| /* |
| * Copyright (C) 1999 Lars Knoll (knoll@kde.org) |
| * (C) 1999 Antti Koivisto (koivisto@kde.org) |
| * (C) 2007 David Smith (catfish.man@gmail.com) |
| * Copyright (C) 2003-2015 Apple Inc. All rights reserved. |
| * Copyright (C) Research In Motion Limited 2010. All rights reserved. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public License |
| * along with this library; see the file COPYING.LIB. If not, write to |
| * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| * Boston, MA 02110-1301, USA. |
| */ |
| |
| #include "config.h" |
| #include "RenderBlockFlow.h" |
| |
| #include "Editor.h" |
| #include "ElementInlines.h" |
| #include "FloatingObjects.h" |
| #include "Frame.h" |
| #include "FrameSelection.h" |
| #include "HTMLElement.h" |
| #include "HTMLInputElement.h" |
| #include "HTMLParserIdioms.h" |
| #include "HTMLTextAreaElement.h" |
| #include "HitTestLocation.h" |
| #include "InlineIteratorBox.h" |
| #include "InlineIteratorInlineBox.h" |
| #include "InlineIteratorLineBox.h" |
| #include "InlineIteratorLogicalOrderTraversal.h" |
| #include "InlineIteratorTextBox.h" |
| #include "InlineWalker.h" |
| #include "LayoutIntegrationLineLayout.h" |
| #include "LayoutRepainter.h" |
| #include "LegacyInlineTextBox.h" |
| #include "LegacyLineLayout.h" |
| #include "LineSelection.h" |
| #include "Logging.h" |
| #include "RenderCombineText.h" |
| #include "RenderDeprecatedFlexibleBox.h" |
| #include "RenderFlexibleBox.h" |
| #include "RenderInline.h" |
| #include "RenderIterator.h" |
| #include "RenderLayer.h" |
| #include "RenderLayerScrollableArea.h" |
| #include "RenderLayoutState.h" |
| #include "RenderLineBreak.h" |
| #include "RenderListItem.h" |
| #include "RenderMarquee.h" |
| #include "RenderMultiColumnFlow.h" |
| #include "RenderMultiColumnSet.h" |
| #include "RenderTableCell.h" |
| #include "RenderText.h" |
| #include "RenderTreeBuilder.h" |
| #include "RenderView.h" |
| #include "Settings.h" |
| #include "TextAutoSizing.h" |
| #include "VerticalPositionCache.h" |
| #include "VisiblePosition.h" |
| #include <wtf/IsoMallocInlines.h> |
| |
| namespace WebCore { |
| |
| #define ENABLE_MODERN_PREFERRED_WIDTH_COMPUTATION 1 |
| #define ENABLE_MODERN_PREFERRED_WIDTH_COMPUTATION_FOR_INLINE_BOXES 1 |
| |
| WTF_MAKE_ISO_ALLOCATED_IMPL(RenderBlockFlow); |
| |
| bool RenderBlock::s_canPropagateFloatIntoSibling = false; |
| |
| struct SameSizeAsMarginInfo { |
| uint32_t bitfields : 16; |
| LayoutUnit margins[2]; |
| }; |
| |
| static_assert(sizeof(RenderBlockFlow::MarginValues) == sizeof(LayoutUnit[4]), "MarginValues should stay small"); |
| static_assert(sizeof(RenderBlockFlow::MarginInfo) == sizeof(SameSizeAsMarginInfo), "MarginInfo should stay small"); |
| |
| // Our MarginInfo state used when laying out block children. |
| RenderBlockFlow::MarginInfo::MarginInfo(const RenderBlockFlow& block, LayoutUnit beforeBorderPadding, LayoutUnit afterBorderPadding) |
| : m_atBeforeSideOfBlock(true) |
| , m_atAfterSideOfBlock(false) |
| , m_hasMarginBeforeQuirk(false) |
| , m_hasMarginAfterQuirk(false) |
| , m_determinedMarginBeforeQuirk(false) |
| { |
| const RenderStyle& blockStyle = block.style(); |
| ASSERT(block.isRenderView() || block.parent()); |
| m_canCollapseWithChildren = !block.createsNewFormattingContext() && !block.isRenderView(); |
| |
| m_canCollapseMarginBeforeWithChildren = m_canCollapseWithChildren && !beforeBorderPadding; |
| |
| // If any height other than auto is specified in CSS, then we don't collapse our bottom |
| // margins with our children's margins. To do otherwise would be to risk odd visual |
| // effects when the children overflow out of the parent block and yet still collapse |
| // with it. We also don't collapse if we have any bottom border/padding. |
| m_canCollapseMarginAfterWithChildren = m_canCollapseWithChildren && !afterBorderPadding |
| && blockStyle.logicalHeight().isAuto() && !blockStyle.logicalHeight().value(); |
| |
| m_quirkContainer = block.isTableCell() || block.isBody(); |
| |
| m_positiveMargin = m_canCollapseMarginBeforeWithChildren ? block.maxPositiveMarginBefore() : 0_lu; |
| m_negativeMargin = m_canCollapseMarginBeforeWithChildren ? block.maxNegativeMarginBefore() : 0_lu; |
| } |
| |
| RenderBlockFlow::RenderBlockFlow(Element& element, RenderStyle&& style) |
| : RenderBlock(element, WTFMove(style), RenderBlockFlowFlag) |
| #if ENABLE(TEXT_AUTOSIZING) |
| , m_widthForTextAutosizing(-1) |
| , m_lineCountForTextAutosizing(NOT_SET) |
| #endif |
| { |
| setChildrenInline(true); |
| } |
| |
| RenderBlockFlow::RenderBlockFlow(Document& document, RenderStyle&& style) |
| : RenderBlock(document, WTFMove(style), RenderBlockFlowFlag) |
| #if ENABLE(TEXT_AUTOSIZING) |
| , m_widthForTextAutosizing(-1) |
| , m_lineCountForTextAutosizing(NOT_SET) |
| #endif |
| { |
| setChildrenInline(true); |
| } |
| |
| RenderBlockFlow::~RenderBlockFlow() |
| { |
| // Do not add any code here. Add it to willBeDestroyed() instead. |
| } |
| |
| void RenderBlockFlow::willBeDestroyed() |
| { |
| if (!renderTreeBeingDestroyed()) { |
| if (firstRootBox()) { |
| // We can't wait for RenderBox::destroy to clear the selection, |
| // because by then we will have nuked the line boxes. |
| if (isSelectionBorder()) |
| frame().selection().setNeedsSelectionUpdate(); |
| |
| // If we are an anonymous block, then our line boxes might have children |
| // that will outlast this block. In the non-anonymous block case those |
| // children will be destroyed by the time we return from this function. |
| if (isAnonymousBlock()) { |
| for (auto* box = firstRootBox(); box; box = box->nextRootBox()) { |
| while (auto childBox = box->firstChild()) |
| childBox->removeFromParent(); |
| } |
| } |
| } else if (parent()) |
| parent()->dirtyLinesFromChangedChild(*this); |
| } |
| |
| if (legacyLineLayout()) |
| legacyLineLayout()->lineBoxes().deleteLineBoxes(); |
| |
| blockWillBeDestroyed(); |
| |
| // NOTE: This jumps down to RenderBox, bypassing RenderBlock since it would do duplicate work. |
| RenderBox::willBeDestroyed(); |
| } |
| |
| RenderMultiColumnFlow* RenderBlockFlow::multiColumnFlowSlowCase() const |
| { |
| return rareBlockFlowData()->m_multiColumnFlow.get(); |
| } |
| |
| RenderBlockFlow* RenderBlockFlow::previousSiblingWithOverhangingFloats(bool& parentHasFloats) const |
| { |
| // Attempt to locate a previous sibling with overhanging floats. We skip any elements that are |
| // out of flow (like floating/positioned elements), and we also skip over any objects that may have shifted |
| // to avoid floats. |
| parentHasFloats = false; |
| for (RenderObject* sibling = previousSibling(); sibling; sibling = sibling->previousSibling()) { |
| if (is<RenderBlockFlow>(*sibling)) { |
| auto& siblingBlock = downcast<RenderBlockFlow>(*sibling); |
| if (!siblingBlock.avoidsFloats()) |
| return &siblingBlock; |
| } |
| if (sibling->isFloating()) |
| parentHasFloats = true; |
| } |
| return nullptr; |
| } |
| |
| void RenderBlockFlow::rebuildFloatingObjectSetFromIntrudingFloats() |
| { |
| if (m_floatingObjects) |
| m_floatingObjects->setHorizontalWritingMode(isHorizontalWritingMode()); |
| |
| HashSet<RenderBox*> oldIntrudingFloatSet; |
| if (!childrenInline() && m_floatingObjects) { |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| auto end = floatingObjectSet.end(); |
| for (auto it = floatingObjectSet.begin(); it != end; ++it) { |
| FloatingObject* floatingObject = it->get(); |
| if (!floatingObject->isDescendant()) |
| oldIntrudingFloatSet.add(&floatingObject->renderer()); |
| } |
| } |
| |
| // Inline blocks are covered by the isReplacedOrInlineBlock() check in the avoidFloats method. |
| if (avoidsFloats() || isDocumentElementRenderer() || isRenderView() || isFloatingOrOutOfFlowPositioned() || isTableCell()) { |
| if (m_floatingObjects) |
| m_floatingObjects->clear(); |
| if (!oldIntrudingFloatSet.isEmpty()) |
| markAllDescendantsWithFloatsForLayout(); |
| return; |
| } |
| |
| RendererToFloatInfoMap floatMap; |
| |
| if (m_floatingObjects) { |
| if (childrenInline()) |
| m_floatingObjects->moveAllToFloatInfoMap(floatMap); |
| else |
| m_floatingObjects->clear(); |
| } |
| |
| // We should not process floats if the parent node is not a RenderBlock. Otherwise, we will add |
| // floats in an invalid context. This will cause a crash arising from a bad cast on the parent. |
| // See <rdar://problem/8049753>, where float property is applied on a text node in a SVG. |
| if (!is<RenderBlockFlow>(parent())) |
| return; |
| |
| // First add in floats from the parent. Self-collapsing blocks let their parent track any floats that intrude into |
| // them (as opposed to floats they contain themselves) so check for those here too. |
| auto& parentBlock = downcast<RenderBlockFlow>(*parent()); |
| bool parentHasFloats = false; |
| RenderBlockFlow* previousBlock = previousSiblingWithOverhangingFloats(parentHasFloats); |
| LayoutUnit logicalTopOffset = logicalTop(); |
| if (parentHasFloats || (parentBlock.lowestFloatLogicalBottom() > logicalTopOffset && previousBlock && previousBlock->isSelfCollapsingBlock())) |
| addIntrudingFloats(&parentBlock, &parentBlock, parentBlock.logicalLeftOffsetForContent(), logicalTopOffset); |
| |
| LayoutUnit logicalLeftOffset; |
| if (previousBlock) |
| logicalTopOffset -= previousBlock->logicalTop(); |
| else { |
| previousBlock = &parentBlock; |
| logicalLeftOffset += parentBlock.logicalLeftOffsetForContent(); |
| } |
| |
| // Add overhanging floats from the previous RenderBlock, but only if it has a float that intrudes into our space. |
| if (previousBlock->m_floatingObjects && previousBlock->lowestFloatLogicalBottom() > logicalTopOffset) |
| addIntrudingFloats(previousBlock, &parentBlock, logicalLeftOffset, logicalTopOffset); |
| |
| if (childrenInline()) { |
| LayoutUnit changeLogicalTop = LayoutUnit::max(); |
| LayoutUnit changeLogicalBottom = LayoutUnit::min(); |
| if (m_floatingObjects) { |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| auto end = floatingObjectSet.end(); |
| for (auto it = floatingObjectSet.begin(); it != end; ++it) { |
| const auto& floatingObject = *it->get(); |
| std::unique_ptr<FloatingObject> oldFloatingObject = floatMap.take(&floatingObject.renderer()); |
| LayoutUnit logicalBottom = logicalBottomForFloat(floatingObject); |
| if (oldFloatingObject) { |
| LayoutUnit oldLogicalBottom = logicalBottomForFloat(*oldFloatingObject); |
| if (logicalWidthForFloat(floatingObject) != logicalWidthForFloat(*oldFloatingObject) || logicalLeftForFloat(floatingObject) != logicalLeftForFloat(*oldFloatingObject)) { |
| changeLogicalTop = 0; |
| changeLogicalBottom = std::max(changeLogicalBottom, std::max(logicalBottom, oldLogicalBottom)); |
| } else { |
| if (logicalBottom != oldLogicalBottom) { |
| changeLogicalTop = std::min(changeLogicalTop, std::min(logicalBottom, oldLogicalBottom)); |
| changeLogicalBottom = std::max(changeLogicalBottom, std::max(logicalBottom, oldLogicalBottom)); |
| } |
| LayoutUnit logicalTop = logicalTopForFloat(floatingObject); |
| LayoutUnit oldLogicalTop = logicalTopForFloat(*oldFloatingObject); |
| if (logicalTop != oldLogicalTop) { |
| changeLogicalTop = std::min(changeLogicalTop, std::min(logicalTop, oldLogicalTop)); |
| changeLogicalBottom = std::max(changeLogicalBottom, std::max(logicalTop, oldLogicalTop)); |
| } |
| } |
| |
| if (oldFloatingObject->originatingLine() && !selfNeedsLayout()) { |
| ASSERT(&oldFloatingObject->originatingLine()->renderer() == this); |
| oldFloatingObject->originatingLine()->markDirty(); |
| } |
| } else { |
| changeLogicalTop = 0; |
| changeLogicalBottom = std::max(changeLogicalBottom, logicalBottom); |
| } |
| } |
| } |
| |
| auto end = floatMap.end(); |
| for (auto it = floatMap.begin(); it != end; ++it) { |
| const auto& floatingObject = *it->value.get(); |
| if (!floatingObject.isDescendant()) { |
| changeLogicalTop = 0; |
| changeLogicalBottom = std::max(changeLogicalBottom, logicalBottomForFloat(floatingObject)); |
| } |
| } |
| |
| markLinesDirtyInBlockRange(changeLogicalTop, changeLogicalBottom); |
| } else if (!oldIntrudingFloatSet.isEmpty()) { |
| // If there are previously intruding floats that no longer intrude, then children with floats |
| // should also get layout because they might need their floating object lists cleared. |
| if (m_floatingObjects->set().size() < oldIntrudingFloatSet.size()) |
| markAllDescendantsWithFloatsForLayout(); |
| else { |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| auto end = floatingObjectSet.end(); |
| for (auto it = floatingObjectSet.begin(); it != end && !oldIntrudingFloatSet.isEmpty(); ++it) |
| oldIntrudingFloatSet.remove(&(*it)->renderer()); |
| if (!oldIntrudingFloatSet.isEmpty()) |
| markAllDescendantsWithFloatsForLayout(); |
| } |
| } |
| } |
| |
| void RenderBlockFlow::adjustIntrinsicLogicalWidthsForColumns(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const |
| { |
| if (!style().hasAutoColumnCount() || !style().hasAutoColumnWidth()) { |
| // The min/max intrinsic widths calculated really tell how much space elements need when |
| // laid out inside the columns. In order to eventually end up with the desired column width, |
| // we need to convert them to values pertaining to the multicol container. |
| int columnCount = style().hasAutoColumnCount() ? 1 : style().columnCount(); |
| LayoutUnit columnWidth; |
| LayoutUnit colGap = columnGap(); |
| LayoutUnit gapExtra = (columnCount - 1) * colGap; |
| if (style().hasAutoColumnWidth()) |
| minLogicalWidth = minLogicalWidth * columnCount + gapExtra; |
| else { |
| columnWidth = style().columnWidth(); |
| minLogicalWidth = std::min(minLogicalWidth, columnWidth); |
| } |
| // FIXME: If column-count is auto here, we should resolve it to calculate the maximum |
| // intrinsic width, instead of pretending that it's 1. The only way to do that is by |
| // performing a layout pass, but this is not an appropriate time or place for layout. The |
| // good news is that if height is unconstrained and there are no explicit breaks, the |
| // resolved column-count really should be 1. |
| maxLogicalWidth = std::max(maxLogicalWidth, columnWidth) * columnCount + gapExtra; |
| } |
| } |
| |
| void RenderBlockFlow::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const |
| { |
| auto shouldIgnoreDescendantContentForLogicalWidth = shouldApplySizeOrStyleContainment({ Containment::Size, Containment::InlineSize }); |
| if (!shouldIgnoreDescendantContentForLogicalWidth) { |
| if (childrenInline()) |
| computeInlinePreferredLogicalWidths(minLogicalWidth, maxLogicalWidth); |
| else |
| computeBlockPreferredLogicalWidths(minLogicalWidth, maxLogicalWidth); |
| } |
| |
| maxLogicalWidth = std::max(minLogicalWidth, maxLogicalWidth); |
| |
| adjustIntrinsicLogicalWidthsForColumns(minLogicalWidth, maxLogicalWidth); |
| |
| if (!style().autoWrap() && childrenInline()) { |
| // A horizontal marquee with inline children has no minimum width. |
| auto* scrollableArea = layer() ? layer()->scrollableArea() : nullptr; |
| if (scrollableArea && scrollableArea->marquee() && scrollableArea->marquee()->isHorizontal()) |
| minLogicalWidth = 0; |
| } |
| |
| if (is<RenderTableCell>(*this)) { |
| Length tableCellWidth = downcast<RenderTableCell>(*this).styleOrColLogicalWidth(); |
| if (tableCellWidth.isFixed() && tableCellWidth.value() > 0) |
| maxLogicalWidth = std::max(minLogicalWidth, adjustContentBoxLogicalWidthForBoxSizing(tableCellWidth)); |
| } |
| |
| int scrollbarWidth = intrinsicScrollbarLogicalWidth(); |
| maxLogicalWidth += scrollbarWidth; |
| minLogicalWidth += scrollbarWidth; |
| } |
| |
| bool RenderBlockFlow::recomputeLogicalWidthAndColumnWidth() |
| { |
| bool changed = recomputeLogicalWidth(); |
| |
| LayoutUnit oldColumnWidth = computedColumnWidth(); |
| computeColumnCountAndWidth(); |
| |
| return changed || oldColumnWidth != computedColumnWidth(); |
| } |
| |
| LayoutUnit RenderBlockFlow::columnGap() const |
| { |
| if (style().columnGap().isNormal()) |
| return style().fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches <p> margins. |
| return valueForLength(style().columnGap().length(), availableLogicalWidth()); |
| } |
| |
| void RenderBlockFlow::computeColumnCountAndWidth() |
| { |
| // Calculate our column width and column count. |
| // FIXME: Can overflow on fast/block/float/float-not-removed-from-next-sibling4.html, see https://bugs.webkit.org/show_bug.cgi?id=68744 |
| unsigned desiredColumnCount = 1; |
| LayoutUnit desiredColumnWidth = contentLogicalWidth(); |
| |
| // For now, we don't support multi-column layouts when printing, since we have to do a lot of work for proper pagination. |
| if (document().paginated() || (style().hasAutoColumnCount() && style().hasAutoColumnWidth()) || !style().hasInlineColumnAxis()) { |
| setComputedColumnCountAndWidth(desiredColumnCount, desiredColumnWidth); |
| return; |
| } |
| |
| LayoutUnit availWidth = desiredColumnWidth; |
| LayoutUnit colGap = columnGap(); |
| LayoutUnit colWidth = std::max(1_lu, LayoutUnit(style().columnWidth())); |
| unsigned colCount = std::max<unsigned>(1, style().columnCount()); |
| |
| if (style().hasAutoColumnWidth() && !style().hasAutoColumnCount()) { |
| desiredColumnCount = colCount; |
| desiredColumnWidth = std::max<LayoutUnit>(0, (availWidth - ((desiredColumnCount - 1) * colGap)) / desiredColumnCount); |
| } else if (!style().hasAutoColumnWidth() && style().hasAutoColumnCount()) { |
| desiredColumnCount = std::max<unsigned>(1, ((availWidth + colGap) / (colWidth + colGap)).toUnsigned()); |
| desiredColumnWidth = ((availWidth + colGap) / desiredColumnCount) - colGap; |
| } else { |
| desiredColumnCount = std::max<unsigned>(std::min(colCount, ((availWidth + colGap) / (colWidth + colGap)).toUnsigned()), 1); |
| desiredColumnWidth = ((availWidth + colGap) / desiredColumnCount) - colGap; |
| } |
| setComputedColumnCountAndWidth(desiredColumnCount, desiredColumnWidth); |
| } |
| |
| bool RenderBlockFlow::willCreateColumns(std::optional<unsigned> desiredColumnCount) const |
| { |
| // The following types are not supposed to create multicol context. |
| if (isFileUploadControl() || isTextControl() || isListBox()) |
| return false; |
| if (isRenderSVGBlock() || isRubyRun()) |
| return false; |
| #if ENABLE(MATHML) |
| if (isRenderMathMLBlock()) |
| return false; |
| #endif // ENABLE(MATHML) |
| |
| if (!firstChild()) |
| return false; |
| |
| if (style().styleType() != PseudoId::None) |
| return false; |
| |
| // If overflow-y is set to paged-x or paged-y on the body or html element, we'll handle the paginating in the RenderView instead. |
| if ((style().overflowY() == Overflow::PagedX || style().overflowY() == Overflow::PagedY) && !(isDocumentElementRenderer() || isBody())) |
| return true; |
| |
| if (!style().specifiesColumns()) |
| return false; |
| |
| // column-axis with opposite writing direction initiates MultiColumnFlow. |
| if (!style().hasInlineColumnAxis()) |
| return true; |
| |
| // Non-auto column-width always initiates MultiColumnFlow. |
| if (!style().hasAutoColumnWidth()) |
| return true; |
| |
| if (desiredColumnCount) |
| return desiredColumnCount.value() > 1; |
| |
| // column-count > 1 always initiates MultiColumnFlow. |
| if (!style().hasAutoColumnCount()) |
| return style().columnCount() > 1; |
| |
| ASSERT_NOT_REACHED(); |
| return false; |
| } |
| |
| void RenderBlockFlow::setChildrenInline(bool value) |
| { |
| if (childrenInline() && !value) { |
| setLineLayoutPath(UndeterminedPath); |
| m_lineLayout = std::monostate(); |
| } |
| |
| RenderBlock::setChildrenInline(value); |
| } |
| |
| void RenderBlockFlow::layoutBlock(bool relayoutChildren, LayoutUnit pageLogicalHeight) |
| { |
| ASSERT(needsLayout()); |
| |
| if (!relayoutChildren && simplifiedLayout()) |
| return; |
| |
| LayoutRepainter repainter(*this, checkForRepaintDuringLayout()); |
| |
| if (recomputeLogicalWidthAndColumnWidth()) |
| relayoutChildren = true; |
| |
| rebuildFloatingObjectSetFromIntrudingFloats(); |
| |
| LayoutUnit previousHeight = logicalHeight(); |
| // FIXME: should this start out as borderAndPaddingLogicalHeight() + scrollbarLogicalHeight(), |
| // for consistency with other render classes? |
| resetLogicalHeightBeforeLayoutIfNeeded(); |
| |
| bool pageLogicalHeightChanged = false; |
| checkForPaginationLogicalHeightChange(relayoutChildren, pageLogicalHeight, pageLogicalHeightChanged); |
| |
| LayoutUnit repaintLogicalTop; |
| LayoutUnit repaintLogicalBottom; |
| LayoutUnit maxFloatLogicalBottom; |
| const RenderStyle& styleToUse = style(); |
| do { |
| LayoutStateMaintainer statePusher(*this, locationOffset(), hasTransform() || hasReflection() || styleToUse.isFlippedBlocksWritingMode(), pageLogicalHeight, pageLogicalHeightChanged); |
| |
| preparePaginationBeforeBlockLayout(relayoutChildren); |
| |
| // We use four values, maxTopPos, maxTopNeg, maxBottomPos, and maxBottomNeg, to track |
| // our current maximal positive and negative margins. These values are used when we |
| // are collapsed with adjacent blocks, so for example, if you have block A and B |
| // collapsing together, then you'd take the maximal positive margin from both A and B |
| // and subtract it from the maximal negative margin from both A and B to get the |
| // true collapsed margin. This algorithm is recursive, so when we finish layout() |
| // our block knows its current maximal positive/negative values. |
| // |
| // Start out by setting our margin values to our current margins. Table cells have |
| // no margins, so we don't fill in the values for table cells. |
| bool isCell = isTableCell(); |
| if (!isCell) { |
| initMaxMarginValues(); |
| |
| setHasMarginBeforeQuirk(styleToUse.hasMarginBeforeQuirk()); |
| setHasMarginAfterQuirk(styleToUse.hasMarginAfterQuirk()); |
| setPaginationStrut(0); |
| } |
| if (!firstChild() && !isAnonymousBlock()) |
| setChildrenInline(true); |
| dirtyForLayoutFromPercentageHeightDescendants(); |
| if (childrenInline()) |
| layoutInlineChildren(relayoutChildren, repaintLogicalTop, repaintLogicalBottom); |
| else |
| layoutBlockChildren(relayoutChildren, maxFloatLogicalBottom); |
| // Expand our intrinsic height to encompass floats. |
| LayoutUnit toAdd = borderAndPaddingAfter() + scrollbarLogicalHeight(); |
| if (lowestFloatLogicalBottom() > (logicalHeight() - toAdd) && createsNewFormattingContext()) |
| setLogicalHeight(lowestFloatLogicalBottom() + toAdd); |
| if (shouldBreakAtLineToAvoidWidow()) { |
| setEverHadLayout(true); |
| continue; |
| } |
| break; |
| } while (true); |
| |
| if (relayoutForPagination()) { |
| ASSERT(!shouldBreakAtLineToAvoidWidow()); |
| return; |
| } |
| |
| // Calculate our new height. |
| LayoutUnit oldHeight = logicalHeight(); |
| LayoutUnit oldClientAfterEdge = clientLogicalBottom(); |
| |
| // Before updating the final size of the flow thread make sure a forced break is applied after the content. |
| // This ensures the size information is correctly computed for the last auto-height fragment receiving content. |
| if (is<RenderFragmentedFlow>(*this)) |
| downcast<RenderFragmentedFlow>(*this).applyBreakAfterContent(oldClientAfterEdge); |
| |
| updateLogicalHeight(); |
| LayoutUnit newHeight = logicalHeight(); |
| { |
| // FIXME: This could be removed once relayoutForPagination() either stop recursing or we manage to |
| // re-order them. |
| LayoutStateMaintainer statePusher(*this, locationOffset(), hasTransform() || hasReflection() || styleToUse.isFlippedBlocksWritingMode(), pageLogicalHeight, pageLogicalHeightChanged); |
| |
| if (oldHeight != newHeight) { |
| if (oldHeight > newHeight && maxFloatLogicalBottom > newHeight && !childrenInline()) { |
| // One of our children's floats may have become an overhanging float for us. We need to look for it. |
| for (auto& blockFlow : childrenOfType<RenderBlockFlow>(*this)) { |
| if (blockFlow.isFloatingOrOutOfFlowPositioned()) |
| continue; |
| if (blockFlow.lowestFloatLogicalBottom() + blockFlow.logicalTop() > newHeight) |
| addOverhangingFloats(blockFlow, false); |
| } |
| } |
| } |
| |
| bool heightChanged = (previousHeight != newHeight); |
| if (heightChanged) |
| relayoutChildren = true; |
| layoutPositionedObjects(relayoutChildren || isDocumentElementRenderer()); |
| } |
| // Add overflow from children (unless we're multi-column, since in that case all our child overflow is clipped anyway). |
| computeOverflow(oldClientAfterEdge); |
| |
| auto* state = view().frameView().layoutContext().layoutState(); |
| if (state && state->pageLogicalHeight()) |
| setPageLogicalOffset(state->pageLogicalOffset(this, logicalTop())); |
| |
| updateLayerTransform(); |
| |
| // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if |
| // we overflow or not. |
| updateScrollInfoAfterLayout(); |
| |
| // FIXME: This repaint logic should be moved into a separate helper function! |
