blob: e66ca93b8442245b9dda6ce37bc9e54669166260 [file] [log] [blame]
/*
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved.
* Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca)
* Copyright (C) 2009 Google Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "UString.h"
#include "JSGlobalObjectFunctions.h"
#include "Collector.h"
#include "dtoa.h"
#include "Identifier.h"
#include "Operations.h"
#include <ctype.h>
#include <float.h>
#include <limits.h>
#include <limits>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <wtf/ASCIICType.h>
#include <wtf/Assertions.h>
#include <wtf/MathExtras.h>
#include <wtf/StringExtras.h>
#include <wtf/Vector.h>
#include <wtf/unicode/UTF8.h>
#include <wtf/StringExtras.h>
#if HAVE(STRING_H)
#include <string.h>
#endif
#if HAVE(STRINGS_H)
#include <strings.h>
#endif
using namespace WTF;
using namespace WTF::Unicode;
using namespace std;
// This can be tuned differently per platform by putting platform #ifs right here.
// If you don't define this macro at all, then copyChars will just call directly
// to memcpy.
#define USTRING_COPY_CHARS_INLINE_CUTOFF 20
namespace JSC {
extern const double NaN;
extern const double Inf;
// This number must be at least 2 to avoid sharing empty, null as well as 1 character strings from SmallStrings.
static const int minLengthToShare = 10;
static inline size_t overflowIndicator() { return std::numeric_limits<size_t>::max(); }
static inline size_t maxUChars() { return std::numeric_limits<size_t>::max() / sizeof(UChar); }
static inline PossiblyNull<UChar*> allocChars(size_t length)
{
ASSERT(length);
if (length > maxUChars())
return 0;
return tryFastMalloc(sizeof(UChar) * length);
}
static inline PossiblyNull<UChar*> reallocChars(UChar* buffer, size_t length)
{
ASSERT(length);
if (length > maxUChars())
return 0;
return tryFastRealloc(buffer, sizeof(UChar) * length);
}
static inline void copyChars(UChar* destination, const UChar* source, unsigned numCharacters)
{
#ifdef USTRING_COPY_CHARS_INLINE_CUTOFF
if (numCharacters <= USTRING_COPY_CHARS_INLINE_CUTOFF) {
for (unsigned i = 0; i < numCharacters; ++i)
destination[i] = source[i];
return;
}
#endif
memcpy(destination, source, numCharacters * sizeof(UChar));
}
COMPILE_ASSERT(sizeof(UChar) == 2, uchar_is_2_bytes);
CString::CString(const char* c)
: m_length(strlen(c))
, m_data(new char[m_length + 1])
{
memcpy(m_data, c, m_length + 1);
}
CString::CString(const char* c, size_t length)
: m_length(length)
, m_data(new char[length + 1])
{
memcpy(m_data, c, m_length);
m_data[m_length] = 0;
}
CString::CString(const CString& b)
{
m_length = b.m_length;
if (b.m_data) {
m_data = new char[m_length + 1];
memcpy(m_data, b.m_data, m_length + 1);
} else
m_data = 0;
}
CString::~CString()
{
delete [] m_data;
}
CString CString::adopt(char* c, size_t length)
{
CString s;
s.m_data = c;
s.m_length = length;
return s;
}
CString& CString::append(const CString& t)
{
char* n;
n = new char[m_length + t.m_length + 1];
if (m_length)
memcpy(n, m_data, m_length);
if (t.m_length)
memcpy(n + m_length, t.m_data, t.m_length);
m_length += t.m_length;
n[m_length] = 0;
delete [] m_data;
m_data = n;
return *this;
}
CString& CString::operator=(const char* c)
{
if (m_data)
delete [] m_data;
m_length = strlen(c);
m_data = new char[m_length + 1];
memcpy(m_data, c, m_length + 1);
return *this;
}
CString& CString::operator=(const CString& str)
{
if (this == &str)
return *this;
if (m_data)
delete [] m_data;
m_length = str.m_length;
if (str.m_data) {
m_data = new char[m_length + 1];
memcpy(m_data, str.m_data, m_length + 1);
} else
m_data = 0;
return *this;
}
bool operator==(const CString& c1, const CString& c2)
{
size_t len = c1.size();
return len == c2.size() && (len == 0 || memcmp(c1.c_str(), c2.c_str(), len) == 0);
}
// These static strings are immutable, except for rc, whose initial value is chosen to
// reduce the possibility of it becoming zero due to ref/deref not being thread-safe.
static UChar sharedEmptyChar;
UString::BaseString* UString::Rep::nullBaseString;
UString::BaseString* UString::Rep::emptyBaseString;
UString* UString::nullUString;
static void initializeStaticBaseString(UString::BaseString& base)
{
base.rc = INT_MAX / 2;
base.m_identifierTableAndFlags.setFlag(UString::Rep::StaticFlag);
base.checkConsistency();
}
void initializeUString()
{
UString::Rep::nullBaseString = new UString::BaseString(0, 0);
initializeStaticBaseString(*UString::Rep::nullBaseString);
UString::Rep::emptyBaseString = new UString::BaseString(&sharedEmptyChar, 0);
initializeStaticBaseString(*UString::Rep::emptyBaseString);
UString::nullUString = new UString;
}
static char* statBuffer = 0; // Only used for debugging via UString::ascii().
