| /* |
| * Copyright (C) 2010, Google Inc. All rights reserved. |
| * Copyright (C) 2020, Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| |
| #if ENABLE(WEB_AUDIO) |
| |
| #include "AudioUtilities.h" |
| #include "VectorMath.h" |
| |
| #if USE(ACCELERATE) |
| #include <Accelerate/Accelerate.h> |
| #endif |
| |
| #if CPU(X86_SSE2) |
| #include <emmintrin.h> |
| #endif |
| |
| #if HAVE(ARM_NEON_INTRINSICS) |
| #include <arm_neon.h> |
| #endif |
| |
| #include <algorithm> |
| #include <math.h> |
| |
| namespace WebCore { |
| |
| namespace VectorMath { |
| |
| #if USE(ACCELERATE) |
| // On the Mac we use the highly optimized versions in Accelerate.framework |
| |
| void multiplyByScalar(const float* inputVector, float scalar, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| vDSP_vsmul(inputVector, 1, &scalar, outputVector, 1, numberOfElementsToProcess); |
| } |
| |
| void add(const float* inputVector1, const float* inputVector2, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| vDSP_vadd(inputVector1, 1, inputVector2, 1, outputVector, 1, numberOfElementsToProcess); |
| } |
| |
| void substract(const float* inputVector1, const float* inputVector2, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| vDSP_vsub(inputVector1, 1, inputVector2, 1, outputVector, 1, numberOfElementsToProcess); |
| } |
| |
| void addScalar(const float* inputVector, float scalar, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| vDSP_vsadd(inputVector, 1, &scalar, outputVector, 1, numberOfElementsToProcess); |
| } |
| |
| void multiply(const float* inputVector1, const float* inputVector2, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| vDSP_vmul(inputVector1, 1, inputVector2, 1, outputVector, 1, numberOfElementsToProcess); |
| } |
| |
| void interpolate(const float* inputVector1, float* inputVector2, float interpolationFactor, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| vDSP_vintb(inputVector1, 1, inputVector2, 1, &interpolationFactor, outputVector, 1, numberOfElementsToProcess); |
| } |
| |
| void multiplyComplex(const float* realVector1, const float* imagVector1, const float* realVector2, const float* imag2P, float* realOutputVector, float* imagDestP, size_t numberOfElementsToProcess) |
| { |
| DSPSplitComplex sc1; |
| DSPSplitComplex sc2; |
| DSPSplitComplex dest; |
| sc1.realp = const_cast<float*>(realVector1); |
| sc1.imagp = const_cast<float*>(imagVector1); |
| sc2.realp = const_cast<float*>(realVector2); |
| sc2.imagp = const_cast<float*>(imag2P); |
| dest.realp = realOutputVector; |
| dest.imagp = imagDestP; |
| vDSP_zvmul(&sc1, 1, &sc2, 1, &dest, 1, numberOfElementsToProcess, 1); |
| } |
| |
| void multiplyByScalarThenAddToOutput(const float* inputVector, float scalar, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| vDSP_vsma(inputVector, 1, &scalar, outputVector, 1, outputVector, 1, numberOfElementsToProcess); |
| } |
| |
| void multiplyByScalarThenAddToVector(const float* inputVector1, float scalar, const float* inputVector2, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| vDSP_vsma(inputVector1, 1, &scalar, inputVector2, 1, outputVector, 1, numberOfElementsToProcess); |
| } |
| |
| void addVectorsThenMultiplyByScalar(const float* inputVector1, const float* inputVector2, float scalar, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| vDSP_vasm(inputVector1, 1, inputVector2, 1, &scalar, outputVector, 1, numberOfElementsToProcess); |