| // Repaint with our new bounds if they are different from our old bounds. |
| bool didFullRepaint = repainter.repaintAfterLayout(); |
| if (!didFullRepaint && repaintLogicalTop != repaintLogicalBottom && (styleToUse.visibility() == Visibility::Visible || enclosingLayer()->hasVisibleContent())) { |
| // FIXME: We could tighten up the left and right invalidation points if we let layoutInlineChildren fill them in based off the particular lines |
| // it had to lay out. We wouldn't need the hasNonVisibleOverflow() hack in that case either. |
| LayoutUnit repaintLogicalLeft = logicalLeftVisualOverflow(); |
| LayoutUnit repaintLogicalRight = logicalRightVisualOverflow(); |
| if (hasNonVisibleOverflow()) { |
| // If we have clipped overflow, we should use layout overflow as well, since visual overflow from lines didn't propagate to our block's overflow. |
| // Note the old code did this as well but even for overflow:visible. The addition of hasNonVisibleOverflow() at least tightens up the hack a bit. |
| // layoutInlineChildren should be patched to compute the entire repaint rect. |
| repaintLogicalLeft = std::min(repaintLogicalLeft, logicalLeftLayoutOverflow()); |
| repaintLogicalRight = std::max(repaintLogicalRight, logicalRightLayoutOverflow()); |
| } |
| |
| LayoutRect repaintRect; |
| if (isHorizontalWritingMode()) |
| repaintRect = LayoutRect(repaintLogicalLeft, repaintLogicalTop, repaintLogicalRight - repaintLogicalLeft, repaintLogicalBottom - repaintLogicalTop); |
| else |
| repaintRect = LayoutRect(repaintLogicalTop, repaintLogicalLeft, repaintLogicalBottom - repaintLogicalTop, repaintLogicalRight - repaintLogicalLeft); |
| |
| if (hasNonVisibleOverflow()) { |
| // Adjust repaint rect for scroll offset |
| repaintRect.moveBy(-scrollPosition()); |
| |
| // Don't allow this rect to spill out of our overflow box. |
| repaintRect.intersect(LayoutRect(LayoutPoint(), size())); |
| } |
| |
| // Make sure the rect is still non-empty after intersecting for overflow above |
| if (!repaintRect.isEmpty()) { |
| repaintRectangle(repaintRect); // We need to do a partial repaint of our content. |
| if (hasReflection()) |
| repaintRectangle(reflectedRect(repaintRect)); |
| } |
| } |
| |
| clearNeedsLayout(); |
| } |
| |
| void RenderBlockFlow::layoutBlockChildren(bool relayoutChildren, LayoutUnit& maxFloatLogicalBottom) |
| { |
| LayoutUnit beforeEdge = borderAndPaddingBefore(); |
| LayoutUnit afterEdge = borderAndPaddingAfter() + scrollbarLogicalHeight(); |
| |
| setLogicalHeight(beforeEdge); |
| |
| // Lay out our hypothetical grid line as though it occurs at the top of the block. |
| if (view().frameView().layoutContext().layoutState()->lineGrid() == this) |
| layoutLineGridBox(); |
| |
| // The margin struct caches all our current margin collapsing state. |
| MarginInfo marginInfo(*this, beforeEdge, afterEdge); |
| |
| // Fieldsets need to find their legend and position it inside the border of the object. |
| // The legend then gets skipped during normal layout. The same is true for ruby text. |
| // It doesn't get included in the normal layout process but is instead skipped. |
| layoutExcludedChildren(relayoutChildren); |
| |
| LayoutUnit previousFloatLogicalBottom; |
| maxFloatLogicalBottom = 0; |
| |
| RenderBox* next = firstChildBox(); |
| |
| while (next) { |
| RenderBox& child = *next; |
| next = child.nextSiblingBox(); |
| |
| if (child.isExcludedFromNormalLayout()) |
| continue; // Skip this child, since it will be positioned by the specialized subclass (fieldsets and ruby runs). |
| |
| updateBlockChildDirtyBitsBeforeLayout(relayoutChildren, child); |
| |
| if (child.isOutOfFlowPositioned()) { |
| child.containingBlock()->insertPositionedObject(child); |
| adjustPositionedBlock(child, marginInfo); |
| continue; |
| } |
| if (child.isFloating()) { |
| insertFloatingObject(child); |
| adjustFloatingBlock(marginInfo); |
| continue; |
| } |
| |
| // Lay out the child. |
| layoutBlockChild(child, marginInfo, previousFloatLogicalBottom, maxFloatLogicalBottom); |
| } |
| |
| // Now do the handling of the bottom of the block, adding in our bottom border/padding and |
| // determining the correct collapsed bottom margin information. |
| handleAfterSideOfBlock(beforeEdge, afterEdge, marginInfo); |
| } |
| |
| void RenderBlockFlow::computeAndSetLineLayoutPath() |
| { |
| if (lineLayoutPath() != UndeterminedPath) |
| return; |
| |
| auto compute = [&] { |
| #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
| if (LayoutIntegration::LineLayout::canUseFor(*this)) |
| return ModernPath; |
| #endif |
| return LegacyPath; |
| }; |
| |
| setLineLayoutPath(compute()); |
| } |
| |
| void RenderBlockFlow::layoutInlineChildren(bool relayoutChildren, LayoutUnit& repaintLogicalTop, LayoutUnit& repaintLogicalBottom) |
| { |
| computeAndSetLineLayoutPath(); |
| |
| #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
| if (lineLayoutPath() == ModernPath) { |
| layoutModernLines(relayoutChildren, repaintLogicalTop, repaintLogicalBottom); |
| return; |
| } |
| #endif |
| |
| if (!legacyLineLayout()) |
| m_lineLayout = makeUnique<LegacyLineLayout>(*this); |
| |
| legacyLineLayout()->layoutLineBoxes(relayoutChildren, repaintLogicalTop, repaintLogicalBottom); |
| } |
| |
| void RenderBlockFlow::layoutBlockChild(RenderBox& child, MarginInfo& marginInfo, LayoutUnit& previousFloatLogicalBottom, LayoutUnit& maxFloatLogicalBottom) |
| { |
| LayoutUnit oldPosMarginBefore = maxPositiveMarginBefore(); |
| LayoutUnit oldNegMarginBefore = maxNegativeMarginBefore(); |
| |
| // The child is a normal flow object. Compute the margins we will use for collapsing now. |
| child.computeAndSetBlockDirectionMargins(*this); |
| |
| // Try to guess our correct logical top position. In most cases this guess will |
| // be correct. Only if we're wrong (when we compute the real logical top position) |
| // will we have to potentially relayout. |
| LayoutUnit estimateWithoutPagination; |
| LayoutUnit logicalTopEstimate = estimateLogicalTopPosition(child, marginInfo, estimateWithoutPagination); |
| |
| // Cache our old rect so that we can dirty the proper repaint rects if the child moves. |
| LayoutRect oldRect = child.frameRect(); |
| LayoutUnit oldLogicalTop = logicalTopForChild(child); |
| |
| #if ASSERT_ENABLED |
| LayoutSize oldLayoutDelta = view().frameView().layoutContext().layoutDelta(); |
| #endif |
| // Position the child as though it didn't collapse with the top. |
| setLogicalTopForChild(child, logicalTopEstimate, ApplyLayoutDelta); |
| estimateFragmentRangeForBoxChild(child); |
| |
| auto* childBlockFlow = dynamicDowncast<RenderBlockFlow>(child); |
| bool markDescendantsWithFloats = false; |
| if (logicalTopEstimate != oldLogicalTop && !child.avoidsFloats() && childBlockFlow && childBlockFlow->containsFloats()) |
| markDescendantsWithFloats = true; |
| else if (UNLIKELY(logicalTopEstimate.mightBeSaturated())) |
| // logicalTopEstimate, returned by estimateLogicalTopPosition, might be saturated for |
| // very large elements. If it does the comparison with oldLogicalTop might yield a |
| // false negative as adding and removing margins, borders etc from a saturated number |
| // might yield incorrect results. If this is the case always mark for layout. |
| markDescendantsWithFloats = true; |
| else if (!child.avoidsFloats() || child.shrinkToAvoidFloats()) { |
| // If an element might be affected by the presence of floats, then always mark it for |
| // layout. |
| LayoutUnit fb = std::max(previousFloatLogicalBottom, lowestFloatLogicalBottom()); |
| if (fb > logicalTopEstimate) |
| markDescendantsWithFloats = true; |
| } |
| |
| if (childBlockFlow) { |
| if (markDescendantsWithFloats) |
| childBlockFlow->markAllDescendantsWithFloatsForLayout(); |
| if (!child.isWritingModeRoot()) |
| previousFloatLogicalBottom = std::max(previousFloatLogicalBottom, oldLogicalTop + childBlockFlow->lowestFloatLogicalBottom()); |
| } |
| |
| child.markForPaginationRelayoutIfNeeded(); |
| |
| bool childHadLayout = child.everHadLayout(); |
| bool childNeededLayout = child.needsLayout(); |
| if (childNeededLayout) |
| child.layout(); |
| |
| // Cache if we are at the top of the block right now. |
| bool atBeforeSideOfBlock = marginInfo.atBeforeSideOfBlock(); |
| |
| // Now determine the correct ypos based off examination of collapsing margin |
| // values. |
| LayoutUnit logicalTopBeforeClear = collapseMargins(child, marginInfo); |
| |
| // Now check for clear. |
| LayoutUnit logicalTopAfterClear = clearFloatsIfNeeded(child, marginInfo, oldPosMarginBefore, oldNegMarginBefore, logicalTopBeforeClear); |
| |
| bool paginated = view().frameView().layoutContext().layoutState()->isPaginated(); |
| if (paginated) |
| logicalTopAfterClear = adjustBlockChildForPagination(logicalTopAfterClear, estimateWithoutPagination, child, atBeforeSideOfBlock && logicalTopBeforeClear == logicalTopAfterClear); |
| |
| setLogicalTopForChild(child, logicalTopAfterClear, ApplyLayoutDelta); |
| |
| // Now we have a final top position. See if it really does end up being different from our estimate. |
| // clearFloatsIfNeeded can also mark the child as needing a layout even though we didn't move. This happens |
| // when collapseMargins dynamically adds overhanging floats because of a child with negative margins. |
| if (logicalTopAfterClear != logicalTopEstimate || child.needsLayout() || (paginated && childBlockFlow && childBlockFlow->shouldBreakAtLineToAvoidWidow())) { |
| if (child.shrinkToAvoidFloats()) { |
| // The child's width depends on the line width. When the child shifts to clear an item, its width can |
| // change (because it has more available line width). So mark the item as dirty. |
| child.setChildNeedsLayout(MarkOnlyThis); |
| } |
| |
| if (childBlockFlow) { |
| if (!child.avoidsFloats() && childBlockFlow->containsFloats()) |
| childBlockFlow->markAllDescendantsWithFloatsForLayout(); |
| child.markForPaginationRelayoutIfNeeded(); |
| } |
| } |
| |
| if (updateFragmentRangeForBoxChild(child)) |
| child.setNeedsLayout(MarkOnlyThis); |
| |
| // In case our guess was wrong, relayout the child. |
| child.layoutIfNeeded(); |
| |
| // We are no longer at the top of the block if we encounter a non-empty child. |
| // This has to be done after checking for clear, so that margins can be reset if a clear occurred. |
| if (marginInfo.atBeforeSideOfBlock() && !child.isSelfCollapsingBlock()) |
| marginInfo.setAtBeforeSideOfBlock(false); |
| |
| // Now place the child in the correct left position |
| determineLogicalLeftPositionForChild(child, ApplyLayoutDelta); |
| |
| // Update our height now that the child has been placed in the correct position. |
| setLogicalHeight(logicalHeight() + logicalHeightForChildForFragmentation(child)); |
| |
| // If the child has overhanging floats that intrude into following siblings (or possibly out |
| // of this block), then the parent gets notified of the floats now. |
| if (childBlockFlow && childBlockFlow->containsFloats()) |
| maxFloatLogicalBottom = std::max(maxFloatLogicalBottom, addOverhangingFloats(*childBlockFlow, !childNeededLayout)); |
| |
| LayoutSize childOffset = child.location() - oldRect.location(); |
| if (childOffset.width() || childOffset.height()) { |
| view().frameView().layoutContext().addLayoutDelta(childOffset); |
| |
| // If the child moved, we have to repaint it as well as any floating/positioned |
| // descendants. An exception is if we need a layout. In this case, we know we're going to |
| // repaint ourselves (and the child) anyway. |
| if (childHadLayout && !selfNeedsLayout() && child.checkForRepaintDuringLayout()) |
| child.repaintDuringLayoutIfMoved(oldRect); |
| } |
| |
| if (!childHadLayout && child.checkForRepaintDuringLayout()) { |
| child.repaint(); |
| child.repaintOverhangingFloats(true); |
| } |
| |
| if (paginated) { |
| if (RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow()) |
| fragmentedFlow->fragmentedFlowDescendantBoxLaidOut(&child); |
| // Check for an after page/column break. |
| LayoutUnit newHeight = applyAfterBreak(child, logicalHeight(), marginInfo); |
| if (newHeight != height()) |
| setLogicalHeight(newHeight); |
| } |
| |
| ASSERT(view().frameView().layoutContext().layoutDeltaMatches(oldLayoutDelta)); |
| } |
| |
| void RenderBlockFlow::adjustPositionedBlock(RenderBox& child, const MarginInfo& marginInfo) |
| { |
| bool isHorizontal = isHorizontalWritingMode(); |
| bool hasStaticBlockPosition = child.style().hasStaticBlockPosition(isHorizontal); |
| |
| LayoutUnit logicalTop = logicalHeight(); |
| updateStaticInlinePositionForChild(child, logicalTop, DoNotIndentText); |
| |
| if (!marginInfo.canCollapseWithMarginBefore()) { |
| // Positioned blocks don't collapse margins, so add the margin provided by |
| // the container now. The child's own margin is added later when calculating its logical top. |
| LayoutUnit collapsedBeforePos = marginInfo.positiveMargin(); |
| LayoutUnit collapsedBeforeNeg = marginInfo.negativeMargin(); |
| logicalTop += collapsedBeforePos - collapsedBeforeNeg; |
| } |
| |
| RenderLayer* childLayer = child.layer(); |
| if (childLayer->staticBlockPosition() != logicalTop) { |
| childLayer->setStaticBlockPosition(logicalTop); |
| if (hasStaticBlockPosition) |
| child.setChildNeedsLayout(MarkOnlyThis); |
| } |
| } |
| |
| LayoutUnit RenderBlockFlow::marginOffsetForSelfCollapsingBlock() |
| { |
| ASSERT(isSelfCollapsingBlock()); |
| RenderBlockFlow* parentBlock = downcast<RenderBlockFlow>(parent()); |
| if (parentBlock && RenderStyle::usedClear(*this) != UsedClear::None && parentBlock->getClearDelta(*this, logicalHeight())) |
| return marginValuesForChild(*this).positiveMarginBefore(); |
| return 0_lu; |
| } |
| |
| void RenderBlockFlow::determineLogicalLeftPositionForChild(RenderBox& child, ApplyLayoutDeltaMode applyDelta) |
| { |
| LayoutUnit startPosition = borderStart() + paddingStart(); |
| if (shouldPlaceVerticalScrollbarOnLeft() && isHorizontalWritingMode()) |
| startPosition += (style().isLeftToRightDirection() ? 1 : -1) * verticalScrollbarWidth(); |
| LayoutUnit totalAvailableLogicalWidth = borderAndPaddingLogicalWidth() + availableLogicalWidth(); |
| |
| // Add in our start margin. |
| LayoutUnit childMarginStart = marginStartForChild(child); |
| LayoutUnit newPosition = startPosition + childMarginStart; |
| |
| // Some objects (e.g., tables, horizontal rules, overflow:auto blocks) avoid floats. They need |
| // to shift over as necessary to dodge any floats that might get in the way. |
| if (child.avoidsFloats() && containsFloats()) |
| newPosition += computeStartPositionDeltaForChildAvoidingFloats(child, marginStartForChild(child)); |
| |
| setLogicalLeftForChild(child, style().isLeftToRightDirection() ? newPosition : totalAvailableLogicalWidth - newPosition - logicalWidthForChild(child), applyDelta); |
| } |
| |
| void RenderBlockFlow::adjustFloatingBlock(const MarginInfo& marginInfo) |
| { |
| // The float should be positioned taking into account the bottom margin |
| // of the previous flow. We add that margin into the height, get the |
| // float positioned properly, and then subtract the margin out of the |
| // height again. In the case of self-collapsing blocks, we always just |
| // use the top margins, since the self-collapsing block collapsed its |
| // own bottom margin into its top margin. |
| // |
| // Note also that the previous flow may collapse its margin into the top of |
| // our block. If this is the case, then we do not add the margin in to our |
| // height when computing the position of the float. This condition can be tested |
| // for by simply calling canCollapseWithMarginBefore. See |
| // http://www.hixie.ch/tests/adhoc/css/box/block/margin-collapse/046.html for |
| // an example of this scenario. |
| LayoutUnit marginOffset = marginInfo.canCollapseWithMarginBefore() ? 0_lu : marginInfo.margin(); |
| setLogicalHeight(logicalHeight() + marginOffset); |
| positionNewFloats(); |
| setLogicalHeight(logicalHeight() - marginOffset); |
| } |
| |
| void RenderBlockFlow::updateStaticInlinePositionForChild(RenderBox& child, LayoutUnit logicalTop, IndentTextOrNot shouldIndentText) |
| { |
| if (child.style().isOriginalDisplayInlineType()) |
| setStaticInlinePositionForChild(child, logicalTop, startAlignedOffsetForLine(logicalTop, shouldIndentText)); |
| else |
| setStaticInlinePositionForChild(child, logicalTop, startOffsetForContent(logicalTop)); |
| } |
| |
| void RenderBlockFlow::setStaticInlinePositionForChild(RenderBox& child, LayoutUnit blockOffset, LayoutUnit inlinePosition) |
| { |
| if (enclosingFragmentedFlow()) { |
| // Shift the inline position to exclude the fragment offset. |
| inlinePosition += startOffsetForContent() - startOffsetForContent(blockOffset); |
| } |
| child.layer()->setStaticInlinePosition(inlinePosition); |
| } |
| |
| LayoutUnit RenderBlockFlow::startAlignedOffsetForLine(LayoutUnit position, IndentTextOrNot shouldIndentText) |
| { |
| TextAlignMode textAlign = style().textAlign(); |
| bool shouldApplyIndentText = false; |
| switch (textAlign) { |
| case TextAlignMode::Left: |
| case TextAlignMode::WebKitLeft: |
| shouldApplyIndentText = style().isLeftToRightDirection(); |
| break; |
| case TextAlignMode::Right: |
| case TextAlignMode::WebKitRight: |
| shouldApplyIndentText = !style().isLeftToRightDirection(); |
| break; |
| case TextAlignMode::Start: |
| shouldApplyIndentText = true; |
| break; |
| default: |
| shouldApplyIndentText = false; |
| } |
| // <rdar://problem/15427571> |
| // https://bugs.webkit.org/show_bug.cgi?id=124522 |
| // This quirk is for legacy content that doesn't work properly with the center positioning scheme |
| // being honored (e.g., epubs). |
| if (shouldApplyIndentText || settings().useLegacyTextAlignPositionedElementBehavior()) // FIXME: Handle TextAlignMode::End here |
| return startOffsetForLine(position, shouldIndentText); |
| |
| // updateLogicalWidthForAlignment() handles the direction of the block so no need to consider it here |
| float totalLogicalWidth = 0; |
| float logicalLeft = logicalLeftOffsetForLine(logicalHeight(), DoNotIndentText); |
| float availableLogicalWidth = logicalRightOffsetForLine(logicalHeight(), DoNotIndentText) - logicalLeft; |
| |
| LegacyLineLayout::updateLogicalWidthForAlignment(*this, textAlign, nullptr, nullptr, logicalLeft, totalLogicalWidth, availableLogicalWidth, 0); |
| |
| if (!style().isLeftToRightDirection()) |
| return LayoutUnit(logicalWidth() - logicalLeft); |
| |
| return LayoutUnit(logicalLeft); |
| } |
| |
| RenderBlockFlow::MarginValues RenderBlockFlow::marginValuesForChild(RenderBox& child) const |
| { |
| LayoutUnit childBeforePositive; |
| LayoutUnit childBeforeNegative; |
| LayoutUnit childAfterPositive; |
| LayoutUnit childAfterNegative; |
| |
| LayoutUnit beforeMargin; |
| LayoutUnit afterMargin; |
| |
| auto* childRenderBlock = dynamicDowncast<RenderBlockFlow>(child); |
| |
| // If the child has the same directionality as we do, then we can just return its |
| // margins in the same direction. |
| if (!child.isWritingModeRoot()) { |
| if (childRenderBlock) { |
| childBeforePositive = childRenderBlock->maxPositiveMarginBefore(); |
| childBeforeNegative = childRenderBlock->maxNegativeMarginBefore(); |
| childAfterPositive = childRenderBlock->maxPositiveMarginAfter(); |
| childAfterNegative = childRenderBlock->maxNegativeMarginAfter(); |
| } else { |
| beforeMargin = child.marginBefore(); |
| afterMargin = child.marginAfter(); |
| } |
| } else if (child.isHorizontalWritingMode() == isHorizontalWritingMode()) { |
| // The child has a different directionality. If the child is parallel, then it's just |
| // flipped relative to us. We can use the margins for the opposite edges. |
| if (childRenderBlock) { |
| childBeforePositive = childRenderBlock->maxPositiveMarginAfter(); |
| childBeforeNegative = childRenderBlock->maxNegativeMarginAfter(); |
| childAfterPositive = childRenderBlock->maxPositiveMarginBefore(); |
| childAfterNegative = childRenderBlock->maxNegativeMarginBefore(); |
| } else { |
| beforeMargin = child.marginAfter(); |
| afterMargin = child.marginBefore(); |
| } |
| } else { |
| // The child is perpendicular to us, which means its margins don't collapse but are on the |
| // "logical left/right" sides of the child box. We can just return the raw margin in this case. |
| beforeMargin = marginBeforeForChild(child); |
| afterMargin = marginAfterForChild(child); |
| } |
| |
| // Resolve uncollapsing margins into their positive/negative buckets. |
| if (beforeMargin) { |
| if (beforeMargin > 0) |
| childBeforePositive = beforeMargin; |
| else |
| childBeforeNegative = -beforeMargin; |
| } |
| if (afterMargin) { |
| if (afterMargin > 0) |
| childAfterPositive = afterMargin; |
| else |
| childAfterNegative = -afterMargin; |
| } |
| |
| return MarginValues(childBeforePositive, childBeforeNegative, childAfterPositive, childAfterNegative); |
| } |
| |
| bool RenderBlockFlow::childrenPreventSelfCollapsing() const |
| { |
| if (!childrenInline()) |
| return RenderBlock::childrenPreventSelfCollapsing(); |
| |
| return hasLines(); |
| } |
| |
| LayoutUnit RenderBlockFlow::collapseMargins(RenderBox& child, MarginInfo& marginInfo) |
| { |
| return collapseMarginsWithChildInfo(&child, child.previousSibling(), marginInfo); |
| } |
| |
| LayoutUnit RenderBlockFlow::collapseMarginsWithChildInfo(RenderBox* child, RenderObject* prevSibling, MarginInfo& marginInfo) |
| { |
| bool childIsSelfCollapsing = child ? child->isSelfCollapsingBlock() : false; |
| bool beforeQuirk = child ? hasMarginBeforeQuirk(*child) : false; |
| bool afterQuirk = child ? hasMarginAfterQuirk(*child) : false; |
| |
| // Get the four margin values for the child and cache them. |
| const MarginValues childMargins = child ? marginValuesForChild(*child) : MarginValues(0, 0, 0, 0); |
| |
| // Get our max pos and neg top margins. |
| LayoutUnit posTop = childMargins.positiveMarginBefore(); |
| LayoutUnit negTop = childMargins.negativeMarginBefore(); |
| |
| // For self-collapsing blocks, collapse our bottom margins into our |
| // top to get new posTop and negTop values. |
| if (childIsSelfCollapsing) { |
| posTop = std::max(posTop, childMargins.positiveMarginAfter()); |
| negTop = std::max(negTop, childMargins.negativeMarginAfter()); |
| } |
| |
| if (marginInfo.canCollapseWithMarginBefore()) { |
| // This child is collapsing with the top of the |
| // block. If it has larger margin values, then we need to update |
| // our own maximal values. |
| if (!document().inQuirksMode() || !marginInfo.quirkContainer() || !beforeQuirk) |
| setMaxMarginBeforeValues(std::max(posTop, maxPositiveMarginBefore()), std::max(negTop, maxNegativeMarginBefore())); |
| |
| // The minute any of the margins involved isn't a quirk, don't |
| // collapse it away, even if the margin is smaller (www.webreference.com |
| // has an example of this, a <dt> with 0.8em author-specified inside |
| // a <dl> inside a <td>. |
| if (!marginInfo.determinedMarginBeforeQuirk() && !beforeQuirk && (posTop - negTop)) { |
| setHasMarginBeforeQuirk(false); |
| marginInfo.setDeterminedMarginBeforeQuirk(true); |
| } |
| |
| if (!marginInfo.determinedMarginBeforeQuirk() && beforeQuirk && !marginBefore()) { |
| // We have no top margin and our top child has a quirky margin. |
| // We will pick up this quirky margin and pass it through. |
| // This deals with the <td><div><p> case. |
| // Don't do this for a block that split two inlines though. You do |
| // still apply margins in this case. |
| setHasMarginBeforeQuirk(true); |
| } |
| } |
| |
| if (marginInfo.quirkContainer() && marginInfo.atBeforeSideOfBlock() && (posTop - negTop)) |
| marginInfo.setHasMarginBeforeQuirk(beforeQuirk); |
| |
| LayoutUnit beforeCollapseLogicalTop = logicalHeight(); |
| LayoutUnit logicalTop = beforeCollapseLogicalTop; |
| |
| LayoutUnit clearanceForSelfCollapsingBlock; |
| |
| // If the child's previous sibling is a self-collapsing block that cleared a float then its top border edge has been set at the bottom border edge |
| // of the float. Since we want to collapse the child's top margin with the self-collapsing block's top and bottom margins we need to adjust our parent's height to match the |
| // margin top of the self-collapsing block. If the resulting collapsed margin leaves the child still intruding into the float then we will want to clear it. |
| if (!marginInfo.canCollapseWithMarginBefore() && is<RenderBlockFlow>(prevSibling) && downcast<RenderBlockFlow>(*prevSibling).isSelfCollapsingBlock()) { |
| clearanceForSelfCollapsingBlock = downcast<RenderBlockFlow>(*prevSibling).marginOffsetForSelfCollapsingBlock(); |
| setLogicalHeight(logicalHeight() - clearanceForSelfCollapsingBlock); |
| } |
| |
| if (childIsSelfCollapsing) { |
| // This child has no height. We need to compute our |
