| /* |
| * Copyright (C) 2011-2015 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef DFGSpeculativeJIT_h |
| #define DFGSpeculativeJIT_h |
| |
| #if ENABLE(DFG_JIT) |
| |
| #include "DFGAbstractInterpreter.h" |
| #include "DFGGenerationInfo.h" |
| #include "DFGInPlaceAbstractState.h" |
| #include "DFGJITCompiler.h" |
| #include "DFGOSRExit.h" |
| #include "DFGOSRExitJumpPlaceholder.h" |
| #include "DFGSilentRegisterSavePlan.h" |
| #include "DFGValueSource.h" |
| #include "JITOperations.h" |
| #include "MarkedAllocator.h" |
| #include "PutKind.h" |
| #include "SpillRegistersMode.h" |
| #include "ValueRecovery.h" |
| #include "VirtualRegister.h" |
| |
| namespace JSC { namespace DFG { |
| |
| class GPRTemporary; |
| class JSValueOperand; |
| class SlowPathGenerator; |
| class SpeculativeJIT; |
| class SpeculateInt32Operand; |
| class SpeculateStrictInt32Operand; |
| class SpeculateDoubleOperand; |
| class SpeculateCellOperand; |
| class SpeculateBooleanOperand; |
| |
| enum GeneratedOperandType { GeneratedOperandTypeUnknown, GeneratedOperandInteger, GeneratedOperandJSValue}; |
| |
| inline GPRReg extractResult(GPRReg result) { return result; } |
| #if USE(JSVALUE64) |
| inline GPRReg extractResult(JSValueRegs result) { return result.gpr(); } |
| #else |
| inline JSValueRegs extractResult(JSValueRegs result) { return result; } |
| #endif |
| inline NoResultTag extractResult(NoResultTag) { return NoResult; } |
| |
| // === SpeculativeJIT === |
| // |
| // The SpeculativeJIT is used to generate a fast, but potentially |
| // incomplete code path for the dataflow. When code generating |
| // we may make assumptions about operand types, dynamically check, |
| // and bail-out to an alternate code path if these checks fail. |
| // Importantly, the speculative code path cannot be reentered once |
| // a speculative check has failed. This allows the SpeculativeJIT |
| // to propagate type information (including information that has |
| // only speculatively been asserted) through the dataflow. |
| class SpeculativeJIT { |
| WTF_MAKE_FAST_ALLOCATED; |
| |
| friend struct OSRExit; |
| private: |
| typedef JITCompiler::TrustedImm32 TrustedImm32; |
| typedef JITCompiler::Imm32 Imm32; |
| typedef JITCompiler::TrustedImmPtr TrustedImmPtr; |
| typedef JITCompiler::ImmPtr ImmPtr; |
| typedef JITCompiler::TrustedImm64 TrustedImm64; |
| typedef JITCompiler::Imm64 Imm64; |
| |
| // These constants are used to set priorities for spill order for |
| // the register allocator. |
| #if USE(JSVALUE64) |
| enum SpillOrder { |
| SpillOrderConstant = 1, // no spill, and cheap fill |
| SpillOrderSpilled = 2, // no spill |
| SpillOrderJS = 4, // needs spill |
| SpillOrderCell = 4, // needs spill |
| SpillOrderStorage = 4, // needs spill |
| SpillOrderInteger = 5, // needs spill and box |
| SpillOrderBoolean = 5, // needs spill and box |
| SpillOrderDouble = 6, // needs spill and convert |
| }; |
| #elif USE(JSVALUE32_64) |
| enum SpillOrder { |
| SpillOrderConstant = 1, // no spill, and cheap fill |
| SpillOrderSpilled = 2, // no spill |
| SpillOrderJS = 4, // needs spill |
| SpillOrderStorage = 4, // needs spill |
| SpillOrderDouble = 4, // needs spill |
| SpillOrderInteger = 5, // needs spill and box |
| SpillOrderCell = 5, // needs spill and box |
| SpillOrderBoolean = 5, // needs spill and box |
| }; |
| #endif |
| |
| enum UseChildrenMode { CallUseChildren, UseChildrenCalledExplicitly }; |
| |
| public: |
| SpeculativeJIT(JITCompiler&); |
| ~SpeculativeJIT(); |
| |
| bool compile(); |
| |
| void createOSREntries(); |
| void linkOSREntries(LinkBuffer&); |
| |
| BasicBlock* nextBlock() |
| { |
| for (BlockIndex resultIndex = m_block->index + 1; ; resultIndex++) { |
| if (resultIndex >= m_jit.graph().numBlocks()) |
| return 0; |
| if (BasicBlock* result = m_jit.graph().block(resultIndex)) |
| return result; |
| } |
| } |
| |
| #if USE(JSVALUE64) |
| GPRReg fillJSValue(Edge); |
| #elif USE(JSVALUE32_64) |
| bool fillJSValue(Edge, GPRReg&, GPRReg&, FPRReg&); |
| #endif |
| GPRReg fillStorage(Edge); |
| |
| // lock and unlock GPR & FPR registers. |
| void lock(GPRReg reg) |
| { |
| m_gprs.lock(reg); |
| } |
| void lock(FPRReg reg) |
| { |
| m_fprs.lock(reg); |
| } |
| void unlock(GPRReg reg) |
| { |
| m_gprs.unlock(reg); |
| } |
| void unlock(FPRReg reg) |
| { |
| m_fprs.unlock(reg); |
| } |
| |
| // Used to check whether a child node is on its last use, |
| // and its machine registers may be reused. |
| bool canReuse(Node* node) |
| { |
| return generationInfo(node).useCount() == 1; |
| } |
| bool canReuse(Node* nodeA, Node* nodeB) |
| { |
| return nodeA == nodeB && generationInfo(nodeA).useCount() == 2; |
| } |
| bool canReuse(Edge nodeUse) |
| { |
| return canReuse(nodeUse.node()); |
| } |
| GPRReg reuse(GPRReg reg) |
| { |
| m_gprs.lock(reg); |
| return reg; |
| } |
| FPRReg reuse(FPRReg reg) |
| { |
| m_fprs.lock(reg); |
| return reg; |
| } |
| |
| // Allocate a gpr/fpr. |
| GPRReg allocate() |
| { |
| #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) |
| m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset()); |
| #endif |
| VirtualRegister spillMe; |
| GPRReg gpr = m_gprs.allocate(spillMe); |
| if (spillMe.isValid()) { |
| #if USE(JSVALUE32_64) |
| GenerationInfo& info = generationInfoFromVirtualRegister(spillMe); |
| if ((info.registerFormat() & DataFormatJS)) |
| m_gprs.release(info.tagGPR() == gpr ? info.payloadGPR() : info.tagGPR()); |
| #endif |
| spill(spillMe); |
| } |
| return gpr; |
| } |
| GPRReg allocate(GPRReg specific) |
| { |
| #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) |
| m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset()); |
| #endif |
| VirtualRegister spillMe = m_gprs.allocateSpecific(specific); |
| if (spillMe.isValid()) { |
| #if USE(JSVALUE32_64) |
| GenerationInfo& info = generationInfoFromVirtualRegister(spillMe); |
| RELEASE_ASSERT(info.registerFormat() != DataFormatJSDouble); |
| if ((info.registerFormat() & DataFormatJS)) |
| m_gprs.release(info.tagGPR() == specific ? info.payloadGPR() : info.tagGPR()); |
| #endif |
| spill(spillMe); |
| } |
