blob: 01a8f128c5339ef9d446ac723f7196676aa7327f [file] [log] [blame]
/*
* Copyright (C) 2003, 2006, 2007 Apple Inc. All rights reserved.
* Copyright (C) 2005 Nokia. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "FloatRect.h"
#include "FloatConversion.h"
#include "IntRect.h"
#include <algorithm>
#include <math.h>
#include <wtf/MathExtras.h>
#include <wtf/text/TextStream.h>
namespace WebCore {
FloatRect::FloatRect(const IntRect& r)
: m_location(r.location())
, m_size(r.size())
{
}
FloatRect FloatRect::narrowPrecision(double x, double y, double width, double height)
{
return FloatRect(narrowPrecisionToFloat(x), narrowPrecisionToFloat(y), narrowPrecisionToFloat(width), narrowPrecisionToFloat(height));
}
bool FloatRect::isExpressibleAsIntRect() const
{
return isWithinIntRange(x()) && isWithinIntRange(y())
&& isWithinIntRange(width()) && isWithinIntRange(height())
&& isWithinIntRange(maxX()) && isWithinIntRange(maxY());
}
bool FloatRect::inclusivelyIntersects(const FloatRect& other) const
{
return width() >= 0 && height() >= 0 && other.width() >= 0 && other.height() >= 0
&& x() <= other.maxX() && other.x() <= maxX() && y() <= other.maxY() && other.y() <= maxY();
}
bool FloatRect::intersects(const FloatRect& other) const
{
// Checking emptiness handles negative widths and heights as well as zero.
return !isEmpty() && !other.isEmpty()
&& x() < other.maxX() && other.x() < maxX()
&& y() < other.maxY() && other.y() < maxY();
}
bool FloatRect::contains(const FloatRect& other) const
{
return x() <= other.x() && maxX() >= other.maxX()
&& y() <= other.y() && maxY() >= other.maxY();
}
bool FloatRect::contains(const FloatPoint& point, ContainsMode containsMode) const
{
if (containsMode == InsideOrOnStroke)
return contains(point.x(), point.y());
return x() < point.x() && maxX() > point.x() && y() < point.y() && maxY() > point.y();
}
void FloatRect::intersect(const FloatRect& other)
{
float l = std::max(x(), other.x());
float t = std::max(y(), other.y());
float r = std::min(maxX(), other.maxX());
float b = std::min(maxY(), other.maxY());
// Return a clean empty rectangle for non-intersecting cases.
if (l >= r || t >= b) {
l = 0;
t = 0;
r = 0;
b = 0;
}
setLocationAndSizeFromEdges(l, t, r, b);
}
bool FloatRect::edgeInclusiveIntersect(const FloatRect& other)
{
FloatPoint newLocation(std::max(x(), other.x()), std::max(y(), other.y()));
FloatPoint newMaxPoint(std::min(maxX(), other.maxX()), std::min(maxY(), other.maxY()));
bool intersects = true;
// Return a clean empty rectangle for non-intersecting cases.
if (newLocation.x() > newMaxPoint.x() || newLocation.y() > newMaxPoint.y()) {
newLocation = { };
newMaxPoint = { };
intersects = false;
}
m_location = newLocation;
m_size = newMaxPoint - newLocation;
return intersects;
}
void FloatRect::unite(const FloatRect& other)
{
// Handle empty special cases first.
if (other.isEmpty())
return;
if (isEmpty()) {
*this = other;
return;
}
uniteEvenIfEmpty(other);
}
void FloatRect::uniteEvenIfEmpty(const FloatRect& other)
{
float minX = std::min(x(), other.x());
float minY = std::min(y(), other.y());
float maxX = std::max(this->maxX(), other.maxX());
float maxY = std::max(this->maxY(), other.maxY());
setLocationAndSizeFromEdges(minX, minY, maxX, maxY);
}
void FloatRect::uniteIfNonZero(const FloatRect& other)
{
// Handle empty special cases first.