| // position before we collapse the child's margins together, |
| // so that we can get an accurate position for the zero-height block. |
| LayoutUnit collapsedBeforePos = std::max(marginInfo.positiveMargin(), childMargins.positiveMarginBefore()); |
| LayoutUnit collapsedBeforeNeg = std::max(marginInfo.negativeMargin(), childMargins.negativeMarginBefore()); |
| marginInfo.setMargin(collapsedBeforePos, collapsedBeforeNeg); |
| |
| // Now collapse the child's margins together, which means examining our |
| // bottom margin values as well. |
| marginInfo.setPositiveMarginIfLarger(childMargins.positiveMarginAfter()); |
| marginInfo.setNegativeMarginIfLarger(childMargins.negativeMarginAfter()); |
| |
| if (!marginInfo.canCollapseWithMarginBefore()) { |
| // We need to make sure that the position of the self-collapsing block |
| // is correct, since it could have overflowing content |
| // that needs to be positioned correctly (e.g., a block that |
| // had a specified height of 0 but that actually had subcontent). |
| logicalTop = logicalHeight() + collapsedBeforePos - collapsedBeforeNeg; |
| } |
| } else { |
| if (!marginInfo.atBeforeSideOfBlock() || (!marginInfo.canCollapseMarginBeforeWithChildren() |
| && (!document().inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.hasMarginBeforeQuirk()))) { |
| // We're collapsing with a previous sibling's margins and not |
| // with the top of the block. |
| setLogicalHeight(logicalHeight() + std::max(marginInfo.positiveMargin(), posTop) - std::max(marginInfo.negativeMargin(), negTop)); |
| logicalTop = logicalHeight(); |
| } |
| |
| marginInfo.setPositiveMargin(childMargins.positiveMarginAfter()); |
| marginInfo.setNegativeMargin(childMargins.negativeMarginAfter()); |
| |
| if (marginInfo.margin()) |
| marginInfo.setHasMarginAfterQuirk(afterQuirk); |
| } |
| |
| // If margins would pull us past the top of the next page, then we need to pull back and pretend like the margins |
| // collapsed into the page edge. |
| auto* layoutState = view().frameView().layoutContext().layoutState(); |
| if (layoutState->isPaginated() && layoutState->pageLogicalHeight() && logicalTop > beforeCollapseLogicalTop |
| && hasNextPage(beforeCollapseLogicalTop)) { |
| LayoutUnit oldLogicalTop = logicalTop; |
| logicalTop = std::min(logicalTop, nextPageLogicalTop(beforeCollapseLogicalTop)); |
| setLogicalHeight(logicalHeight() + (logicalTop - oldLogicalTop)); |
| } |
| |
| if (is<RenderBlockFlow>(prevSibling) && !prevSibling->isFloatingOrOutOfFlowPositioned()) { |
| // If |child| is a self-collapsing block it may have collapsed into a previous sibling and although it hasn't reduced the height of the parent yet |
| // any floats from the parent will now overhang. |
| RenderBlockFlow& block = downcast<RenderBlockFlow>(*prevSibling); |
| LayoutUnit oldLogicalHeight = logicalHeight(); |
| setLogicalHeight(logicalTop); |
| if (block.containsFloats() && !block.avoidsFloats() && (block.logicalTop() + block.lowestFloatLogicalBottom()) > logicalTop) |
| addOverhangingFloats(block, false); |
| setLogicalHeight(oldLogicalHeight); |
| |
| // If |child|'s previous sibling is a self-collapsing block that cleared a float and margin collapsing resulted in |child| moving up |
| // into the margin area of the self-collapsing block then the float it clears is now intruding into |child|. Layout again so that we can look for |
| // floats in the parent that overhang |child|'s new logical top. |
| bool logicalTopIntrudesIntoFloat = clearanceForSelfCollapsingBlock > 0 && logicalTop < beforeCollapseLogicalTop; |
| if (child && logicalTopIntrudesIntoFloat && containsFloats() && !child->avoidsFloats() && lowestFloatLogicalBottom() > logicalTop) |
| child->setNeedsLayout(); |
| } |
| |
| return logicalTop; |
| } |
| |
| LayoutUnit RenderBlockFlow::clearFloatsIfNeeded(RenderBox& child, MarginInfo& marginInfo, LayoutUnit oldTopPosMargin, LayoutUnit oldTopNegMargin, LayoutUnit yPos) |
| { |
| LayoutUnit heightIncrease = getClearDelta(child, yPos); |
| if (!heightIncrease) |
| return yPos; |
| |
| if (child.isSelfCollapsingBlock()) { |
| // For self-collapsing blocks that clear, they can still collapse their |
| // margins with following siblings. Reset the current margins to represent |
| // the self-collapsing block's margins only. |
| MarginValues childMargins = marginValuesForChild(child); |
| marginInfo.setPositiveMargin(std::max(childMargins.positiveMarginBefore(), childMargins.positiveMarginAfter())); |
| marginInfo.setNegativeMargin(std::max(childMargins.negativeMarginBefore(), childMargins.negativeMarginAfter())); |
| |
| // CSS2.1 states: |
| // "If the top and bottom margins of an element with clearance are adjoining, its margins collapse with |
| // the adjoining margins of following siblings but that resulting margin does not collapse with the bottom margin of the parent block." |
| // So the parent's bottom margin cannot collapse through this block or any subsequent self-collapsing blocks. Check subsequent siblings |
| // for a block with height - if none is found then don't allow the margins to collapse with the parent. |
| bool wouldCollapseMarginsWithParent = marginInfo.canCollapseMarginAfterWithChildren(); |
| for (RenderBox* curr = child.nextSiblingBox(); curr && wouldCollapseMarginsWithParent; curr = curr->nextSiblingBox()) { |
| if (!curr->isFloatingOrOutOfFlowPositioned() && !curr->isSelfCollapsingBlock()) |
| wouldCollapseMarginsWithParent = false; |
| } |
| if (wouldCollapseMarginsWithParent) |
| marginInfo.setCanCollapseMarginAfterWithChildren(false); |
| |
| // For now set the border-top of |child| flush with the bottom border-edge of the float so it can layout any floating or positioned children of |
| // its own at the correct vertical position. If subsequent siblings attempt to collapse with |child|'s margins in |collapseMargins| we will |
| // adjust the height of the parent to |child|'s margin top (which if it is positive sits up 'inside' the float it's clearing) so that all three |
| // margins can collapse at the correct vertical position. |
| // Per CSS2.1 we need to ensure that any negative margin-top clears |child| beyond the bottom border-edge of the float so that the top border edge of the child |
| // (i.e. its clearance) is at a position that satisfies the equation: "the amount of clearance is set so that clearance + margin-top = [height of float], |
| // i.e., clearance = [height of float] - margin-top". |
| setLogicalHeight(child.logicalTop() + childMargins.negativeMarginBefore()); |
| } else |
| // Increase our height by the amount we had to clear. |
| setLogicalHeight(logicalHeight() + heightIncrease); |
| |
| if (marginInfo.canCollapseWithMarginBefore()) { |
| // We can no longer collapse with the top of the block since a clear |
| // occurred. The empty blocks collapse into the cleared block. |
| // FIXME: This isn't quite correct. Need clarification for what to do |
| // if the height the cleared block is offset by is smaller than the |
| // margins involved. |
| setMaxMarginBeforeValues(oldTopPosMargin, oldTopNegMargin); |
| marginInfo.setAtBeforeSideOfBlock(false); |
| } |
| |
| return yPos + heightIncrease; |
| } |
| |
| void RenderBlockFlow::marginBeforeEstimateForChild(RenderBox& child, LayoutUnit& positiveMarginBefore, LayoutUnit& negativeMarginBefore) const |
| { |
| // Give up if in quirks mode and we're a body/table cell and the top margin of the child box is quirky. |
| // Give up if the child specified -webkit-margin-collapse: separate that prevents collapsing. |
| if (document().inQuirksMode() && hasMarginAfterQuirk(child) && (isTableCell() || isBody())) |
| return; |
| |
| LayoutUnit beforeChildMargin = marginBeforeForChild(child); |
| positiveMarginBefore = std::max(positiveMarginBefore, beforeChildMargin); |
| negativeMarginBefore = std::max(negativeMarginBefore, -beforeChildMargin); |
| |
| if (!is<RenderBlockFlow>(child)) |
| return; |
| |
| RenderBlockFlow& childBlock = downcast<RenderBlockFlow>(child); |
| if (childBlock.childrenInline() || childBlock.isWritingModeRoot()) |
| return; |
| |
| MarginInfo childMarginInfo(childBlock, childBlock.borderAndPaddingBefore(), childBlock.borderAndPaddingAfter()); |
| if (!childMarginInfo.canCollapseMarginBeforeWithChildren()) |
| return; |
| |
| RenderBox* grandchildBox = childBlock.firstChildBox(); |
| for (; grandchildBox; grandchildBox = grandchildBox->nextSiblingBox()) { |
| if (!grandchildBox->isFloatingOrOutOfFlowPositioned()) |
| break; |
| } |
| |
| // Give up if there is clearance on the box, since it probably won't collapse into us. |
| if (!grandchildBox || RenderStyle::usedClear(*grandchildBox) != UsedClear::None) |
| return; |
| |
| // Make sure to update the block margins now for the grandchild box so that we're looking at current values. |
| if (grandchildBox->needsLayout()) { |
| grandchildBox->computeAndSetBlockDirectionMargins(*this); |
| if (is<RenderBlock>(*grandchildBox)) { |
| RenderBlock& grandchildBlock = downcast<RenderBlock>(*grandchildBox); |
| grandchildBlock.setHasMarginBeforeQuirk(grandchildBox->style().hasMarginBeforeQuirk()); |
| grandchildBlock.setHasMarginAfterQuirk(grandchildBox->style().hasMarginAfterQuirk()); |
| } |
| } |
| |
| // Collapse the margin of the grandchild box with our own to produce an estimate. |
| childBlock.marginBeforeEstimateForChild(*grandchildBox, positiveMarginBefore, negativeMarginBefore); |
| } |
| |
| LayoutUnit RenderBlockFlow::estimateLogicalTopPosition(RenderBox& child, const MarginInfo& marginInfo, LayoutUnit& estimateWithoutPagination) |
| { |
| // FIXME: We need to eliminate the estimation of vertical position, because when it's wrong we sometimes trigger a pathological |
| // relayout if there are intruding floats. |
| LayoutUnit logicalTopEstimate = logicalHeight(); |
| if (!marginInfo.canCollapseWithMarginBefore()) { |
| LayoutUnit positiveMarginBefore; |
| LayoutUnit negativeMarginBefore; |
| if (child.selfNeedsLayout()) { |
| // Try to do a basic estimation of how the collapse is going to go. |
| marginBeforeEstimateForChild(child, positiveMarginBefore, negativeMarginBefore); |
| } else { |
| // Use the cached collapsed margin values from a previous layout. Most of the time they |
| // will be right. |
| MarginValues marginValues = marginValuesForChild(child); |
| positiveMarginBefore = std::max(positiveMarginBefore, marginValues.positiveMarginBefore()); |
| negativeMarginBefore = std::max(negativeMarginBefore, marginValues.negativeMarginBefore()); |
| } |
| |
| // Collapse the result with our current margins. |
| logicalTopEstimate += std::max(marginInfo.positiveMargin(), positiveMarginBefore) - std::max(marginInfo.negativeMargin(), negativeMarginBefore); |
| } |
| |
| // Adjust logicalTopEstimate down to the next page if the margins are so large that we don't fit on the current |
| // page. |
| auto* layoutState = view().frameView().layoutContext().layoutState(); |
| if (layoutState->isPaginated() && layoutState->pageLogicalHeight() && logicalTopEstimate > logicalHeight() |
| && hasNextPage(logicalHeight())) |
| logicalTopEstimate = std::min(logicalTopEstimate, nextPageLogicalTop(logicalHeight())); |
| |
| logicalTopEstimate += getClearDelta(child, logicalTopEstimate); |
| |
| estimateWithoutPagination = logicalTopEstimate; |
| |
| if (layoutState->isPaginated()) { |
| // If the object has a page or column break value of "before", then we should shift to the top of the next page. |
| logicalTopEstimate = applyBeforeBreak(child, logicalTopEstimate); |
| |
| // For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one. |
| logicalTopEstimate = adjustForUnsplittableChild(child, logicalTopEstimate); |
| |
| if (!child.selfNeedsLayout() && is<RenderBlock>(child)) |
| logicalTopEstimate += downcast<RenderBlock>(child).paginationStrut(); |
| } |
| |
| return logicalTopEstimate; |
| } |
| |
| void RenderBlockFlow::setCollapsedBottomMargin(const MarginInfo& marginInfo) |
| { |
| if (marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore()) { |
| // Update our max pos/neg bottom margins, since we collapsed our bottom margins |
| // with our children. |
| setMaxMarginAfterValues(std::max(maxPositiveMarginAfter(), marginInfo.positiveMargin()), std::max(maxNegativeMarginAfter(), marginInfo.negativeMargin())); |
| |
| if (!marginInfo.hasMarginAfterQuirk()) |
| setHasMarginAfterQuirk(false); |
| |
| if (marginInfo.hasMarginAfterQuirk() && !marginAfter()) |
| // We have no bottom margin and our last child has a quirky margin. |
| // We will pick up this quirky margin and pass it through. |
| // This deals with the <td><div><p> case. |
| setHasMarginAfterQuirk(true); |
| } |
| } |
| |
| void RenderBlockFlow::handleAfterSideOfBlock(LayoutUnit beforeSide, LayoutUnit afterSide, MarginInfo& marginInfo) |
| { |
| marginInfo.setAtAfterSideOfBlock(true); |
| |
| // If our last child was a self-collapsing block with clearance then our logical height is flush with the |
| // bottom edge of the float that the child clears. The correct vertical position for the margin-collapsing we want |
| // to perform now is at the child's margin-top - so adjust our height to that position. |
| RenderObject* lastBlock = lastChild(); |
| if (is<RenderBlockFlow>(lastBlock) && downcast<RenderBlockFlow>(*lastBlock).isSelfCollapsingBlock()) |
| setLogicalHeight(logicalHeight() - downcast<RenderBlockFlow>(*lastBlock).marginOffsetForSelfCollapsingBlock()); |
| |
| // If we can't collapse with children then add in the bottom margin. |
| if (!marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore() |
| && (!document().inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.hasMarginAfterQuirk())) { |
| setLogicalHeight(logicalHeight() + marginInfo.margin()); |
| } |
| |
| // Now add in our bottom border/padding. |
| setLogicalHeight(logicalHeight() + afterSide); |
| |
| // Negative margins can cause our height to shrink below our minimal height (border/padding). |
| // If this happens, ensure that the computed height is increased to the minimal height. |
| setLogicalHeight(std::max(logicalHeight(), beforeSide + afterSide)); |
| |
| // Update our bottom collapsed margin info. |
| setCollapsedBottomMargin(marginInfo); |
| } |
| |
| void RenderBlockFlow::setMaxMarginBeforeValues(LayoutUnit pos, LayoutUnit neg) |
| { |
| if (!hasRareBlockFlowData()) { |
| if (pos == RenderBlockFlowRareData::positiveMarginBeforeDefault(*this) && neg == RenderBlockFlowRareData::negativeMarginBeforeDefault(*this)) |
| return; |
| materializeRareBlockFlowData(); |
| } |
| |
| rareBlockFlowData()->m_margins.setPositiveMarginBefore(pos); |
| rareBlockFlowData()->m_margins.setNegativeMarginBefore(neg); |
| } |
| |
| void RenderBlockFlow::setMaxMarginAfterValues(LayoutUnit pos, LayoutUnit neg) |
| { |
| if (!hasRareBlockFlowData()) { |
| if (pos == RenderBlockFlowRareData::positiveMarginAfterDefault(*this) && neg == RenderBlockFlowRareData::negativeMarginAfterDefault(*this)) |
| return; |
| materializeRareBlockFlowData(); |
| } |
| |
| rareBlockFlowData()->m_margins.setPositiveMarginAfter(pos); |
| rareBlockFlowData()->m_margins.setNegativeMarginAfter(neg); |
| } |
| |
| static bool inNormalFlow(RenderBox& child) |
| { |
| RenderBlock* curr = child.containingBlock(); |
| while (curr && curr != &child.view()) { |
| if (curr->isRenderFragmentedFlow()) |
| return true; |
| if (curr->isFloatingOrOutOfFlowPositioned()) |
| return false; |
| curr = curr->containingBlock(); |
| } |
| return true; |
| } |
| |
| LayoutUnit RenderBlockFlow::applyBeforeBreak(RenderBox& child, LayoutUnit logicalOffset) |
| { |
| // FIXME: Add page break checking here when we support printing. |
| RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow(); |
| bool isInsideMulticolFlow = fragmentedFlow; |
| bool checkColumnBreaks = fragmentedFlow && fragmentedFlow->shouldCheckColumnBreaks(); |
| bool checkPageBreaks = !checkColumnBreaks && view().frameView().layoutContext().layoutState()->pageLogicalHeight(); // FIXME: Once columns can print we have to check this. |
| bool checkFragmentBreaks = false; |
| bool checkBeforeAlways = (checkColumnBreaks && child.style().breakBefore() == BreakBetween::Column) |
| || (checkPageBreaks && alwaysPageBreak(child.style().breakBefore())); |
| if (checkBeforeAlways && inNormalFlow(child) && hasNextPage(logicalOffset, IncludePageBoundary)) { |
| if (checkColumnBreaks) { |
| if (isInsideMulticolFlow) |
| checkFragmentBreaks = true; |
| } |
| if (checkFragmentBreaks) { |
| LayoutUnit offsetBreakAdjustment; |
| if (fragmentedFlow->addForcedFragmentBreak(this, offsetFromLogicalTopOfFirstPage() + logicalOffset, &child, true, &offsetBreakAdjustment)) |
| return logicalOffset + offsetBreakAdjustment; |
| } |
| return nextPageLogicalTop(logicalOffset, IncludePageBoundary); |
| } |
| return logicalOffset; |
| } |
| |
| LayoutUnit RenderBlockFlow::applyAfterBreak(RenderBox& child, LayoutUnit logicalOffset, MarginInfo& marginInfo) |
| { |
| // FIXME: Add page break checking here when we support printing. |
| RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow(); |
| bool isInsideMulticolFlow = fragmentedFlow; |
| bool checkColumnBreaks = fragmentedFlow && fragmentedFlow->shouldCheckColumnBreaks(); |
| bool checkPageBreaks = !checkColumnBreaks && view().frameView().layoutContext().layoutState()->pageLogicalHeight(); // FIXME: Once columns can print we have to check this. |
| bool checkFragmentBreaks = false; |
| bool checkAfterAlways = (checkColumnBreaks && child.style().breakAfter() == BreakBetween::Column) |
| || (checkPageBreaks && alwaysPageBreak(child.style().breakAfter())); |
| if (checkAfterAlways && inNormalFlow(child) && hasNextPage(logicalOffset, IncludePageBoundary)) { |
| LayoutUnit marginOffset = marginInfo.canCollapseWithMarginBefore() ? 0_lu : marginInfo.margin(); |
| |
| // So our margin doesn't participate in the next collapsing steps. |
| marginInfo.clearMargin(); |
| |
| if (checkColumnBreaks) { |
| if (isInsideMulticolFlow) |
| checkFragmentBreaks = true; |
| } |
| if (checkFragmentBreaks) { |
| LayoutUnit offsetBreakAdjustment; |
| if (fragmentedFlow->addForcedFragmentBreak(this, offsetFromLogicalTopOfFirstPage() + logicalOffset + marginOffset, &child, false, &offsetBreakAdjustment)) |
| return logicalOffset + marginOffset + offsetBreakAdjustment; |
| } |
| return nextPageLogicalTop(logicalOffset, IncludePageBoundary); |
| } |
| return logicalOffset; |
| } |
| |
| LayoutUnit RenderBlockFlow::adjustBlockChildForPagination(LayoutUnit logicalTopAfterClear, LayoutUnit estimateWithoutPagination, RenderBox& child, bool atBeforeSideOfBlock) |
| { |
| auto* childRenderBlock = dynamicDowncast<RenderBlock>(child); |
| |
| if (estimateWithoutPagination != logicalTopAfterClear) { |
| // Our guess prior to pagination movement was wrong. Before we attempt to paginate, let's try again at the new |
| // position. |
| setLogicalHeight(logicalTopAfterClear); |
| setLogicalTopForChild(child, logicalTopAfterClear, ApplyLayoutDelta); |
| |
| if (child.shrinkToAvoidFloats()) { |
| // The child's width depends on the line width. When the child shifts to clear an item, its width can |
| // change (because it has more available line width). So mark the item as dirty. |
| child.setChildNeedsLayout(MarkOnlyThis); |
| } |
| |
| if (childRenderBlock) { |
| if (!child.avoidsFloats() && childRenderBlock->containsFloats()) |
| downcast<RenderBlockFlow>(*childRenderBlock).markAllDescendantsWithFloatsForLayout(); |
| child.markForPaginationRelayoutIfNeeded(); |
| } |
| |
| // Our guess was wrong. Make the child lay itself out again. |
| child.layoutIfNeeded(); |
| } |
| |
| LayoutUnit oldTop = logicalTopAfterClear; |
| |
| // If the object has a page or column break value of "before", then we should shift to the top of the next page. |
| LayoutUnit result = applyBeforeBreak(child, logicalTopAfterClear); |
| |
| if (pageLogicalHeightForOffset(result)) { |
| LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(result, ExcludePageBoundary); |
| LayoutUnit spaceShortage = child.logicalHeight() - remainingLogicalHeight; |
| if (spaceShortage > 0) { |
| // If the child crosses a column boundary, report a break, in case nothing inside it has already |
| // done so. The column balancer needs to know how much it has to stretch the columns to make more |
| // content fit. If no breaks are reported (but do occur), the balancer will have no clue. FIXME: |
| // This should be improved, though, because here we just pretend that the child is |
| // unsplittable. A splittable child, on the other hand, has break opportunities at every position |
| // where there's no child content, border or padding. In other words, we risk stretching more |
| // than necessary. |
| setPageBreak(result, spaceShortage); |
| } |
| } |
| |
| if (child.shouldApplySizeContainment()) |
| adjustSizeContainmentChildForPagination(child, result); |
| |
| // For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one. |
| LayoutUnit logicalTopBeforeUnsplittableAdjustment = result; |
| LayoutUnit logicalTopAfterUnsplittableAdjustment = adjustForUnsplittableChild(child, result); |
| |
| LayoutUnit paginationStrut; |
| LayoutUnit unsplittableAdjustmentDelta = logicalTopAfterUnsplittableAdjustment - logicalTopBeforeUnsplittableAdjustment; |
| if (unsplittableAdjustmentDelta) |
| paginationStrut = unsplittableAdjustmentDelta; |
| else if (childRenderBlock && childRenderBlock->paginationStrut()) |
| paginationStrut = childRenderBlock->paginationStrut(); |
| |
| if (paginationStrut) { |
| // We are willing to propagate out to our parent block as long as we were at the top of the block prior |
| // to collapsing our margins, and as long as we didn't clear or move as a result of other pagination. |
| if (atBeforeSideOfBlock && oldTop == result && !isOutOfFlowPositioned() && !isTableCell()) { |
| // FIXME: Should really check if we're exceeding the page height before propagating the strut, but we don't |
| // have all the information to do so (the strut only has the remaining amount to push). Gecko gets this wrong too |
| // and pushes to the next page anyway, so not too concerned about it. |
| setPaginationStrut(result + paginationStrut); |
| if (childRenderBlock) |
| childRenderBlock->setPaginationStrut(0); |
| } else |
| result += paginationStrut; |
| } |
| |
| // Similar to how we apply clearance. Boost height() to be the place where we're going to position the child. |
| setLogicalHeight(logicalHeight() + (result - oldTop)); |
| |
| // Return the final adjusted logical top. |
| return result; |
| } |
| |
| static inline LayoutUnit calculateMinimumPageHeight(const RenderStyle& renderStyle, LegacyRootInlineBox& lastLine, LayoutUnit lineTop, LayoutUnit lineBottom) |
| { |
| // We may require a certain minimum number of lines per page in order to satisfy |
| // orphans and widows, and that may affect the minimum page height. |
| unsigned lineCount = std::max<unsigned>(renderStyle.hasAutoOrphans() ? 1 : renderStyle.orphans(), renderStyle.hasAutoWidows() ? 1 : renderStyle.widows()); |
| if (lineCount > 1) { |
| LegacyRootInlineBox* line = &lastLine; |
| for (unsigned i = 1; i < lineCount && line->prevRootBox(); i++) |
| line = line->prevRootBox(); |
| |
| // FIXME: Paginating using line overflow isn't all fine. See FIXME in |
| // adjustLinePositionForPagination() for more details. |
| LayoutRect overflow = line->logicalVisualOverflowRect(line->lineTop(), line->lineBottom()); |
| lineTop = std::min(line->lineBoxTop(), overflow.y()); |
| } |
| return lineBottom - lineTop; |
| } |
| |
| static inline bool needsAppleMailPaginationQuirk(LegacyRootInlineBox& lineBox) |
| { |
| auto& renderer = lineBox.renderer(); |
| |
| if (!renderer.settings().appleMailPaginationQuirkEnabled()) |
| return false; |
| |
| if (renderer.element() && renderer.element()->idForStyleResolution() == "messageContentContainer"_s) |
| return true; |
| |
| return false; |
| } |
| |
| static void clearShouldBreakAtLineToAvoidWidowIfNeeded(RenderBlockFlow& blockFlow) |
| { |
| if (!blockFlow.shouldBreakAtLineToAvoidWidow()) |
| return; |
| blockFlow.clearShouldBreakAtLineToAvoidWidow(); |
| blockFlow.setDidBreakAtLineToAvoidWidow(); |
| } |
| |
| void RenderBlockFlow::adjustLinePositionForPagination(LegacyRootInlineBox* lineBox, LayoutUnit& delta, bool& overflowsFragment, RenderFragmentedFlow* fragmentedFlow) |
| { |
| // FIXME: For now we paginate using line overflow. This ensures that lines don't overlap at all when we |
| // put a strut between them for pagination purposes. However, this really isn't the desired rendering, since |
| // the line on the top of the next page will appear too far down relative to the same kind of line at the top |
| // of the first column. |
| // |