| return specific; |
| } |
| GPRReg tryAllocate() |
| { |
| return m_gprs.tryAllocate(); |
| } |
| FPRReg fprAllocate() |
| { |
| #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) |
| m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset()); |
| #endif |
| VirtualRegister spillMe; |
| FPRReg fpr = m_fprs.allocate(spillMe); |
| if (spillMe.isValid()) |
| spill(spillMe); |
| return fpr; |
| } |
| |
| // Check whether a VirtualRegsiter is currently in a machine register. |
| // We use this when filling operands to fill those that are already in |
| // machine registers first (by locking VirtualRegsiters that are already |
| // in machine register before filling those that are not we attempt to |
| // avoid spilling values we will need immediately). |
| bool isFilled(Node* node) |
| { |
| return generationInfo(node).registerFormat() != DataFormatNone; |
| } |
| bool isFilledDouble(Node* node) |
| { |
| return generationInfo(node).registerFormat() == DataFormatDouble; |
| } |
| |
| // Called on an operand once it has been consumed by a parent node. |
| void use(Node* node) |
| { |
| if (!node->hasResult()) |
| return; |
| GenerationInfo& info = generationInfo(node); |
| |
| // use() returns true when the value becomes dead, and any |
| // associated resources may be freed. |
| if (!info.use(*m_stream)) |
| return; |
| |
| // Release the associated machine registers. |
| DataFormat registerFormat = info.registerFormat(); |
| #if USE(JSVALUE64) |
| if (registerFormat == DataFormatDouble) |
| m_fprs.release(info.fpr()); |
| else if (registerFormat != DataFormatNone) |
| m_gprs.release(info.gpr()); |
| #elif USE(JSVALUE32_64) |
| if (registerFormat == DataFormatDouble) |
| m_fprs.release(info.fpr()); |
| else if (registerFormat & DataFormatJS) { |
| m_gprs.release(info.tagGPR()); |
| m_gprs.release(info.payloadGPR()); |
| } else if (registerFormat != DataFormatNone) |
| m_gprs.release(info.gpr()); |
| #endif |
| } |
| void use(Edge nodeUse) |
| { |
| use(nodeUse.node()); |
| } |
| |
| RegisterSet usedRegisters(); |
| |
| bool masqueradesAsUndefinedWatchpointIsStillValid(const CodeOrigin& codeOrigin) |
| { |
| return m_jit.graph().masqueradesAsUndefinedWatchpointIsStillValid(codeOrigin); |
| } |
| bool masqueradesAsUndefinedWatchpointIsStillValid() |
| { |
| return masqueradesAsUndefinedWatchpointIsStillValid(m_currentNode->origin.semantic); |
| } |
| |
| void storeToWriteBarrierBuffer(GPRReg cell, GPRReg scratch1, GPRReg scratch2); |
| |
| void writeBarrier(GPRReg owner, GPRReg scratch1, GPRReg scratch2); |
| |
| void writeBarrier(GPRReg owner, GPRReg value, Edge valueUse, GPRReg scratch1, GPRReg scratch2); |
| |
| void compileStoreBarrier(Node*); |
| |
| static GPRReg selectScratchGPR(GPRReg preserve1 = InvalidGPRReg, GPRReg preserve2 = InvalidGPRReg, GPRReg preserve3 = InvalidGPRReg, GPRReg preserve4 = InvalidGPRReg) |
| { |
| return AssemblyHelpers::selectScratchGPR(preserve1, preserve2, preserve3, preserve4); |
| } |
| |
| // Called by the speculative operand types, below, to fill operand to |
| // machine registers, implicitly generating speculation checks as needed. |
| GPRReg fillSpeculateInt32(Edge, DataFormat& returnFormat); |
| GPRReg fillSpeculateInt32Strict(Edge); |
| GPRReg fillSpeculateInt52(Edge, DataFormat desiredFormat); |
| FPRReg fillSpeculateDouble(Edge); |
| GPRReg fillSpeculateCell(Edge); |
| GPRReg fillSpeculateBoolean(Edge); |
| GeneratedOperandType checkGeneratedTypeForToInt32(Node*); |
| |
| void addSlowPathGenerator(std::unique_ptr<SlowPathGenerator>); |
| void runSlowPathGenerators(PCToCodeOriginMapBuilder&); |
| |
| void compile(Node*); |
| void noticeOSRBirth(Node*); |
| void bail(AbortReason); |
| void compileCurrentBlock(); |
| |
| void checkArgumentTypes(); |
| |
| void clearGenerationInfo(); |
| |
| // These methods are used when generating 'unexpected' |
| // calls out from JIT code to C++ helper routines - |
| // they spill all live values to the appropriate |
| // slots in the JSStack without changing any state |
| // in the GenerationInfo. |
| SilentRegisterSavePlan silentSavePlanForGPR(VirtualRegister spillMe, GPRReg source); |
| SilentRegisterSavePlan silentSavePlanForFPR(VirtualRegister spillMe, FPRReg source); |
| void silentSpill(const SilentRegisterSavePlan&); |
| void silentFill(const SilentRegisterSavePlan&, GPRReg canTrample); |
| |
| template<typename CollectionType> |
| void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, GPRReg exclude, GPRReg exclude2 = InvalidGPRReg, FPRReg fprExclude = InvalidFPRReg) |
| { |
| ASSERT(plans.isEmpty()); |
| for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) { |
| GPRReg gpr = iter.regID(); |
| if (iter.name().isValid() && gpr != exclude && gpr != exclude2) { |
| SilentRegisterSavePlan plan = silentSavePlanForGPR(iter.name(), gpr); |
| if (doSpill) |
| silentSpill(plan); |
| plans.append(plan); |
| } |
| } |
| for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) { |
| if (iter.name().isValid() && iter.regID() != fprExclude) { |
| SilentRegisterSavePlan plan = silentSavePlanForFPR(iter.name(), iter.regID()); |
| if (doSpill) |
| silentSpill(plan); |
| plans.append(plan); |
| } |
| } |
| } |
| template<typename CollectionType> |
| void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, NoResultTag) |
| { |
| silentSpillAllRegistersImpl(doSpill, plans, InvalidGPRReg, InvalidGPRReg, InvalidFPRReg); |
| } |
| template<typename CollectionType> |
| void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, FPRReg exclude) |
| { |
| silentSpillAllRegistersImpl(doSpill, plans, InvalidGPRReg, InvalidGPRReg, exclude); |
| } |
| #if USE(JSVALUE32_64) |
| template<typename CollectionType> |
| void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, JSValueRegs exclude) |
| { |
| silentSpillAllRegistersImpl(doSpill, plans, exclude.tagGPR(), exclude.payloadGPR()); |
| } |
| #endif |
| |
| void silentSpillAllRegisters(GPRReg exclude, GPRReg exclude2 = InvalidGPRReg, FPRReg fprExclude = InvalidFPRReg) |
| { |
| silentSpillAllRegistersImpl(true, m_plans, exclude, exclude2, fprExclude); |
| } |