PassRefPtr<UString::Rep> UString::Rep::createCopying(const UChar* d, int l)
{
UChar* copyD = static_cast<UChar*>(fastMalloc(l * sizeof(UChar)));
copyChars(copyD, d, l);
return create(copyD, l);
}
PassRefPtr<UString::Rep> UString::Rep::createFromUTF8(const char* string)
{
if (!string)
return &UString::Rep::null();
size_t length = strlen(string);
Vector<UChar, 1024> buffer(length);
UChar* p = buffer.data();
if (conversionOK != convertUTF8ToUTF16(&string, string + length, &p, p + length))
return &UString::Rep::null();
return UString::Rep::createCopying(buffer.data(), p - buffer.data());
}
PassRefPtr<UString::Rep> UString::Rep::create(UChar* string, int length, PassRefPtr<UString::SharedUChar> sharedBuffer)
{
PassRefPtr<UString::Rep> rep = create(string, length);
rep->baseString()->setSharedBuffer(sharedBuffer);
rep->checkConsistency();
return rep;
}
UString::SharedUChar* UString::Rep::sharedBuffer()
{
UString::BaseString* base = baseString();
if (len < minLengthToShare)
return 0;
return base->sharedBuffer();
}
void UString::Rep::destroy()
{
checkConsistency();
// Static null and empty strings can never be destroyed, but we cannot rely on
// reference counting, because ref/deref are not thread-safe.
if (!isStatic()) {
if (identifierTable())
Identifier::remove(this);
UString::BaseString* base = baseString();
if (base == this) {
if (m_sharedBuffer)
m_sharedBuffer->deref();
else
fastFree(base->buf);
} else
base->deref();
delete this;
}
}
// Golden ratio - arbitrary start value to avoid mapping all 0's to all 0's
// or anything like that.
const unsigned PHI = 0x9e3779b9U;
// Paul Hsieh's SuperFastHash
// http://www.azillionmonkeys.com/qed/hash.html
unsigned UString::Rep::computeHash(const UChar* s, int len)
{
unsigned l = len;
uint32_t hash = PHI;
uint32_t tmp;
int rem = l & 1;
l >>= 1;
// Main loop
for (; l > 0; l--) {
hash += s[0];
tmp = (s[1] << 11) ^ hash;
hash = (hash << 16) ^ tmp;
s += 2;
hash += hash >> 11;
}
// Handle end case
if (rem) {
hash += s[0];
hash ^= hash << 11;
hash += hash >> 17;
}
// Force "avalanching" of final 127 bits
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 2;
hash += hash >> 15;
hash ^= hash << 10;
// this avoids ever returning a hash code of 0, since that is used to
// signal "hash not computed yet", using a value that is likely to be
// effectively the same as 0 when the low bits are masked
if (hash == 0)
hash = 0x80000000;
return hash;
}
// Paul Hsieh's SuperFastHash
// http://www.azillionmonkeys.com/qed/hash.html
unsigned UString::Rep::computeHash(const char* s, int l)
{
// This hash is designed to work on 16-bit chunks at a time. But since the normal case
// (above) is to hash UTF-16 characters, we just treat the 8-bit chars as if they
// were 16-bit chunks, which should give matching results
uint32_t hash = PHI;
uint32_t tmp;
size_t rem = l & 1;
l >>= 1;
// Main loop
for (; l > 0; l--) {
hash += static_cast<unsigned char>(s[0]);
tmp = (static_cast<unsigned char>(s[1]) << 11) ^ hash;
hash = (hash << 16) ^ tmp;
s += 2;
hash += hash >> 11;
}
// Handle end case
if (rem) {
hash += static_cast<unsigned char>(s[0]);
hash ^= hash << 11;
hash += hash >> 17;
}
// Force "avalanching" of final 127 bits
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 2;
hash += hash >> 15;
hash ^= hash << 10;
// this avoids ever returning a hash code of 0, since that is used to
// signal "hash not computed yet", using a value that is likely to be
// effectively the same as 0 when the low bits are masked
if (hash == 0)
hash = 0x80000000;
return hash;
}
#ifndef NDEBUG
void UString::Rep::checkConsistency() const
{
const UString::BaseString* base = baseString();
// There is no recursion for base strings.
ASSERT(base == base->baseString());
if (isStatic()) {
// There are only two static strings: null and empty.
ASSERT(!len);
// Static strings cannot get in identifier tables, because they are globally shared.
ASSERT(!identifierTable());
}
// The string fits in buffer.
ASSERT(base->usedPreCapacity <= base->preCapacity);
ASSERT(base->usedCapacity <= base->capacity);
ASSERT(-offset <= base->usedPreCapacity);
ASSERT(offset + len <= base->usedCapacity);
}
#endif
UString::SharedUChar* UString::BaseString::sharedBuffer()
{
if (!m_sharedBuffer)
setSharedBuffer(SharedUChar::create(new OwnFastMallocPtr<UChar>(buf)));
return m_sharedBuffer;
}
void UString::BaseString::setSharedBuffer(PassRefPtr<UString::SharedUChar> sharedBuffer)
{
// The manual steps below are because m_sharedBuffer can't be a RefPtr. m_sharedBuffer
// is in a union with another variable to avoid making BaseString any larger.
if (m_sharedBuffer)
m_sharedBuffer->deref();
m_sharedBuffer = sharedBuffer.releaseRef();
}
bool UString::BaseString::slowIsBufferReadOnly()
{
// The buffer may not be modified as soon as the underlying data has been shared with another class.
if (m_sharedBuffer->isShared())
return true;
// At this point, we know it that the underlying buffer isn't shared outside of this base class,
// so get rid of m_sharedBuffer.
OwnPtr<OwnFastMallocPtr<UChar> > mallocPtr(m_sharedBuffer->release());
UChar* unsharedBuf = const_cast<UChar*>(mallocPtr->release());
setSharedBuffer(0);
preCapacity += (buf - unsharedBuf);
buf = unsharedBuf;
return false;
}
// Put these early so they can be inlined.
static inline size_t expandedSize(size_t capacitySize, size_t precapacitySize)
{
// Combine capacitySize & precapacitySize to produce a single size to allocate,
// check that doing so does not result in overflow.
size_t size = capacitySize + precapacitySize;
if (size < capacitySize)
return overflowIndicator();
// Small Strings (up to 4 pages):
// Expand the allocation size to 112.5% of the amount requested. This is largely sicking
// to our previous policy, however 112.5% is cheaper to calculate.
if (size < 0x4000) {
size_t expandedSize = ((size + (size >> 3)) | 15) + 1;
// Given the limited range within which we calculate the expansion in this
// fashion the above calculation should never overflow.