| // The rendering we would like to see is one where the lineTopWithLeading is at the top of the column, and any line overflow |
| // simply spills out above the top of the column. This effect would match what happens at the top of the first column. |
| // We can't achieve this rendering, however, until we stop columns from clipping to the column bounds (thus allowing |
| // for overflow to occur), and then cache visible overflow for each column rect. |
| // |
| // Furthermore, the paint we have to do when a column has overflow has to be special. We need to exclude |
| // content that paints in a previous column (and content that paints in the following column). |
| // |
| // For now we'll at least honor the lineTopWithLeading when paginating if it is above the logical top overflow. This will |
| // at least make positive leading work in typical cases. |
| // |
| // FIXME: Another problem with simply moving lines is that the available line width may change (because of floats). |
| // Technically if the location we move the line to has a different line width than our old position, then we need to dirty the |
| // line and all following lines. |
| overflowsFragment = false; |
| LayoutRect logicalVisualOverflow = lineBox->logicalVisualOverflowRect(lineBox->lineTop(), lineBox->lineBottom()); |
| LayoutUnit logicalOffset = std::min(lineBox->lineBoxTop(), logicalVisualOverflow.y()); |
| LayoutUnit logicalBottom = std::max(lineBox->lineBoxBottom(), logicalVisualOverflow.maxY()); |
| LayoutUnit lineHeight = logicalBottom - logicalOffset; |
| updateMinimumPageHeight(logicalOffset, calculateMinimumPageHeight(style(), *lineBox, logicalOffset, logicalBottom)); |
| logicalOffset += delta; |
| lineBox->setPaginationStrut(0); |
| lineBox->setIsFirstAfterPageBreak(false); |
| LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset); |
| bool hasUniformPageLogicalHeight = !fragmentedFlow || fragmentedFlow->fragmentsHaveUniformLogicalHeight(); |
| // If lineHeight is greater than pageLogicalHeight, but logicalVisualOverflow.height() still fits, we are |
| // still going to add a strut, so that the visible overflow fits on a single page. |
| if (!pageLogicalHeight || !hasNextPage(logicalOffset)) { |
| // FIXME: In case the line aligns with the top of the page (or it's slightly shifted downwards) it will not be marked as the first line in the page. |
| // From here, the fix is not straightforward because it's not easy to always determine when the current line is the first in the page. |
| // With no valid page height, we can't possibly accommodate the widow rules. |
| clearShouldBreakAtLineToAvoidWidowIfNeeded(*this); |
| return; |
| } |
| |
| if (hasUniformPageLogicalHeight && logicalVisualOverflow.height() > pageLogicalHeight) { |
| // We are so tall that we are bigger than a page. Before we give up and just leave the line where it is, try drilling into the |
| // line and computing a new height that excludes anything we consider "blank space". We will discard margins, descent, and even overflow. If we are |
| // able to fit with the blank space and overflow excluded, we will give the line its own page with the highest non-blank element being aligned with the |
| // top of the page. |
| // FIXME: We are still honoring gigantic margins, which does leave open the possibility of blank pages caused by this heuristic. It remains to be seen whether or not |
| // this will be a real-world issue. For now we don't try to deal with this problem. |
| logicalOffset = static_cast<float>(intMaxForLayoutUnit); |
| logicalBottom = static_cast<float>(intMinForLayoutUnit); |
| lineBox->computeReplacedAndTextLineTopAndBottom(logicalOffset, logicalBottom); |
| lineHeight = logicalBottom - logicalOffset; |
| if (logicalOffset == intMaxForLayoutUnit || lineHeight > pageLogicalHeight) { |
| // Give up. We're genuinely too big even after excluding blank space and overflow. |
| clearShouldBreakAtLineToAvoidWidowIfNeeded(*this); |
| return; |
| } |
| pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset); |
| } |
| |
| LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(logicalOffset, ExcludePageBoundary); |
| overflowsFragment = (lineHeight > remainingLogicalHeight); |
| |
| int lineIndex = legacyLineLayout()->lineCountUntil(lineBox); |
| if (remainingLogicalHeight < lineHeight || (shouldBreakAtLineToAvoidWidow() && lineBreakToAvoidWidow() == lineIndex)) { |
| if (lineBreakToAvoidWidow() == lineIndex) |
| clearShouldBreakAtLineToAvoidWidowIfNeeded(*this); |
| // If we have a non-uniform page height, then we have to shift further possibly. |
| if (!hasUniformPageLogicalHeight && !pushToNextPageWithMinimumLogicalHeight(remainingLogicalHeight, logicalOffset, lineHeight)) |
| return; |
| if (lineHeight > pageLogicalHeight) { |
| // Split the top margin in order to avoid splitting the visible part of the line. |
| remainingLogicalHeight -= std::min(lineHeight - pageLogicalHeight, std::max<LayoutUnit>(0, logicalVisualOverflow.y() - lineBox->lineBoxTop())); |
| } |
| LayoutUnit remainingLogicalHeightAtNewOffset = pageRemainingLogicalHeightForOffset(logicalOffset + remainingLogicalHeight, ExcludePageBoundary); |
| overflowsFragment = (lineHeight > remainingLogicalHeightAtNewOffset); |
| LayoutUnit totalLogicalHeight = lineHeight + std::max<LayoutUnit>(0, logicalOffset); |
| LayoutUnit pageLogicalHeightAtNewOffset = hasUniformPageLogicalHeight ? pageLogicalHeight : pageLogicalHeightForOffset(logicalOffset + remainingLogicalHeight); |
| setPageBreak(logicalOffset, lineHeight - remainingLogicalHeight); |
| if (((lineBox == firstRootBox() && totalLogicalHeight < pageLogicalHeightAtNewOffset) || (!style().hasAutoOrphans() && style().orphans() >= lineIndex)) |
| && !isOutOfFlowPositioned() && !isTableCell()) { |
| auto firstRootBox = this->firstRootBox(); |
| if (!firstRootBox) { |
| setPaginationStrut(remainingLogicalHeight + logicalOffset); |
| return; |
| } |
| auto firstRootBoxOverflowRect = firstRootBox->logicalVisualOverflowRect(firstRootBox->lineTop(), firstRootBox->lineBottom()); |
| auto firstLineUpperOverhang = std::max(-firstRootBoxOverflowRect.y(), 0_lu); |
| if (needsAppleMailPaginationQuirk(*lineBox)) |
| return; |
| setPaginationStrut(remainingLogicalHeight + logicalOffset + firstLineUpperOverhang); |
| } else { |
| delta += remainingLogicalHeight; |
| lineBox->setPaginationStrut(remainingLogicalHeight); |
| lineBox->setIsFirstAfterPageBreak(true); |
| } |
| } else if (remainingLogicalHeight == pageLogicalHeight) { |
| // We're at the very top of a page or column. |
| if (lineBox != firstRootBox()) |
| lineBox->setIsFirstAfterPageBreak(true); |
| if (lineBox != firstRootBox() || offsetFromLogicalTopOfFirstPage()) |
| setPageBreak(logicalOffset, lineHeight); |
| } |
| } |
| |
| void RenderBlockFlow::setBreakAtLineToAvoidWidow(int lineToBreak) |
| { |
| ASSERT(lineToBreak >= 0); |
| ASSERT(!ensureRareBlockFlowData().m_didBreakAtLineToAvoidWidow); |
| ensureRareBlockFlowData().m_lineBreakToAvoidWidow = lineToBreak; |
| } |
| |
| void RenderBlockFlow::setDidBreakAtLineToAvoidWidow() |
| { |
| ASSERT(!shouldBreakAtLineToAvoidWidow()); |
| if (!hasRareBlockFlowData()) |
| return; |
| |
| rareBlockFlowData()->m_didBreakAtLineToAvoidWidow = true; |
| } |
| |
| void RenderBlockFlow::clearDidBreakAtLineToAvoidWidow() |
| { |
| if (!hasRareBlockFlowData()) |
| return; |
| |
| rareBlockFlowData()->m_didBreakAtLineToAvoidWidow = false; |
| } |
| |
| void RenderBlockFlow::clearShouldBreakAtLineToAvoidWidow() const |
| { |
| ASSERT(shouldBreakAtLineToAvoidWidow()); |
| if (!hasRareBlockFlowData()) |
| return; |
| |
| rareBlockFlowData()->m_lineBreakToAvoidWidow = -1; |
| } |
| |
| bool RenderBlockFlow::hasNextPage(LayoutUnit logicalOffset, PageBoundaryRule pageBoundaryRule) const |
| { |
| ASSERT(view().frameView().layoutContext().layoutState() && view().frameView().layoutContext().layoutState()->isPaginated()); |
| |
| RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow(); |
| if (!fragmentedFlow) |
| return true; // Printing and multi-column both make new pages to accommodate content. |
| |
| // See if we're in the last fragment. |
| LayoutUnit pageOffset = offsetFromLogicalTopOfFirstPage() + logicalOffset; |
| RenderFragmentContainer* fragment = fragmentedFlow->fragmentAtBlockOffset(this, pageOffset, true); |
| if (!fragment) |
| return false; |
| |
| if (fragment->isLastFragment()) |
| return fragment->isRenderFragmentContainerSet() || (pageBoundaryRule == IncludePageBoundary && pageOffset == fragment->logicalTopForFragmentedFlowContent()); |
| |
| RenderFragmentContainer* startFragment = nullptr; |
| RenderFragmentContainer* endFragment = nullptr; |
| fragmentedFlow->getFragmentRangeForBox(this, startFragment, endFragment); |
| return (endFragment && fragment != endFragment); |
| } |
| |
| LayoutUnit RenderBlockFlow::adjustForUnsplittableChild(RenderBox& child, LayoutUnit logicalOffset, LayoutUnit childBeforeMargin, LayoutUnit childAfterMargin) |
| { |
| // When flexboxes are embedded inside a block flow, they don't perform any adjustments for unsplittable |
| // children. We'll treat flexboxes themselves as unsplittable just to get them to paginate properly inside |
| // a block flow. |
| bool isUnsplittable = childBoxIsUnsplittableForFragmentation(child); |
| if (!isUnsplittable && !(child.isFlexibleBox() && !downcast<RenderFlexibleBox>(child).isFlexibleBoxImpl())) |
| return logicalOffset; |
| |
| RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow(); |
| LayoutUnit childLogicalHeight = logicalHeightForChild(child) + childBeforeMargin + childAfterMargin; |
| LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset); |
| bool hasUniformPageLogicalHeight = !fragmentedFlow || fragmentedFlow->fragmentsHaveUniformLogicalHeight(); |
| if (isUnsplittable) |
| updateMinimumPageHeight(logicalOffset, childLogicalHeight); |
| if (!pageLogicalHeight || (hasUniformPageLogicalHeight && childLogicalHeight > pageLogicalHeight) |
| || !hasNextPage(logicalOffset)) |
| return logicalOffset; |
| LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(logicalOffset, ExcludePageBoundary); |
| if (remainingLogicalHeight < childLogicalHeight) { |
| if (!hasUniformPageLogicalHeight && !pushToNextPageWithMinimumLogicalHeight(remainingLogicalHeight, logicalOffset, childLogicalHeight)) |
| return logicalOffset; |
| auto result = logicalOffset + remainingLogicalHeight; |
| bool isInitialLetter = child.isFloating() && child.style().styleType() == PseudoId::FirstLetter && child.style().initialLetterDrop() > 0; |
| if (isInitialLetter) { |
| // Increase our logical height to ensure that lines all get pushed along with the letter. |
| setLogicalHeight(logicalOffset + remainingLogicalHeight); |
| } |
| return result; |
| } |
| |
| return logicalOffset; |
| } |
| |
| bool RenderBlockFlow::pushToNextPageWithMinimumLogicalHeight(LayoutUnit& adjustment, LayoutUnit logicalOffset, LayoutUnit minimumLogicalHeight) const |
| { |
| bool checkFragment = false; |
| auto* fragmentedFlow = enclosingFragmentedFlow(); |
| RenderFragmentContainer* currentFragmentContainer = nullptr; |
| for (auto pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset + adjustment); pageLogicalHeight; pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset + adjustment)) { |
| if (minimumLogicalHeight <= pageLogicalHeight) |
| return true; |
| auto adjustedOffset = logicalOffset + adjustment; |
| if (!hasNextPage(adjustedOffset)) |
| return false; |
| if (fragmentedFlow) { |
| // While in layout and the columnsets are not balanced yet, we keep finding the same (infinite tall) column over and over again. |
| auto* nextFragmentContainer = fragmentedFlow->fragmentAtBlockOffset(this, adjustedOffset, true); |
| ASSERT(nextFragmentContainer); |
| if (nextFragmentContainer == currentFragmentContainer) |
| return false; |
| currentFragmentContainer = nextFragmentContainer; |
| } |
| adjustment += pageLogicalHeight; |
| checkFragment = true; |
| } |
| return !checkFragment; |
| } |
| |
| void RenderBlockFlow::setPageBreak(LayoutUnit offset, LayoutUnit spaceShortage) |
| { |
| if (RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow()) |
| fragmentedFlow->setPageBreak(this, offsetFromLogicalTopOfFirstPage() + offset, spaceShortage); |
| } |
| |
| void RenderBlockFlow::updateMinimumPageHeight(LayoutUnit offset, LayoutUnit minHeight) |
| { |
| if (RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow()) |
| fragmentedFlow->updateMinimumPageHeight(this, offsetFromLogicalTopOfFirstPage() + offset, minHeight); |
| } |
| |
| LayoutUnit RenderBlockFlow::nextPageLogicalTop(LayoutUnit logicalOffset, PageBoundaryRule pageBoundaryRule) const |
| { |
| LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset); |
| if (!pageLogicalHeight) |
| return logicalOffset; |
| |
| // The logicalOffset is in our coordinate space. We can add in our pushed offset. |
| LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(logicalOffset); |
| if (pageBoundaryRule == ExcludePageBoundary) |
| return logicalOffset + (remainingLogicalHeight ? remainingLogicalHeight : pageLogicalHeight); |
| return logicalOffset + remainingLogicalHeight; |
| } |
| |
| LayoutUnit RenderBlockFlow::pageLogicalTopForOffset(LayoutUnit offset) const |
| { |
| // Unsplittable objects clear out the pageLogicalHeight in the layout state as a way of signaling that no |
| // pagination should occur. Therefore we have to check this first and bail if the value has been set to 0. |
| auto* layoutState = view().frameView().layoutContext().layoutState(); |
| LayoutUnit pageLogicalHeight = layoutState->pageLogicalHeight(); |
| if (!pageLogicalHeight) |
| return 0; |
| |
| LayoutUnit firstPageLogicalTop = isHorizontalWritingMode() ? layoutState->pageOffset().height() : layoutState->pageOffset().width(); |
| LayoutUnit blockLogicalTop = isHorizontalWritingMode() ? layoutState->layoutOffset().height() : layoutState->layoutOffset().width(); |
| |
| LayoutUnit cumulativeOffset = offset + blockLogicalTop; |
| RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow(); |
| if (!fragmentedFlow) |
| return cumulativeOffset - roundToInt(cumulativeOffset - firstPageLogicalTop) % roundToInt(pageLogicalHeight); |
| return firstPageLogicalTop + fragmentedFlow->pageLogicalTopForOffset(cumulativeOffset - firstPageLogicalTop); |
| } |
| |
| LayoutUnit RenderBlockFlow::pageLogicalHeightForOffset(LayoutUnit offset) const |
| { |
| // Unsplittable objects clear out the pageLogicalHeight in the layout state as a way of signaling that no |
| // pagination should occur. Therefore we have to check this first and bail if the value has been set to 0. |
| LayoutUnit pageLogicalHeight = view().frameView().layoutContext().layoutState()->pageLogicalHeight(); |
| if (!pageLogicalHeight) |
| return 0; |
| |
| // Now check for a flow thread. |
| RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow(); |
| if (!fragmentedFlow) |
| return pageLogicalHeight; |
| return fragmentedFlow->pageLogicalHeightForOffset(offset + offsetFromLogicalTopOfFirstPage()); |
| } |
| |
| LayoutUnit RenderBlockFlow::pageRemainingLogicalHeightForOffset(LayoutUnit offset, PageBoundaryRule pageBoundaryRule) const |
| { |
| offset += offsetFromLogicalTopOfFirstPage(); |
| |
| RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow(); |
| if (!fragmentedFlow) { |
| LayoutUnit pageLogicalHeight = view().frameView().layoutContext().layoutState()->pageLogicalHeight(); |
| LayoutUnit remainingHeight = pageLogicalHeight - intMod(offset, pageLogicalHeight); |
| if (pageBoundaryRule == IncludePageBoundary) { |
| // If includeBoundaryPoint is true the line exactly on the top edge of a |
| // column will act as being part of the previous column. |
| remainingHeight = intMod(remainingHeight, pageLogicalHeight); |
| } |
| return remainingHeight; |
| } |
| |
| return fragmentedFlow->pageRemainingLogicalHeightForOffset(offset, pageBoundaryRule); |
| } |
| |
| LayoutUnit RenderBlockFlow::logicalHeightForChildForFragmentation(const RenderBox& child) const |
| { |
| return logicalHeightForChild(child); |
| } |
| |
| void RenderBlockFlow::adjustSizeContainmentChildForPagination(RenderBox& child, LayoutUnit offset) |
| { |
| if (!child.shouldApplySizeContainment()) |
| return; |
| |
| LayoutUnit childOverflowHeight = child.isHorizontalWritingMode() ? child.layoutOverflowRect().maxY() : child.layoutOverflowRect().maxX(); |
| LayoutUnit childLogicalHeight = std::max(child.logicalHeight(), childOverflowHeight); |
| |
| LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(offset, ExcludePageBoundary); |
| |
| LayoutUnit spaceShortage = childLogicalHeight - remainingLogicalHeight; |
| if (spaceShortage <= 0) |
| return; |
| |
| if (RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow()) |
| fragmentedFlow->updateSpaceShortageForSizeContainment(this, offsetFromLogicalTopOfFirstPage() + offset, spaceShortage); |
| } |
| |
| void RenderBlockFlow::layoutLineGridBox() |
| { |
| if (style().lineGrid() == RenderStyle::initialLineGrid()) { |
| setLineGridBox(0); |
| return; |
| } |
| |
| setLineGridBox(0); |
| |
| auto lineGridBox = makeUnique<LegacyRootInlineBox>(*this); |
| lineGridBox->setHasTextChildren(); // Needed to make the line ascent/descent actually be honored in quirks mode. |
| lineGridBox->setConstructed(); |
| GlyphOverflowAndFallbackFontsMap textBoxDataMap; |
| VerticalPositionCache verticalPositionCache; |
| lineGridBox->alignBoxesInBlockDirection(logicalHeight(), textBoxDataMap, verticalPositionCache); |
| |
| setLineGridBox(WTFMove(lineGridBox)); |
| |
| // FIXME: If any of the characteristics of the box change compared to the old one, then we need to do a deep dirtying |
| // (similar to what happens when the page height changes). Ideally, though, we only do this if someone is actually snapping |
| // to this grid. |
| } |
| |
| bool RenderBlockFlow::containsFloat(RenderBox& renderer) const |
| { |
| return m_floatingObjects && m_floatingObjects->set().contains<FloatingObjectHashTranslator>(renderer); |
| } |
| |
| bool RenderBlockFlow::subtreeContainsFloat(RenderBox& renderer) const |
| { |
| if (containsFloat(renderer)) |
| return true; |
| |
| for (auto& block : descendantsOfType<RenderBlock>(const_cast<RenderBlockFlow&>(*this))) { |
| if (!is<RenderBlockFlow>(block)) |
| continue; |
| auto& blockFlow = downcast<RenderBlockFlow>(block); |
| if (blockFlow.containsFloat(renderer)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool RenderBlockFlow::subtreeContainsFloats() const |
| { |
| if (containsFloats()) |
| return true; |
| |
| for (auto& block : descendantsOfType<RenderBlock>(const_cast<RenderBlockFlow&>(*this))) { |
| if (!is<RenderBlockFlow>(block)) |
| continue; |
| auto& blockFlow = downcast<RenderBlockFlow>(block); |
| if (blockFlow.containsFloats()) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void RenderBlockFlow::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle) |
| { |
| RenderBlock::styleDidChange(diff, oldStyle); |
| |
| // After our style changed, if we lose our ability to propagate floats into next sibling |
| // blocks, then we need to find the top most parent containing that overhanging float and |
| // then mark its descendants with floats for layout and clear all floats from its next |
| // sibling blocks that exist in our floating objects list. See bug 56299 and 62875. |
| bool canPropagateFloatIntoSibling = !isFloatingOrOutOfFlowPositioned() && !avoidsFloats(); |
| if (diff == StyleDifference::Layout && s_canPropagateFloatIntoSibling && !canPropagateFloatIntoSibling && hasOverhangingFloats()) { |
| RenderBlockFlow* parentBlock = this; |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| |
| for (auto& ancestor : ancestorsOfType<RenderBlockFlow>(*this)) { |
| if (ancestor.isRenderView()) |
| break; |
| if (ancestor.hasOverhangingFloats()) { |
| for (auto it = floatingObjectSet.begin(), end = floatingObjectSet.end(); it != end; ++it) { |
| RenderBox& renderer = (*it)->renderer(); |
| if (ancestor.hasOverhangingFloat(renderer)) { |
| parentBlock = &ancestor; |
| break; |
| } |
| } |
| } |
| } |
| |
| parentBlock->markAllDescendantsWithFloatsForLayout(); |
| parentBlock->markSiblingsWithFloatsForLayout(); |
| } |
| |
| if (diff >= StyleDifference::Repaint) { |
| auto shouldInvalidateLineLayoutPath = [&] { |
| if (selfNeedsLayout() || legacyLineLayout()) |
| return true; |
| #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
| if (modernLineLayout() && !LayoutIntegration::LineLayout::canUseForAfterStyleChange(*this, diff)) |
| return true; |
| #endif |
| return false; |
| }; |
| if (shouldInvalidateLineLayoutPath()) |
| invalidateLineLayoutPath(); |
| } |
| |
| #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
| if (auto* lineLayout = modernLineLayout()) |
| lineLayout->updateStyle(*this, *oldStyle); |
| #endif |
| |
| if (multiColumnFlow()) |
| updateStylesForColumnChildren(); |
| } |
| |
| void RenderBlockFlow::updateStylesForColumnChildren() |
| { |
| for (auto* child = firstChildBox(); child && (child->isRenderFragmentedFlow() || child->isRenderMultiColumnSet()); child = child->nextSiblingBox()) |
| child->setStyle(RenderStyle::createAnonymousStyleWithDisplay(style(), DisplayType::Block)); |
| } |
| |
| void RenderBlockFlow::styleWillChange(StyleDifference diff, const RenderStyle& newStyle) |
| { |
| const RenderStyle* oldStyle = hasInitializedStyle() ? &style() : nullptr; |
| s_canPropagateFloatIntoSibling = oldStyle ? !isFloatingOrOutOfFlowPositioned() && !avoidsFloats() : false; |
| |
| if (oldStyle) { |
| auto oldPosition = oldStyle->position(); |
| auto newPosition = newStyle.position(); |
| |
| if (parent() && diff == StyleDifference::Layout && oldPosition != newPosition) { |
| if (containsFloats() && !isFloating() && !isOutOfFlowPositioned() && newStyle.hasOutOfFlowPosition()) |
| markAllDescendantsWithFloatsForLayout(); |
| } |
| } |
| |
| RenderBlock::styleWillChange(diff, newStyle); |
| } |
| |
| void RenderBlockFlow::deleteLines() |
| { |
| m_lineLayout = std::monostate(); |
| |
| RenderBlock::deleteLines(); |
| } |
| |
| void RenderBlockFlow::addFloatsToNewParent(RenderBlockFlow& toBlockFlow) const |
| { |
| // When a portion of the render tree is being detached, anonymous blocks |
| // will be combined as their children are deleted. In this process, the |
| // anonymous block later in the tree is merged into the one preceeding it. |
| // It can happen that the later block (this) contains floats that the |
| // previous block (toBlockFlow) did not contain, and thus are not in the |
| // floating objects list for toBlockFlow. This can result in toBlockFlow |
| // containing floats that are not in it's floating objects list, but are in |
| // the floating objects lists of siblings and parents. This can cause |
| // problems when the float itself is deleted, since the deletion code |
| // assumes that if a float is not in it's containing block's floating |
| // objects list, it isn't in any floating objects list. In order to |
| // preserve this condition (removing it has serious performance |
| // implications), we need to copy the floating objects from the old block |
| // (this) to the new block (toBlockFlow). The float's metrics will likely |
| // all be wrong, but since toBlockFlow is already marked for layout, this |
| // will get fixed before anything gets displayed. |
| // See bug https://bugs.webkit.org/show_bug.cgi?id=115566 |
| if (!m_floatingObjects) |
| return; |
| |
| if (!toBlockFlow.m_floatingObjects) |
| toBlockFlow.createFloatingObjects(); |
| |
| for (auto& floatingObject : m_floatingObjects->set()) { |
| if (toBlockFlow.containsFloat(floatingObject->renderer())) |
| continue; |
| toBlockFlow.m_floatingObjects->add(floatingObject->cloneForNewParent()); |
| } |
| } |
| |
| void RenderBlockFlow::addOverflowFromFloats() |
| { |
| if (!m_floatingObjects) |
| return; |
| |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| auto end = floatingObjectSet.end(); |
| for (auto it = floatingObjectSet.begin(); it != end; ++it) { |
| const auto& floatingObject = *it->get(); |
| if (floatingObject.isDescendant()) |
| addOverflowFromChild(&floatingObject.renderer(), floatingObject.locationOffsetOfBorderBox()); |
| } |
| } |
| |
| void RenderBlockFlow::computeOverflow(LayoutUnit oldClientAfterEdge, bool recomputeFloats) |
| { |
| RenderBlock::computeOverflow(oldClientAfterEdge, recomputeFloats); |
| |
| if (!multiColumnFlow() && (recomputeFloats || createsNewFormattingContext() || hasSelfPaintingLayer())) |
| addOverflowFromFloats(); |
| } |
| |
| void RenderBlockFlow::repaintOverhangingFloats(bool paintAllDescendants) |
| { |
| // Repaint any overhanging floats (if we know we're the one to paint them). |
| // Otherwise, bail out. |
| if (!hasOverhangingFloats()) |
| return; |
| |
| // FIXME: Avoid disabling LayoutState. At the very least, don't disable it for floats originating |