| void silentSpillAllRegisters(FPRReg exclude) |
| { |
| silentSpillAllRegisters(InvalidGPRReg, InvalidGPRReg, exclude); |
| } |
| void silentSpillAllRegisters(JSValueRegs exclude) |
| { |
| #if USE(JSVALUE64) |
| silentSpillAllRegisters(exclude.payloadGPR()); |
| #else |
| silentSpillAllRegisters(exclude.payloadGPR(), exclude.tagGPR()); |
| #endif |
| } |
| |
| static GPRReg pickCanTrample(GPRReg exclude) |
| { |
| GPRReg result = GPRInfo::regT0; |
| if (result == exclude) |
| result = GPRInfo::regT1; |
| return result; |
| } |
| static GPRReg pickCanTrample(FPRReg) |
| { |
| return GPRInfo::regT0; |
| } |
| static GPRReg pickCanTrample(NoResultTag) |
| { |
| return GPRInfo::regT0; |
| } |
| |
| #if USE(JSVALUE64) |
| static GPRReg pickCanTrample(JSValueRegs exclude) |
| { |
| return pickCanTrample(exclude.payloadGPR()); |
| } |
| #else |
| static GPRReg pickCanTrample(JSValueRegs exclude) |
| { |
| GPRReg result = GPRInfo::regT0; |
| if (result == exclude.tagGPR()) { |
| result = GPRInfo::regT1; |
| if (result == exclude.payloadGPR()) |
| result = GPRInfo::regT2; |
| } else if (result == exclude.payloadGPR()) { |
| result = GPRInfo::regT1; |
| if (result == exclude.tagGPR()) |
| result = GPRInfo::regT2; |
| } |
| return result; |
| } |
| #endif |
| |
| template<typename RegisterType> |
| void silentFillAllRegisters(RegisterType exclude) |
| { |
| GPRReg canTrample = pickCanTrample(exclude); |
| |
| while (!m_plans.isEmpty()) { |
| SilentRegisterSavePlan& plan = m_plans.last(); |
| silentFill(plan, canTrample); |
| m_plans.removeLast(); |
| } |
| } |
| |
| // These methods convert between doubles, and doubles boxed and JSValues. |
| #if USE(JSVALUE64) |
| GPRReg boxDouble(FPRReg fpr, GPRReg gpr) |
| { |
| return m_jit.boxDouble(fpr, gpr); |
| } |
| FPRReg unboxDouble(GPRReg gpr, FPRReg fpr) |
| { |
| return m_jit.unboxDouble(gpr, fpr); |
| } |
| GPRReg boxDouble(FPRReg fpr) |
| { |
| return boxDouble(fpr, allocate()); |
| } |
| |
| void boxInt52(GPRReg sourceGPR, GPRReg targetGPR, DataFormat); |
| #elif USE(JSVALUE32_64) |
| void boxDouble(FPRReg fpr, GPRReg tagGPR, GPRReg payloadGPR) |
| { |
| m_jit.boxDouble(fpr, tagGPR, payloadGPR); |
| } |
| void unboxDouble(GPRReg tagGPR, GPRReg payloadGPR, FPRReg fpr, FPRReg scratchFPR) |
| { |
| m_jit.unboxDouble(tagGPR, payloadGPR, fpr, scratchFPR); |
| } |
| #endif |
| void boxDouble(FPRReg fpr, JSValueRegs regs) |
| { |
| m_jit.boxDouble(fpr, regs); |
| } |
| |
| // Spill a VirtualRegister to the JSStack. |
| void spill(VirtualRegister spillMe) |
| { |
| GenerationInfo& info = generationInfoFromVirtualRegister(spillMe); |
| |
| #if USE(JSVALUE32_64) |
| if (info.registerFormat() == DataFormatNone) // it has been spilled. JS values which have two GPRs can reach here |
| return; |
| #endif |
| // Check the GenerationInfo to see if this value need writing |
| // to the JSStack - if not, mark it as spilled & return. |
| if (!info.needsSpill()) { |
| info.setSpilled(*m_stream, spillMe); |
| return; |
| } |
| |
| DataFormat spillFormat = info.registerFormat(); |
| switch (spillFormat) { |
| case DataFormatStorage: { |
| // This is special, since it's not a JS value - as in it's not visible to JS |
| // code. |
| m_jit.storePtr(info.gpr(), JITCompiler::addressFor(spillMe)); |
| info.spill(*m_stream, spillMe, DataFormatStorage); |
| return; |
| } |
| |
| case DataFormatInt32: { |
| m_jit.store32(info.gpr(), JITCompiler::payloadFor(spillMe)); |
| info.spill(*m_stream, spillMe, DataFormatInt32); |
| return; |
| } |
| |
| #if USE(JSVALUE64) |
| case DataFormatDouble: { |
| m_jit.storeDouble(info.fpr(), JITCompiler::addressFor(spillMe)); |
| info.spill(*m_stream, spillMe, DataFormatDouble); |
| return; |
| } |
| |
| case DataFormatInt52: |
| case DataFormatStrictInt52: { |
| m_jit.store64(info.gpr(), JITCompiler::addressFor(spillMe)); |
| info.spill(*m_stream, spillMe, spillFormat); |
| return; |
| } |
| |
| default: |
| // The following code handles JSValues, int32s, and cells. |
| RELEASE_ASSERT(spillFormat == DataFormatCell || spillFormat & DataFormatJS); |
| |
| GPRReg reg = info.gpr(); |
| // We need to box int32 and cell values ... |
| // but on JSVALUE64 boxing a cell is a no-op! |
| if (spillFormat == DataFormatInt32) |
| m_jit.or64(GPRInfo::tagTypeNumberRegister, reg); |
| |
| // Spill the value, and record it as spilled in its boxed form. |
| m_jit.store64(reg, JITCompiler::addressFor(spillMe)); |
| info.spill(*m_stream, spillMe, (DataFormat)(spillFormat | DataFormatJS)); |
| return; |
| #elif USE(JSVALUE32_64) |
| case DataFormatCell: |
| case DataFormatBoolean: { |
| m_jit.store32(info.gpr(), JITCompiler::payloadFor(spillMe)); |
| info.spill(*m_stream, spillMe, spillFormat); |
| return; |
| } |
| |
| case DataFormatDouble: { |
| // On JSVALUE32_64 boxing a double is a no-op. |
| m_jit.storeDouble(info.fpr(), JITCompiler::addressFor(spillMe)); |
| info.spill(*m_stream, spillMe, DataFormatDouble); |
| return; |
| } |
| |
| default: |
| // The following code handles JSValues. |
| RELEASE_ASSERT(spillFormat & DataFormatJS); |
| m_jit.store32(info.tagGPR(), JITCompiler::tagFor(spillMe)); |
| m_jit.store32(info.payloadGPR(), JITCompiler::payloadFor(spillMe)); |
| info.spill(*m_stream, spillMe, spillFormat); |
| return; |
| #endif |
| } |
| } |
| |
| bool isKnownInteger(Node* node) { return m_state.forNode(node).isType(SpecInt32); } |
| bool isKnownCell(Node* node) { return m_state.forNode(node).isType(SpecCell); } |
| |
| bool isKnownNotInteger(Node* node) { return !(m_state.forNode(node).m_type & SpecInt32); } |
| bool isKnownNotNumber(Node* node) { return !(m_state.forNode(node).m_type & SpecFullNumber); } |
| bool isKnownNotCell(Node* node) { return !(m_state.forNode(node).m_type & SpecCell); } |
| bool isKnownNotOther(Node* node) { return !(m_state.forNode(node).m_type & SpecOther); } |
| |
| UniquedStringImpl* identifierUID(unsigned index) |
| { |
| return m_jit.graph().identifiers()[index]; |
| } |
| |
| // Spill all VirtualRegisters back to the JSStack. |
| void flushRegisters() |
| { |
| for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) { |