ASSERT(expandedSize >= size);
ASSERT(expandedSize < maxUChars());
return expandedSize;
}
// Medium Strings (up to 128 pages):
// For pages covering multiple pages over-allocation is less of a concern - any unused
// space will not be paged in if it is not used, so this is purely a VM overhead. For
// these strings allocate 2x the requested size.
if (size < 0x80000) {
size_t expandedSize = ((size + size) | 0xfff) + 1;
// Given the limited range within which we calculate the expansion in this
// fashion the above calculation should never overflow.
ASSERT(expandedSize >= size);
ASSERT(expandedSize < maxUChars());
return expandedSize;
}
// Large Strings (to infinity and beyond!):
// Revert to our 112.5% policy - probably best to limit the amount of unused VM we allow
// any individual string be responsible for.
size_t expandedSize = ((size + (size >> 3)) | 0xfff) + 1;
// Check for overflow - any result that is at least as large as requested (but
// still below the limit) is okay.
if ((expandedSize >= size) && (expandedSize < maxUChars()))
return expandedSize;
return overflowIndicator();
}
static inline bool expandCapacity(UString::Rep* rep, int requiredLength)
{
rep->checkConsistency();
ASSERT(!rep->baseString()->isBufferReadOnly());
UString::BaseString* base = rep->baseString();
if (requiredLength > base->capacity) {
size_t newCapacity = expandedSize(requiredLength, base->preCapacity);
UChar* oldBuf = base->buf;
if (!reallocChars(base->buf, newCapacity).getValue(base->buf)) {
base->buf = oldBuf;
return false;
}
base->capacity = newCapacity - base->preCapacity;
}
if (requiredLength > base->usedCapacity)
base->usedCapacity = requiredLength;
rep->checkConsistency();
return true;
}
bool UString::Rep::reserveCapacity(int capacity)
{
// If this is an empty string there is no point 'growing' it - just allocate a new one.
// If the BaseString is shared with another string that is using more capacity than this
// string is, then growing the buffer won't help.
// If the BaseString's buffer is readonly, then it isn't allowed to grow.
UString::BaseString* base = baseString();
if (!base->buf || !base->capacity || (offset + len) != base->usedCapacity || base->isBufferReadOnly())
return false;
// If there is already sufficient capacity, no need to grow!
if (capacity <= base->capacity)
return true;
checkConsistency();
size_t newCapacity = expandedSize(capacity, base->preCapacity);
UChar* oldBuf = base->buf;
if (!reallocChars(base->buf, newCapacity).getValue(base->buf)) {
base->buf = oldBuf;
return false;
}
base->capacity = newCapacity - base->preCapacity;
checkConsistency();
return true;
}
void UString::expandCapacity(int requiredLength)
{
if (!JSC::expandCapacity(m_rep.get(), requiredLength))
makeNull();
}
void UString::expandPreCapacity(int requiredPreCap)
{
m_rep->checkConsistency();
ASSERT(!m_rep->baseString()->isBufferReadOnly());
BaseString* base = m_rep->baseString();
if (requiredPreCap > base->preCapacity) {
size_t newCapacity = expandedSize(requiredPreCap, base->capacity);
int delta = newCapacity - base->capacity - base->preCapacity;
UChar* newBuf;
if (!allocChars(newCapacity).getValue(newBuf)) {
makeNull();
return;
}
copyChars(newBuf + delta, base->buf, base->capacity + base->preCapacity);
fastFree(base->buf);
base->buf = newBuf;
base->preCapacity = newCapacity - base->capacity;
}
if (requiredPreCap > base->usedPreCapacity)
base->usedPreCapacity = requiredPreCap;
m_rep->checkConsistency();
}
static PassRefPtr<UString::Rep> createRep(const char* c)
{
if (!c)
return &UString::Rep::null();
if (!c[0])
return &UString::Rep::empty();
size_t length = strlen(c);
UChar* d;
if (!allocChars(length).getValue(d))
return &UString::Rep::null();
else {
for (size_t i = 0; i < length; i++)
d[i] = static_cast<unsigned char>(c[i]); // use unsigned char to zero-extend instead of sign-extend
return UString::Rep::create(d, static_cast<int>(length));
}
}
UString::UString(const char* c)
: m_rep(createRep(c))
{
}
UString::UString(const UChar* c, int length)
{
if (length == 0)
m_rep = &Rep::empty();
else
m_rep = Rep::createCopying(c, length);
}
UString::UString(UChar* c, int length, bool copy)
{
if (length == 0)
m_rep = &Rep::empty();
else if (copy)
m_rep = Rep::createCopying(c, length);
else
m_rep = Rep::create(c, length);
}
UString::UString(const Vector<UChar>& buffer)
{
if (!buffer.size())
m_rep = &Rep::empty();
else
m_rep = Rep::createCopying(buffer.data(), buffer.size());
}
static ALWAYS_INLINE int newCapacityWithOverflowCheck(const int currentCapacity, const int extendLength, const bool plusOne = false)
{
ASSERT_WITH_MESSAGE(extendLength >= 0, "extendedLength = %d", extendLength);
const int plusLength = plusOne ? 1 : 0;
if (currentCapacity > std::numeric_limits<int>::max() - extendLength - plusLength)
CRASH();
return currentCapacity + extendLength + plusLength;
}
static ALWAYS_INLINE PassRefPtr<UString::Rep> concatenate(PassRefPtr<UString::Rep> r, const UChar* tData, int tSize)
{
RefPtr<UString::Rep> rep = r;
rep->checkConsistency();
int thisSize = rep->size();
int thisOffset = rep->offset;
int length = thisSize + tSize;
UString::BaseString* base = rep->baseString();
// possible cases:
if (tSize == 0) {
// t is empty
} else if (thisSize == 0) {
// this is empty
rep = UString::Rep::createCopying(tData, tSize);
} else if (rep == base && !base->isShared()) {
// this is direct and has refcount of 1 (so we can just alter it directly)
if (!expandCapacity(rep.get(), newCapacityWithOverflowCheck(thisOffset, length)))
rep = &UString::Rep::null();
if (rep->data()) {
copyChars(rep->data() + thisSize, tData, tSize);
rep->len = length;
rep->_hash = 0;
}
} else if (thisOffset + thisSize == base->usedCapacity && thisSize >= minShareSize && !base->isBufferReadOnly()) {
// this reaches the end of the buffer - extend it if it's long enough to append to
if (!expandCapacity(rep.get(), newCapacityWithOverflowCheck(thisOffset, length)))
rep = &UString::Rep::null();
if (rep->data()) {
copyChars(rep->data() + thisSize, tData, tSize);
rep = UString::Rep::create(rep, 0, length);
}
} else {
// This is shared in some way that prevents us from modifying base, so we must make a whole new string.