| } |
| |
| float maximumMagnitude(const float* inputVector, size_t numberOfElementsToProcess) |
| { |
| float maximumValue = 0; |
| vDSP_maxmgv(inputVector, 1, &maximumValue, numberOfElementsToProcess); |
| return maximumValue; |
| } |
| |
| float sumOfSquares(const float* inputVector, size_t numberOfElementsToProcess) |
| { |
| float sum = 0; |
| vDSP_svesq(const_cast<float*>(inputVector), 1, &sum, numberOfElementsToProcess); |
| return sum; |
| } |
| |
| void clamp(const float* inputVector, float minimum, float maximum, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| vDSP_vclip(const_cast<float*>(inputVector), 1, &minimum, &maximum, outputVector, 1, numberOfElementsToProcess); |
| } |
| |
| void linearToDecibels(const float* inputVector, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| float reference = 1; |
| vDSP_vdbcon(inputVector, 1, &reference, outputVector, 1, numberOfElementsToProcess, 1); |
| } |
| |
| #else |
| |
| static inline bool is16ByteAligned(const float* vector) |
| { |
| return !(reinterpret_cast<uintptr_t>(vector) & 0x0F); |
| } |
| |
| void multiplyByScalarThenAddToVector(const float* inputVector1, float scalar, const float* inputVector2, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| multiplyByScalar(inputVector1, scalar, outputVector, numberOfElementsToProcess); |
| add(outputVector, inputVector2, outputVector, numberOfElementsToProcess); |
| } |
| |
| void multiplyByScalarThenAddToOutput(const float* inputVector, float scalar, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| size_t n = numberOfElementsToProcess; |
| |
| #if CPU(X86_SSE2) |
| // If the inputVector address is not 16-byte aligned, the first several frames (at most three) should be processed separately. |
| while (!is16ByteAligned(inputVector) && n) { |
| *outputVector += scalar * *inputVector; |
| inputVector++; |
| outputVector++; |
| n--; |
| } |
| |
| // Now the inputVector is aligned, use SSE. |
| size_t tailFrames = n % 4; |
| const float* endP = outputVector + n - tailFrames; |
| |
| __m128 pSource; |
| __m128 dest; |
| __m128 temp; |
| __m128 mScale = _mm_set_ps1(scalar); |
| |
| bool destAligned = is16ByteAligned(outputVector); |
| |
| #define SSE2_MULT_ADD(loadInstr, storeInstr) \ |
| while (outputVector < endP) \ |
| { \ |
| pSource = _mm_load_ps(inputVector); \ |
| temp = _mm_mul_ps(pSource, mScale); \ |
| dest = _mm_##loadInstr##_ps(outputVector); \ |
| dest = _mm_add_ps(dest, temp); \ |
| _mm_##storeInstr##_ps(outputVector, dest); \ |
| inputVector += 4; \ |
| outputVector += 4; \ |
| } |
| |
| if (destAligned) |
| SSE2_MULT_ADD(load, store) |
| else |
| SSE2_MULT_ADD(loadu, storeu) |
| |
| n = tailFrames; |
| #elif HAVE(ARM_NEON_INTRINSICS) |
| size_t tailFrames = n % 4; |
| const float* endP = outputVector + n - tailFrames; |
| |
| float32x4_t k = vdupq_n_f32(scalar); |
| while (outputVector < endP) { |
| float32x4_t source = vld1q_f32(inputVector); |
| float32x4_t dest = vld1q_f32(outputVector); |
| |
| dest = vmlaq_f32(dest, source, k); |
| vst1q_f32(outputVector, dest); |
| |
| inputVector += 4; |
| outputVector += 4; |
| } |
| n = tailFrames; |
| #endif |
| while (n--) { |
| *outputVector += *inputVector * scalar; |
| ++inputVector; |
| ++outputVector; |
| } |
| } |
| |