| if (iter.name().isValid()) { |
| spill(iter.name()); |
| iter.release(); |
| } |
| } |
| for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) { |
| if (iter.name().isValid()) { |
| spill(iter.name()); |
| iter.release(); |
| } |
| } |
| } |
| |
| // Used to ASSERT flushRegisters() has been called prior to |
| // calling out from JIT code to a C helper function. |
| bool isFlushed() |
| { |
| for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) { |
| if (iter.name().isValid()) |
| return false; |
| } |
| for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) { |
| if (iter.name().isValid()) |
| return false; |
| } |
| return true; |
| } |
| |
| #if USE(JSVALUE64) |
| static MacroAssembler::Imm64 valueOfJSConstantAsImm64(Node* node) |
| { |
| return MacroAssembler::Imm64(JSValue::encode(node->asJSValue())); |
| } |
| #endif |
| |
| // Helper functions to enable code sharing in implementations of bit/shift ops. |
| void bitOp(NodeType op, int32_t imm, GPRReg op1, GPRReg result) |
| { |
| switch (op) { |
| case BitAnd: |
| m_jit.and32(Imm32(imm), op1, result); |
| break; |
| case BitOr: |
| m_jit.or32(Imm32(imm), op1, result); |
| break; |
| case BitXor: |
| m_jit.xor32(Imm32(imm), op1, result); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| } |
| void bitOp(NodeType op, GPRReg op1, GPRReg op2, GPRReg result) |
| { |
| switch (op) { |
| case BitAnd: |
| m_jit.and32(op1, op2, result); |
| break; |
| case BitOr: |
| m_jit.or32(op1, op2, result); |
| break; |
| case BitXor: |
| m_jit.xor32(op1, op2, result); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| } |
| void shiftOp(NodeType op, GPRReg op1, int32_t shiftAmount, GPRReg result) |
| { |
| switch (op) { |
| case BitRShift: |
| m_jit.rshift32(op1, Imm32(shiftAmount), result); |
| break; |
| case BitLShift: |
| m_jit.lshift32(op1, Imm32(shiftAmount), result); |
| break; |
| case BitURShift: |
| m_jit.urshift32(op1, Imm32(shiftAmount), result); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| } |
| void shiftOp(NodeType op, GPRReg op1, GPRReg shiftAmount, GPRReg result) |
| { |
| switch (op) { |
| case BitRShift: |
| m_jit.rshift32(op1, shiftAmount, result); |
| break; |
| case BitLShift: |
| m_jit.lshift32(op1, shiftAmount, result); |
| break; |
| case BitURShift: |
| m_jit.urshift32(op1, shiftAmount, result); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| } |
| |
| // Returns the index of the branch node if peephole is okay, UINT_MAX otherwise. |
| unsigned detectPeepHoleBranch() |
| { |
| // Check that no intervening nodes will be generated. |
| for (unsigned index = m_indexInBlock + 1; index < m_block->size() - 1; ++index) { |
| Node* node = m_block->at(index); |
| if (!node->shouldGenerate()) |
| continue; |
| // Check if it's a Phantom that can be safely ignored. |
| if (node->op() == Phantom && !node->child1()) |
| continue; |
| return UINT_MAX; |
| } |
| |
| // Check if the lastNode is a branch on this node. |
| Node* lastNode = m_block->terminal(); |
| return lastNode->op() == Branch && lastNode->child1() == m_currentNode ? m_block->size() - 1 : UINT_MAX; |
| } |
| |
| void compileMovHint(Node*); |
| void compileMovHintAndCheck(Node*); |
| |
| #if USE(JSVALUE64) |
| void cachedGetById(CodeOrigin, GPRReg baseGPR, GPRReg resultGPR, unsigned identifierNumber, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill); |
| void cachedPutById(CodeOrigin, GPRReg base, GPRReg value, GPRReg scratchGPR, unsigned identifierNumber, PutKind, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill); |
| #elif USE(JSVALUE32_64) |
| void cachedGetById(CodeOrigin, GPRReg baseTagGPROrNone, GPRReg basePayloadGPR, GPRReg resultTagGPR, GPRReg resultPayloadGPR, unsigned identifierNumber, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill); |
| void cachedPutById(CodeOrigin, GPRReg basePayloadGPR, GPRReg valueTagGPR, GPRReg valuePayloadGPR, GPRReg scratchGPR, unsigned identifierNumber, PutKind, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill); |
| #endif |
| |
| void compileIn(Node*); |
| |
| void compileBaseValueStoreBarrier(Edge& baseEdge, Edge& valueEdge); |
| |
| void nonSpeculativeNonPeepholeCompareNullOrUndefined(Edge operand); |
| void nonSpeculativePeepholeBranchNullOrUndefined(Edge operand, Node* branchNode); |
| |
| void nonSpeculativePeepholeBranch(Node*, Node* branchNode, MacroAssembler::RelationalCondition, S_JITOperation_EJJ helperFunction); |
| void nonSpeculativeNonPeepholeCompare(Node*, MacroAssembler::RelationalCondition, S_JITOperation_EJJ helperFunction); |
| bool nonSpeculativeCompare(Node*, MacroAssembler::RelationalCondition, S_JITOperation_EJJ helperFunction); |
| |
| void nonSpeculativePeepholeStrictEq(Node*, Node* branchNode, bool invert = false); |
| void nonSpeculativeNonPeepholeStrictEq(Node*, bool invert = false); |
| bool nonSpeculativeStrictEq(Node*, bool invert = false); |
| |
| void compileInstanceOfForObject(Node*, GPRReg valueReg, GPRReg prototypeReg, GPRReg scratchAndResultReg, GPRReg scratch2Reg); |
| void compileInstanceOf(Node*); |
| void compileInstanceOfCustom(Node*); |
| |
| void emitCall(Node*); |
| |
| // Called once a node has completed code generation but prior to setting |
| // its result, to free up its children. (This must happen prior to setting |
| // the nodes result, since the node may have the same VirtualRegister as |
| // a child, and as such will use the same GeneratioInfo). |
| void useChildren(Node*); |
| |
| // These method called to initialize the the GenerationInfo |
| // to describe the result of an operation. |
| void int32Result(GPRReg reg, Node* node, DataFormat format = DataFormatInt32, UseChildrenMode mode = CallUseChildren) |
| { |
| if (mode == CallUseChildren) |
| useChildren(node); |
| |
| VirtualRegister virtualRegister = node->virtualRegister(); |
| GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister); |
| |
| if (format == DataFormatInt32) { |
| m_jit.jitAssertIsInt32(reg); |
| m_gprs.retain(reg, virtualRegister, SpillOrderInteger); |
| info.initInt32(node, node->refCount(), reg); |
| } else { |
| #if USE(JSVALUE64) |