| // in this block. Better yet would be to push extra state for the containers of other floats. |
| LayoutStateDisabler layoutStateDisabler(view().frameView().layoutContext()); |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| auto end = floatingObjectSet.end(); |
| for (auto it = floatingObjectSet.begin(); it != end; ++it) { |
| const auto& floatingObject = *it->get(); |
| // Only repaint the object if it is overhanging, is not in its own layer, and |
| // is our responsibility to paint (m_shouldPaint is set). When paintAllDescendants is true, the latter |
| // condition is replaced with being a descendant of us. |
| auto& renderer = floatingObject.renderer(); |
| if (logicalBottomForFloat(floatingObject) > logicalHeight() |
| && !renderer.hasSelfPaintingLayer() |
| && (floatingObject.paintsFloat() || (paintAllDescendants && renderer.isDescendantOf(this)))) { |
| renderer.repaint(); |
| renderer.repaintOverhangingFloats(false); |
| } |
| } |
| } |
| |
| void RenderBlockFlow::paintColumnRules(PaintInfo& paintInfo, const LayoutPoint& point) |
| { |
| RenderBlock::paintColumnRules(paintInfo, point); |
| |
| if (!multiColumnFlow() || paintInfo.context().paintingDisabled()) |
| return; |
| |
| // Iterate over our children and paint the column rules as needed. |
| for (auto& columnSet : childrenOfType<RenderMultiColumnSet>(*this)) { |
| LayoutPoint childPoint = columnSet.location() + flipForWritingModeForChild(columnSet, point); |
| columnSet.paintColumnRules(paintInfo, childPoint); |
| } |
| } |
| |
| void RenderBlockFlow::paintFloats(PaintInfo& paintInfo, const LayoutPoint& paintOffset, bool preservePhase) |
| { |
| if (!m_floatingObjects) |
| return; |
| |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| auto end = floatingObjectSet.end(); |
| for (auto it = floatingObjectSet.begin(); it != end; ++it) { |
| const auto& floatingObject = *it->get(); |
| auto& renderer = floatingObject.renderer(); |
| if (floatingObject.shouldPaint()) { |
| PaintInfo currentPaintInfo(paintInfo); |
| currentPaintInfo.phase = preservePhase ? paintInfo.phase : PaintPhase::BlockBackground; |
| LayoutPoint childPoint = flipFloatForWritingModeForChild(floatingObject, paintOffset + floatingObject.translationOffsetToAncestor()); |
| renderer.paint(currentPaintInfo, childPoint); |
| if (!preservePhase) { |
| currentPaintInfo.phase = PaintPhase::ChildBlockBackgrounds; |
| renderer.paint(currentPaintInfo, childPoint); |
| currentPaintInfo.phase = PaintPhase::Float; |
| renderer.paint(currentPaintInfo, childPoint); |
| currentPaintInfo.phase = PaintPhase::Foreground; |
| renderer.paint(currentPaintInfo, childPoint); |
| currentPaintInfo.phase = PaintPhase::Outline; |
| renderer.paint(currentPaintInfo, childPoint); |
| } |
| } |
| } |
| } |
| |
| void RenderBlockFlow::clipOutFloatingObjects(RenderBlock& rootBlock, const PaintInfo* paintInfo, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock) |
| { |
| if (m_floatingObjects) { |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| auto end = floatingObjectSet.end(); |
| for (auto it = floatingObjectSet.begin(); it != end; ++it) { |
| const auto& floatingObject = *it->get(); |
| LayoutRect floatBox(offsetFromRootBlock.width(), offsetFromRootBlock.height(), floatingObject.renderer().width(), floatingObject.renderer().height()); |
| floatBox.move(floatingObject.locationOffsetOfBorderBox()); |
| rootBlock.flipForWritingMode(floatBox); |
| floatBox.move(rootBlockPhysicalPosition.x(), rootBlockPhysicalPosition.y()); |
| paintInfo->context().clipOut(snappedIntRect(floatBox)); |
| } |
| } |
| } |
| |
| void RenderBlockFlow::createFloatingObjects() |
| { |
| m_floatingObjects = makeUnique<FloatingObjects>(*this); |
| } |
| |
| void RenderBlockFlow::removeFloatingObjects() |
| { |
| if (!m_floatingObjects) |
| return; |
| |
| markSiblingsWithFloatsForLayout(); |
| |
| m_floatingObjects->clear(); |
| } |
| |
| FloatingObject* RenderBlockFlow::insertFloatingObject(RenderBox& floatBox) |
| { |
| ASSERT(floatBox.isFloating()); |
| |
| // Create the list of special objects if we don't aleady have one |
| if (!m_floatingObjects) |
| createFloatingObjects(); |
| else { |
| // Don't insert the floatingObject again if it's already in the list |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| auto it = floatingObjectSet.find<FloatingObjectHashTranslator>(floatBox); |
| if (it != floatingObjectSet.end()) |
| return it->get(); |
| } |
| |
| // Create the special floatingObject entry & append it to the list |
| |
| std::unique_ptr<FloatingObject> floatingObject = FloatingObject::create(floatBox); |
| |
| // Our location is irrelevant if we're unsplittable or no pagination is in effect. Just lay out the float. |
| bool isChildRenderBlock = floatBox.isRenderBlock(); |
| if (isChildRenderBlock && !floatBox.needsLayout() && view().frameView().layoutContext().layoutState()->pageLogicalHeightChanged()) |
| floatBox.setChildNeedsLayout(MarkOnlyThis); |
| |
| bool needsBlockDirectionLocationSetBeforeLayout = isChildRenderBlock && view().frameView().layoutContext().layoutState()->needsBlockDirectionLocationSetBeforeLayout(); |
| if (!needsBlockDirectionLocationSetBeforeLayout || isWritingModeRoot()) { |
| // We are unsplittable if we're a block flow root. |
| floatBox.layoutIfNeeded(); |
| } else { |
| floatBox.updateLogicalWidth(); |
| floatBox.computeAndSetBlockDirectionMargins(*this); |
| } |
| |
| setLogicalWidthForFloat(*floatingObject, logicalWidthForChild(floatBox) + marginStartForChild(floatBox) + marginEndForChild(floatBox)); |
| |
| return m_floatingObjects->add(WTFMove(floatingObject)); |
| } |
| |
| void RenderBlockFlow::removeFloatingObject(RenderBox& floatBox) |
| { |
| if (m_floatingObjects) { |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| auto it = floatingObjectSet.find<FloatingObjectHashTranslator>(floatBox); |
| if (it != floatingObjectSet.end()) { |
| auto& floatingObject = *it->get(); |
| if (childrenInline()) { |
| LayoutUnit logicalTop = logicalTopForFloat(floatingObject); |
| LayoutUnit logicalBottom = logicalBottomForFloat(floatingObject); |
| |
| // Fix for https://bugs.webkit.org/show_bug.cgi?id=54995. |
| if (logicalBottom < 0 || logicalBottom < logicalTop || logicalTop == LayoutUnit::max()) |
| logicalBottom = LayoutUnit::max(); |
| else { |
| // Special-case zero- and less-than-zero-height floats: those don't touch |
| // the line that they're on, but it still needs to be dirtied. This is |
| // accomplished by pretending they have a height of 1. |
| logicalBottom = std::max(logicalBottom, logicalTop + 1); |
| } |
| if (floatingObject.originatingLine()) { |
| floatingObject.originatingLine()->removeFloat(floatBox); |
| if (!selfNeedsLayout()) { |
| ASSERT(&floatingObject.originatingLine()->renderer() == this); |
| floatingObject.originatingLine()->markDirty(); |
| } |
| #if ASSERT_ENABLED |
| floatingObject.clearOriginatingLine(); |
| #endif |
| } |
| markLinesDirtyInBlockRange(0, logicalBottom); |
| } |
| m_floatingObjects->remove(&floatingObject); |
| } |
| } |
| } |
| |
| void RenderBlockFlow::removeFloatingObjectsBelow(FloatingObject* lastFloat, int logicalOffset) |
| { |
| if (!containsFloats()) |
| return; |
| |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| FloatingObject* curr = floatingObjectSet.last().get(); |
| while (curr != lastFloat && (!curr->isPlaced() || logicalTopForFloat(*curr) >= logicalOffset)) { |
| m_floatingObjects->remove(curr); |
| if (floatingObjectSet.isEmpty()) |
| break; |
| curr = floatingObjectSet.last().get(); |
| } |
| } |
| |
| LayoutUnit RenderBlockFlow::logicalLeftOffsetForPositioningFloat(LayoutUnit logicalTop, LayoutUnit fixedOffset, bool applyTextIndent, LayoutUnit* heightRemaining) const |
| { |
| LayoutUnit offset = fixedOffset; |
| if (m_floatingObjects && m_floatingObjects->hasLeftObjects()) |
| offset = m_floatingObjects->logicalLeftOffsetForPositioningFloat(fixedOffset, logicalTop, heightRemaining); |
| return adjustLogicalLeftOffsetForLine(offset, applyTextIndent); |
| } |
| |
| LayoutUnit RenderBlockFlow::logicalRightOffsetForPositioningFloat(LayoutUnit logicalTop, LayoutUnit fixedOffset, bool applyTextIndent, LayoutUnit* heightRemaining) const |
| { |
| LayoutUnit offset = fixedOffset; |
| if (m_floatingObjects && m_floatingObjects->hasRightObjects()) |
| offset = m_floatingObjects->logicalRightOffsetForPositioningFloat(fixedOffset, logicalTop, heightRemaining); |
| return adjustLogicalRightOffsetForLine(offset, applyTextIndent); |
| } |
| |
| void RenderBlockFlow::computeLogicalLocationForFloat(FloatingObject& floatingObject, LayoutUnit& logicalTopOffset) |
| { |
| auto& childBox = floatingObject.renderer(); |
| LayoutUnit logicalLeftOffset = logicalLeftOffsetForContent(logicalTopOffset); // Constant part of left offset. |
| LayoutUnit logicalRightOffset = logicalRightOffsetForContent(logicalTopOffset); // Constant part of right offset. |
| |
| LayoutUnit floatLogicalWidth = std::min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset); // The width we look for. |
| |
| LayoutUnit floatLogicalLeft; |
| |
| bool insideFragmentedFlow = enclosingFragmentedFlow(); |
| bool isInitialLetter = childBox.style().styleType() == PseudoId::FirstLetter && childBox.style().initialLetterDrop() > 0; |
| |
| if (isInitialLetter) { |
| int letterClearance = lowestInitialLetterLogicalBottom() - logicalTopOffset; |
| if (letterClearance > 0) { |
| logicalTopOffset += letterClearance; |
| setLogicalHeight(logicalHeight() + letterClearance); |
| } |
| } |
| |
| if (RenderStyle::usedFloat(childBox) == UsedFloat::Left) { |
| LayoutUnit heightRemainingLeft = 1_lu; |
| LayoutUnit heightRemainingRight = 1_lu; |
| floatLogicalLeft = logicalLeftOffsetForPositioningFloat(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft); |
| while (logicalRightOffsetForPositioningFloat(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight) - floatLogicalLeft < floatLogicalWidth) { |
| logicalTopOffset += std::min(heightRemainingLeft, heightRemainingRight); |
| floatLogicalLeft = logicalLeftOffsetForPositioningFloat(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft); |
| if (insideFragmentedFlow) { |
| // Have to re-evaluate all of our offsets, since they may have changed. |
| logicalRightOffset = logicalRightOffsetForContent(logicalTopOffset); // Constant part of right offset. |
| logicalLeftOffset = logicalLeftOffsetForContent(logicalTopOffset); // Constant part of left offset. |
| floatLogicalWidth = std::min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset); |
| } |
| } |
| floatLogicalLeft = std::max(logicalLeftOffset - borderAndPaddingLogicalLeft(), floatLogicalLeft); |
| } else { |
| LayoutUnit heightRemainingLeft = 1_lu; |
| LayoutUnit heightRemainingRight = 1_lu; |
| floatLogicalLeft = logicalRightOffsetForPositioningFloat(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight); |
| while (floatLogicalLeft - logicalLeftOffsetForPositioningFloat(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft) < floatLogicalWidth) { |
| logicalTopOffset += std::min(heightRemainingLeft, heightRemainingRight); |
| floatLogicalLeft = logicalRightOffsetForPositioningFloat(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight); |
| if (insideFragmentedFlow) { |
| // Have to re-evaluate all of our offsets, since they may have changed. |
| logicalRightOffset = logicalRightOffsetForContent(logicalTopOffset); // Constant part of right offset. |
| logicalLeftOffset = logicalLeftOffsetForContent(logicalTopOffset); // Constant part of left offset. |
| floatLogicalWidth = std::min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset); |
| } |
| } |
| // Use the original width of the float here, since the local variable |
| // |floatLogicalWidth| was capped to the available line width. See |
| // fast/block/float/clamped-right-float.html. |
| floatLogicalLeft -= logicalWidthForFloat(floatingObject); |
| } |
| |
| LayoutUnit childLogicalLeftMargin = style().isLeftToRightDirection() ? marginStartForChild(childBox) : marginEndForChild(childBox); |
| LayoutUnit childBeforeMargin = marginBeforeForChild(childBox); |
| |
| if (isInitialLetter) |
| adjustInitialLetterPosition(childBox, logicalTopOffset, childBeforeMargin); |
| |
| setLogicalLeftForFloat(floatingObject, floatLogicalLeft); |
| setLogicalLeftForChild(childBox, floatLogicalLeft + childLogicalLeftMargin); |
| |
| setLogicalTopForFloat(floatingObject, logicalTopOffset); |
| setLogicalTopForChild(childBox, logicalTopOffset + childBeforeMargin); |
| |
| setLogicalMarginsForFloat(floatingObject, childLogicalLeftMargin, childBeforeMargin); |
| } |
| |
| void RenderBlockFlow::adjustInitialLetterPosition(RenderBox& childBox, LayoutUnit& logicalTopOffset, LayoutUnit& marginBeforeOffset) |
| { |
| const RenderStyle& style = firstLineStyle(); |
| const FontMetrics& fontMetrics = style.metricsOfPrimaryFont(); |
| if (!fontMetrics.hasCapHeight()) |
| return; |
| |
| LayoutUnit heightOfLine = lineHeight(true, isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes); |
| LayoutUnit beforeMarginBorderPadding = childBox.borderAndPaddingBefore() + childBox.marginBefore(); |
| |
| // Make an adjustment to align with the cap height of a theoretical block line. |
| LayoutUnit adjustment = fontMetrics.ascent() + (heightOfLine - fontMetrics.height()) / 2 - fontMetrics.capHeight() - beforeMarginBorderPadding; |
| logicalTopOffset += adjustment; |
| |
| // For sunken and raised caps, we have to make some adjustments. Test if we're sunken or raised (dropHeightDelta will be |
| // positive for raised and negative for sunken). |
| int dropHeightDelta = childBox.style().initialLetterHeight() - childBox.style().initialLetterDrop(); |
| |
| // If we're sunken, the float needs to shift down but lines still need to avoid it. In order to do that we increase the float's margin. |
| if (dropHeightDelta < 0) |
| marginBeforeOffset += -dropHeightDelta * heightOfLine; |
| |
| // If we're raised, then we actually have to grow the height of the block, since the lines have to be pushed down as though we're placing |
| // empty lines beside the first letter. |
| if (dropHeightDelta > 0) |
| setLogicalHeight(logicalHeight() + dropHeightDelta * heightOfLine); |
| } |
| |
| bool RenderBlockFlow::positionNewFloats() |
| { |
| if (!m_floatingObjects) |
| return false; |
| |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| if (floatingObjectSet.isEmpty()) |
| return false; |
| |
| // If all floats have already been positioned, then we have no work to do. |
| if (floatingObjectSet.last()->isPlaced()) |
| return false; |
| |
| // Move backwards through our floating object list until we find a float that has |
| // already been positioned. Then we'll be able to move forward, positioning all of |
| // the new floats that need it. |
| auto it = floatingObjectSet.end(); |
| --it; // Go to last item. |
| auto begin = floatingObjectSet.begin(); |
| FloatingObject* lastPlacedFloatingObject = 0; |
| while (it != begin) { |
| --it; |
| if ((*it)->isPlaced()) { |
| lastPlacedFloatingObject = it->get(); |
| ++it; |
| break; |
| } |
| } |
| |
| LayoutUnit logicalTop = logicalHeight(); |
| |
| // The float cannot start above the top position of the last positioned float. |
| if (lastPlacedFloatingObject) |
| logicalTop = std::max(logicalTopForFloat(*lastPlacedFloatingObject), logicalTop); |
| |
| auto end = floatingObjectSet.end(); |
| // Now walk through the set of unpositioned floats and place them. |
| for (; it != end; ++it) { |
| auto& floatingObject = *it->get(); |
| // The containing block is responsible for positioning floats, so if we have floats in our |
| // list that come from somewhere else, do not attempt to position them. |
| auto& childBox = floatingObject.renderer(); |
| if (childBox.containingBlock() != this) |
| continue; |
| |
| LayoutRect oldRect = childBox.frameRect(); |
| auto childBoxUsedClear = RenderStyle::usedClear(childBox); |
| if (childBoxUsedClear == UsedClear::Left || childBoxUsedClear == UsedClear::Both) |
| logicalTop = std::max(lowestFloatLogicalBottom(FloatingObject::FloatLeft), logicalTop); |
| if (childBoxUsedClear == UsedClear::Right || childBoxUsedClear == UsedClear::Both) |
| logicalTop = std::max(lowestFloatLogicalBottom(FloatingObject::FloatRight), logicalTop); |
| |
| computeLogicalLocationForFloat(floatingObject, logicalTop); |
| LayoutUnit childLogicalTop = logicalTopForChild(childBox); |
| |
| estimateFragmentRangeForBoxChild(childBox); |
| |
| childBox.markForPaginationRelayoutIfNeeded(); |
| childBox.layoutIfNeeded(); |
| |
| auto* layoutState = view().frameView().layoutContext().layoutState(); |
| bool isPaginated = layoutState->isPaginated(); |
| if (isPaginated) { |
| // If we are unsplittable and don't fit, then we need to move down. |
| // We include our margins as part of the unsplittable area. |
| LayoutUnit newLogicalTop = adjustForUnsplittableChild(childBox, logicalTop, childLogicalTop - logicalTop, marginAfterForChild(childBox)); |
| |
| // See if we have a pagination strut that is making us move down further. |
| // Note that an unsplittable child can't also have a pagination strut, so this |
| // is exclusive with the case above. |
| auto* childBlock = dynamicDowncast<RenderBlock>(childBox); |
| if (childBlock && childBlock->paginationStrut()) { |
| newLogicalTop += childBlock->paginationStrut(); |
| childBlock->setPaginationStrut(0); |
| } |
| |
| if (newLogicalTop != logicalTop) { |
| floatingObject.setPaginationStrut(newLogicalTop - logicalTop); |
| computeLogicalLocationForFloat(floatingObject, newLogicalTop); |
| if (childBlock) |
| childBlock->setChildNeedsLayout(MarkOnlyThis); |
| childBox.layoutIfNeeded(); |
| logicalTop = newLogicalTop; |
| } |
| |
| if (updateFragmentRangeForBoxChild(childBox)) { |
| childBox.setNeedsLayout(MarkOnlyThis); |
| childBox.layoutIfNeeded(); |
| } |
| } |
| |
| setLogicalHeightForFloat(floatingObject, logicalHeightForChildForFragmentation(childBox) + (logicalTopForChild(childBox) - logicalTop) + marginAfterForChild(childBox)); |
| |
| m_floatingObjects->addPlacedObject(&floatingObject); |
| |
| if (ShapeOutsideInfo* shapeOutside = childBox.shapeOutsideInfo()) |
| shapeOutside->setReferenceBoxLogicalSize(logicalSizeForChild(childBox)); |
| // If the child moved, we have to repaint it. |
| if (childBox.checkForRepaintDuringLayout()) |
| childBox.repaintDuringLayoutIfMoved(oldRect); |
| } |
| return true; |
| } |
| |
| void RenderBlockFlow::clearFloats(UsedClear usedClear) |
| { |
| positionNewFloats(); |
| // set y position |
| LayoutUnit newY; |
| switch (usedClear) { |
| case UsedClear::Left: |
| newY = lowestFloatLogicalBottom(FloatingObject::FloatLeft); |
| break; |
| case UsedClear::Right: |
| newY = lowestFloatLogicalBottom(FloatingObject::FloatRight); |
| break; |
| case UsedClear::Both: |
| newY = lowestFloatLogicalBottom(); |
| break; |
| case UsedClear::None: |
| break; |
| } |
| // FIXME: The float search tree has floored float box position (see FloatingObjects::intervalForFloatingObject). |
| newY = newY.floor(); |
| if (height() < newY) |
| setLogicalHeight(newY); |
| } |
| |
| LayoutUnit RenderBlockFlow::logicalLeftFloatOffsetForLine(LayoutUnit logicalTop, LayoutUnit fixedOffset, LayoutUnit logicalHeight) const |
| { |
| if (m_floatingObjects && m_floatingObjects->hasLeftObjects()) |
| return m_floatingObjects->logicalLeftOffset(fixedOffset, logicalTop, logicalHeight); |
| |
| return fixedOffset; |
| } |
| |
| LayoutUnit RenderBlockFlow::logicalRightFloatOffsetForLine(LayoutUnit logicalTop, LayoutUnit fixedOffset, LayoutUnit logicalHeight) const |
| { |
| if (m_floatingObjects && m_floatingObjects->hasRightObjects()) |
| return m_floatingObjects->logicalRightOffset(fixedOffset, logicalTop, logicalHeight); |
| |
| return fixedOffset; |
| } |
| |
| LayoutUnit RenderBlockFlow::nextFloatLogicalBottomBelow(LayoutUnit logicalHeight) const |
| { |
| if (!m_floatingObjects) |
| return logicalHeight; |
| |
| return m_floatingObjects->findNextFloatLogicalBottomBelow(logicalHeight); |
| } |
| |
| LayoutUnit RenderBlockFlow::nextFloatLogicalBottomBelowForBlock(LayoutUnit logicalHeight) const |
| { |
| if (!m_floatingObjects) |
| return logicalHeight; |
| |
| return m_floatingObjects->findNextFloatLogicalBottomBelowForBlock(logicalHeight); |
| } |
| |
| LayoutUnit RenderBlockFlow::lowestFloatLogicalBottom(FloatingObject::Type floatType) const |
| { |
| if (!m_floatingObjects) |
| return 0; |
| LayoutUnit lowestFloatBottom; |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| auto end = floatingObjectSet.end(); |
| for (auto it = floatingObjectSet.begin(); it != end; ++it) { |
| const auto& floatingObject = *it->get(); |
| if (floatingObject.isPlaced() && floatingObject.type() & floatType) |
| lowestFloatBottom = std::max(lowestFloatBottom, logicalBottomForFloat(floatingObject)); |
| } |
| return lowestFloatBottom; |
| } |
| |
| LayoutUnit RenderBlockFlow::lowestInitialLetterLogicalBottom() const |
| { |
| if (!m_floatingObjects) |
| return 0; |
| LayoutUnit lowestFloatBottom; |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| auto end = floatingObjectSet.end(); |
| for (auto it = floatingObjectSet.begin(); it != end; ++it) { |
| const auto& floatingObject = *it->get(); |
| if (floatingObject.isPlaced() && floatingObject.renderer().style().styleType() == PseudoId::FirstLetter && floatingObject.renderer().style().initialLetterDrop() > 0) |
| lowestFloatBottom = std::max(lowestFloatBottom, logicalBottomForFloat(floatingObject)); |
| } |
| return lowestFloatBottom; |
| } |
| |
| LayoutUnit RenderBlockFlow::addOverhangingFloats(RenderBlockFlow& child, bool makeChildPaintOtherFloats) |
| { |
| // Prevent floats from being added to the canvas by the root element, e.g., <html>. |
| if (!child.containsFloats() || child.createsNewFormattingContext()) |
| return 0; |
| |
| LayoutUnit childLogicalTop = child.logicalTop(); |
| LayoutUnit childLogicalLeft = child.logicalLeft(); |
| LayoutUnit lowestFloatLogicalBottom; |
| |
| // Floats that will remain the child's responsibility to paint should factor into its |
| // overflow. |
| auto childEnd = child.m_floatingObjects->set().end(); |
| for (auto childIt = child.m_floatingObjects->set().begin(); childIt != childEnd; ++childIt) { |
| auto& floatingObject = *childIt->get(); |
| LayoutUnit floatLogicalBottom = std::min(logicalBottomForFloat(floatingObject), LayoutUnit::max() - childLogicalTop); |
| LayoutUnit logicalBottom = childLogicalTop + floatLogicalBottom; |
| lowestFloatLogicalBottom = std::max(lowestFloatLogicalBottom, logicalBottom); |
| |
| if (logicalBottom > logicalHeight()) { |
| // If the object is not in the list, we add it now. |
| if (!containsFloat(floatingObject.renderer())) { |
| LayoutSize offset = isHorizontalWritingMode() ? LayoutSize(-childLogicalLeft, -childLogicalTop) : LayoutSize(-childLogicalTop, -childLogicalLeft); |
| bool shouldPaint = false; |
| |
| // The nearest enclosing layer always paints the float (so that zindex and stacking |
| // behaves properly). We always want to propagate the desire to paint the float as |
| // far out as we can, to the outermost block that overlaps the float, stopping only |
| // if we hit a self-painting layer boundary. |
| if (floatingObject.renderer().enclosingFloatPaintingLayer() == enclosingFloatPaintingLayer()) { |
| floatingObject.setPaintsFloat(false); |
| shouldPaint = true; |
| } |
| // We create the floating object list lazily. |
| if (!m_floatingObjects) |
| createFloatingObjects(); |
| |
| m_floatingObjects->add(floatingObject.copyToNewContainer(offset, shouldPaint, true)); |
| } |
| } else { |
| const auto& renderer = floatingObject.renderer(); |
| if (makeChildPaintOtherFloats && !floatingObject.paintsFloat() && !renderer.hasSelfPaintingLayer() |
| && renderer.isDescendantOf(&child) && renderer.enclosingFloatPaintingLayer() == child.enclosingFloatPaintingLayer()) { |
| // The float is not overhanging from this block, so if it is a descendant of the child, the child should |
| // paint it (the other case is that it is intruding into the child), unless it has its own layer or enclosing |
| // layer. |
| // If makeChildPaintOtherFloats is false, it means that the child must already know about all the floats |
| // it should paint. |
| floatingObject.setPaintsFloat(true); |
| } |
| |
| // Since the float doesn't overhang, it didn't get put into our list. We need to add its overflow in to the child now. |
| if (floatingObject.isDescendant()) |
| child.addOverflowFromChild(&renderer, floatingObject.locationOffsetOfBorderBox()); |
| } |
| } |
| return lowestFloatLogicalBottom; |
| } |
| |
| bool RenderBlockFlow::hasOverhangingFloat(RenderBox& renderer) |
| { |
| if (!m_floatingObjects || !parent()) |
| return false; |