size_t newCapacity = expandedSize(length, 0);
UChar* d;
if (!allocChars(newCapacity).getValue(d))
rep = &UString::Rep::null();
else {
copyChars(d, rep->data(), thisSize);
copyChars(d + thisSize, tData, tSize);
rep = UString::Rep::create(d, length);
rep->baseString()->capacity = newCapacity;
}
}
rep->checkConsistency();
return rep.release();
}
static ALWAYS_INLINE PassRefPtr<UString::Rep> concatenate(PassRefPtr<UString::Rep> r, const char* t)
{
RefPtr<UString::Rep> rep = r;
rep->checkConsistency();
int thisSize = rep->size();
int thisOffset = rep->offset;
int tSize = static_cast<int>(strlen(t));
int length = thisSize + tSize;
UString::BaseString* base = rep->baseString();
// possible cases:
if (thisSize == 0) {
// this is empty
rep = createRep(t);
} else if (tSize == 0) {
// t is empty, we'll just return *this below.
} else if (rep == base && !base->isShared()) {
// this is direct and has refcount of 1 (so we can just alter it directly)
expandCapacity(rep.get(), newCapacityWithOverflowCheck(thisOffset, length));
UChar* d = rep->data();
if (d) {
for (int i = 0; i < tSize; ++i)
d[thisSize + i] = static_cast<unsigned char>(t[i]); // use unsigned char to zero-extend instead of sign-extend
rep->len = length;
rep->_hash = 0;
}
} else if (thisOffset + thisSize == base->usedCapacity && thisSize >= minShareSize && !base->isBufferReadOnly()) {
// this string reaches the end of the buffer - extend it
expandCapacity(rep.get(), newCapacityWithOverflowCheck(thisOffset, length));
UChar* d = rep->data();
if (d) {
for (int i = 0; i < tSize; ++i)
d[thisSize + i] = static_cast<unsigned char>(t[i]); // use unsigned char to zero-extend instead of sign-extend
rep = UString::Rep::create(rep, 0, length);
}
} else {
// This is shared in some way that prevents us from modifying base, so we must make a whole new string.
size_t newCapacity = expandedSize(length, 0);
UChar* d;
if (!allocChars(newCapacity).getValue(d))
rep = &UString::Rep::null();
else {
copyChars(d, rep->data(), thisSize);
for (int i = 0; i < tSize; ++i)
d[thisSize + i] = static_cast<unsigned char>(t[i]); // use unsigned char to zero-extend instead of sign-extend
rep = UString::Rep::create(d, length);
rep->baseString()->capacity = newCapacity;
}
}
rep->checkConsistency();
return rep.release();
}
PassRefPtr<UString::Rep> concatenate(UString::Rep* a, UString::Rep* b)
{
a->checkConsistency();
b->checkConsistency();
int aSize = a->size();
int bSize = b->size();
int aOffset = a->offset;
// possible cases:
UString::BaseString* aBase = a->baseString();
if (bSize == 1 && aOffset + aSize == aBase->usedCapacity && aOffset + aSize < aBase->capacity && !aBase->isBufferReadOnly()) {
// b is a single character (common fast case)
++aBase->usedCapacity;
a->data()[aSize] = b->data()[0];
return UString::Rep::create(a, 0, aSize + 1);
}
// a is empty
if (aSize == 0)
return b;
// b is empty
if (bSize == 0)
return a;
int bOffset = b->offset;
int length = aSize + bSize;
UString::BaseString* bBase = b->baseString();
if (aOffset + aSize == aBase->usedCapacity && aSize >= minShareSize && 4 * aSize >= bSize
&& (-bOffset != bBase->usedPreCapacity || aSize >= bSize) && !aBase->isBufferReadOnly()) {
// - a reaches the end of its buffer so it qualifies for shared append
// - also, it's at least a quarter the length of b - appending to a much shorter
// string does more harm than good
// - however, if b qualifies for prepend and is longer than a, we'd rather prepend
UString x(a);
x.expandCapacity(newCapacityWithOverflowCheck(aOffset, length));
if (!a->data() || !x.data())
return 0;
copyChars(a->data() + aSize, b->data(), bSize);
PassRefPtr<UString::Rep> result = UString::Rep::create(a, 0, length);
a->checkConsistency();
b->checkConsistency();
result->checkConsistency();
return result;
}
if (-bOffset == bBase->usedPreCapacity && bSize >= minShareSize && 4 * bSize >= aSize && !bBase->isBufferReadOnly()) {
// - b reaches the beginning of its buffer so it qualifies for shared prepend
// - also, it's at least a quarter the length of a - prepending to a much shorter
// string does more harm than good
UString y(b);
y.expandPreCapacity(-bOffset + aSize);
if (!b->data() || !y.data())
return 0;
copyChars(b->data() - aSize, a->data(), aSize);
PassRefPtr<UString::Rep> result = UString::Rep::create(b, -aSize, length);
a->checkConsistency();
b->checkConsistency();
result->checkConsistency();
return result;
}
// a does not qualify for append, and b does not qualify for prepend, gotta make a whole new string
size_t newCapacity = expandedSize(length, 0);
UChar* d;
if (!allocChars(newCapacity).getValue(d))
return 0;
copyChars(d, a->data(), aSize);
copyChars(d + aSize, b->data(), bSize);
PassRefPtr<UString::Rep> result = UString::Rep::create(d, length);
result->baseString()->capacity = newCapacity;
a->checkConsistency();
b->checkConsistency();
result->checkConsistency();
return result;
}
PassRefPtr<UString::Rep> concatenate(UString::Rep* rep, int i)
{
UChar buf[1 + sizeof(i) * 3];
UChar* end = buf + sizeof(buf) / sizeof(UChar);
UChar* p = end;
if (i == 0)
*--p = '0';
else if (i == INT_MIN) {
char minBuf[1 + sizeof(i) * 3];