| RELEASE_ASSERT(format == DataFormatJSInt32); |
| m_jit.jitAssertIsJSInt32(reg); |
| m_gprs.retain(reg, virtualRegister, SpillOrderJS); |
| info.initJSValue(node, node->refCount(), reg, format); |
| #elif USE(JSVALUE32_64) |
| RELEASE_ASSERT_NOT_REACHED(); |
| #endif |
| } |
| } |
| void int32Result(GPRReg reg, Node* node, UseChildrenMode mode) |
| { |
| int32Result(reg, node, DataFormatInt32, mode); |
| } |
| void int52Result(GPRReg reg, Node* node, DataFormat format, UseChildrenMode mode = CallUseChildren) |
| { |
| if (mode == CallUseChildren) |
| useChildren(node); |
| |
| VirtualRegister virtualRegister = node->virtualRegister(); |
| GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister); |
| |
| m_gprs.retain(reg, virtualRegister, SpillOrderJS); |
| info.initInt52(node, node->refCount(), reg, format); |
| } |
| void int52Result(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren) |
| { |
| int52Result(reg, node, DataFormatInt52, mode); |
| } |
| void strictInt52Result(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren) |
| { |
| int52Result(reg, node, DataFormatStrictInt52, mode); |
| } |
| void noResult(Node* node, UseChildrenMode mode = CallUseChildren) |
| { |
| if (mode == UseChildrenCalledExplicitly) |
| return; |
| useChildren(node); |
| } |
| void cellResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren) |
| { |
| if (mode == CallUseChildren) |
| useChildren(node); |
| |
| VirtualRegister virtualRegister = node->virtualRegister(); |
| m_gprs.retain(reg, virtualRegister, SpillOrderCell); |
| GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister); |
| info.initCell(node, node->refCount(), reg); |
| } |
| void blessedBooleanResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren) |
| { |
| #if USE(JSVALUE64) |
| jsValueResult(reg, node, DataFormatJSBoolean, mode); |
| #else |
| booleanResult(reg, node, mode); |
| #endif |
| } |
| void unblessedBooleanResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren) |
| { |
| #if USE(JSVALUE64) |
| blessBoolean(reg); |
| #endif |
| blessedBooleanResult(reg, node, mode); |
| } |
| #if USE(JSVALUE64) |
| void jsValueResult(GPRReg reg, Node* node, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren) |
| { |
| if (format == DataFormatJSInt32) |
| m_jit.jitAssertIsJSInt32(reg); |
| |
| if (mode == CallUseChildren) |
| useChildren(node); |
| |
| VirtualRegister virtualRegister = node->virtualRegister(); |
| m_gprs.retain(reg, virtualRegister, SpillOrderJS); |
| GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister); |
| info.initJSValue(node, node->refCount(), reg, format); |
| } |
| void jsValueResult(GPRReg reg, Node* node, UseChildrenMode mode) |
| { |
| jsValueResult(reg, node, DataFormatJS, mode); |
| } |
| #elif USE(JSVALUE32_64) |
| void booleanResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren) |
| { |
| if (mode == CallUseChildren) |
| useChildren(node); |
| |
| VirtualRegister virtualRegister = node->virtualRegister(); |
| m_gprs.retain(reg, virtualRegister, SpillOrderBoolean); |
| GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister); |
| info.initBoolean(node, node->refCount(), reg); |
| } |
| void jsValueResult(GPRReg tag, GPRReg payload, Node* node, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren) |
| { |
| if (mode == CallUseChildren) |
| useChildren(node); |
| |
| VirtualRegister virtualRegister = node->virtualRegister(); |
| m_gprs.retain(tag, virtualRegister, SpillOrderJS); |
| m_gprs.retain(payload, virtualRegister, SpillOrderJS); |
| GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister); |
| info.initJSValue(node, node->refCount(), tag, payload, format); |
| } |
| void jsValueResult(GPRReg tag, GPRReg payload, Node* node, UseChildrenMode mode) |
| { |
| jsValueResult(tag, payload, node, DataFormatJS, mode); |
| } |
| #endif |
| void jsValueResult(JSValueRegs regs, Node* node, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren) |
| { |
| #if USE(JSVALUE64) |
| jsValueResult(regs.gpr(), node, format, mode); |
| #else |
| jsValueResult(regs.tagGPR(), regs.payloadGPR(), node, format, mode); |
| #endif |
| } |
| void storageResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren) |
| { |
| if (mode == CallUseChildren) |
| useChildren(node); |
| |
| VirtualRegister virtualRegister = node->virtualRegister(); |
| m_gprs.retain(reg, virtualRegister, SpillOrderStorage); |
| GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister); |
| info.initStorage(node, node->refCount(), reg); |
| } |
| void doubleResult(FPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren) |
| { |
| if (mode == CallUseChildren) |
| useChildren(node); |
| |
| VirtualRegister virtualRegister = node->virtualRegister(); |
| m_fprs.retain(reg, virtualRegister, SpillOrderDouble); |
| GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister); |
| info.initDouble(node, node->refCount(), reg); |
| } |
| void initConstantInfo(Node* node) |
| { |
| ASSERT(node->hasConstant()); |
| generationInfo(node).initConstant(node, node->refCount()); |
| } |
| |
| // These methods add calls to C++ helper functions. |
| // These methods are broadly value representation specific (i.e. |
| // deal with the fact that a JSValue may be passed in one or two |
| // machine registers, and delegate the calling convention specific |
| // decision as to how to fill the regsiters to setupArguments* methods. |
| |
| JITCompiler::Call callOperation(V_JITOperation_E operation) |
| { |
| m_jit.setupArgumentsExecState(); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(P_JITOperation_E operation, GPRReg result) |
| { |
| m_jit.setupArgumentsExecState(); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(P_JITOperation_EC operation, GPRReg result, GPRReg cell) |
| { |
| m_jit.setupArgumentsWithExecState(cell); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(P_JITOperation_EO operation, GPRReg result, GPRReg object) |
| { |
| m_jit.setupArgumentsWithExecState(object); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(P_JITOperation_EOS operation, GPRReg result, GPRReg object, size_t size) |