| |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| const auto it = floatingObjectSet.find<FloatingObjectHashTranslator>(renderer); |
| if (it == floatingObjectSet.end()) |
| return false; |
| |
| return logicalBottomForFloat(*it->get()) > logicalHeight(); |
| } |
| |
| void RenderBlockFlow::addIntrudingFloats(RenderBlockFlow* prev, RenderBlockFlow* container, LayoutUnit logicalLeftOffset, LayoutUnit logicalTopOffset) |
| { |
| ASSERT(!avoidsFloats()); |
| |
| // If we create our own block formatting context then our contents don't interact with floats outside it, even those from our parent. |
| if (createsNewFormattingContext()) |
| return; |
| |
| // If the parent or previous sibling doesn't have any floats to add, don't bother. |
| if (!prev->m_floatingObjects) |
| return; |
| |
| logicalLeftOffset += marginLogicalLeft(); |
| |
| const FloatingObjectSet& prevSet = prev->m_floatingObjects->set(); |
| auto prevEnd = prevSet.end(); |
| for (auto prevIt = prevSet.begin(); prevIt != prevEnd; ++prevIt) { |
| auto& floatingObject = *prevIt->get(); |
| if (logicalBottomForFloat(floatingObject) > logicalTopOffset) { |
| if (!m_floatingObjects || !m_floatingObjects->set().contains(&floatingObject)) { |
| // We create the floating object list lazily. |
| if (!m_floatingObjects) |
| createFloatingObjects(); |
| |
| // Applying the child's margin makes no sense in the case where the child was passed in. |
| // since this margin was added already through the modification of the |logicalLeftOffset| variable |
| // above. |logicalLeftOffset| will equal the margin in this case, so it's already been taken |
| // into account. Only apply this code if prev is the parent, since otherwise the left margin |
| // will get applied twice. |
| LayoutSize offset = isHorizontalWritingMode() |
| ? LayoutSize(logicalLeftOffset - (prev != container ? prev->marginLeft() : 0_lu), logicalTopOffset) |
| : LayoutSize(logicalTopOffset, logicalLeftOffset - (prev != container ? prev->marginTop() : 0_lu)); |
| |
| m_floatingObjects->add(floatingObject.copyToNewContainer(offset)); |
| } |
| } |
| } |
| } |
| |
| void RenderBlockFlow::markAllDescendantsWithFloatsForLayout(RenderBox* floatToRemove, bool inLayout) |
| { |
| if (!everHadLayout() && !containsFloats()) |
| return; |
| |
| MarkingBehavior markParents = inLayout ? MarkOnlyThis : MarkContainingBlockChain; |
| setChildNeedsLayout(markParents); |
| |
| if (floatToRemove) |
| removeFloatingObject(*floatToRemove); |
| else if (childrenInline()) |
| return; |
| |
| // Iterate over our block children and mark them as needed. |
| for (auto& block : childrenOfType<RenderBlock>(*this)) { |
| if (!floatToRemove && block.isFloatingOrOutOfFlowPositioned()) |
| continue; |
| if (!is<RenderBlockFlow>(block)) { |
| if (block.shrinkToAvoidFloats() && block.everHadLayout()) |
| block.setChildNeedsLayout(markParents); |
| continue; |
| } |
| auto& blockFlow = downcast<RenderBlockFlow>(block); |
| if ((floatToRemove ? blockFlow.subtreeContainsFloat(*floatToRemove) : blockFlow.subtreeContainsFloats()) || blockFlow.shrinkToAvoidFloats()) |
| blockFlow.markAllDescendantsWithFloatsForLayout(floatToRemove, inLayout); |
| } |
| } |
| |
| void RenderBlockFlow::markSiblingsWithFloatsForLayout(RenderBox* floatToRemove) |
| { |
| if (!m_floatingObjects) |
| return; |
| |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| auto end = floatingObjectSet.end(); |
| |
| for (RenderObject* next = nextSibling(); next; next = next->nextSibling()) { |
| if (!is<RenderBlockFlow>(*next) || next->isFloatingOrOutOfFlowPositioned()) |
| continue; |
| |
| RenderBlockFlow& nextBlock = downcast<RenderBlockFlow>(*next); |
| for (auto it = floatingObjectSet.begin(); it != end; ++it) { |
| RenderBox& floatingBox = (*it)->renderer(); |
| if (floatToRemove && &floatingBox != floatToRemove) |
| continue; |
| if (nextBlock.containsFloat(floatingBox)) |
| nextBlock.markAllDescendantsWithFloatsForLayout(&floatingBox); |
| } |
| } |
| } |
| |
| LayoutPoint RenderBlockFlow::flipFloatForWritingModeForChild(const FloatingObject& child, const LayoutPoint& point) const |
| { |
| if (!style().isFlippedBlocksWritingMode()) |
| return point; |
| |
| // This is similar to RenderBox::flipForWritingModeForChild. We have to subtract out our left/top offsets twice, since |
| // it's going to get added back in. We hide this complication here so that the calling code looks normal for the unflipped |
| // case. |
| if (isHorizontalWritingMode()) |
| return LayoutPoint(point.x(), point.y() + height() - child.renderer().height() - 2 * child.locationOffsetOfBorderBox().height()); |
| return LayoutPoint(point.x() + width() - child.renderer().width() - 2 * child.locationOffsetOfBorderBox().width(), point.y()); |
| } |
| |
| LayoutUnit RenderBlockFlow::getClearDelta(RenderBox& child, LayoutUnit logicalTop) |
| { |
| // There is no need to compute clearance if we have no floats. |
| if (!containsFloats()) |
| return 0; |
| |
| // At least one float is present. We need to perform the clearance computation. |
| UsedClear usedClear = RenderStyle::usedClear(child); |
| bool clearSet = usedClear != UsedClear::None; |
| LayoutUnit logicalBottom; |
| switch (usedClear) { |
| case UsedClear::None: |
| break; |
| case UsedClear::Left: |
| logicalBottom = lowestFloatLogicalBottom(FloatingObject::FloatLeft); |
| break; |
| case UsedClear::Right: |
| logicalBottom = lowestFloatLogicalBottom(FloatingObject::FloatRight); |
| break; |
| case UsedClear::Both: |
| logicalBottom = lowestFloatLogicalBottom(); |
| break; |
| } |
| |
| // We also clear floats if we are too big to sit on the same line as a float (and wish to avoid floats by default). |
| LayoutUnit result = clearSet ? std::max<LayoutUnit>(0, logicalBottom - logicalTop) : 0_lu; |
| if (!result && child.avoidsFloats()) { |
| LayoutUnit newLogicalTop = logicalTop; |
| while (true) { |
| LayoutUnit availableLogicalWidthAtNewLogicalTopOffset = availableLogicalWidthForLine(newLogicalTop, DoNotIndentText, logicalHeightForChild(child)); |
| if (availableLogicalWidthAtNewLogicalTopOffset == availableLogicalWidthForContent(newLogicalTop)) |
| return newLogicalTop - logicalTop; |
| |
| RenderFragmentContainer* fragment = fragmentAtBlockOffset(logicalTopForChild(child)); |
| LayoutRect borderBox = child.borderBoxRectInFragment(fragment, DoNotCacheRenderBoxFragmentInfo); |
| LayoutUnit childLogicalWidthAtOldLogicalTopOffset = isHorizontalWritingMode() ? borderBox.width() : borderBox.height(); |
| |
| // FIXME: None of this is right for perpendicular writing-mode children. |
| LayoutUnit childOldLogicalWidth = child.logicalWidth(); |
| LayoutUnit childOldMarginLeft = child.marginLeft(); |
| LayoutUnit childOldMarginRight = child.marginRight(); |
| LayoutUnit childOldLogicalTop = child.logicalTop(); |
| |
| child.setLogicalTop(newLogicalTop); |
| child.updateLogicalWidth(); |
| fragment = fragmentAtBlockOffset(logicalTopForChild(child)); |
| borderBox = child.borderBoxRectInFragment(fragment, DoNotCacheRenderBoxFragmentInfo); |
| LayoutUnit childLogicalWidthAtNewLogicalTopOffset = isHorizontalWritingMode() ? borderBox.width() : borderBox.height(); |
| |
| child.setLogicalTop(childOldLogicalTop); |
| child.setLogicalWidth(childOldLogicalWidth); |
| child.setMarginLeft(childOldMarginLeft); |
| child.setMarginRight(childOldMarginRight); |
| |
| if (childLogicalWidthAtNewLogicalTopOffset <= availableLogicalWidthAtNewLogicalTopOffset) { |
| // Even though we may not be moving, if the logical width did shrink because of the presence of new floats, then |
| // we need to force a relayout as though we shifted. This happens because of the dynamic addition of overhanging floats |
| // from previous siblings when negative margins exist on a child (see the addOverhangingFloats call at the end of collapseMargins). |
| if (childLogicalWidthAtOldLogicalTopOffset != childLogicalWidthAtNewLogicalTopOffset) |
| child.setChildNeedsLayout(MarkOnlyThis); |
| return newLogicalTop - logicalTop; |
| } |
| |
| newLogicalTop = nextFloatLogicalBottomBelowForBlock(newLogicalTop); |
| ASSERT(newLogicalTop >= logicalTop); |
| if (newLogicalTop < logicalTop) |
| break; |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| return result; |
| } |
| |
| bool RenderBlockFlow::hitTestFloats(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset) |
| { |
| if (!m_floatingObjects) |
| return false; |
| |
| LayoutPoint adjustedLocation = accumulatedOffset; |
| if (is<RenderView>(*this)) |
| adjustedLocation += toLayoutSize(downcast<RenderView>(*this).frameView().scrollPosition()); |
| |
| const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| auto begin = floatingObjectSet.begin(); |
| for (auto it = floatingObjectSet.end(); it != begin;) { |
| --it; |
| const auto& floatingObject = *it->get(); |
| auto& renderer = floatingObject.renderer(); |
| if (floatingObject.shouldPaint()) { |
| LayoutPoint childPoint = flipFloatForWritingModeForChild(floatingObject, adjustedLocation + floatingObject.translationOffsetToAncestor()); |
| if (renderer.hitTest(request, result, locationInContainer, childPoint)) { |
| updateHitTestResult(result, locationInContainer.point() - toLayoutSize(childPoint)); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool RenderBlockFlow::hitTestInlineChildren(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, HitTestAction hitTestAction) |
| { |
| ASSERT(childrenInline()); |
| |
| #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
| if (modernLineLayout()) |
| return modernLineLayout()->hitTest(request, result, locationInContainer, accumulatedOffset, hitTestAction); |
| #endif |
| |
| return legacyLineLayout() && legacyLineLayout()->lineBoxes().hitTest(this, request, result, locationInContainer, accumulatedOffset, hitTestAction); |
| } |
| |
| void RenderBlockFlow::addOverflowFromInlineChildren() |
| { |
| #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
| if (modernLineLayout()) { |
| modernLineLayout()->collectOverflow(); |
| return; |
| } |
| #endif |
| |
| if (legacyLineLayout()) |
| legacyLineLayout()->addOverflowFromInlineChildren(); |
| } |
| |
| void RenderBlockFlow::markLinesDirtyInBlockRange(LayoutUnit logicalTop, LayoutUnit logicalBottom, LegacyRootInlineBox* highest) |
| { |
| if (logicalTop >= logicalBottom) |
| return; |
| |
| // Floats currently affect the choice of layout path. |
| #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
| if (modernLineLayout()) { |
| invalidateLineLayoutPath(); |
| return; |
| } |
| #endif |
| |
| LegacyRootInlineBox* lowestDirtyLine = lastRootBox(); |
| LegacyRootInlineBox* afterLowest = lowestDirtyLine; |
| while (lowestDirtyLine && lowestDirtyLine->lineBoxBottom() >= logicalBottom && logicalBottom < LayoutUnit::max()) { |
| afterLowest = lowestDirtyLine; |
| lowestDirtyLine = lowestDirtyLine->prevRootBox(); |
| } |
| |
| while (afterLowest && afterLowest != highest && (afterLowest->lineBoxBottom() >= logicalTop || afterLowest->lineBoxBottom() < 0)) { |
| afterLowest->markDirty(); |
| afterLowest = afterLowest->prevRootBox(); |
| } |
| } |
| |
| std::optional<LayoutUnit> RenderBlockFlow::firstLineBaseline() const |
| { |
| if (isWritingModeRoot() && !isRubyRun() && !isGridItem()) |
| return std::nullopt; |
| |
| if (shouldApplyLayoutContainment()) |
| return std::nullopt; |
| |
| if (!childrenInline()) |
| return RenderBlock::firstLineBaseline(); |
| |
| if (!hasLines()) |
| return std::nullopt; |
| |
| #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
| if (modernLineLayout()) |
| return LayoutUnit { floorToInt(modernLineLayout()->firstLinePhysicalBaseline()) }; |
| #endif |
| |
| ASSERT(firstRootBox()); |
| if (style().isFlippedLinesWritingMode()) |
| return LayoutUnit { firstRootBox()->logicalTop() + firstLineStyle().metricsOfPrimaryFont().descent(firstRootBox()->baselineType()) }; |
| return LayoutUnit { firstRootBox()->logicalTop() + firstLineStyle().metricsOfPrimaryFont().ascent(firstRootBox()->baselineType()) }; |
| } |
| |
| std::optional<LayoutUnit> RenderBlockFlow::inlineBlockBaseline(LineDirectionMode lineDirection) const |
| { |
| if (isWritingModeRoot() && !isRubyRun()) |
| return std::nullopt; |
| |
| if (shouldApplyLayoutContainment()) |
| return RenderBlock::inlineBlockBaseline(lineDirection); |
| |
| if (style().display() == DisplayType::InlineBlock) { |
| // The baseline of an 'inline-block' is the baseline of its last line box in the normal flow, unless it has either no in-flow line boxes or if its 'overflow' |
| // property has a computed value other than 'visible'. see https://www.w3.org/TR/CSS22/visudet.html |
| auto shouldSynthesizeBaseline = !style().isOverflowVisible() && !is<HTMLFormControlElement>(element()); |
| if (shouldSynthesizeBaseline) |
| return std::nullopt; |
| } |
| // Note that here we only take the left and bottom into consideration. Our caller takes the right and top into consideration. |
| float boxHeight = synthesizedBaselineFromBorderBox(*this, lineDirection) + (lineDirection == HorizontalLine ? m_marginBox.bottom() : m_marginBox.left()); |
| float lastBaseline = 0; |
| if (!childrenInline()) { |
| auto inlineBlockBaseline = RenderBlock::inlineBlockBaseline(lineDirection); |
| if (!inlineBlockBaseline) |
| return inlineBlockBaseline; |
| lastBaseline = inlineBlockBaseline.value(); |
| } else { |
| if (!hasLines()) { |
| if (!hasLineIfEmpty()) |
| return std::nullopt; |
| const auto& fontMetrics = firstLineStyle().metricsOfPrimaryFont(); |
| return LayoutUnit { LayoutUnit(fontMetrics.ascent() |
| + (lineHeight(true, lineDirection, PositionOfInteriorLineBoxes) - fontMetrics.height()) / 2 |
| + (lineDirection == HorizontalLine ? borderTop() + paddingTop() : borderRight() + paddingRight())).toInt() }; |
| } |
| |
| if (legacyLineLayout()) { |
| bool isFirstLine = lastRootBox() == firstRootBox(); |
| const auto& style = isFirstLine ? firstLineStyle() : this->style(); |
| // LegacyInlineFlowBox::placeBoxesInBlockDirection will flip lines in case of verticalLR mode, so we can assume verticalRL for now. |
| lastBaseline = style.metricsOfPrimaryFont().ascent(lastRootBox()->baselineType()) |
| + (style.isFlippedLinesWritingMode() ? logicalHeight() - lastRootBox()->logicalBottom() : lastRootBox()->logicalTop()); |
| } |
| #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
| else if (modernLineLayout()) |
| lastBaseline = floorToInt(modernLineLayout()->lastLineLogicalBaseline()); |
| #endif |
| } |
| // According to the CSS spec http://www.w3.org/TR/CSS21/visudet.html, we shouldn't be performing this min, but should |
| // instead be returning boxHeight directly. However, we feel that a min here is better behavior (and is consistent |
| // enough with the spec to not cause tons of breakages). |
| return LayoutUnit { style().overflowY() == Overflow::Visible ? lastBaseline : std::min(boxHeight, lastBaseline) }; |
| } |
| |
| LayoutUnit RenderBlockFlow::adjustEnclosingTopForPrecedingBlock(LayoutUnit top) const |
| { |
| if (selectionState() != RenderObject::HighlightState::Inside && selectionState() != RenderObject::HighlightState::End) |
| return top; |
| |
| if (isSelectionRoot()) |
| return top; |
| |
| LayoutSize offsetToBlockBefore; |
| |
| auto blockBeforeWithinSelectionRoot = [&]() -> const RenderBlockFlow* { |
| const RenderElement* object = this; |
| const RenderObject* sibling = nullptr; |
| do { |
| sibling = object->previousSibling(); |
| while (sibling && (!is<RenderBlock>(*sibling) || downcast<RenderBlock>(*sibling).isSelectionRoot())) |
| sibling = sibling->previousSibling(); |
| |
| offsetToBlockBefore -= LayoutSize(downcast<RenderBlock>(*object).logicalLeft(), downcast<RenderBlock>(*object).logicalTop()); |
| object = object->parent(); |
| } while (!sibling && is<RenderBlock>(object) && !downcast<RenderBlock>(*object).isSelectionRoot()); |
| |
| if (!sibling) |
| return nullptr; |
| |
| auto* beforeBlock = downcast<RenderBlock>(sibling); |
| |
| offsetToBlockBefore += LayoutSize(beforeBlock->logicalLeft(), beforeBlock->logicalTop()); |
| |
| auto* child = beforeBlock->lastChild(); |
| while (is<RenderBlock>(child)) { |
| beforeBlock = downcast<RenderBlock>(child); |
| offsetToBlockBefore += LayoutSize(beforeBlock->logicalLeft(), beforeBlock->logicalTop()); |
| child = beforeBlock->lastChild(); |
| } |
| return is<RenderBlockFlow>(beforeBlock) ? downcast<RenderBlockFlow>(beforeBlock) : nullptr; |
| }; |
| |
| auto* blockBefore = blockBeforeWithinSelectionRoot(); |
| if (!blockBefore) |
| return top; |
| |
| // Do not adjust blocks sharing the same line. |
| if (!offsetToBlockBefore.height()) |
| return top; |
| |
| if (auto lastLineBox = InlineIterator::lastLineBoxFor(*blockBefore)) { |
| auto lastLineSelectionState = LineSelection::selectionState(*lastLineBox); |
| if (lastLineSelectionState != RenderObject::HighlightState::Inside && lastLineSelectionState != RenderObject::HighlightState::Start) |
| return top; |
| |
| auto lastLineSelectionBottom = LineSelection::logicalBottom(*lastLineBox) + offsetToBlockBefore.height(); |
| top = std::max(top, LayoutUnit { lastLineSelectionBottom }); |
| } |
| return top; |
| } |
| |
| GapRects RenderBlockFlow::inlineSelectionGaps(RenderBlock& rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock, |
| LayoutUnit& lastLogicalTop, LayoutUnit& lastLogicalLeft, LayoutUnit& lastLogicalRight, const LogicalSelectionOffsetCaches& cache, const PaintInfo* paintInfo) |
| { |
| bool containsStart = selectionState() == HighlightState::Start || selectionState() == HighlightState::Both; |
| |
| if (!hasLines()) { |
| if (containsStart) { |
| // Update our lastLogicalTop to be the bottom of the block. <hr>s or empty blocks with height can trip this case. |
| lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalHeight(); |
| lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, logicalHeight(), cache); |
| lastLogicalRight = logicalRightSelectionOffset(rootBlock, logicalHeight(), cache); |
| } |
| return { }; |
| } |
| |
| auto hasSelectedChildren = [&](const InlineIterator::LineBoxIterator& lineBox) { |
| return LineSelection::selectionState(*lineBox) != RenderObject::HighlightState::None; |
| }; |
| |
| auto lineSelectionGap = [&](const InlineIterator::LineBoxIterator& lineBox, LayoutUnit selTop, LayoutUnit selHeight) -> GapRects { |
| auto lineState = LineSelection::selectionState(*lineBox); |
| |
| bool leftGap, rightGap; |
| getSelectionGapInfo(lineState, leftGap, rightGap); |
| |
| GapRects result; |
| |
| auto firstSelectedBox = [&]() -> InlineIterator::LeafBoxIterator { |
| for (auto box = lineBox->firstLeafBox(); box; box.traverseNextOnLine()) { |
| if (box->selectionState() != RenderObject::HighlightState::None) |
| return box; |
| } |
| return { }; |
| }(); |
| |
| auto lastSelectedBox = [&]() -> InlineIterator::LeafBoxIterator { |
| for (auto box = lineBox->lastLeafBox(); box; box.traversePreviousOnLine()) { |
| if (box->selectionState() != RenderObject::HighlightState::None) |
| return box; |
| } |
| return { }; |
| }(); |
| |
| if (leftGap) { |
| result.uniteLeft(logicalLeftSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, firstSelectedBox->renderer().parent(), LayoutUnit(firstSelectedBox->logicalLeft()), |
| selTop, selHeight, cache, paintInfo)); |
| } |
| if (rightGap) { |
| result.uniteRight(logicalRightSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastSelectedBox->renderer().parent(), LayoutUnit(lastSelectedBox->logicalRight()), |
| selTop, selHeight, cache, paintInfo)); |
| } |
| |
| // When dealing with bidi text, a non-contiguous selection region is possible. |
| // e.g. The logical text aaaAAAbbb (capitals denote RTL text and non-capitals LTR) is layed out |
| // visually as 3 text runs |aaa|bbb|AAA| if we select 4 characters from the start of the text the |
| // selection will look like (underline denotes selection): |
| // |aaa|bbb|AAA| |
| // ___ _ |
| // We can see that the |bbb| run is not part of the selection while the runs around it are. |
| if (firstSelectedBox && firstSelectedBox != lastSelectedBox) { |
| // Now fill in any gaps on the line that occurred between two selected elements. |
| LayoutUnit lastLogicalLeft { firstSelectedBox->logicalRight() }; |
| bool isPreviousBoxSelected = firstSelectedBox->selectionState() != RenderObject::HighlightState::None; |
| for (auto box = firstSelectedBox; box; box.traverseNextOnLine()) { |
| if (box->selectionState() != RenderObject::HighlightState::None) { |
| LayoutRect logicalRect { lastLogicalLeft, selTop, LayoutUnit(box->logicalLeft() - lastLogicalLeft), selHeight }; |
| logicalRect.move(isHorizontalWritingMode() ? offsetFromRootBlock : LayoutSize(offsetFromRootBlock.height(), offsetFromRootBlock.width())); |
| LayoutRect gapRect = rootBlock.logicalRectToPhysicalRect(rootBlockPhysicalPosition, logicalRect); |
| if (isPreviousBoxSelected && gapRect.width() > 0 && gapRect.height() > 0) { |
| if (paintInfo && box->renderer().parent()->style().visibility() == Visibility::Visible) |
| paintInfo->context().fillRect(gapRect, box->renderer().parent()->selectionBackgroundColor()); |
| // VisibleSelection may be non-contiguous, see comment above. |
| result.uniteCenter(gapRect); |
| } |
| lastLogicalLeft = box->logicalRight(); |
| } |
| if (box == lastSelectedBox) |
| break; |
| isPreviousBoxSelected = box->selectionState() != RenderObject::HighlightState::None; |
| } |
| } |
| |
| return result; |
| }; |
| |
| InlineIterator::LineBoxIterator lastSelectedLineBox; |
| auto lineBox = InlineIterator::firstLineBoxFor(*this); |
| for (; lineBox && !hasSelectedChildren(lineBox); lineBox.traverseNext()) { } |
| |
| GapRects result; |
| |
| // Now paint the gaps for the lines. |
| for (; lineBox && hasSelectedChildren(lineBox); lineBox.traverseNext()) { |
| auto selectionTop = LayoutUnit { LineSelection::logicalTopAdjustedForPrecedingBlock(*lineBox) }; |
| auto selectionHeight = LayoutUnit { std::max(0.f, LineSelection::logicalBottom(*lineBox) - selectionTop) }; |
| |
| if (!containsStart && !lastSelectedLineBox |
| && selectionState() != HighlightState::Start |
| && selectionState() != HighlightState::Both && !isRubyBase()) |
| result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, selectionTop, cache, paintInfo)); |
| |
| LayoutRect logicalRect { LayoutUnit(lineBox->contentLogicalLeft()), selectionTop, LayoutUnit(lineBox->contentLogicalWidth()), selectionTop + selectionHeight }; |
| logicalRect.move(isHorizontalWritingMode() ? offsetFromRootBlock : offsetFromRootBlock.transposedSize()); |
| LayoutRect physicalRect = rootBlock.logicalRectToPhysicalRect(rootBlockPhysicalPosition, logicalRect); |
| if (!paintInfo || (isHorizontalWritingMode() && physicalRect.y() < paintInfo->rect.maxY() && physicalRect.maxY() > paintInfo->rect.y()) |
| || (!isHorizontalWritingMode() && physicalRect.x() < paintInfo->rect.maxX() && physicalRect.maxX() > paintInfo->rect.x())) |
| result.unite(lineSelectionGap(lineBox, selectionTop, selectionHeight)); |
| |
| lastSelectedLineBox = lineBox; |
| } |
| |
| if (containsStart && !lastSelectedLineBox) { |
| // VisibleSelection must start just after our last line. |
| lastSelectedLineBox = InlineIterator::lastLineBoxFor(*this); |
| } |
| |
| if (lastSelectedLineBox && selectionState() != HighlightState::End && selectionState() != HighlightState::Both) { |
| // Update our lastY to be the bottom of the last selected line. |
| auto lastLineSelectionBottom = LayoutUnit { LineSelection::logicalBottom(*lastSelectedLineBox) }; |
| lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + lastLineSelectionBottom; |
| lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, lastLineSelectionBottom, cache); |
| lastLogicalRight = logicalRightSelectionOffset(rootBlock, lastLineSelectionBottom, cache); |
| } |
| return result; |
| } |
| |
| bool RenderBlockFlow::needsLayoutAfterFragmentRangeChange() const |
| { |
| // A block without floats or that expands to enclose them won't need a relayout |
| // after a fragment range change. There is no overflow content needing relayout |
| // in the fragment chain because the fragment range can only shrink after the estimation. |
| if (!containsFloats() || createsNewFormattingContext()) |
| return false; |
| |
| return true; |
| } |
| |
| void RenderBlockFlow::setMultiColumnFlow(RenderMultiColumnFlow& fragmentedFlow) |
| { |
| ASSERT(!hasRareBlockFlowData() || !rareBlockFlowData()->m_multiColumnFlow); |
| ensureRareBlockFlowData().m_multiColumnFlow = fragmentedFlow; |
| } |
| |
| void RenderBlockFlow::clearMultiColumnFlow() |
| { |
| ASSERT(hasRareBlockFlowData()); |
| ASSERT(rareBlockFlowData()->m_multiColumnFlow); |
| rareBlockFlowData()->m_multiColumnFlow.clear(); |
| } |
| |
| int RenderBlockFlow::lineCount() const |
| { |
| if (!childrenInline()) { |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