if (other.isZero())
return;
if (isZero()) {
*this = other;
return;
}
uniteEvenIfEmpty(other);
}
void FloatRect::extend(const FloatPoint& p)
{
float minX = std::min(x(), p.x());
float minY = std::min(y(), p.y());
float maxX = std::max(this->maxX(), p.x());
float maxY = std::max(this->maxY(), p.y());
setLocationAndSizeFromEdges(minX, minY, maxX, maxY);
}
void FloatRect::scale(float sx, float sy)
{
m_location.setX(x() * sx);
m_location.setY(y() * sy);
m_size.setWidth(width() * sx);
m_size.setHeight(height() * sy);
}
void FloatRect::fitToPoints(const FloatPoint& p0, const FloatPoint& p1)
{
float left = std::min(p0.x(), p1.x());
float top = std::min(p0.y(), p1.y());
float right = std::max(p0.x(), p1.x());
float bottom = std::max(p0.y(), p1.y());
setLocationAndSizeFromEdges(left, top, right, bottom);
}
namespace {
// Helpers for 3- and 4-way max and min.
template <typename T>
T min3(const T& v1, const T& v2, const T& v3)
{
return std::min(std::min(v1, v2), v3);
}
template <typename T>
T max3(const T& v1, const T& v2, const T& v3)
{
return std::max(std::max(v1, v2), v3);
}
template <typename T>
T min4(const T& v1, const T& v2, const T& v3, const T& v4)
{
return std::min(std::min(v1, v2), std::min(v3, v4));
}
template <typename T>
T max4(const T& v1, const T& v2, const T& v3, const T& v4)
{
return std::max(std::max(v1, v2), std::max(v3, v4));
}
} // anonymous namespace
void FloatRect::fitToPoints(const FloatPoint& p0, const FloatPoint& p1, const FloatPoint& p2)
{
float left = min3(p0.x(), p1.x(), p2.x());
float top = min3(p0.y(), p1.y(), p2.y());
float right = max3(p0.x(), p1.x(), p2.x());
float bottom = max3(p0.y(), p1.y(), p2.y());
setLocationAndSizeFromEdges(left, top, right, bottom);
}
void FloatRect::fitToPoints(const FloatPoint& p0, const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& p3)
{
float left = min4(p0.x(), p1.x(), p2.x(), p3.x());
float top = min4(p0.y(), p1.y(), p2.y(), p3.y());
float right = max4(p0.x(), p1.x(), p2.x(), p3.x());
float bottom = max4(p0.y(), p1.y(), p2.y(), p3.y());
setLocationAndSizeFromEdges(left, top, right, bottom);
}
FloatRect normalizeRect(const FloatRect& rect)
{
return FloatRect(std::min(rect.x(), rect.maxX()),
std::min(rect.y(), rect.maxY()),
std::max(rect.width(), -rect.width()),
std::max(rect.height(), -rect.height()));
}
FloatRect encloseRectToDevicePixels(const FloatRect& rect, float deviceScaleFactor)
{
FloatPoint location = floorPointToDevicePixels(rect.minXMinYCorner(), deviceScaleFactor);
FloatPoint maxPoint = ceilPointToDevicePixels(rect.maxXMaxYCorner(), deviceScaleFactor);
return FloatRect(location, maxPoint - location);
}
IntRect enclosingIntRect(const FloatRect& rect)
{
FloatPoint location = flooredIntPoint(rect.minXMinYCorner());
FloatPoint maxPoint = ceiledIntPoint(rect.maxXMaxYCorner());
return IntRect(IntPoint(location), IntSize(maxPoint - location));
}
IntRect roundedIntRect(const FloatRect& rect)
{
return IntRect(roundedIntPoint(rect.location()), roundedIntSize(rect.size()));
}
TextStream& operator<<(TextStream& ts, const FloatRect &r)
{
if (ts.hasFormattingFlag(TextStream::Formatting::SVGStyleRect)) {
// FIXME: callers should use the NumberRespectingIntegers flag.
return ts << "at (" << TextStream::FormatNumberRespectingIntegers(r.x()) << "," << TextStream::FormatNumberRespectingIntegers(r.y())
<< ") size " << TextStream::FormatNumberRespectingIntegers(r.width()) << "x" << TextStream::FormatNumberRespectingIntegers(r.height());
}
return ts << r.location() << " " << r.size();
}
}