| void multiplyByScalar(const float* inputVector, float scalar, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| size_t n = numberOfElementsToProcess; |
| |
| #if CPU(X86_SSE2) |
| // If the inputVector address is not 16-byte aligned, the first several frames (at most three) should be processed separately. |
| while (!is16ByteAligned(inputVector) && n) { |
| *outputVector = scalar * *inputVector; |
| inputVector++; |
| outputVector++; |
| n--; |
| } |
| |
| // Now the inputVector address is aligned and start to apply SSE. |
| size_t group = n / 4; |
| __m128 mScale = _mm_set_ps1(scalar); |
| __m128* pSource; |
| __m128* pDest; |
| __m128 dest; |
| |
| |
| if (!is16ByteAligned(outputVector)) { |
| while (group--) { |
| pSource = reinterpret_cast<__m128*>(const_cast<float*>(inputVector)); |
| dest = _mm_mul_ps(*pSource, mScale); |
| _mm_storeu_ps(outputVector, dest); |
| |
| inputVector += 4; |
| outputVector += 4; |
| } |
| } else { |
| while (group--) { |
| pSource = reinterpret_cast<__m128*>(const_cast<float*>(inputVector)); |
| pDest = reinterpret_cast<__m128*>(outputVector); |
| *pDest = _mm_mul_ps(*pSource, mScale); |
| |
| inputVector += 4; |
| outputVector += 4; |
| } |
| } |
| |
| // Non-SSE handling for remaining frames which is less than 4. |
| n %= 4; |
| #elif HAVE(ARM_NEON_INTRINSICS) |
| size_t tailFrames = n % 4; |
| const float* endP = outputVector + n - tailFrames; |
| |
| while (outputVector < endP) { |
| float32x4_t source = vld1q_f32(inputVector); |
| vst1q_f32(outputVector, vmulq_n_f32(source, scalar)); |
| |
| inputVector += 4; |
| outputVector += 4; |
| } |
| n = tailFrames; |
| #endif |
| while (n--) { |
| *outputVector = scalar * *inputVector; |
| ++inputVector; |
| ++outputVector; |
| } |
| } |
| |
| void addScalar(const float* inputVector, float scalar, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| size_t n = numberOfElementsToProcess; |
| |
| #if CPU(X86_SSE2) |
| // If the inputVector address is not 16-byte aligned, the first several frames (at most three) should be processed separately. |
| while (!is16ByteAligned(inputVector) && n) { |
| *outputVector = *inputVector + scalar; |
| inputVector++; |
| outputVector++; |
| n--; |
| } |
| |
| // Now the inputVector address is aligned and start to apply SSE. |
| size_t group = n / 4; |
| __m128 mScalar = _mm_set_ps1(scalar); |
| __m128* pSource; |
| __m128* pDest; |
| __m128 dest; |
| |
| bool destAligned = is16ByteAligned(outputVector); |
| if (destAligned) { // all aligned |
| while (group--) { |
| pSource = reinterpret_cast<__m128*>(const_cast<float*>(inputVector)); |
| pDest = reinterpret_cast<__m128*>(outputVector); |
| *pDest = _mm_add_ps(*pSource, mScalar); |
| |
| inputVector += 4; |
| outputVector += 4; |
| } |
| } else { |
| while (group--) { |
| pSource = reinterpret_cast<__m128*>(const_cast<float*>(inputVector)); |
| dest = _mm_add_ps(*pSource, mScalar); |
| _mm_storeu_ps(outputVector, dest); |
| |
| inputVector += 4; |
| outputVector += 4; |
| } |
| } |
| |
| // Non-SSE handling for remaining frames which is less than 4. |
| n %= 4; |
| #elif HAVE(ARM_NEON_INTRINSICS) |
| size_t tailFrames = n % 4; |
| const float* endP = outputVector + n - tailFrames; |
| float32x4_t scalarVector = vdupq_n_f32(scalar); |
| |
| while (outputVector < endP) { |
| float32x4_t source = vld1q_f32(inputVector); |