sprintf(minBuf, "%d", INT_MIN);
return concatenate(rep, minBuf);
} else {
bool negative = false;
if (i < 0) {
negative = true;
i = -i;
}
while (i) {
*--p = static_cast<unsigned short>((i % 10) + '0');
i /= 10;
}
if (negative)
*--p = '-';
}
return concatenate(rep, p, static_cast<int>(end - p));
}
PassRefPtr<UString::Rep> concatenate(UString::Rep* rep, double d)
{
// avoid ever printing -NaN, in JS conceptually there is only one NaN value
if (isnan(d))
return concatenate(rep, "NaN");
if (d == 0.0) // stringify -0 as 0
d = 0.0;
char buf[80];
int decimalPoint;
int sign;
char result[80];
WTF::dtoa(result, d, 0, &decimalPoint, &sign, NULL);
int length = static_cast<int>(strlen(result));
int i = 0;
if (sign)
buf[i++] = '-';
if (decimalPoint <= 0 && decimalPoint > -6) {
buf[i++] = '0';
buf[i++] = '.';
for (int j = decimalPoint; j < 0; j++)
buf[i++] = '0';
strcpy(buf + i, result);
} else if (decimalPoint <= 21 && decimalPoint > 0) {
if (length <= decimalPoint) {
strcpy(buf + i, result);
i += length;
for (int j = 0; j < decimalPoint - length; j++)
buf[i++] = '0';
buf[i] = '\0';
} else {
strncpy(buf + i, result, decimalPoint);
i += decimalPoint;
buf[i++] = '.';
strcpy(buf + i, result + decimalPoint);
}
} else if (result[0] < '0' || result[0] > '9')
strcpy(buf + i, result);
else {
buf[i++] = result[0];
if (length > 1) {
buf[i++] = '.';
strcpy(buf + i, result + 1);
i += length - 1;
}
buf[i++] = 'e';
buf[i++] = (decimalPoint >= 0) ? '+' : '-';
// decimalPoint can't be more than 3 digits decimal given the
// nature of float representation
int exponential = decimalPoint - 1;
if (exponential < 0)
exponential = -exponential;
if (exponential >= 100)
buf[i++] = static_cast<char>('0' + exponential / 100);
if (exponential >= 10)
buf[i++] = static_cast<char>('0' + (exponential % 100) / 10);
buf[i++] = static_cast<char>('0' + exponential % 10);
buf[i++] = '\0';
}
return concatenate(rep, buf);
}
UString UString::from(int i)
{
UChar buf[1 + sizeof(i) * 3];
UChar* end = buf + sizeof(buf) / sizeof(UChar);
UChar* p = end;
if (i == 0)
*--p = '0';
else if (i == INT_MIN) {
char minBuf[1 + sizeof(i) * 3];
sprintf(minBuf, "%d", INT_MIN);
return UString(minBuf);
} else {
bool negative = false;
if (i < 0) {
negative = true;
i = -i;
}
while (i) {
*--p = static_cast<unsigned short>((i % 10) + '0');
i /= 10;
}
if (negative)
*--p = '-';
}
return UString(p, static_cast<int>(end - p));
}
UString UString::from(long long i)
{
UChar buf[1 + sizeof(i) * 3];
UChar* end = buf + sizeof(buf) / sizeof(UChar);
UChar* p = end;
if (i == 0)
*--p = '0';
else if (i == std::numeric_limits<long long>::min()) {
char minBuf[1 + sizeof(i) * 3];
#if PLATFORM(WIN_OS)
snprintf(minBuf, sizeof(minBuf) - 1, "%I64d", std::numeric_limits<long long>::min());
#else
snprintf(minBuf, sizeof(minBuf) - 1, "%lld", std::numeric_limits<long long>::min());
#endif
return UString(minBuf);
} else {
bool negative = false;
if (i < 0) {
negative = true;
i = -i;
}
while (i) {
*--p = static_cast<unsigned short>((i % 10) + '0');
i /= 10;
}
if (negative)
*--p = '-';
}
return UString(p, static_cast<int>(end - p));
}
UString UString::from(unsigned int u)
{
UChar buf[sizeof(u) * 3];
UChar* end = buf + sizeof(buf) / sizeof(UChar);
UChar* p = end;
if (u == 0)
*--p = '0';
else {
while (u) {
*--p = static_cast<unsigned short>((u % 10) + '0');
u /= 10;
}
}
return UString(p, static_cast<int>(end - p));
}
UString UString::from(long l)
{
UChar buf[1 + sizeof(l) * 3];
UChar* end = buf + sizeof(buf) / sizeof(UChar);
UChar* p = end;
if (l == 0)
*--p = '0';
else if (l == LONG_MIN) {
char minBuf[1 + sizeof(l) * 3];
sprintf(minBuf, "%ld", LONG_MIN);
return UString(minBuf);
} else {
bool negative = false;
if (l < 0) {
negative = true;
l = -l;
}
while (l) {
*--p = static_cast<unsigned short>((l % 10) + '0');
l /= 10;
}
if (negative)
*--p = '-';
}
return UString(p, static_cast<int>(end - p));
}
UString UString::from(double d)
{
// avoid ever printing -NaN, in JS conceptually there is only one NaN value
if (isnan(d))
return "NaN";
if (!d)
return "0"; // -0 -> "0"
char buf[80];
int decimalPoint;
int sign;
char result[80];
WTF::dtoa(result, d, 0, &decimalPoint, &sign, NULL);
int length = static_cast<int>(strlen(result));
int i = 0;
if (sign)
buf[i++] = '-';
if (decimalPoint <= 0 && decimalPoint > -6) {
buf[i++] = '0';
buf[i++] = '.';
for (int j = decimalPoint; j < 0; j++)
buf[i++] = '0';
strcpy(buf + i, result);
} else if (decimalPoint <= 21 && decimalPoint > 0) {
if (length <= decimalPoint) {
strcpy(buf + i, result);
i += length;
for (int j = 0; j < decimalPoint - length; j++)
buf[i++] = '0';
buf[i] = '\0';
} else {
strncpy(buf + i, result, decimalPoint);
i += decimalPoint;
buf[i++] = '.';
strcpy(buf + i, result + decimalPoint);
}
} else if (result[0] < '0' || result[0] > '9')
strcpy(buf + i, result);
else {
buf[i++] = result[0];
if (length > 1) {
buf[i++] = '.';
strcpy(buf + i, result + 1);
i += length - 1;
}
buf[i++] = 'e';
buf[i++] = (decimalPoint >= 0) ? '+' : '-';
// decimalPoint can't be more than 3 digits decimal given the
// nature of float representation
int exponential = decimalPoint - 1;