| if (modernLineLayout()) |
| return modernLineLayout()->lineCount(); |
| #endif |
| if (legacyLineLayout()) |
| return legacyLineLayout()->lineCount(); |
| |
| return 0; |
| } |
| |
| bool RenderBlockFlow::containsNonZeroBidiLevel() const |
| { |
| for (auto lineBox = InlineIterator::firstLineBoxFor(*this); lineBox; lineBox.traverseNext()) { |
| for (auto box = lineBox->firstLeafBox(); box; box = box.traverseNextOnLine()) { |
| if (box->bidiLevel()) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static Position positionForRun(const RenderBlockFlow& flow, InlineIterator::BoxIterator box, bool start) |
| { |
| if (!box) |
| return Position(); |
| |
| if (!box->renderer().nonPseudoNode()) |
| return makeDeprecatedLegacyPosition(flow.nonPseudoElement(), start ? flow.caretMinOffset() : flow.caretMaxOffset()); |
| |
| if (!is<InlineIterator::TextBoxIterator>(box)) |
| return makeDeprecatedLegacyPosition(box->renderer().nonPseudoNode(), start ? box->renderer().caretMinOffset() : box->renderer().caretMaxOffset()); |
| |
| auto& textBox = downcast<InlineIterator::TextBoxIterator>(box); |
| return makeDeprecatedLegacyPosition(textBox->renderer().nonPseudoNode(), start ? textBox->start() : textBox->end()); |
| } |
| |
| RenderText* RenderBlockFlow::findClosestTextAtAbsolutePoint(const FloatPoint& point) |
| { |
| // A light, non-recursive version of RenderBlock::positionForCoordinates that looks at |
| // whether a point lies within the gaps between its root line boxes, to be called against |
| // a node returned from elementAtPoint. We make the assumption that either the node or one |
| // of its immediate children contains the root line boxes in question. |
| // See <rdar://problem/6824650> for context. |
| |
| RenderBlock* block = this; |
| |
| FloatPoint localPoint = block->absoluteToLocal(point); |
| |
| if (!block->childrenInline()) { |
| // Look among our immediate children for an alternate box that contains the point. |
| for (RenderBox* child = block->firstChildBox(); child; child = child->nextSiblingBox()) { |
| if (!child->height() || child->style().visibility() != WebCore::Visibility::Visible || child->isFloatingOrOutOfFlowPositioned()) |
| continue; |
| float top = child->y(); |
| |
| RenderBox* nextChild = child->nextSiblingBox(); |
| while (nextChild && nextChild->isFloatingOrOutOfFlowPositioned()) |
| nextChild = nextChild->nextSiblingBox(); |
| if (!nextChild) { |
| if (localPoint.y() >= top) { |
| block = downcast<RenderBlock>(child); |
| break; |
| } |
| continue; |
| } |
| |
| float bottom = nextChild->y(); |
| |
| if (localPoint.y() >= top && localPoint.y() < bottom && is<RenderBlock>(*child)) { |
| block = downcast<RenderBlock>(child); |
| break; |
| } |
| } |
| |
| if (!block->childrenInline()) |
| return nullptr; |
| |
| localPoint = block->absoluteToLocal(point); |
| } |
| |
| RenderBlockFlow& blockFlow = downcast<RenderBlockFlow>(*block); |
| |
| // Only check the gaps between the root line boxes. We deliberately ignore overflow because |
| // experience has shown that hit tests on an exploded text node can fail when within the |
| // overflow fragment. |
| auto previousRootInlineBoxBottom = std::optional<float> { }; |
| for (auto box = InlineIterator::firstRootInlineBoxFor(blockFlow); box; box.traverseNextInlineBox()) { |
| if (previousRootInlineBoxBottom) { |
| if (localPoint.y() < *previousRootInlineBoxBottom) |
| return nullptr; |
| |
| if (localPoint.y() > *previousRootInlineBoxBottom && localPoint.y() < box->logicalTop()) { |
| auto closestBox = closestBoxForHorizontalPosition(*box->lineBox(), localPoint.x()); |
| if (closestBox && is<RenderText>(closestBox->renderer())) |
| return const_cast<RenderText*>(&downcast<RenderText>(closestBox->renderer())); |
| } |
| } |
| previousRootInlineBoxBottom = box->logicalBottom(); |
| } |
| return nullptr; |
| } |
| |
| VisiblePosition RenderBlockFlow::positionForPointWithInlineChildren(const LayoutPoint& pointInLogicalContents, const RenderFragmentContainer* fragment) |
| { |
| ASSERT(childrenInline()); |
| |
| auto firstLineBox = InlineIterator::firstLineBoxFor(*this); |
| |
| if (!firstLineBox) |
| return createVisiblePosition(0, Affinity::Downstream); |
| |
| bool linesAreFlipped = style().isFlippedLinesWritingMode(); |
| bool blocksAreFlipped = style().isFlippedBlocksWritingMode(); |
| |
| // look for the closest line box in the root box which is at the passed-in y coordinate |
| InlineIterator::LeafBoxIterator closestBox; |
| InlineIterator::LineBoxIterator firstLineBoxWithChildren; |
| InlineIterator::LineBoxIterator lastLineBoxWithChildren; |
| for (auto lineBox = firstLineBox; lineBox; lineBox.traverseNext()) { |
| if (fragment && lineBox->containingFragment() != fragment) |
| continue; |
| |
| if (!lineBox->firstLeafBox()) |
| continue; |
| if (!firstLineBoxWithChildren) |
| firstLineBoxWithChildren = lineBox; |
| |
| if (!linesAreFlipped && lineBox->isFirstAfterPageBreak() |
| && (pointInLogicalContents.y() < lineBox->top() || (blocksAreFlipped && pointInLogicalContents.y() == lineBox->top()))) |
| break; |
| |
| lastLineBoxWithChildren = lineBox; |
| |
| // check if this root line box is located at this y coordinate |
| auto selectionBottom = LineSelection::logicalBottom(*lineBox); |
| if (pointInLogicalContents.y() < selectionBottom || (blocksAreFlipped && pointInLogicalContents.y() == selectionBottom)) { |
| if (linesAreFlipped) { |
| auto nextLineBoxWithChildren = lineBox->next(); |
| while (nextLineBoxWithChildren && !nextLineBoxWithChildren->firstLeafBox()) |
| nextLineBoxWithChildren.traverseNext(); |
| |
| if (nextLineBoxWithChildren && nextLineBoxWithChildren->isFirstAfterPageBreak() |
| && (pointInLogicalContents.y() > nextLineBoxWithChildren->top() || (!blocksAreFlipped && pointInLogicalContents.y() == nextLineBoxWithChildren->top()))) |
| continue; |
| } |
| closestBox = closestBoxForHorizontalPosition(*lineBox, pointInLogicalContents.x()); |
| if (closestBox) |
| break; |
| } |
| } |
| |
| bool moveCaretToBoundary = frame().editor().behavior().shouldMoveCaretToHorizontalBoundaryWhenPastTopOrBottom(); |
| |
| if (!moveCaretToBoundary && !closestBox && lastLineBoxWithChildren) { |
| // y coordinate is below last root line box, pretend we hit it |
| closestBox = closestBoxForHorizontalPosition(*lastLineBoxWithChildren, pointInLogicalContents.x()); |
| } |
| |
| if (closestBox) { |
| if (moveCaretToBoundary) { |
| auto firstLineWithChildrenTop = LayoutUnit { std::min(previousLineBoxContentBottomOrBorderAndPadding(*firstLineBoxWithChildren), firstLineBoxWithChildren->contentLogicalTop()) }; |
| if (pointInLogicalContents.y() < firstLineWithChildrenTop |
| || (blocksAreFlipped && pointInLogicalContents.y() == firstLineWithChildrenTop)) { |
| auto box = firstLineBoxWithChildren->firstLeafBox(); |
| if (box->isLineBreak()) { |
| if (auto next = box->nextOnLineIgnoringLineBreak()) |
| box = next; |
| } |
| // y coordinate is above first root line box, so return the start of the first |
| return positionForRun(*this, box, true); |
| } |
| } |
| |
| // pass the box a top position that is inside it |
| auto point = LayoutPoint { pointInLogicalContents.x(), contentStartInBlockDirection(*closestBox->lineBox()) }; |
| if (!isHorizontalWritingMode()) |
| point = point.transposedPoint(); |
| if (closestBox->renderer().isReplacedOrInlineBlock()) |
| return positionForPointRespectingEditingBoundaries(*this, const_cast<RenderBox&>(downcast<RenderBox>(closestBox->renderer())), point); |
| return const_cast<RenderObject&>(closestBox->renderer()).positionForPoint(point, nullptr); |
| } |
| |
| if (lastLineBoxWithChildren) { |
| // We hit this case for Mac behavior when the Y coordinate is below the last box. |
| ASSERT(moveCaretToBoundary); |
| InlineIterator::LineLogicalOrderCache orderCache; |
| if (auto logicallyLastBox = InlineIterator::lastLeafOnLineInLogicalOrderWithNode(lastLineBoxWithChildren, orderCache)) |
| return positionForRun(*this, logicallyLastBox, false); |
| } |
| |
| // Can't reach this. We have a root line box, but it has no kids. |
| // FIXME: This should ASSERT_NOT_REACHED(), but clicking on placeholder text |
| // seems to hit this code path. |
| return createVisiblePosition(0, Affinity::Downstream); |
| } |
| |
| Position RenderBlockFlow::positionForPoint(const LayoutPoint& point) |
| { |
| return positionForPoint(point, nullptr).deepEquivalent(); |
| } |
| |
| VisiblePosition RenderBlockFlow::positionForPoint(const LayoutPoint& point, const RenderFragmentContainer*) |
| { |
| return RenderBlock::positionForPoint(point, nullptr); |
| } |
| |
| void RenderBlockFlow::addFocusRingRectsForInlineChildren(Vector<LayoutRect>& rects, const LayoutPoint& additionalOffset, const RenderLayerModelObject*) |
| { |
| ASSERT(childrenInline()); |
| for (auto box = InlineIterator::firstRootInlineBoxFor(*this); box; box.traverseNextInlineBox()) { |
| auto lineBox = box->lineBox(); |
| // FIXME: This is mixing physical and logical coordinates. |
| auto unflippedVisualRect = box->visualRectIgnoringBlockDirection(); |
| auto top = std::max(lineBox->contentLogicalTop(), unflippedVisualRect.y()); |
| auto bottom = std::min(lineBox->contentLogicalBottom(), unflippedVisualRect.maxY()); |
| auto rect = LayoutRect { LayoutUnit { additionalOffset.x() + unflippedVisualRect.x() } |
| , additionalOffset.y() + top |
| , LayoutUnit { unflippedVisualRect.width() } |
| , bottom - top }; |
| if (!rect.isEmpty()) |
| rects.append(rect); |
| } |
| } |
| |
| void RenderBlockFlow::paintInlineChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset) |
| { |
| ASSERT(childrenInline()); |
| |
| #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
| if (modernLineLayout()) { |
| modernLineLayout()->paint(paintInfo, paintOffset); |
| return; |
| } |
| #endif |
| |
| if (legacyLineLayout()) |
| legacyLineLayout()->lineBoxes().paint(this, paintInfo, paintOffset); |
| } |
| |
| bool RenderBlockFlow::relayoutForPagination() |
| { |
| if (!multiColumnFlow() || !multiColumnFlow()->shouldRelayoutForPagination()) |
| return false; |
| |
| multiColumnFlow()->setNeedsHeightsRecalculation(false); |
| multiColumnFlow()->setInBalancingPass(true); // Prevent re-entering this method (and recursion into layout). |
| |
| bool needsRelayout; |
| bool neededRelayout = false; |
| bool firstPass = true; |
| do { |
| // Column heights may change here because of balancing. We may have to do multiple layout |
| // passes, depending on how the contents is fitted to the changed column heights. In most |
| // cases, laying out again twice or even just once will suffice. Sometimes we need more |
| // passes than that, though, but the number of retries should not exceed the number of |
| // columns, unless we have a bug. |
| needsRelayout = false; |
| for (RenderMultiColumnSet* multicolSet = multiColumnFlow()->firstMultiColumnSet(); multicolSet; multicolSet = multicolSet->nextSiblingMultiColumnSet()) { |
| if (multicolSet->recalculateColumnHeight(firstPass)) |
| needsRelayout = true; |
| if (needsRelayout) { |
| // Once a column set gets a new column height, that column set and all successive column |
| // sets need to be laid out over again, since their logical top will be affected by |
| // this, and therefore their column heights may change as well, at least if the multicol |
| // height is constrained. |
| multicolSet->setChildNeedsLayout(MarkOnlyThis); |
| } |
| } |
| if (needsRelayout) { |
| // Layout again. Column balancing resulted in a new height. |
| neededRelayout = true; |
| multiColumnFlow()->setChildNeedsLayout(MarkOnlyThis); |
| setChildNeedsLayout(MarkOnlyThis); |
| layoutBlock(false); |
| } |
| firstPass = false; |
| } while (needsRelayout); |
| |
| multiColumnFlow()->setInBalancingPass(false); |
| |
| return neededRelayout; |
| } |
| |
| bool RenderBlockFlow::hasLines() const |
| { |
| return childrenInline() ? lineCount() : false; |
| } |
| |
| void RenderBlockFlow::invalidateLineLayoutPath() |
| { |
| switch (lineLayoutPath()) { |
| case UndeterminedPath: |
| case ForcedLegacyPath: |
| return; |
| case LegacyPath: |
| setLineLayoutPath(UndeterminedPath); |
| return; |
| case ModernPath: { |
| // FIXME: Implement partial invalidation. |
| auto path = UndeterminedPath; |
| #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
| if (modernLineLayout() && modernLineLayout()->shouldSwitchToLegacyOnInvalidation()) |
| path = ForcedLegacyPath; |
| #endif |
| #if ENABLE_MODERN_PREFERRED_WIDTH_COMPUTATION |
| for (auto walker = InlineWalker(*this); !walker.atEnd(); walker.advance()) |
| walker.current()->setPreferredLogicalWidthsDirty(true); |
| #endif |
| m_lineLayout = std::monostate(); |
| setLineLayoutPath(path); |
| if (selfNeedsLayout() || normalChildNeedsLayout()) |
| return; |
| // FIXME: We should just kick off a subtree layout here (if needed at all) see webkit.org/b/172947. |
| setNeedsLayout(); |
| return; |
| } |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
| void RenderBlockFlow::layoutModernLines(bool relayoutChildren, LayoutUnit& repaintLogicalTop, LayoutUnit& repaintLogicalBottom) |
| { |
| bool needsUpdateReplacedDimensions = false; |
| |
| if (!modernLineLayout()) { |
| m_lineLayout = makeUnique<LayoutIntegration::LineLayout>(*this); |
| needsUpdateReplacedDimensions = true; |
| } |
| |
| auto& layoutFormattingContextLineLayout = *this->modernLineLayout(); |
| layoutFormattingContextLineLayout.updateFormattingRootGeometryAndInvalidate(); |
| |
| for (auto walker = InlineWalker(*this); !walker.atEnd(); walker.advance()) { |
| auto& renderer = *walker.current(); |
| if (relayoutChildren || (is<RenderBox>(renderer) && downcast<RenderBox>(renderer).hasRelativeDimensions())) |
| renderer.setNeedsLayout(MarkOnlyThis); |
| |
| if (!renderer.needsLayout() && !needsUpdateReplacedDimensions) |
| continue; |
| |
| if (is<RenderReplaced>(renderer)) { |
| auto& replaced = downcast<RenderReplaced>(renderer); |
| replaced.layoutIfNeeded(); |
| layoutFormattingContextLineLayout.updateReplacedDimensions(replaced); |
| continue; |
| } |
| if (is<RenderTable>(renderer)) { |
| auto& inlineTable = downcast<RenderTable>(renderer); |
| inlineTable.layoutIfNeeded(); |
| layoutFormattingContextLineLayout.updateInlineTableDimensions(inlineTable); |
| continue; |
| } |
| if (is<RenderListMarker>(renderer)) { |
| auto& marker = downcast<RenderListMarker>(renderer); |
| marker.layoutIfNeeded(); |
| layoutFormattingContextLineLayout.updateListMarkerDimensions(marker); |
| continue; |
| } |
| if (is<RenderListItem>(renderer)) { |
| auto& listItem = downcast<RenderListItem>(renderer); |
| listItem.layoutIfNeeded(); |
| layoutFormattingContextLineLayout.updateListItemDimensions(listItem); |
| continue; |
| } |
| if (is<RenderBlock>(renderer)) { |
| auto& block = downcast<RenderBlock>(renderer); |
| block.layoutIfNeeded(); |
| ASSERT(block.style().display() == DisplayType::InlineBlock); |
| layoutFormattingContextLineLayout.updateInlineBlockDimensions(block); |
| continue; |
| } |
| |
| if (is<RenderLineBreak>(renderer)) { |
| layoutFormattingContextLineLayout.updateLineBreakBoxDimensions(downcast<RenderLineBreak>(renderer)); |
| renderer.clearNeedsLayout(); |
| continue; |
| } |
| |
| if (is<RenderInline>(renderer)) { |
| layoutFormattingContextLineLayout.updateInlineBoxDimensions(downcast<RenderInline>(renderer)); |
| renderer.clearNeedsLayout(); |
| continue; |
| } |
| |
| renderer.clearNeedsLayout(); |
| } |
| |
| auto contentBoxTop = borderAndPaddingBefore(); |
| |
| auto computeContentHeight = [&] { |
| if (!hasLines() && hasLineIfEmpty()) |
| return lineHeight(true, isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes); |
| |
| return layoutFormattingContextLineLayout.contentLogicalHeight(); |
| }; |
| |
| auto computeBorderBoxBottom = [&] { |
| auto contentBoxBottom = contentBoxTop + computeContentHeight(); |
| return contentBoxBottom + borderAndPaddingAfter(); |
| }; |
| |
| auto oldBorderBoxBottom = computeBorderBoxBottom(); |
| |
| layoutFormattingContextLineLayout.layout(); |
| |
| if (view().frameView().layoutContext().layoutState()->isPaginated()) |
| layoutFormattingContextLineLayout.adjustForPagination(); |
| |
| auto newBorderBoxBottom = computeBorderBoxBottom(); |
| |
| repaintLogicalTop = contentBoxTop; |
| repaintLogicalBottom = std::max(oldBorderBoxBottom, newBorderBoxBottom); |
| |
| auto inflateRepaintTopAndBottomWithInkOverflow = [&] { |
| if (!layoutFormattingContextLineLayout.hasVisualOverflow()) |
| return; |
| for (auto lineBox = InlineIterator::firstLineBoxFor(*this); lineBox; lineBox.traverseNext()) { |
| repaintLogicalTop = std::min(repaintLogicalTop, LayoutUnit { lineBox->inkOverflowTop() }); |
| repaintLogicalBottom = std::max(repaintLogicalBottom, LayoutUnit { lineBox->inkOverflowBottom() }); |
| } |
| }; |
| inflateRepaintTopAndBottomWithInkOverflow(); |
| |
| setLogicalHeight(newBorderBoxBottom); |
| } |
| #endif |
| |
| #if ENABLE(TREE_DEBUGGING) |
| void RenderBlockFlow::outputFloatingObjects(WTF::TextStream& stream, int depth) const |
| { |
| if (!floatingObjectSet()) |
| return; |
| |
| for (auto& floatingObject : *floatingObjectSet()) { |
| int printedCharacters = 0; |
| while (++printedCharacters <= depth * 2) |
| stream << " "; |
| |
| stream << " "; |
| stream << "floating object " << *floatingObject; |
| stream.nextLine(); |
| } |
| } |
| |
| void RenderBlockFlow::outputLineTreeAndMark(WTF::TextStream& stream, const LegacyInlineBox* markedBox, int depth) const |
| { |
| #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
| if (auto* modernLineLayout = this->modernLineLayout()) { |
| modernLineLayout->outputLineTree(stream, depth); |
| return; |
| } |
| #endif |
| for (const LegacyRootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) |
| root->outputLineTreeAndMark(stream, markedBox, depth); |
| } |
| #endif |
| |
| RenderBlockFlow::RenderBlockFlowRareData& RenderBlockFlow::ensureRareBlockFlowData() |
| { |
| if (hasRareBlockFlowData()) |
| return *m_rareBlockFlowData; |
| materializeRareBlockFlowData(); |
| return *m_rareBlockFlowData; |
| } |
| |
| void RenderBlockFlow::materializeRareBlockFlowData() |
| { |
| ASSERT(!hasRareBlockFlowData()); |
| m_rareBlockFlowData = makeUnique<RenderBlockFlow::RenderBlockFlowRareData>(*this); |
| } |
| |
| #if ENABLE(TEXT_AUTOSIZING) |
| |
| static inline bool isVisibleRenderText(const RenderObject& renderer) |
| { |
| if (!is<RenderText>(renderer)) |
| return false; |
| |
| auto& renderText = downcast<RenderText>(renderer); |
| return !renderText.linesBoundingBox().isEmpty() && !renderText.text().isAllSpecialCharacters<isHTMLSpace>(); |
| } |
| |
| static inline bool resizeTextPermitted(const RenderObject& renderer) |
| { |
| // We disallow resizing for text input fields and textarea to address <rdar://problem/5792987> and <rdar://problem/8021123> |
| for (auto* ancestor = renderer.parent(); ancestor; ancestor = ancestor->parent()) { |
| // Get the first non-shadow HTMLElement and see if it's an input. |
| if (is<HTMLElement>(ancestor->element()) && !ancestor->element()->isInShadowTree()) { |
| auto& element = downcast<HTMLElement>(*ancestor->element()); |
| return !is<HTMLInputElement>(element) && !is<HTMLTextAreaElement>(element); |
| } |
| } |
| return true; |
| } |
| |
| static bool isNonBlocksOrNonFixedHeightListItems(const RenderObject& renderer) |
| { |
| if (!renderer.isRenderBlock()) |
| return true; |
| if (renderer.isListItem()) |
| return renderer.style().height().type() != LengthType::Fixed; |
| return false; |
| } |
| |
| // For now, we auto size single lines of text the same as multiple lines. |
| // We've been experimenting with low values for single lines of text. |
| static inline float oneLineTextMultiplier(RenderObject& renderer, float specifiedSize) |
| { |
| const float coefficient = renderer.settings().oneLineTextMultiplierCoefficient(); |
| return std::max((1.0f / log10f(specifiedSize) * coefficient), 1.0f); |
| } |
| |
| static inline float textMultiplier(RenderObject& renderer, float specifiedSize) |
| { |
| const float coefficient = renderer.settings().multiLineTextMultiplierCoefficient(); |
| return std::max((1.0f / log10f(specifiedSize) * coefficient), 1.0f); |
| } |
| |
| void RenderBlockFlow::adjustComputedFontSizes(float size, float visibleWidth) |
| { |
| LOG(TextAutosizing, "RenderBlockFlow %p adjustComputedFontSizes, size=%f visibleWidth=%f, width()=%f. Bailing: %d", this, size, visibleWidth, width().toFloat(), visibleWidth >= width()); |
| |
| // Don't do any work if the block is smaller than the visible area. |
| if (visibleWidth >= width()) |
| return; |
| |
| unsigned lineCount = m_lineCountForTextAutosizing; |
| if (lineCount == NOT_SET) { |
| if (style().visibility() != Visibility::Visible) |
| lineCount = NO_LINE; |
| else { |
| size_t lineCountInBlock = 0; |
| if (childrenInline()) |
| lineCountInBlock = this->lineCount(); |
| else { |
| for (auto& listItem : childrenOfType<RenderListItem>(*this)) { |
| if (!listItem.childrenInline() || listItem.style().visibility() != Visibility::Visible) |
| continue; |
| lineCountInBlock += listItem.lineCount(); |
| if (lineCountInBlock > 1) |
| break; |
| } |
| } |
| lineCount = !lineCountInBlock ? NO_LINE : lineCountInBlock == 1 ? ONE_LINE : MULTI_LINE; |
| } |
| } |
| |
| ASSERT(lineCount != NOT_SET); |
| if (lineCount == NO_LINE) |
| return; |
| |
| float actualWidth = m_widthForTextAutosizing != -1 ? static_cast<float>(m_widthForTextAutosizing) : static_cast<float>(width()); |
| float scale = visibleWidth / actualWidth; |
| float minFontSize = roundf(size / scale); |
| |
| for (auto* descendant = RenderObjectTraversal::firstChild(*this); descendant; ) { |
| if (!isNonBlocksOrNonFixedHeightListItems(*descendant)) { |
| descendant = RenderObjectTraversal::nextSkippingChildren(*descendant, this); |
| continue; |
| } |
| if (!isVisibleRenderText(*descendant) || !resizeTextPermitted(*descendant)) { |
| descendant = RenderObjectTraversal::next(*descendant, this); |
| continue; |
| } |
| |
| auto& text = downcast<RenderText>(*descendant); |
| auto& oldStyle = text.style(); |
| auto& fontDescription = oldStyle.fontDescription(); |
| float specifiedSize = fontDescription.specifiedSize(); |
| float scaledSize = roundf(specifiedSize * scale); |
| if (scaledSize > 0 && scaledSize < minFontSize) { |
| // Record the width of the block and the line count the first time we resize text and use it from then on for text resizing. |
| // This makes text resizing consistent even if the block's width or line count changes (which can be caused by text resizing itself 5159915). |
| if (m_lineCountForTextAutosizing == NOT_SET) |
| m_lineCountForTextAutosizing = lineCount; |
| if (m_widthForTextAutosizing == -1) |
| m_widthForTextAutosizing = actualWidth; |
| |
| float lineTextMultiplier = lineCount == ONE_LINE ? oneLineTextMultiplier(text, specifiedSize) : textMultiplier(text, specifiedSize); |
| float candidateNewSize = roundf(std::min(minFontSize, specifiedSize * lineTextMultiplier)); |
| |
| if (candidateNewSize > specifiedSize && candidateNewSize != fontDescription.computedSize() && text.textNode() && oldStyle.textSizeAdjust().isAuto()) |
| document().textAutoSizing().addTextNode(*text.textNode(), candidateNewSize); |
| } |
| |
| descendant = RenderObjectTraversal::nextSkippingChildren(text, this); |
| } |
| } |
| |
| #endif // ENABLE(TEXT_AUTOSIZING) |
| |
| void RenderBlockFlow::layoutExcludedChildren(bool relayoutChildren) |
| { |
| RenderBlock::layoutExcludedChildren(relayoutChildren); |
| |
| auto* fragmentedFlow = multiColumnFlow(); |
| if (!fragmentedFlow) |
| return; |
| |
| fragmentedFlow->setIsExcludedFromNormalLayout(true); |
| |
| setLogicalTopForChild(*fragmentedFlow, borderAndPaddingBefore()); |
| |
| if (relayoutChildren) |
| fragmentedFlow->setChildNeedsLayout(MarkOnlyThis); |
| |
| if (fragmentedFlow->needsLayout()) { |
| for (RenderMultiColumnSet* columnSet = fragmentedFlow->firstMultiColumnSet(); columnSet; columnSet = columnSet->nextSiblingMultiColumnSet()) |
| columnSet->prepareForLayout(!fragmentedFlow->inBalancingPass()); |
| |
| fragmentedFlow->invalidateFragments(MarkOnlyThis); |
| fragmentedFlow->setNeedsHeightsRecalculation(true); |
| fragmentedFlow->layout(); |
| } else { |
| // At the end of multicol layout, relayoutForPagination() is called unconditionally, but if |
| // no children are to be laid out (e.g. fixed width with layout already being up-to-date), |
| // we want to prevent it from doing any work, so that the column balancing machinery doesn't |
| // kick in and trigger additional unnecessary layout passes. Actually, it's not just a good |
| // idea in general to not waste time on balancing content that hasn't been re-laid out; we |
| // are actually required to guarantee this. The calculation of implicit breaks needs to be |