| vst1q_f32(outputVector, vaddq_f32(source, scalarVector)); |
| |
| inputVector += 4; |
| outputVector += 4; |
| } |
| n = tailFrames; |
| #endif |
| while (n--) { |
| *outputVector = *inputVector + scalar; |
| ++inputVector; |
| ++outputVector; |
| } |
| } |
| |
| void add(const float* inputVector1, const float* inputVector2, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| size_t n = numberOfElementsToProcess; |
| |
| #if CPU(X86_SSE2) |
| // If the inputVector address is not 16-byte aligned, the first several frames (at most three) should be processed separately. |
| while (!is16ByteAligned(inputVector1) && n) { |
| *outputVector = *inputVector1 + *inputVector2; |
| inputVector1++; |
| inputVector2++; |
| outputVector++; |
| n--; |
| } |
| |
| // Now the inputVector1 address is aligned and start to apply SSE. |
| size_t group = n / 4; |
| __m128* pSource1; |
| __m128* pSource2; |
| __m128* pDest; |
| __m128 source2; |
| __m128 dest; |
| |
| bool source2Aligned = is16ByteAligned(inputVector2); |
| bool destAligned = is16ByteAligned(outputVector); |
| |
| if (source2Aligned && destAligned) { // all aligned |
| while (group--) { |
| pSource1 = reinterpret_cast<__m128*>(const_cast<float*>(inputVector1)); |
| pSource2 = reinterpret_cast<__m128*>(const_cast<float*>(inputVector2)); |
| pDest = reinterpret_cast<__m128*>(outputVector); |
| *pDest = _mm_add_ps(*pSource1, *pSource2); |
| |
| inputVector1 += 4; |
| inputVector2 += 4; |
| outputVector += 4; |
| } |
| |
| } else if (source2Aligned && !destAligned) { // source2 aligned but dest not aligned |
| while (group--) { |
| pSource1 = reinterpret_cast<__m128*>(const_cast<float*>(inputVector1)); |
| pSource2 = reinterpret_cast<__m128*>(const_cast<float*>(inputVector2)); |
| dest = _mm_add_ps(*pSource1, *pSource2); |
| _mm_storeu_ps(outputVector, dest); |
| |
| inputVector1 += 4; |
| inputVector2 += 4; |
| outputVector += 4; |
| } |
| |
| } else if (!source2Aligned && destAligned) { // source2 not aligned but dest aligned |
| while (group--) { |
| pSource1 = reinterpret_cast<__m128*>(const_cast<float*>(inputVector1)); |
| source2 = _mm_loadu_ps(inputVector2); |
| pDest = reinterpret_cast<__m128*>(outputVector); |
| *pDest = _mm_add_ps(*pSource1, source2); |
| |
| inputVector1 += 4; |
| inputVector2 += 4; |
| outputVector += 4; |
| } |
| } else if (!source2Aligned && !destAligned) { // both source2 and dest not aligned |
| while (group--) { |
| pSource1 = reinterpret_cast<__m128*>(const_cast<float*>(inputVector1)); |
| source2 = _mm_loadu_ps(inputVector2); |
| dest = _mm_add_ps(*pSource1, source2); |
| _mm_storeu_ps(outputVector, dest); |
| |
| inputVector1 += 4; |
| inputVector2 += 4; |
| outputVector += 4; |
| } |
| } |
| |
| // Non-SSE handling for remaining frames which is less than 4. |
| n %= 4; |
| #elif HAVE(ARM_NEON_INTRINSICS) |
| size_t tailFrames = n % 4; |
| const float* endP = outputVector + n - tailFrames; |
| |
| while (outputVector < endP) { |
| float32x4_t source1 = vld1q_f32(inputVector1); |
| float32x4_t source2 = vld1q_f32(inputVector2); |
| vst1q_f32(outputVector, vaddq_f32(source1, source2)); |
| |
| inputVector1 += 4; |
| inputVector2 += 4; |
| outputVector += 4; |
| } |
| n = tailFrames; |
| #endif |
| while (n--) { |
| *outputVector = *inputVector1 + *inputVector2; |
| ++inputVector1; |
| ++inputVector2; |
