blob: 592487f5c18043abc9363450fb7a80a373f4b455 [file] [log] [blame]
/*
* Copyright (C) 2006 Samuel Weinig (sam.weinig@gmail.com)
* Copyright (C) 2004, 2005, 2006, 2008 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "BitmapImage.h"
#include "FloatRect.h"
#include "ImageObserver.h"
#include "IntRect.h"
#include "PlatformString.h"
#include "SystemTime.h"
#include "Timer.h"
#include <wtf/Vector.h>
#include "MIMETypeRegistry.h"
namespace WebCore {
// Animated images >5MB are considered large enough that we'll only hang on to
// one frame at a time.
const unsigned cLargeAnimationCutoff = 5242880;
// When an animated image is more than five minutes out of date, don't try to
// resync on repaint, so we don't waste CPU cycles on an edge case the user
// doesn't care about.
const double cAnimationResyncCutoff = 5 * 60;
BitmapImage::BitmapImage(ImageObserver* observer)
: Image(observer)
, m_currentFrame(0)
, m_frames(0)
, m_frameTimer(0)
, m_repetitionCount(cAnimationNone)
, m_repetitionCountStatus(Unknown)
, m_repetitionsComplete(0)
, m_desiredFrameStartTime(0)
, m_isSolidColor(false)
, m_animationFinished(false)
, m_allDataReceived(false)
, m_haveSize(false)
, m_sizeAvailable(false)
, m_hasUniformFrameSize(true)
, m_decodedSize(0)
, m_haveFrameCount(false)
, m_frameCount(0)
{
initPlatformData();
}
BitmapImage::~BitmapImage()
{
invalidatePlatformData();
stopAnimation();
}
void BitmapImage::destroyDecodedData(bool incremental, bool preserveNearbyFrames)
{
// Destroy the cached images and release them.
if (m_frames.size()) {
int sizeChange = 0;
int frameSize = m_size.width() * m_size.height() * 4;
const size_t nextFrame = (preserveNearbyFrames && frameCount()) ? ((m_currentFrame + 1) % frameCount()) : 0;
for (unsigned i = incremental ? m_frames.size() - 1 : 0; i < m_frames.size(); i++) {
if (m_frames[i].m_frame && (!preserveNearbyFrames || (i != m_currentFrame && i != nextFrame))) {
sizeChange -= frameSize;
m_frames[i].clear();
}
}
// We just always invalidate our platform data, even in the incremental case.
// This could be better, but it's not a big deal.
m_isSolidColor = false;
invalidatePlatformData();
if (sizeChange) {
m_decodedSize += sizeChange;
if (imageObserver())
imageObserver()->decodedSizeChanged(this, sizeChange);
}
if (!incremental) {
// Reset the image source, since Image I/O has an underlying cache that it uses
// while animating that it seems to never clear.
m_source.clear();
m_source.setData(m_data.get(), m_allDataReceived);
}
}
}
void BitmapImage::cacheFrame(size_t index)
{
size_t numFrames = frameCount();
ASSERT(m_decodedSize == 0 || numFrames > 1);
if (m_frames.size() < numFrames)
m_frames.grow(numFrames);
m_frames[index].m_frame = m_source.createFrameAtIndex(index);
if (numFrames == 1 && m_frames[index].m_frame)
checkForSolidColor();
m_frames[index].m_haveMetadata = true;
m_frames[index].m_isComplete = m_source.frameIsCompleteAtIndex(index);
if (repetitionCount(false) != cAnimationNone)
m_frames[index].m_duration = m_source.frameDurationAtIndex(index);
m_frames[index].m_hasAlpha = m_source.frameHasAlphaAtIndex(index);
int sizeChange;
if (index) {
IntSize frameSize = m_source.frameSizeAtIndex(index);
if (frameSize != m_size)
m_hasUniformFrameSize = false;
sizeChange = m_frames[index].m_frame ? frameSize.width() * frameSize.height() * 4 : 0;
} else
sizeChange = m_frames[index].m_frame ? m_size.width() * m_size.height() * 4 : 0;
if (sizeChange) {
m_decodedSize += sizeChange;
if (imageObserver())
imageObserver()->decodedSizeChanged(this, sizeChange);
}
}
IntSize BitmapImage::size() const
{
if (m_sizeAvailable && !m_haveSize) {
m_size = m_source.size();
m_haveSize = true;
}
return m_size;
}
IntSize BitmapImage::currentFrameSize() const
{
if (!m_currentFrame || m_hasUniformFrameSize)
return size();
return m_source.frameSizeAtIndex(m_currentFrame);
}
bool BitmapImage::dataChanged(bool allDataReceived)
{
destroyDecodedData(true);
// Feed all the data we've seen so far to the image decoder.