if (exponential < 0)
exponential = -exponential;
if (exponential >= 100)
buf[i++] = static_cast<char>('0' + exponential / 100);
if (exponential >= 10)
buf[i++] = static_cast<char>('0' + (exponential % 100) / 10);
buf[i++] = static_cast<char>('0' + exponential % 10);
buf[i++] = '\0';
}
return UString(buf);
}
UString UString::spliceSubstringsWithSeparators(const Range* substringRanges, int rangeCount, const UString* separators, int separatorCount) const
{
m_rep->checkConsistency();
if (rangeCount == 1 && separatorCount == 0) {
int thisSize = size();
int position = substringRanges[0].position;
int length = substringRanges[0].length;
if (position <= 0 && length >= thisSize)
return *this;
return UString::Rep::create(m_rep, max(0, position), min(thisSize, length));
}
int totalLength = 0;
for (int i = 0; i < rangeCount; i++)
totalLength += substringRanges[i].length;
for (int i = 0; i < separatorCount; i++)
totalLength += separators[i].size();
if (totalLength == 0)
return "";
UChar* buffer;
if (!allocChars(totalLength).getValue(buffer))
return null();
int maxCount = max(rangeCount, separatorCount);
int bufferPos = 0;
for (int i = 0; i < maxCount; i++) {
if (i < rangeCount) {
copyChars(buffer + bufferPos, data() + substringRanges[i].position, substringRanges[i].length);
bufferPos += substringRanges[i].length;
}
if (i < separatorCount) {
copyChars(buffer + bufferPos, separators[i].data(), separators[i].size());
bufferPos += separators[i].size();
}
}
return UString::Rep::create(buffer, totalLength);
}
UString UString::replaceRange(int rangeStart, int rangeLength, const UString& replacement) const
{
m_rep->checkConsistency();
int replacementLength = replacement.size();
int totalLength = size() - rangeLength + replacementLength;
if (totalLength == 0)
return "";
UChar* buffer;
if (!allocChars(totalLength).getValue(buffer))
return null();
copyChars(buffer, data(), rangeStart);
copyChars(buffer + rangeStart, replacement.data(), replacementLength);
int rangeEnd = rangeStart + rangeLength;
copyChars(buffer + rangeStart + replacementLength, data() + rangeEnd, size() - rangeEnd);
return UString::Rep::create(buffer, totalLength);
}
UString& UString::append(const UString &t)
{
m_rep->checkConsistency();
t.rep()->checkConsistency();
int thisSize = size();
int thisOffset = m_rep->offset;
int tSize = t.size();
int length = thisSize + tSize;
BaseString* base = m_rep->baseString();
// possible cases:
if (thisSize == 0) {
// this is empty
*this = t;
} else if (tSize == 0) {
// t is empty
} else if (m_rep == base && !base->isShared()) {
// this is direct and has refcount of 1 (so we can just alter it directly)
expandCapacity(newCapacityWithOverflowCheck(thisOffset, length));
if (data()) {
copyChars(m_rep->data() + thisSize, t.data(), tSize);
m_rep->len = length;
m_rep->_hash = 0;
}
} else if (thisOffset + thisSize == base->usedCapacity && thisSize >= minShareSize && !base->isBufferReadOnly()) {
// this reaches the end of the buffer - extend it if it's long enough to append to
expandCapacity(newCapacityWithOverflowCheck(thisOffset, length));
if (data()) {
copyChars(m_rep->data() + thisSize, t.data(), tSize);
m_rep = Rep::create(m_rep, 0, length);
}
} else {
// This is shared in some way that prevents us from modifying base, so we must make a whole new string.
size_t newCapacity = expandedSize(length, 0);
UChar* d;
if (!allocChars(newCapacity).getValue(d))
makeNull();
else {
copyChars(d, data(), thisSize);
copyChars(d + thisSize, t.data(), tSize);
m_rep = Rep::create(d, length);
m_rep->baseString()->capacity = newCapacity;
}
}
m_rep->checkConsistency();
t.rep()->checkConsistency();
return *this;
}
UString& UString::append(const UChar* tData, int tSize)
{
m_rep = concatenate(m_rep.release(), tData, tSize);
return *this;
}
UString& UString::append(const char* t)
{
m_rep = concatenate(m_rep.release(), t);
return *this;
}
UString& UString::append(UChar c)
{
m_rep->checkConsistency();
int thisOffset = m_rep->offset;
int length = size();
BaseString* base = m_rep->baseString();
// possible cases:
if (length == 0) {
// this is empty - must make a new m_rep because we don't want to pollute the shared empty one
size_t newCapacity = expandedSize(1, 0);
UChar* d;
if (!allocChars(newCapacity).getValue(d))
makeNull();
else {
d[0] = c;
m_rep = Rep::create(d, 1);
m_rep->baseString()->capacity = newCapacity;
}
} else if (m_rep == base && !base->isShared()) {
// this is direct and has refcount of 1 (so we can just alter it directly)
expandCapacity(newCapacityWithOverflowCheck(thisOffset, length, true));
UChar* d = m_rep->data();
if (d) {
d[length] = c;
m_rep->len = length + 1;
m_rep->_hash = 0;
}
} else if (thisOffset + length == base->usedCapacity && length >= minShareSize && !base->isBufferReadOnly()) {
// this reaches the end of the string - extend it and share
expandCapacity(newCapacityWithOverflowCheck(thisOffset, length, true));
UChar* d = m_rep->data();
if (d) {
d[length] = c;
m_rep = Rep::create(m_rep, 0, length + 1);
}
} else {
// This is shared in some way that prevents us from modifying base, so we must make a whole new string.