| ++outputVector; |
| } |
| } |
| |
| void substract(const float* inputVector1, const float* inputVector2, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| size_t n = numberOfElementsToProcess; |
| |
| #if CPU(X86_SSE2) |
| // If the inputVector address is not 16-byte aligned, the first several frames (at most three) should be processed separately. |
| while (!is16ByteAligned(inputVector1) && n) { |
| *outputVector = *inputVector1 - *inputVector2; |
| inputVector1++; |
| inputVector2++; |
| outputVector++; |
| n--; |
| } |
| |
| // Now the inputVector1 address is aligned and start to apply SSE. |
| size_t group = n / 4; |
| __m128* pSource1; |
| __m128* pSource2; |
| __m128* pDest; |
| __m128 source2; |
| __m128 dest; |
| |
| bool source2Aligned = is16ByteAligned(inputVector2); |
| bool destAligned = is16ByteAligned(outputVector); |
| |
| if (source2Aligned && destAligned) { // all aligned |
| while (group--) { |
| pSource1 = reinterpret_cast<__m128*>(const_cast<float*>(inputVector1)); |
| pSource2 = reinterpret_cast<__m128*>(const_cast<float*>(inputVector2)); |
| pDest = reinterpret_cast<__m128*>(outputVector); |
| *pDest = _mm_sub_ps(*pSource1, *pSource2); |
| |
| inputVector1 += 4; |
| inputVector2 += 4; |
| outputVector += 4; |
| } |
| } else if (source2Aligned && !destAligned) { // source2 aligned but dest not aligned |
| while (group--) { |
| pSource1 = reinterpret_cast<__m128*>(const_cast<float*>(inputVector1)); |
| pSource2 = reinterpret_cast<__m128*>(const_cast<float*>(inputVector2)); |
| dest = _mm_sub_ps(*pSource1, *pSource2); |
| _mm_storeu_ps(outputVector, dest); |
| |
| inputVector1 += 4; |
| inputVector2 += 4; |
| outputVector += 4; |
| } |
| } else if (!source2Aligned && destAligned) { // source2 not aligned but dest aligned |
| while (group--) { |
| pSource1 = reinterpret_cast<__m128*>(const_cast<float*>(inputVector1)); |
| source2 = _mm_loadu_ps(inputVector2); |
| pDest = reinterpret_cast<__m128*>(outputVector); |
| *pDest = _mm_sub_ps(*pSource1, source2); |
| |
| inputVector1 += 4; |
| inputVector2 += 4; |
| outputVector += 4; |
| } |
| } else if (!source2Aligned && !destAligned) { // both source2 and dest not aligned |
| while (group--) { |
| pSource1 = reinterpret_cast<__m128*>(const_cast<float*>(inputVector1)); |
| source2 = _mm_loadu_ps(inputVector2); |
| dest = _mm_sub_ps(*pSource1, source2); |
| _mm_storeu_ps(outputVector, dest); |
| |
| inputVector1 += 4; |
| inputVector2 += 4; |
| outputVector += 4; |
| } |
| } |
| |
| // Non-SSE handling for remaining frames which is less than 4. |
| n %= 4; |
| #elif HAVE(ARM_NEON_INTRINSICS) |
| size_t tailFrames = n % 4; |
| const float* endP = outputVector + n - tailFrames; |
| |
| while (outputVector < endP) { |
| float32x4_t source1 = vld1q_f32(inputVector1); |
| float32x4_t source2 = vld1q_f32(inputVector2); |
| vst1q_f32(outputVector, vsubq_f32(source1, source2)); |
| |
| inputVector1 += 4; |
| inputVector2 += 4; |
| outputVector += 4; |
| } |
| n = tailFrames; |
| #endif |
| while (n--) { |
| *outputVector = *inputVector1 - *inputVector2; |
| ++inputVector1; |
| ++inputVector2; |
| ++outputVector; |
| } |
| } |
| |
| void interpolate(const float* inputVector1, float* inputVector2, float interpolationFactor, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| if (inputVector1 != outputVector) |
