlockForBytecodeOffset(m_basicBlocks, bytecodeOffset); |
| ASSERT(block); |
| ASSERT(!block->isEntryBlock()); |
| ASSERT(!block->isExitBlock()); |
| result.resize(block->out().numBits()); |
| computeLocalLivenessForBytecodeOffset(m_codeBlock, block, m_basicBlocks, bytecodeOffset, result); |
| } |
| |
| bool BytecodeLivenessAnalysis::operandIsLiveAtBytecodeOffset(int operand, unsigned bytecodeOffset) |
| { |
| if (operandIsAlwaysLive(operand)) |
| return true; |
| FastBitVector result; |
| getLivenessInfoAtBytecodeOffset(bytecodeOffset, result); |
| return operandThatIsNotAlwaysLiveIsLive(result, operand); |
| } |
| |
| FastBitVector BytecodeLivenessAnalysis::getLivenessInfoAtBytecodeOffset(unsigned bytecodeOffset) |
| { |
| FastBitVector out; |
| getLivenessInfoAtBytecodeOffset(bytecodeOffset, out); |
| return out; |
| } |
| |
| void BytecodeLivenessAnalysis::computeFullLiveness(FullBytecodeLiveness& result) |
| { |
| FastBitVector out; |
| |
| result.m_map.resize(m_codeBlock->instructions().size()); |
| |
| for (unsigned i = m_basicBlocks.size(); i--;) { |
| BytecodeBasicBlock* block = m_basicBlocks[i].get(); |
| if (block->isEntryBlock() || block->isExitBlock()) |
| continue; |
| |
| out = block->out(); |
| |
| for (unsigned i = block->bytecodeOffsets().size(); i--;) { |
| unsigned bytecodeOffset = block->bytecodeOffsets()[i]; |
| stepOverInstruction(m_codeBlock, block, m_basicBlocks, bytecodeOffset, out); |
| result.m_map[bytecodeOffset] = out; |
| } |
| } |
| } |
| |
| void BytecodeLivenessAnalysis::computeKills(BytecodeKills& result) |
| { |
| FastBitVector out; |
| |
| result.m_codeBlock = m_codeBlock; |
| result.m_killSets = std::make_unique<BytecodeKills::KillSet[]>(m_codeBlock->instructions().size()); |
| |
| for (unsigned i = m_basicBlocks.size(); i--;) { |
| BytecodeBasicBlock* block = m_basicBlocks[i].get(); |
| if (block->isEntryBlock() || block->isExitBlock()) |
| continue; |
| |
| out = block->out(); |
| |
| for (unsigned i = block->bytecodeOffsets().size(); i--;) { |
| unsigned bytecodeOffset = block->bytecodeOffsets()[i]; |
| stepOverInstruction( |
| m_codeBlock, block, m_basicBlocks, bytecodeOffset, |
| [&] (unsigned index) { |
| // This is for uses. |
| if (out.get(index)) |
| return; |
| result.m_killSets[bytecodeOffset].add(index); |
| out.set(index); |
| }, |
| [&] (unsigned index) { |
| // This is for defs. |
| out.clear(index); |
| }); |
| } |
| } |
| } |
| |
| void BytecodeLivenessAnalysis::dumpResults() |
| { |
| Interpreter* interpreter = m_codeBlock->vm()->interpreter; |
| Instruction* instructionsBegin = m_codeBlock->instructions().begin(); |
| for (unsigned i = 0; i < m_basicBlocks.size(); i++) { |
| BytecodeBasicBlock* block = m_basicBlocks[i].get(); |
| dataLogF("\nBytecode basic block %u: %p (offset: %u, length: %u)\n", i, block, block->leaderBytecodeOffset(), block->totalBytecodeLength()); |
| dataLogF("Successors: "); |
| for (unsigned j = 0; j < block->successors().size(); j++) { |
| BytecodeBasicBlock* successor = block->successors()[j]; |
| dataLogF("%p ", successor); |
| } |
| dataLogF("\n"); |
| if (block->isEntryBlock()) { |
| dataLogF("Entry block %p\n", block); |
| continue; |
| } |
| if (block->isExitBlock()) { |
| dataLogF("Exit block: %p\n", block); |
| continue; |
| } |
| for (unsigned bytecodeOffset = block->leaderBytecodeOffset(); bytecodeOffset < block->leaderBytecodeOffset() + block->totalBytecodeLength();) { |
| const Instruction* currentInstruction = &instructionsBegin[bytecodeOffset]; |
| |
| dataLogF("Live variables: "); |
| FastBitVector liveBefore = getLivenessInfoAtBytecodeOffset(bytecodeOffset); |
| for (unsigned j = 0; j < liveBefore.numBits(); j++) { |
| if (liveBefore.get(j)) |
| dataLogF("%u ", j); |
| } |
| dataLogF("\n"); |
| m_codeBlock->dumpBytecode(WTF::dataFile(), m_codeBlock->globalObject()->globalExec(), instructionsBegin, currentInstruction); |
| |
| OpcodeID opcodeID = interpreter->getOpcodeID(instructionsBegin[bytecodeOffset].u.opcode); |
| unsigned opcodeLength = opcodeLengths[opcodeID]; |
| bytecodeOffset += opcodeLength; |
| } |
| |
| dataLogF("Live variables: "); |
| FastBitVector liveAfter = block->out(); |
| for (unsigned j = 0; j < liveAfter.numBits(); j++) { |
| if (liveAfter.get(j)) |
| dataLogF("%u ", j); |
| } |
| dataLogF("\n"); |
| } |
| } |
| |
| void BytecodeLivenessAnalysis::compute() |
| { |
| computeBytecodeBasicBlocks(m_codeBlock, m_basicBlocks); |
| ASSERT(m_basicBlocks.size()); |
| runLivenessFixpoint(); |
| |
| if (Options::dumpBytecodeLivenessResults()) |
| dumpResults(); |
| } |
| |
| } // namespace JSC |