| { |
| m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(size)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(P_JITOperation_EOZ operation, GPRReg result, GPRReg object, int32_t size) |
| { |
| m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(size)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EOZ operation, GPRReg result, GPRReg object, int32_t size) |
| { |
| m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(static_cast<size_t>(size))); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(P_JITOperation_EPS operation, GPRReg result, GPRReg old, size_t size) |
| { |
| m_jit.setupArgumentsWithExecState(old, TrustedImmPtr(size)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(P_JITOperation_ES operation, GPRReg result, size_t size) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(size)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(P_JITOperation_ESJss operation, GPRReg result, size_t index, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(index), arg1); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(P_JITOperation_ESt operation, GPRReg result, Structure* structure) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(P_JITOperation_EStZ operation, GPRReg result, Structure* structure, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(P_JITOperation_EStZ operation, GPRReg result, Structure* structure, size_t arg2) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImm32(arg2)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(P_JITOperation_EStZ operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(P_JITOperation_EStPS operation, GPRReg result, Structure* structure, void* pointer, size_t size) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImmPtr(pointer), TrustedImmPtr(size)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(P_JITOperation_EStSS operation, GPRReg result, Structure* structure, size_t index, size_t size) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImmPtr(index), TrustedImmPtr(size)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_E operation, GPRReg result) |
| { |
| m_jit.setupArgumentsExecState(); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EC operation, GPRReg result, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EC operation, GPRReg result, JSCell* cell) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_ECZ operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_ECZC operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EJscC operation, GPRReg result, GPRReg arg1, JSCell* cell) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EIcf operation, GPRReg result, InlineCallFrame* inlineCallFrame) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(inlineCallFrame)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_ESt operation, GPRReg result, Structure* structure) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure)); |
| return appendCallSetResult(operation, result); |
| } |
| |
| #if USE(JSVALUE64) |
| JITCompiler::Call callOperation(C_JITOperation_EStJscSymtabJ operation, GPRReg result, Structure* structure, GPRReg scope, SymbolTable* table, TrustedImm64 initialValue) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), scope, TrustedImmPtr(table), initialValue); |
| return appendCallSetResult(operation, result); |
| } |
| #else |
| JITCompiler::Call callOperation(C_JITOperation_EStJscSymtabJ operation, GPRReg result, Structure* structure, GPRReg scope, SymbolTable* table, TrustedImm32 tag, TrustedImm32 payload) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), scope, TrustedImmPtr(table), payload, tag); |
| return appendCallSetResult(operation, result); |
| } |
| #endif |
| JITCompiler::Call callOperation(C_JITOperation_EStZ operation, GPRReg result, Structure* structure, unsigned knownLength) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImm32(knownLength)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EStZZ operation, GPRReg result, Structure* structure, unsigned knownLength, unsigned minCapacity) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImm32(knownLength), TrustedImm32(minCapacity)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EStZ operation, GPRReg result, Structure* structure, GPRReg length) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), length); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EStZZ operation, GPRReg result, Structure* structure, GPRReg length, unsigned minCapacity) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), length, TrustedImm32(minCapacity)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EJssSt operation, GPRReg result, GPRReg arg1, Structure* structure) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(structure)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EJssJss operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EJssJssJss operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(S_JITOperation_ECC operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(S_JITOperation_EGC operation, GPRReg result, JSGlobalObject* globalObject, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(globalObject), arg2); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(C_JITOperation_EGC operation, GPRReg result, JSGlobalObject* globalObject, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(globalObject), arg2); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(Jss_JITOperation_EZ operation, GPRReg result, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(V_JITOperation_EC operation, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCall(operation); |
| } |
| |
| JITCompiler::Call callOperation(V_JITOperation_EC operation, JSCell* arg1) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(arg1)); |
| return appendCall(operation); |
| } |
| |
| JITCompiler::Call callOperation(V_JITOperation_ECIcf operation, GPRReg arg1, InlineCallFrame* inlineCallFrame) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(inlineCallFrame)); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_ECCIcf operation, GPRReg arg1, GPRReg arg2, InlineCallFrame* inlineCallFrame) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(inlineCallFrame)); |