| memcpy(outputVector, inputVector1, numberOfElementsToProcess * sizeof(float)); |
| |
| // inputVector2[k] = inputVector2[k] - inputVector1[k] |
| substract(inputVector2, inputVector1, inputVector2, numberOfElementsToProcess); |
| |
| // outputVector[k] = outputVector[k] + interpolationFactor * inputVector2[k] |
| // = inputVector1[k] + interpolationFactor * (inputVector2[k] - inputVector1[k]); |
| multiplyByScalarThenAddToOutput(inputVector2, interpolationFactor, outputVector, numberOfElementsToProcess); |
| } |
| |
| void multiply(const float* inputVector1, const float* inputVector2, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| size_t n = numberOfElementsToProcess; |
| |
| #if CPU(X86_SSE2) |
| // If the inputVector1 address is not 16-byte aligned, the first several frames (at most three) should be processed separately. |
| while (!is16ByteAligned(inputVector1) && n) { |
| *outputVector = *inputVector1 * *inputVector2; |
| inputVector1++; |
| inputVector2++; |
| outputVector++; |
| n--; |
| } |
| |
| // Now the inputVector1 address aligned and start to apply SSE. |
| size_t tailFrames = n % 4; |
| const float* endP = outputVector + n - tailFrames; |
| __m128 pSource1; |
| __m128 pSource2; |
| __m128 dest; |
| |
| bool source2Aligned = is16ByteAligned(inputVector2); |
| bool destAligned = is16ByteAligned(outputVector); |
| |
| #define SSE2_MULT(loadInstr, storeInstr) \ |
| while (outputVector < endP) \ |
| { \ |
| pSource1 = _mm_load_ps(inputVector1); \ |
| pSource2 = _mm_##loadInstr##_ps(inputVector2); \ |
| dest = _mm_mul_ps(pSource1, pSource2); \ |
| _mm_##storeInstr##_ps(outputVector, dest); \ |
| inputVector1 += 4; \ |
| inputVector2 += 4; \ |
| outputVector += 4; \ |
| } |
| |
| if (source2Aligned && destAligned) // Both aligned. |
| SSE2_MULT(load, store) |
| else if (source2Aligned && !destAligned) // Source2 is aligned but dest not. |
| SSE2_MULT(load, storeu) |
| else if (!source2Aligned && destAligned) // Dest is aligned but source2 not. |
| SSE2_MULT(loadu, store) |
| else // Neither aligned. |
| SSE2_MULT(loadu, storeu) |
| |
| n = tailFrames; |
| #elif HAVE(ARM_NEON_INTRINSICS) |
| size_t tailFrames = n % 4; |
| const float* endP = outputVector + n - tailFrames; |
| |
| while (outputVector < endP) { |
| float32x4_t source1 = vld1q_f32(inputVector1); |
| float32x4_t source2 = vld1q_f32(inputVector2); |
| vst1q_f32(outputVector, vmulq_f32(source1, source2)); |
| |
| inputVector1 += 4; |
| inputVector2 += 4; |
| outputVector += 4; |
| } |
| n = tailFrames; |
| #endif |
| while (n--) { |
| *outputVector = *inputVector1 * *inputVector2; |
| ++inputVector1; |
| ++inputVector2; |
| ++outputVector; |
| } |
| } |
| |
| void multiplyComplex(const float* realVector1, const float* imagVector1, const float* realVector2, const float* imag2P, float* realOutputVector, float* imagDestP, size_t numberOfElementsToProcess) |
| { |
| unsigned i = 0; |
| #if CPU(X86_SSE2) |
| // Only use the SSE optimization in the very common case that all addresses are 16-byte aligned. |
| // Otherwise, fall through to the scalar code below. |
| if (is16ByteAligned(realVector1) && is16ByteAligned(imagVector1) && is16ByteAligned(realVector2) && is16ByteAligned(imag2P) && is16ByteAligned(realOutputVector) && is16ByteAligned(imagDestP)) { |
| unsigned endSize = numberOfElementsToProcess - numberOfElementsToProcess % 4; |