m_allDataReceived = allDataReceived;
m_source.setData(m_data.get(), allDataReceived);
// Clear the frame count.
m_haveFrameCount = false;
m_hasUniformFrameSize = true;
// Image properties will not be available until the first frame of the file
// reaches kCGImageStatusIncomplete.
return isSizeAvailable();
}
size_t BitmapImage::frameCount()
{
if (!m_haveFrameCount) {
m_haveFrameCount = true;
m_frameCount = m_source.frameCount();
}
return m_frameCount;
}
bool BitmapImage::isSizeAvailable()
{
if (m_sizeAvailable)
return true;
m_sizeAvailable = m_source.isSizeAvailable();
return m_sizeAvailable;
}
NativeImagePtr BitmapImage::frameAtIndex(size_t index)
{
if (index >= frameCount())
return 0;
if (index >= m_frames.size() || !m_frames[index].m_frame)
cacheFrame(index);
return m_frames[index].m_frame;
}
bool BitmapImage::frameIsCompleteAtIndex(size_t index)
{
if (index >= frameCount())
return true;
if (index >= m_frames.size() || !m_frames[index].m_haveMetadata)
cacheFrame(index);
return m_frames[index].m_isComplete;
}
float BitmapImage::frameDurationAtIndex(size_t index)
{
if (index >= frameCount())
return 0;
if (index >= m_frames.size() || !m_frames[index].m_haveMetadata)
cacheFrame(index);
return m_frames[index].m_duration;
}
bool BitmapImage::frameHasAlphaAtIndex(size_t index)
{
if (index >= frameCount())
return true;
if (index >= m_frames.size() || !m_frames[index].m_haveMetadata)
cacheFrame(index);
return m_frames[index].m_hasAlpha;
}
int BitmapImage::repetitionCount(bool imageKnownToBeComplete)
{
if ((m_repetitionCountStatus == Unknown) || ((m_repetitionCountStatus == Uncertain) && imageKnownToBeComplete)) {
// Snag the repetition count. If |imageKnownToBeComplete| is false, the
// repetition count may not be accurate yet for GIFs; in this case the
// decoder will default to cAnimationLoopOnce, and we'll try and read
// the count again once the whole image is decoded.
m_repetitionCount = m_source.repetitionCount();
m_repetitionCountStatus = (imageKnownToBeComplete || m_repetitionCount == cAnimationNone) ? Certain : Uncertain;
}
return m_repetitionCount;
}
bool BitmapImage::shouldAnimate()
{
return (repetitionCount(false) != cAnimationNone && !m_animationFinished && imageObserver());
}
void BitmapImage::startAnimation(bool catchUpIfNecessary)
{
if (m_frameTimer || !shouldAnimate() || frameCount() <= 1)
return;
// Determine time for next frame to start. By ignoring paint and timer lag
// in this calculation, we make the animation appear to run at its desired
// rate regardless of how fast it's being repainted.
const double currentDuration = frameDurationAtIndex(m_currentFrame);
const double time = currentTime();
if (m_desiredFrameStartTime == 0) {
m_desiredFrameStartTime = time + currentDuration;
} else {
m_desiredFrameStartTime += currentDuration;
// If we're too far behind, the user probably doesn't care about
// resyncing and we could burn a lot of time looping through frames
// below. Just reset the timings.
if ((time - m_desiredFrameStartTime) > cAnimationResyncCutoff)
m_desiredFrameStartTime = time + currentDuration;
}
// Don't advance the animation to an incomplete frame.
size_t nextFrame = (m_currentFrame + 1) % frameCount();
if (!frameIsCompleteAtIndex(nextFrame))
return;
// Don't advance past the last frame if we haven't decoded the whole image
// yet and our repetition count is potentially unset. The repetition count
// in a GIF can potentially come after all the rest of the image data, so
// wait on it.
if (!m_allDataReceived && repetitionCount(false) == cAnimationLoopOnce && m_currentFrame >= (frameCount() - 1))
return;
// The image may load more slowly than it's supposed to animate, so that by
// the time we reach the end of the first repetition, we're well behind.
// Clamp the desired frame start time in this case, so that we don't skip
// frames (or whole iterations) trying to "catch up". This is a tradeoff:
// It guarantees users see the whole animation the second time through and
// don't miss any repetitions, and is closer to what other browsers do; on
// the other hand, it makes animations "less accurate" for pages that try to
// sync an image and some other resource (e.g. audio), especially if users
// switch tabs (and thus stop drawing the animation, which will pause it)
// during that initial loop, then switch back later.
if (nextFrame == 0 && m_repetitionsComplete == 0 && m_desiredFrameStartTime < time)
m_desiredFrameStartTime = time;
if (!catchUpIfNecessary || time < m_desiredFrameStartTime) {
// Haven't yet reached time for next frame to start; delay until then.
m_frameTimer = new Timer<BitmapImage>(this, &BitmapImage::advanceAnimation);
m_frameTimer->startOneShot(std::max(m_desiredFrameStartTime - time, 0.));
} else {
// We've already reached or passed the time for the next frame to start.