| // preceded by a proper layout pass, since it's layout that sets up content runs, and the |
| // runs get deleted right after every pass. |
| fragmentedFlow->setNeedsHeightsRecalculation(false); |
| } |
| determineLogicalLeftPositionForChild(*fragmentedFlow); |
| } |
| |
| void RenderBlockFlow::checkForPaginationLogicalHeightChange(bool& relayoutChildren, LayoutUnit& pageLogicalHeight, bool& pageLogicalHeightChanged) |
| { |
| // If we don't use columns or flow threads, then bail. |
| if (!isRenderFragmentedFlow() && !multiColumnFlow()) |
| return; |
| |
| // We don't actually update any of the variables. We just subclassed to adjust our column height. |
| if (RenderMultiColumnFlow* fragmentedFlow = multiColumnFlow()) { |
| LayoutUnit newColumnHeight; |
| if (hasDefiniteLogicalHeight() || view().frameView().pagination().mode != Pagination::Unpaginated) { |
| auto computedValues = computeLogicalHeight(0_lu, logicalTop()); |
| newColumnHeight = std::max<LayoutUnit>(computedValues.m_extent - borderAndPaddingLogicalHeight() - scrollbarLogicalHeight(), 0); |
| if (fragmentedFlow->columnHeightAvailable() != newColumnHeight) |
| relayoutChildren = true; |
| } |
| fragmentedFlow->setColumnHeightAvailable(newColumnHeight); |
| } else if (is<RenderFragmentedFlow>(*this)) { |
| RenderFragmentedFlow& fragmentedFlow = downcast<RenderFragmentedFlow>(*this); |
| |
| // FIXME: This is a hack to always make sure we have a page logical height, if said height |
| // is known. The page logical height thing in RenderLayoutState is meaningless for flow |
| // thread-based pagination (page height isn't necessarily uniform throughout the flow |
| // thread), but as long as it is used universally as a means to determine whether page |
| // height is known or not, we need this. Page height is unknown when column balancing is |
| // enabled and flow thread height is still unknown (i.e. during the first layout pass). When |
| // it's unknown, we need to prevent the pagination code from assuming page breaks everywhere |
| // and thereby eating every top margin. It should be trivial to clean up and get rid of this |
| // hack once the old multicol implementation is gone (see also RenderView::pushLayoutStateForPagination). |
| pageLogicalHeight = fragmentedFlow.isPageLogicalHeightKnown() ? 1_lu : 0_lu; |
| |
| pageLogicalHeightChanged = fragmentedFlow.pageLogicalSizeChanged(); |
| } |
| } |
| |
| bool RenderBlockFlow::requiresColumns(int desiredColumnCount) const |
| { |
| return willCreateColumns(desiredColumnCount); |
| } |
| |
| void RenderBlockFlow::setComputedColumnCountAndWidth(int count, LayoutUnit width) |
| { |
| ASSERT(!!multiColumnFlow() == requiresColumns(count)); |
| if (!multiColumnFlow()) |
| return; |
| multiColumnFlow()->setColumnCountAndWidth(count, width); |
| multiColumnFlow()->setProgressionIsInline(style().hasInlineColumnAxis()); |
| multiColumnFlow()->setProgressionIsReversed(style().columnProgression() == ColumnProgression::Reverse); |
| } |
| |
| void RenderBlockFlow::updateColumnProgressionFromStyle(RenderStyle& style) |
| { |
| if (!multiColumnFlow()) |
| return; |
| |
| bool needsLayout = false; |
| bool oldProgressionIsInline = multiColumnFlow()->progressionIsInline(); |
| bool newProgressionIsInline = style.hasInlineColumnAxis(); |
| if (oldProgressionIsInline != newProgressionIsInline) { |
| multiColumnFlow()->setProgressionIsInline(newProgressionIsInline); |
| needsLayout = true; |
| } |
| |
| bool oldProgressionIsReversed = multiColumnFlow()->progressionIsReversed(); |
| bool newProgressionIsReversed = style.columnProgression() == ColumnProgression::Reverse; |
| if (oldProgressionIsReversed != newProgressionIsReversed) { |
| multiColumnFlow()->setProgressionIsReversed(newProgressionIsReversed); |
| needsLayout = true; |
| } |
| |
| if (needsLayout) |
| setNeedsLayoutAndPrefWidthsRecalc(); |
| } |
| |
| LayoutUnit RenderBlockFlow::computedColumnWidth() const |
| { |
| if (multiColumnFlow()) |
| return multiColumnFlow()->computedColumnWidth(); |
| return contentLogicalWidth(); |
| } |
| |
| unsigned RenderBlockFlow::computedColumnCount() const |
| { |
| if (multiColumnFlow()) |
| return multiColumnFlow()->computedColumnCount(); |
| |
| return 1; |
| } |
| |
| bool RenderBlockFlow::isTopLayoutOverflowAllowed() const |
| { |
| bool hasTopOverflow = RenderBlock::isTopLayoutOverflowAllowed(); |
| if (!multiColumnFlow() || style().columnProgression() == ColumnProgression::Normal) |
| return hasTopOverflow; |
| |
| if (!(isHorizontalWritingMode() ^ !style().hasInlineColumnAxis())) |
| hasTopOverflow = !hasTopOverflow; |
| |
| return hasTopOverflow; |
| } |
| |
| bool RenderBlockFlow::isLeftLayoutOverflowAllowed() const |
| { |
| bool hasLeftOverflow = RenderBlock::isLeftLayoutOverflowAllowed(); |
| if (!multiColumnFlow() || style().columnProgression() == ColumnProgression::Normal) |
| return hasLeftOverflow; |
| |
| if (isHorizontalWritingMode() ^ !style().hasInlineColumnAxis()) |
| hasLeftOverflow = !hasLeftOverflow; |
| |
| return hasLeftOverflow; |
| } |
| |
| struct InlineMinMaxIterator { |
| /* InlineMinMaxIterator is a class that will iterate over all render objects that contribute to |
| inline min/max width calculations. Note the following about the way it walks: |
| (1) Positioned content is skipped (since it does not contribute to min/max width of a block) |
| (2) We do not drill into the children of floats or replaced elements, since you can't break |
| in the middle of such an element. |
| (3) Inline flows (e.g., <a>, <span>, <i>) are walked twice, since each side can have |
| distinct borders/margin/padding that contribute to the min/max width. |
| */ |
| const RenderBlockFlow& parent; |
| RenderObject* current; |
| bool endOfInline; |
| bool initial; |
| |
| InlineMinMaxIterator(const RenderBlockFlow& p) |
| : parent(p) |
| , current(nullptr) |
| , endOfInline(false) |
| , initial(true) |
| { } |
| |
| RenderObject* next(); |
| }; |
| |
| RenderObject* InlineMinMaxIterator::next() |
| { |
| RenderObject* result = nullptr; |
| bool oldEndOfInline = endOfInline; |
| endOfInline = false; |
| do { |
| if (!oldEndOfInline && (current && !current->isFloating() && !current->isReplacedOrInlineBlock() && !current->isOutOfFlowPositioned())) |
| result = current->firstChildSlow(); |
| else if (initial) { |
| result = parent.firstChild(); |
| initial = false; |
| } |
| |
| if (!result) { |
| // We hit the end of our inline. (It was empty, e.g., <span></span>.) |
| if (!oldEndOfInline && current && current->isRenderInline()) { |
| result = current; |
| endOfInline = true; |
| break; |
| } |
| |
| while (current && current != &parent) { |
| result = current->nextSibling(); |
| if (result) |
| break; |
| current = current->parent(); |
| if (current && current != &parent && current->isRenderInline()) { |
| result = current; |
| endOfInline = true; |
| break; |
| } |
| } |
| } |
| |
| if (!result) |
| break; |
| |
| if (!result->isOutOfFlowPositioned() && (result->isTextOrLineBreak() || result->isFloating() || result->isReplacedOrInlineBlock() || result->isRenderInline())) |
| break; |
| |
| current = result; |
| result = nullptr; |
| } while (current || current == &parent); |
| // Update our position. |
| current = result; |
| return result; |
| } |
| |
| static LayoutUnit getBPMWidth(LayoutUnit childValue, Length cssUnit) |
| { |
| if (cssUnit.type() != LengthType::Auto) |
| return (cssUnit.isFixed() ? LayoutUnit(cssUnit.value()) : childValue); |
| return 0; |
| } |
| |
| static LayoutUnit getBorderPaddingMargin(const RenderBoxModelObject& child, bool endOfInline) |
| { |
| const RenderStyle& childStyle = child.style(); |
| if (endOfInline) { |
| return getBPMWidth(child.marginEnd(), childStyle.marginEnd()) + |
| getBPMWidth(child.paddingEnd(), childStyle.paddingEnd()) + |
| child.borderEnd(); |
| } |
| return getBPMWidth(child.marginStart(), childStyle.marginStart()) + |
| getBPMWidth(child.paddingStart(), childStyle.paddingStart()) + |
| child.borderStart(); |
| } |
| |
| static inline void stripTrailingSpace(float& inlineMax, float& inlineMin, RenderObject* trailingSpaceChild) |
| { |
| if (is<RenderText>(trailingSpaceChild)) { |
| // Collapse away the trailing space at the end of a block. |
| RenderText& renderText = downcast<RenderText>(*trailingSpaceChild); |
| const UChar space = ' '; |
| const FontCascade& font = renderText.style().fontCascade(); // FIXME: This ignores first-line. |
| float spaceWidth = font.width(RenderBlock::constructTextRun(&space, 1, renderText.style())); |
| inlineMax -= spaceWidth + font.wordSpacing(); |
| if (inlineMin > inlineMax) |
| inlineMin = inlineMax; |
| } |
| } |
| |
| static inline LayoutUnit preferredWidth(LayoutUnit preferredWidth, float result) |
| { |
| return std::max(preferredWidth, LayoutUnit::fromFloatCeil(result)); |
| } |
| |
| void RenderBlockFlow::computeInlinePreferredLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const |
| { |
| ASSERT(!shouldApplyInlineSizeContainment()); |
| |
| #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
| if (const_cast<RenderBlockFlow&>(*this).tryComputePreferredWidthsUsingModernPath(minLogicalWidth, maxLogicalWidth)) |
| return; |
| #endif |
| |
| float inlineMax = 0; |
| float inlineMin = 0; |
| |
| const RenderStyle& styleToUse = style(); |
| // If we are at the start of a line, we want to ignore all white-space. |
| // Also strip spaces if we previously had text that ended in a trailing space. |
| bool stripFrontSpaces = true; |
| RenderObject* trailingSpaceChild = nullptr; |
| |
| // Firefox and Opera will allow a table cell to grow to fit an image inside it under |
| // very specific cirucumstances (in order to match common WinIE renderings). |
| // Not supporting the quirk has caused us to mis-render some real sites. (See Bugzilla 10517.) |
| bool allowImagesToBreak = !document().inQuirksMode() || !isTableCell() || !styleToUse.logicalWidth().isIntrinsicOrAuto(); |
| |
| bool oldAutoWrap = styleToUse.autoWrap(); |
| |
| InlineMinMaxIterator childIterator(*this); |
| |
| // Only gets added to the max preffered width once. |
| bool addedTextIndent = false; |
| // Signals the text indent was more negative than the min preferred width |
| bool hasRemainingNegativeTextIndent = false; |
| |
| auto textIndent = LayoutUnit { }; |
| if (styleToUse.textIndent().isFixed()) |
| textIndent = LayoutUnit { styleToUse.textIndent().value() }; |
| else if (auto* containingBlock = this->containingBlock(); containingBlock && containingBlock->style().logicalWidth().isFixed()) { |
| // At this point of the shrink-to-fit computatation, we don't have a used value for the containing block width |
| // (that's exactly to what we try to contribute here) unless the computed value is fixed. |
| textIndent = minimumValueForLength(styleToUse.textIndent(), containingBlock->style().logicalWidth().value()); |
| } |
| RenderObject* previousFloat = 0; |
| bool isPrevChildInlineFlow = false; |
| bool shouldBreakLineAfterText = false; |
| bool canHangPunctuationAtStart = styleToUse.hangingPunctuation().contains(HangingPunctuation::First); |
| bool canHangPunctuationAtEnd = styleToUse.hangingPunctuation().contains(HangingPunctuation::Last); |
| RenderText* lastText = nullptr; |
| |
| bool addedStartPunctuationHang = false; |
| |
| while (RenderObject* child = childIterator.next()) { |
| bool autoWrap = child->isReplacedOrInlineBlock() ? child->parent()->style().autoWrap() : |
| child->style().autoWrap(); |
| if (!child->isBR()) { |
| // Step One: determine whether or not we need to terminate our current line. |
| // Each discrete chunk can become the new min-width, if it is the widest chunk |
| // seen so far, and it can also become the max-width. |
| |
| // Children fall into three categories: |
| // (1) An inline flow object. These objects always have a min/max of 0, |
| // and are included in the iteration solely so that their margins can |
| // be added in. |
| // |
| // (2) An inline non-text non-flow object, e.g., an inline replaced element. |
| // These objects can always be on a line by themselves, so in this situation |
| // we need to break the current line, and then add in our own margins and min/max |
| // width on its own line, and then terminate the line. |
| // |
| // (3) A text object. Text runs can have breakable characters at the start, |
| // the middle or the end. They may also lose whitespace off the front if |
| // we're already ignoring whitespace. In order to compute accurate min-width |
| // information, we need three pieces of information. |
| // (a) the min-width of the first non-breakable run. Should be 0 if the text string |
| // starts with whitespace. |
| // (b) the min-width of the last non-breakable run. Should be 0 if the text string |
| // ends with whitespace. |
| // (c) the min/max width of the string (trimmed for whitespace). |
| // |
| // If the text string starts with whitespace, then we need to terminate our current line |
| // (unless we're already in a whitespace stripping mode. |
| // |
| // If the text string has a breakable character in the middle, but didn't start |
| // with whitespace, then we add the width of the first non-breakable run and |
| // then end the current line. We then need to use the intermediate min/max width |
| // values (if any of them are larger than our current min/max). We then look at |
| // the width of the last non-breakable run and use that to start a new line |
| // (unless we end in whitespace). |
| const RenderStyle& childStyle = child->style(); |
| float childMin = 0; |
| float childMax = 0; |
| |
| if (!child->isText()) { |
| if (child->isLineBreakOpportunity()) { |
| minLogicalWidth = preferredWidth(minLogicalWidth, inlineMin); |
| inlineMin = 0; |
| continue; |
| } |
| // Case (1) and (2). Inline replaced and inline flow elements. |
| if (is<RenderInline>(*child)) { |
| // Add in padding/border/margin from the appropriate side of |
| // the element. |
| float bpm = getBorderPaddingMargin(downcast<RenderInline>(*child), childIterator.endOfInline); |
| childMin += bpm; |
| childMax += bpm; |
| |
| inlineMin += childMin; |
| inlineMax += childMax; |
| |
| child->setPreferredLogicalWidthsDirty(false); |
| } else { |
| // Inline replaced elts add in their margins to their min/max values. |
| if (!child->isFloating()) |
| lastText = nullptr; |
| LayoutUnit margins; |
| Length startMargin = childStyle.marginStartUsing(&style()); |
| Length endMargin = childStyle.marginEndUsing(&style()); |
| if (startMargin.isFixed()) |
| margins += LayoutUnit::fromFloatCeil(startMargin.value()); |
| if (endMargin.isFixed()) |
| margins += LayoutUnit::fromFloatCeil(endMargin.value()); |
| childMin += margins.ceilToFloat(); |
| childMax += margins.ceilToFloat(); |
| } |
| } |
| |
| if (!is<RenderInline>(*child) && !is<RenderText>(*child)) { |
| // Case (2). Inline replaced elements and floats. |
| // Terminate the current line as far as minwidth is concerned. |
| LayoutUnit childMinPreferredLogicalWidth, childMaxPreferredLogicalWidth; |
| computeChildPreferredLogicalWidths(*child, childMinPreferredLogicalWidth, childMaxPreferredLogicalWidth); |
| childMin += childMinPreferredLogicalWidth.ceilToFloat(); |
| childMax += childMaxPreferredLogicalWidth.ceilToFloat(); |
| |
| bool clearPreviousFloat = false; |
| if (child->isFloating()) { |
| auto childClearValue = RenderStyle::usedClear(*child); |
| if (previousFloat) { |
| auto previousFloatValue = RenderStyle::usedFloat(*previousFloat); |
| clearPreviousFloat = |
| (previousFloatValue == UsedFloat::Left && (childClearValue == UsedClear::Left || childClearValue == UsedClear::Both)) |
| || (previousFloatValue == UsedFloat::Right && (childClearValue == UsedClear::Right || childClearValue == UsedClear::Both)); |
| } |
| previousFloat = child; |
| } |
| |
| bool canBreakReplacedElement = !child->isImage() || allowImagesToBreak; |
| if (((canBreakReplacedElement && (autoWrap || oldAutoWrap) && (!isPrevChildInlineFlow || shouldBreakLineAfterText)) || clearPreviousFloat)) { |
| minLogicalWidth = preferredWidth(minLogicalWidth, inlineMin); |
| inlineMin = 0; |
| } |
| |
| // If we're supposed to clear the previous float, then terminate maxwidth as well. |
| if (clearPreviousFloat) { |
| maxLogicalWidth = preferredWidth(maxLogicalWidth, inlineMax); |
| inlineMax = 0; |
| } |
| |
| // Add in text-indent. This is added in only once. |
| if (!addedTextIndent && !child->isFloating()) { |
| LayoutUnit ceiledIndent { textIndent.ceilToFloat() }; |
| childMin += ceiledIndent; |
| childMax += ceiledIndent; |
| |
| if (childMin < 0) |
| textIndent = LayoutUnit::fromFloatCeil(childMin); |
| else |
| addedTextIndent = true; |
| } |
| |
| if (canHangPunctuationAtStart && !addedStartPunctuationHang && !child->isFloating()) |
| addedStartPunctuationHang = true; |
| |
| // Add our width to the max. |
| inlineMax += std::max<float>(0, childMax); |
| |
| if ((!autoWrap || !canBreakReplacedElement || (isPrevChildInlineFlow && !shouldBreakLineAfterText))) { |
| if (child->isFloating()) |
| minLogicalWidth = preferredWidth(minLogicalWidth, childMin); |
| else |
| inlineMin += childMin; |
| } else { |
| // Now check our line. |
| minLogicalWidth = preferredWidth(minLogicalWidth, childMin); |
| |
| // Now start a new line. |
| inlineMin = 0; |
| } |
| |
| if (autoWrap && canBreakReplacedElement && isPrevChildInlineFlow) { |
| minLogicalWidth = preferredWidth(minLogicalWidth, inlineMin); |
| inlineMin = 0; |
| } |
| |
| // We are no longer stripping whitespace at the start of a line. |
| if (!child->isFloating()) { |
| stripFrontSpaces = false; |
| trailingSpaceChild = nullptr; |
| lastText = nullptr; |
| } |
| } else if (is<RenderText>(*child)) { |
| // Case (3). Text. |
| RenderText& renderText = downcast<RenderText>(*child); |
| |
| if (renderText.style().hasTextCombine() && renderText.isCombineText()) |
| downcast<RenderCombineText>(renderText).combineTextIfNeeded(); |
| |
| // Determine if we have a breakable character. Pass in |
| // whether or not we should ignore any spaces at the front |
| // of the string. If those are going to be stripped out, |
| // then they shouldn't be considered in the breakable char |
| // check. |
| bool strippingBeginWS = stripFrontSpaces; |
| auto widths = renderText.trimmedPreferredWidths(inlineMax, stripFrontSpaces); |
| |
| childMin = widths.min; |
| childMax = widths.max; |
| |
| // This text object will not be rendered, but it may still provide a breaking opportunity. |
| if (!widths.hasBreak && !childMax) { |
| if (autoWrap && (widths.beginWS || widths.endWS)) { |
| minLogicalWidth = preferredWidth(minLogicalWidth, inlineMin); |
| inlineMin = 0; |
| } |
| continue; |
| } |
| |
| lastText = &renderText; |
| |
| if (stripFrontSpaces) |
| trailingSpaceChild = child; |
| else |
| trailingSpaceChild = 0; |
| |
| // Add in text-indent. This is added in only once. |
| float ti = 0; |
| if (!addedTextIndent || hasRemainingNegativeTextIndent) { |
| ti = textIndent.ceilToFloat(); |
| childMin += ti; |
| widths.beginMin += ti; |
| |
| // It the text indent negative and larger than the child minimum, we re-use the remainder |
| // in future minimum calculations, but using the negative value again on the maximum |
| // will lead to under-counting the max pref width. |
| if (!addedTextIndent) { |
| childMax += ti; |
| widths.beginMax += ti; |
| addedTextIndent = true; |
| } |
| |
| if (childMin < 0) { |
| textIndent = childMin; |
| hasRemainingNegativeTextIndent = true; |
| } |
| } |
| |
| // See if we have a hanging punctuation situation at the start. |
| if (canHangPunctuationAtStart && !addedStartPunctuationHang) { |
| unsigned startIndex = strippingBeginWS ? renderText.firstCharacterIndexStrippingSpaces() : 0; |
| float hangStartWidth = renderText.hangablePunctuationStartWidth(startIndex); |
| childMin -= hangStartWidth; |
| widths.beginMin -= hangStartWidth; |
| childMax -= hangStartWidth; |
| widths.beginMax -= hangStartWidth; |
| addedStartPunctuationHang = true; |
| } |
| |
| // If we have no breakable characters at all, |
| // then this is the easy case. We add ourselves to the current |
| // min and max and continue. |
| if (!widths.hasBreakableChar) |
| inlineMin += childMin; |
| else { |
| // We have a breakable character. Now we need to know if |
| // we start and end with whitespace. |
| if (widths.beginWS) { |
| // End the current line. |
| minLogicalWidth = preferredWidth(minLogicalWidth, inlineMin); |
| } else { |
| inlineMin += widths.beginMin; |
| minLogicalWidth = preferredWidth(minLogicalWidth, inlineMin); |
| childMin -= ti; |
| } |
| |
| inlineMin = childMin; |
| |
| if (widths.endWS) { |
| // We end in whitespace, which means we can end our current line. |
| minLogicalWidth = preferredWidth(minLogicalWidth, inlineMin); |
| inlineMin = 0; |
| shouldBreakLineAfterText = false; |
| } else { |
| minLogicalWidth = preferredWidth(minLogicalWidth, inlineMin); |
| inlineMin = widths.endMin; |
| shouldBreakLineAfterText = true; |
| } |
| } |
| |
| if (widths.hasBreak) { |
| inlineMax += widths.beginMax; |
| maxLogicalWidth = preferredWidth(maxLogicalWidth, inlineMax); |
| maxLogicalWidth = preferredWidth(maxLogicalWidth, childMax); |
| inlineMax = widths.endMax; |
| addedTextIndent = true; |
| addedStartPunctuationHang = true; |
| if (widths.endsWithBreak) |
| stripFrontSpaces = true; |
| |
| } else |
| inlineMax += std::max<float>(0, childMax); |
| } |
| |
| // Ignore spaces after a list marker. |
| if (child->isListMarker()) |
| stripFrontSpaces = true; |
| } else { |
| if (styleToUse.collapseWhiteSpace()) |
| stripTrailingSpace(inlineMax, inlineMin, trailingSpaceChild); |
| minLogicalWidth = preferredWidth(minLogicalWidth, inlineMin); |
| maxLogicalWidth = preferredWidth(maxLogicalWidth, inlineMax); |
| inlineMin = inlineMax = 0; |
| stripFrontSpaces = true; |
| trailingSpaceChild = 0; |
| addedTextIndent = true; |
| addedStartPunctuationHang = true; |
| } |
| |
| if (!child->isText() && child->isRenderInline()) |
| isPrevChildInlineFlow = true; |
| else |
| isPrevChildInlineFlow = false; |
| |
| oldAutoWrap = autoWrap; |
| } |
| |
| if (styleToUse.collapseWhiteSpace()) |
| stripTrailingSpace(inlineMax, inlineMin, trailingSpaceChild); |
| |
| if (canHangPunctuationAtEnd && lastText && lastText->text().length() > 0) { |
| unsigned endIndex = trailingSpaceChild == lastText ? lastText->lastCharacterIndexStrippingSpaces() : lastText->text().length() - 1; |
| float endHangWidth = lastText->hangablePunctuationEndWidth(endIndex); |
| inlineMin -= endHangWidth; |
| inlineMax -= endHangWidth; |
| } |
| |
| minLogicalWidth = preferredWidth(minLogicalWidth, inlineMin); |
| maxLogicalWidth = preferredWidth(maxLogicalWidth, inlineMax); |
| } |
| |
| #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
| bool RenderBlockFlow::tryComputePreferredWidthsUsingModernPath(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) |
| { |
| #if ENABLE_MODERN_PREFERRED_WIDTH_COMPUTATION |
| computeAndSetLineLayoutPath(); |
| |
| // FIXME: Pass the replaced and inline block constrainst to IFC. |
| auto canUseModernPathForPreferredWidthComputation = [&] { |
| if (lineLayoutPath() != ModernPath) |
| return false; |
| for (auto walker = InlineWalker(*this); !walker.atEnd(); walker.advance()) { |
| auto& renderer = *walker.current(); |
| if (renderer.isText()) |
| continue; |
| if (is<RenderLineBreak>(renderer)) |
| continue; |
| #if ENABLE_MODERN_PREFERRED_WIDTH_COMPUTATION_FOR_INLINE_BOXES |
| if (is<RenderInline>(renderer)) |
| continue; |
| #endif |
| return false; |
| } |
| return true; |
| }; |
| |
| if (!canUseModernPathForPreferredWidthComputation()) |
| return false; |
| |
| if (!modernLineLayout()) |
| m_lineLayout = makeUnique<LayoutIntegration::LineLayout>(*this); |
| |
| #if ENABLE_MODERN_PREFERRED_WIDTH_COMPUTATION_FOR_INLINE_BOXES |
| auto& layoutFormattingContextLineLayout = *this->modernLineLayout(); |
| for (auto walker = InlineWalker(*this); !walker.atEnd(); walker.advance()) { |
| auto& renderer = *walker.current(); |
| if (renderer.isText() || is<RenderLineBreak>(renderer)) |
| continue; |
| if (is<RenderInline>(renderer)) { |
| layoutFormattingContextLineLayout.updateInlineBoxDimensions(downcast<RenderInline>(renderer)); |
| continue; |
| } |
| // FIXME: Add other, inline level box cases. |
| ASSERT_NOT_IMPLEMENTED_YET(); |
| } |
| #endif |
| |
| std::tie(minLogicalWidth, maxLogicalWidth) = modernLineLayout()->computeIntrinsicWidthConstraints(); |
| for (auto walker = InlineWalker(*this); !walker.atEnd(); walker.advance()) |
| walker.current()->setPreferredLogicalWidthsDirty(false); |
| return true; |
| #else |
| UNUSED_PARAM(minLogicalWidth); |
| UNUSED_PARAM(maxLogicalWidth); |
| return false; |
| #endif |
| } |
| #endif |
| |
| } |
| // namespace WebCore |