size_t newCapacity = expandedSize(length + 1, 0);
UChar* d;
if (!allocChars(newCapacity).getValue(d))
makeNull();
else {
copyChars(d, data(), length);
d[length] = c;
m_rep = Rep::create(d, length + 1);
m_rep->baseString()->capacity = newCapacity;
}
}
m_rep->checkConsistency();
return *this;
}
bool UString::getCString(CStringBuffer& buffer) const
{
int length = size();
int neededSize = length + 1;
buffer.resize(neededSize);
char* buf = buffer.data();
UChar ored = 0;
const UChar* p = data();
char* q = buf;
const UChar* limit = p + length;
while (p != limit) {
UChar c = p[0];
ored |= c;
*q = static_cast<char>(c);
++p;
++q;
}
*q = '\0';
return !(ored & 0xFF00);
}
char* UString::ascii() const
{
int length = size();
int neededSize = length + 1;
delete[] statBuffer;
statBuffer = new char[neededSize];
const UChar* p = data();
char* q = statBuffer;
const UChar* limit = p + length;
while (p != limit) {
*q = static_cast<char>(p[0]);
++p;
++q;
}
*q = '\0';
return statBuffer;
}
UString& UString::operator=(const char* c)
{
if (!c) {
m_rep = &Rep::null();
return *this;
}
if (!c[0]) {
m_rep = &Rep::empty();
return *this;
}
int l = static_cast<int>(strlen(c));
UChar* d;
BaseString* base = m_rep->baseString();
if (!base->isShared() && l <= base->capacity && m_rep == base && m_rep->offset == 0 && base->preCapacity == 0) {
d = base->buf;
m_rep->_hash = 0;
m_rep->len = l;
} else {
if (!allocChars(l).getValue(d)) {
makeNull();
return *this;
}
m_rep = Rep::create(d, l);
}
for (int i = 0; i < l; i++)
d[i] = static_cast<unsigned char>(c[i]); // use unsigned char to zero-extend instead of sign-extend
return *this;
}
bool UString::is8Bit() const
{
const UChar* u = data();
const UChar* limit = u + size();
while (u < limit) {
if (u[0] > 0xFF)
return false;
++u;
}
return true;
}
UChar UString::operator[](int pos) const
{
if (pos >= size())
return '\0';
return data()[pos];
}
double UString::toDouble(bool tolerateTrailingJunk, bool tolerateEmptyString) const
{
if (size() == 1) {
UChar c = data()[0];
if (isASCIIDigit(c))
return c - '0';
if (isASCIISpace(c) && tolerateEmptyString)
return 0;
return NaN;
}
// FIXME: If tolerateTrailingJunk is true, then we want to tolerate non-8-bit junk
// after the number, so this is too strict a check.
CStringBuffer s;
if (!getCString(s))
return NaN;
const char* c = s.data();
// skip leading white space
while (isASCIISpace(*c))
c++;
// empty string ?
if (*c == '\0')
return tolerateEmptyString ? 0.0 : NaN;
double d;
// hex number ?
if (*c == '0' && (*(c + 1) == 'x' || *(c + 1) == 'X')) {
const char* firstDigitPosition = c + 2;
c++;
d = 0.0;
while (*(++c)) {
if (*c >= '0' && *c <= '9')
d = d * 16.0 + *c - '0';
else if ((*c >= 'A' && *c <= 'F') || (*c >= 'a' && *c <= 'f'))
d = d * 16.0 + (*c & 0xdf) - 'A' + 10.0;
else
break;
}
if (d >= mantissaOverflowLowerBound)
d = parseIntOverflow(firstDigitPosition, c - firstDigitPosition, 16);
} else {
// regular number ?
char* end;
d = WTF::strtod(c, &end);
if ((d != 0.0 || end != c) && d != Inf && d != -Inf) {
c = end;
} else {
double sign = 1.0;
if (*c == '+')
c++;
else if (*c == '-') {
sign = -1.0;
c++;
}
// We used strtod() to do the conversion. However, strtod() handles
// infinite values slightly differently than JavaScript in that it
// converts the string "inf" with any capitalization to infinity,
// whereas the ECMA spec requires that it be converted to NaN.
if (c[0] == 'I' && c[1] == 'n' && c[2] == 'f' && c[3] == 'i' && c[4] == 'n' && c[5] == 'i' && c[6] == 't' && c[7] == 'y') {
d = sign * Inf;
c += 8;
} else if ((d == Inf || d == -Inf) && *c != 'I' && *c != 'i')
c = end;
else
return NaN;
}
}
// allow trailing white space
while (isASCIISpace(*c))
c++;
// don't allow anything after - unless tolerant=true
if (!tolerateTrailingJunk && *c != '\0')
d = NaN;
return d;
}
double UString::toDouble(bool tolerateTrailingJunk) const
{
return toDouble(tolerateTrailingJunk, true);
}
double UString::toDouble() const
{
return toDouble(false, true);
}
uint32_t UString::toUInt32(bool* ok) const
{
double d = toDouble();
bool b = true;
if (d != static_cast<uint32_t>(d)) {
b = false;
d = 0;
}
if (ok)
*ok = b;
return static_cast<uint32_t>(d);
}
uint32_t UString::toUInt32(bool* ok, bool tolerateEmptyString) const
{
double d = toDouble(false, tolerateEmptyString);
bool b = true;
if (d != static_cast<uint32_t>(d)) {
b = false;
d = 0;
}
if (ok)
*ok = b;
return static_cast<uint32_t>(d);
}
uint32_t UString::toStrictUInt32(bool* ok) const
{
if (ok)
*ok = false;
// Empty string is not OK.
int len = m_rep->len;
if (len == 0)
return 0;
const UChar* p = m_rep->data();
unsigned short c = p[0];
// If the first digit is 0, only 0 itself is OK.