// See if we've also passed the time for frames after that to start, in
// case we need to skip some frames entirely. Remember not to advance
// to an incomplete frame.
for (size_t frameAfterNext = (nextFrame + 1) % frameCount(); frameIsCompleteAtIndex(frameAfterNext); frameAfterNext = (nextFrame + 1) % frameCount()) {
// Should we skip the next frame?
double frameAfterNextStartTime = m_desiredFrameStartTime + frameDurationAtIndex(nextFrame);
if (time < frameAfterNextStartTime)
break;
// Yes; skip over it without notifying our observers.
if (!internalAdvanceAnimation(true))
return;
m_desiredFrameStartTime = frameAfterNextStartTime;
nextFrame = frameAfterNext;
}
// Draw the next frame immediately. Note that m_desiredFrameStartTime
// may be in the past, meaning the next time through this function we'll
// kick off the next advancement sooner than this frame's duration would
// suggest.
if (internalAdvanceAnimation(false)) {
// The image region has been marked dirty, but once we return to our
// caller, draw() will clear it, and nothing will cause the
// animation to advance again. We need to start the timer for the
// next frame running, or the animation can hang. (Compare this
// with when advanceAnimation() is called, and the region is dirtied
// while draw() is not in the callstack, meaning draw() gets called
// to update the region and thus startAnimation() is reached again.)
// NOTE: For large images with slow or heavily-loaded systems,
// throwing away data as we go (see destroyDecodedData()) means we
// can spend so much time re-decoding data above that by the time we
// reach here we're behind again. If we let startAnimation() run
// the catch-up code again, we can get long delays without painting
// as we race the timer, or even infinite recursion. In this
// situation the best we can do is to simply change frames as fast
// as possible, so force startAnimation() to set a zero-delay timer
// and bail out if we're not caught up.
startAnimation(false);
}
}
}
void BitmapImage::stopAnimation()
{
// This timer is used to animate all occurrences of this image. Don't invalidate
// the timer unless all renderers have stopped drawing.
delete m_frameTimer;
m_frameTimer = 0;
}
void BitmapImage::resetAnimation()
{
stopAnimation();
m_currentFrame = 0;
m_repetitionsComplete = 0;
m_desiredFrameStartTime = 0;
m_animationFinished = false;
int frameSize = m_size.width() * m_size.height() * 4;
// For extremely large animations, when the animation is reset, we just throw everything away.
if (frameCount() * frameSize > cLargeAnimationCutoff)
destroyDecodedData();
}
void BitmapImage::advanceAnimation(Timer<BitmapImage>* timer)
{
internalAdvanceAnimation(false);
// At this point the image region has been marked dirty, and if it's
// onscreen, we'll soon make a call to draw(), which will call
// startAnimation() again to keep the animation moving.
}
bool BitmapImage::internalAdvanceAnimation(bool skippingFrames)
{
// Stop the animation.
stopAnimation();
// See if anyone is still paying attention to this animation. If not, we don't
// advance and will remain suspended at the current frame until the animation is resumed.
if (!skippingFrames && imageObserver()->shouldPauseAnimation(this))
return false;
m_currentFrame++;
if (m_currentFrame >= frameCount()) {
++m_repetitionsComplete;
// Get the repetition count again. If we weren't able to get a
// repetition count before, we should have decoded the whole image by
// now, so it should now be available.
if (repetitionCount(true) && m_repetitionsComplete >= m_repetitionCount) {
m_animationFinished = true;
m_desiredFrameStartTime = 0;
m_currentFrame--;
if (skippingFrames) {
// Uh oh. We tried to skip past the end of the animation. We'd
// better draw this last frame.
notifyObserverAndTrimDecodedData();
}
return false;
}
m_currentFrame = 0;
}
if (!skippingFrames)
notifyObserverAndTrimDecodedData();
return true;
}
void BitmapImage::notifyObserverAndTrimDecodedData()
{
// Notify our observer that the animation has advanced.
imageObserver()->animationAdvanced(this);
// For large animated images, go ahead and throw away frames as we go to
// save footprint.
int frameSize = m_size.width() * m_size.height() * 4;
if (frameCount() * frameSize > cLargeAnimationCutoff) {
// Destroy all of our frames and just redecode every time. We save the
// current frame since we'll need it in draw() anyway.
destroyDecodedData(false, true);
}
}
}