| while (i < endSize) { |
| __m128 real1 = _mm_load_ps(realVector1 + i); |
| __m128 real2 = _mm_load_ps(realVector2 + i); |
| __m128 imag1 = _mm_load_ps(imagVector1 + i); |
| __m128 imag2 = _mm_load_ps(imag2P + i); |
| __m128 real = _mm_mul_ps(real1, real2); |
| real = _mm_sub_ps(real, _mm_mul_ps(imag1, imag2)); |
| __m128 imag = _mm_mul_ps(real1, imag2); |
| imag = _mm_add_ps(imag, _mm_mul_ps(imag1, real2)); |
| _mm_store_ps(realOutputVector + i, real); |
| _mm_store_ps(imagDestP + i, imag); |
| i += 4; |
| } |
| } |
| #elif HAVE(ARM_NEON_INTRINSICS) |
| unsigned endSize = numberOfElementsToProcess - numberOfElementsToProcess % 4; |
| while (i < endSize) { |
| float32x4_t real1 = vld1q_f32(realVector1 + i); |
| float32x4_t real2 = vld1q_f32(realVector2 + i); |
| float32x4_t imag1 = vld1q_f32(imagVector1 + i); |
| float32x4_t imag2 = vld1q_f32(imag2P + i); |
| |
| float32x4_t realResult = vmlsq_f32(vmulq_f32(real1, real2), imag1, imag2); |
| float32x4_t imagResult = vmlaq_f32(vmulq_f32(real1, imag2), imag1, real2); |
| |
| vst1q_f32(realOutputVector + i, realResult); |
| vst1q_f32(imagDestP + i, imagResult); |
| |
| i += 4; |
| } |
| #endif |
| for (; i < numberOfElementsToProcess; ++i) { |
| // Read and compute result before storing them, in case the |
| // destination is the same as one of the sources. |
| realOutputVector[i] = realVector1[i] * realVector2[i] - imagVector1[i] * imag2P[i]; |
| imagDestP[i] = realVector1[i] * imag2P[i] + imagVector1[i] * realVector2[i]; |
| } |
| } |
| |
| float sumOfSquares(const float* inputVector, size_t numberOfElementsToProcess) |
| { |
| size_t n = numberOfElementsToProcess; |
| float sum = 0; |
| |
| #if CPU(X86_SSE2) |
| // If the inputVector address is not 16-byte aligned, the first several frames (at most three) should be processed separately. |
| while (!is16ByteAligned(inputVector) && n) { |
| float sample = *inputVector; |
| sum += sample * sample; |
| inputVector++; |
| n--; |
| } |
| |
| // Now the inputVector is aligned, use SSE. |
| size_t tailFrames = n % 4; |
| const float* endP = inputVector + n - tailFrames; |
| __m128 source; |
| __m128 mSum = _mm_setzero_ps(); |
| |
| while (inputVector < endP) { |
| source = _mm_load_ps(inputVector); |
| source = _mm_mul_ps(source, source); |
| mSum = _mm_add_ps(mSum, source); |
| inputVector += 4; |
| } |
| |
| // Summarize the SSE results. |
| const float* groupSumP = reinterpret_cast<float*>(&mSum); |
| sum += groupSumP[0] + groupSumP[1] + groupSumP[2] + groupSumP[3]; |
| |
| n = tailFrames; |
| #elif HAVE(ARM_NEON_INTRINSICS) |
| size_t tailFrames = n % 4; |
| const float* endP = inputVector + n - tailFrames; |
| |
| float32x4_t fourSum = vdupq_n_f32(0); |
| while (inputVector < endP) { |
| float32x4_t source = vld1q_f32(inputVector); |
| fourSum = vmlaq_f32(fourSum, source, source); |
| inputVector += 4; |
| } |
| float32x2_t twoSum = vadd_f32(vget_low_f32(fourSum), vget_high_f32(fourSum)); |
| |
| float groupSum[2]; |
| vst1_f32(groupSum, twoSum); |
| sum += groupSum[0] + groupSum[1]; |
| |
| n = tailFrames; |
| #endif |
| |
| while (n--) { |
| float sample = *inputVector; |
| sum += sample * sample; |
| ++inputVector; |
| } |
| |
| return sum; |
| } |
| |
| float maximumMagnitude(const float* inputVector, size_t numberOfElementsToProcess) |
| { |
| size_t n = numberOfElementsToProcess; |