if (c == '0') {
if (len == 1 && ok)
*ok = true;
return 0;
}
// Convert to UInt32, checking for overflow.
uint32_t i = 0;
while (1) {
// Process character, turning it into a digit.
if (c < '0' || c > '9')
return 0;
const unsigned d = c - '0';
// Multiply by 10, checking for overflow out of 32 bits.
if (i > 0xFFFFFFFFU / 10)
return 0;
i *= 10;
// Add in the digit, checking for overflow out of 32 bits.
const unsigned max = 0xFFFFFFFFU - d;
if (i > max)
return 0;
i += d;
// Handle end of string.
if (--len == 0) {
if (ok)
*ok = true;
return i;
}
// Get next character.
c = *(++p);
}
}
int UString::find(const UString& f, int pos) const
{
int fsz = f.size();
if (pos < 0)
pos = 0;
if (fsz == 1) {
UChar ch = f[0];
const UChar* end = data() + size();
for (const UChar* c = data() + pos; c < end; c++) {
if (*c == ch)
return static_cast<int>(c - data());
}
return -1;
}
int sz = size();
if (sz < fsz)
return -1;
if (fsz == 0)
return pos;
const UChar* end = data() + sz - fsz;
int fsizeminusone = (fsz - 1) * sizeof(UChar);
const UChar* fdata = f.data();
unsigned short fchar = fdata[0];
++fdata;
for (const UChar* c = data() + pos; c <= end; c++) {
if (c[0] == fchar && !memcmp(c + 1, fdata, fsizeminusone))
return static_cast<int>(c - data());
}
return -1;
}
int UString::find(UChar ch, int pos) const
{
if (pos < 0)
pos = 0;
const UChar* end = data() + size();
for (const UChar* c = data() + pos; c < end; c++) {
if (*c == ch)
return static_cast<int>(c - data());
}
return -1;
}
int UString::rfind(const UString& f, int pos) const
{
int sz = size();
int fsz = f.size();
if (sz < fsz)
return -1;
if (pos < 0)
pos = 0;
if (pos > sz - fsz)
pos = sz - fsz;
if (fsz == 0)
return pos;
int fsizeminusone = (fsz - 1) * sizeof(UChar);
const UChar* fdata = f.data();
for (const UChar* c = data() + pos; c >= data(); c--) {
if (*c == *fdata && !memcmp(c + 1, fdata + 1, fsizeminusone))
return static_cast<int>(c - data());
}
return -1;
}
int UString::rfind(UChar ch, int pos) const
{
if (isEmpty())
return -1;
if (pos + 1 >= size())
pos = size() - 1;
for (const UChar* c = data() + pos; c >= data(); c--) {
if (*c == ch)
return static_cast<int>(c - data());
}
return -1;
}
UString UString::substr(int pos, int len) const
{
int s = size();
if (pos < 0)
pos = 0;
else if (pos >= s)
pos = s;
if (len < 0)
len = s;
if (pos + len >= s)
len = s - pos;
if (pos == 0 && len == s)
return *this;
return UString(Rep::create(m_rep, pos, len));
}
bool operator==(const UString& s1, const char *s2)
{
if (s2 == 0)
return s1.isEmpty();
const UChar* u = s1.data();
const UChar* uend = u + s1.size();
while (u != uend && *s2) {
if (u[0] != (unsigned char)*s2)
return false;
s2++;
u++;
}
return u == uend && *s2 == 0;
}
bool operator<(const UString& s1, const UString& s2)
{
const int l1 = s1.size();
const int l2 = s2.size();
const int lmin = l1 < l2 ? l1 : l2;
const UChar* c1 = s1.data();
const UChar* c2 = s2.data();
int l = 0;
while (l < lmin && *c1 == *c2) {
c1++;
c2++;
l++;
}
if (l < lmin)
return (c1[0] < c2[0]);
return (l1 < l2);
}
bool operator>(const UString& s1, const UString& s2)
{
const int l1 = s1.size();
const int l2 = s2.size();
const int lmin = l1 < l2 ? l1 : l2;
const UChar* c1 = s1.data();
const UChar* c2 = s2.data();
int l = 0;
while (l < lmin && *c1 == *c2) {
c1++;
c2++;
l++;
}
if (l < lmin)
return (c1[0] > c2[0]);
return (l1 > l2);
}
int compare(const UString& s1, const UString& s2)
{
const int l1 = s1.size();
const int l2 = s2.size();
const int lmin = l1 < l2 ? l1 : l2;
const UChar* c1 = s1.data();
const UChar* c2 = s2.data();
int l = 0;
while (l < lmin && *c1 == *c2) {
c1++;
c2++;
l++;
}
if (l < lmin)
return (c1[0] > c2[0]) ? 1 : -1;
if (l1 == l2)
return 0;
return (l1 > l2) ? 1 : -1;
}
bool equal(const UString::Rep* r, const UString::Rep* b)
{
int length = r->len;
if (length != b->len)
return false;
const UChar* d = r->data();
const UChar* s = b->data();
for (int i = 0; i != length; ++i) {
if (d[i] != s[i])
return false;
}
return true;
}
CString UString::UTF8String(bool strict) const
{
// Allocate a buffer big enough to hold all the characters.
const int length = size();
Vector<char, 1024> buffer(length * 3);
// Convert to runs of 8-bit characters.
char* p = buffer.data();
const UChar* d = reinterpret_cast<const UChar*>(&data()[0]);
ConversionResult result = convertUTF16ToUTF8(&d, d + length, &p, p + buffer.size(), strict);
if (result != conversionOK)
return CString();
return CString(buffer.data(), p - buffer.data());
}
// For use in error handling code paths -- having this not be inlined helps avoid PIC branches to fetch the global on Mac OS X.
NEVER_INLINE void UString::makeNull()
{
m_rep = &Rep::null();
}
// For use in error handling code paths -- having this not be inlined helps avoid PIC branches to fetch the global on Mac OS X.
NEVER_INLINE UString::Rep* UString::nullRep()
{
return &Rep::null();
}
} // namespace JSC