| return appendCall(operation); |
| } |
| |
| JITCompiler::Call callOperation(V_JITOperation_ECZ operation, GPRReg arg1, int arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, TrustedImm32(arg2)); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_ECC operation, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_ECC operation, GPRReg arg1, JSCell* arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(arg2)); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_ECC operation, JSCell* arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(arg1), arg2); |
| return appendCall(operation); |
| } |
| |
| JITCompiler::Call callOperationWithCallFrameRollbackOnException(V_JITOperation_ECb operation, void* pointer) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer)); |
| return appendCallWithCallFrameRollbackOnException(operation); |
| } |
| |
| JITCompiler::Call callOperationWithCallFrameRollbackOnException(Z_JITOperation_E operation, GPRReg result) |
| { |
| m_jit.setupArgumentsExecState(); |
| return appendCallWithCallFrameRollbackOnExceptionSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(Z_JITOperation_EC operation, GPRReg result, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(V_JITOperation_ECIZC operation, GPRReg regOp1, UniquedStringImpl* identOp2, int32_t op3, GPRReg regOp4) |
| { |
| m_jit.setupArgumentsWithExecState(regOp1, TrustedImmPtr(identOp2), TrustedImm32(op3), regOp4); |
| return appendCall(operation); |
| } |
| |
| template<typename FunctionType, typename... Args> |
| JITCompiler::Call callOperation(FunctionType operation, NoResultTag, Args... args) |
| { |
| return callOperation(operation, args...); |
| } |
| |
| JITCompiler::Call callOperation(D_JITOperation_ZZ operation, FPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArguments(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(D_JITOperation_D operation, FPRReg result, FPRReg arg1) |
| { |
| m_jit.setupArguments(arg1); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(D_JITOperation_DD operation, FPRReg result, FPRReg arg1, FPRReg arg2) |
| { |
| m_jit.setupArguments(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(T_JITOperation_EJss operation, GPRReg result, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EJscZ operation, GPRReg result, GPRReg arg1, int32_t arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, TrustedImm32(arg2)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EZ operation, GPRReg result, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EZ operation, GPRReg result, int32_t arg1) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImm32(arg1)); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(J_JITOperation_EJscC operation, GPRReg result, GPRReg arg1, JSCell* cell) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell)); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(J_JITOperation_EJscCJ operation, GPRReg result, GPRReg arg1, JSCell* cell, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell), arg2); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(V_JITOperation_EWs operation, WatchpointSet* watchpointSet) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(watchpointSet)); |
| return appendCall(operation); |
| } |
| |
| JITCompiler::Call callOperation(V_JITOperation_ECRUiUi operation, GPRReg arg1, GPRReg arg2, Imm32 arg3, GPRReg arg4) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, arg3.asTrustedImm32(), arg4); |
| return appendCall(operation); |
| } |
| |
| #if USE(JSVALUE64) |
| JITCompiler::Call callOperation(J_JITOperation_E operation, GPRReg result) |
| { |
| m_jit.setupArgumentsExecState(); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EP operation, GPRReg result, void* pointer) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(Z_JITOperation_D operation, GPRReg result, FPRReg arg1) |
| { |
| m_jit.setupArguments(arg1); |
| JITCompiler::Call call = m_jit.appendCall(operation); |
| m_jit.zeroExtend32ToPtr(GPRInfo::returnValueGPR, result); |
| return call; |
| } |
| JITCompiler::Call callOperation(Q_JITOperation_J operation, GPRReg result, GPRReg value) |
| { |
| m_jit.setupArguments(value); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(Q_JITOperation_D operation, GPRReg result, FPRReg value) |
| { |
| m_jit.setupArguments(value); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EI operation, GPRReg result, UniquedStringImpl* uid) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(uid)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EA operation, GPRReg result, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EAZ operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJssZ operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EPS operation, GPRReg result, void* pointer, size_t size) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer), TrustedImmPtr(size)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_ESS operation, GPRReg result, int startConstant, int numConstants) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImm32(startConstant), TrustedImm32(numConstants)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EPP operation, GPRReg result, GPRReg arg1, void* pointer) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(pointer)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EC operation, GPRReg result, JSCell* cell) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_ECZ operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_ESsiCI operation, GPRReg result, StructureStubInfo* stubInfo, GPRReg arg1, const UniquedStringImpl* uid) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1, TrustedImmPtr(uid)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_ESsiJI operation, GPRReg result, StructureStubInfo* stubInfo, GPRReg arg1, UniquedStringImpl* uid) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1, TrustedImmPtr(uid)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EDA operation, GPRReg result, FPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJC operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJZ operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJA operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EP operation, GPRReg result, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EZ operation, GPRReg result, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EZ operation, GPRReg result, int32_t arg1) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImm32(arg1)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EZZ operation, GPRReg result, int32_t arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EZIcfZ operation, GPRReg result, int32_t arg1, InlineCallFrame* inlineCallFrame, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), TrustedImmPtr(inlineCallFrame), arg2); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(P_JITOperation_EJS operation, GPRReg result, GPRReg value, size_t index) |