| float max = 0; |
| |
| #if CPU(X86_SSE2) |
| // If the inputVector address is not 16-byte aligned, the first several frames (at most three) should be processed separately. |
| while (!is16ByteAligned(inputVector) && n) { |
| max = std::max(max, std::abs(*inputVector)); |
| inputVector++; |
| n--; |
| } |
| |
| // Now the inputVector is aligned, use SSE. |
| size_t tailFrames = n % 4; |
| const float* endP = inputVector + n - tailFrames; |
| __m128 source; |
| __m128 mMax = _mm_setzero_ps(); |
| int mask = 0x7FFFFFFF; |
| __m128 mMask = _mm_set1_ps(*reinterpret_cast<float*>(&mask)); |
| |
| while (inputVector < endP) { |
| source = _mm_load_ps(inputVector); |
| // Calculate the absolute value by anding source with mask, the sign bit is set to 0. |
| source = _mm_and_ps(source, mMask); |
| mMax = _mm_max_ps(mMax, source); |
| inputVector += 4; |
| } |
| |
| // Get max from the SSE results. |
| const float* groupMaxP = reinterpret_cast<float*>(&mMax); |
| max = std::max(max, groupMaxP[0]); |
| max = std::max(max, groupMaxP[1]); |
| max = std::max(max, groupMaxP[2]); |
| max = std::max(max, groupMaxP[3]); |
| |
| n = tailFrames; |
| #elif HAVE(ARM_NEON_INTRINSICS) |
| size_t tailFrames = n % 4; |
| const float* endP = inputVector + n - tailFrames; |
| |
| float32x4_t fourMax = vdupq_n_f32(0); |
| while (inputVector < endP) { |
| float32x4_t source = vld1q_f32(inputVector); |
| fourMax = vmaxq_f32(fourMax, vabsq_f32(source)); |
| inputVector += 4; |
| } |
| float32x2_t twoMax = vmax_f32(vget_low_f32(fourMax), vget_high_f32(fourMax)); |
| |
| float groupMax[2]; |
| vst1_f32(groupMax, twoMax); |
| max = std::max(groupMax[0], groupMax[1]); |
| |
| n = tailFrames; |
| #endif |
| |
| while (n--) { |
| max = std::max(max, std::abs(*inputVector)); |
| ++inputVector; |
| } |
| |
| return max; |
| } |
| |
| void clamp(const float* inputVector, float minimum, float maximum, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| size_t n = numberOfElementsToProcess; |
| |
| // FIXME: Optimize for SSE2. |
| #if HAVE(ARM_NEON_INTRINSICS) |
| size_t tailFrames = n % 4; |
| const float* endP = outputVector + n - tailFrames; |
| |
| float32x4_t low = vdupq_n_f32(minimum); |
| float32x4_t high = vdupq_n_f32(maximum); |
| while (outputVector < endP) { |
| float32x4_t source = vld1q_f32(inputVector); |
| vst1q_f32(outputVector, vmaxq_f32(vminq_f32(source, high), low)); |
| inputVector += 4; |
| outputVector += 4; |
| } |
| n = tailFrames; |
| #endif |
| while (n--) { |
| *outputVector = std::clamp(*inputVector, minimum, maximum); |
| ++inputVector; |
| ++outputVector; |
| } |
| } |
| |
| void linearToDecibels(const float* inputVector, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| for (size_t i = 0; i < numberOfElementsToProcess; ++i) |
| outputVector[i] = AudioUtilities::linearToDecibels(inputVector[i]); |
| } |
| |
| void addVectorsThenMultiplyByScalar(const float* inputVector1, const float* inputVector2, float scalar, float* outputVector, size_t numberOfElementsToProcess) |
| { |
| add(inputVector1, inputVector2, outputVector, numberOfElementsToProcess); |
| multiplyByScalar(outputVector, scalar, outputVector, numberOfElementsToProcess); |
| } |
| |
| #endif // USE(ACCELERATE) |
| |
| } // namespace VectorMath |
| |
| } // namespace WebCore |
| |
| #endif // ENABLE(WEB_AUDIO) |