| { |
| m_jit.setupArgumentsWithExecState(value, TrustedImmPtr(index)); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(P_JITOperation_EStJ operation, GPRReg result, Structure* structure, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), arg2); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(C_JITOperation_EJ operation, GPRReg result, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EJJC operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EJJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EJZ operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(C_JITOperation_EJZC operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(S_JITOperation_J operation, GPRReg result, GPRReg arg1) |
| { |
| m_jit.setupArguments(arg1); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(S_JITOperation_EJ operation, GPRReg result, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJ operation, JSValueRegs result, JSValueRegs arg1) |
| { |
| return callOperation(operation, result.payloadGPR(), arg1.payloadGPR()); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJ operation, GPRReg result, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(S_JITOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(J_JITOperation_EPP operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg result, GPRReg arg1, MacroAssembler::TrustedImm32 imm) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, MacroAssembler::TrustedImm64(JSValue::encode(jsNumber(imm.m_value)))); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg result, MacroAssembler::TrustedImm32 imm, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(MacroAssembler::TrustedImm64(JSValue::encode(jsNumber(imm.m_value))), arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJJ operation, JSValueRegs result, JSValueRegs arg1, JSValueRegs arg2) |
| { |
| return callOperation(operation, result.payloadGPR(), arg1.payloadGPR(), arg2.payloadGPR()); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_ECC operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_ECJ operation, GPRReg result, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_ECJ operation, GPRReg result, GPRReg arg1, JSValueRegs arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2.gpr()); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(V_JITOperation_EOZD operation, GPRReg arg1, GPRReg arg2, FPRReg arg3) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_EJ operation, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_EJPP operation, GPRReg arg1, GPRReg arg2, void* pointer) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(pointer)); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_ESsiJJI operation, StructureStubInfo* stubInfo, GPRReg arg1, GPRReg arg2, UniquedStringImpl* uid) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1, arg2, TrustedImmPtr(uid)); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_EJJJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_EPZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); |
| return appendCall(operation); |
| } |
| |
| JITCompiler::Call callOperation(V_JITOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_ECJJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); |
| return appendCall(operation); |
| } |
| |
| JITCompiler::Call callOperation(Z_JITOperation_EJZZ operation, GPRReg result, GPRReg arg1, unsigned arg2, unsigned arg3) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, TrustedImm32(arg2), TrustedImm32(arg3)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(F_JITOperation_EFJZZ operation, GPRReg result, GPRReg arg1, GPRReg arg2, unsigned arg3, GPRReg arg4) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImm32(arg3), arg4); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(Z_JITOperation_EJOJ operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(Z_JITOperation_EJOJ operation, GPRReg result, JSValueRegs arg1, GPRReg arg2, JSValueRegs arg3) |
| { |
| return callOperation(operation, result, arg1.payloadGPR(), arg2, arg3.payloadGPR()); |
| } |
| |
| JITCompiler::Call callOperation(Z_JITOperation_EJZ operation, GPRReg result, GPRReg arg1, unsigned arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, TrustedImm32(arg2)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_EZJZZZ operation, unsigned arg1, GPRReg arg2, unsigned arg3, GPRReg arg4, unsigned arg5) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2, TrustedImm32(arg3), arg4, TrustedImm32(arg5)); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_ECJZC operation, GPRReg regOp1, GPRReg regOp2, int32_t op3, GPRReg regOp4) |
| { |
| m_jit.setupArgumentsWithExecState(regOp1, regOp2, TrustedImm32(op3), regOp4); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_ECIZJJ operation, GPRReg regOp1, UniquedStringImpl* identOp2, int32_t op3, GPRReg regOp4, GPRReg regOp5) |
| { |
| m_jit.setupArgumentsWithExecState(regOp1, TrustedImmPtr(identOp2), TrustedImm32(op3), regOp4, regOp5); |
| return appendCall(operation); |
| } |
| #else // USE(JSVALUE32_64) |
| |
| // EncodedJSValue in JSVALUE32_64 is a 64-bit integer. When being compiled in ARM EABI, it must be aligned on an even-numbered register (r0, r2 or [sp]). |
| // To prevent the assembler from using wrong registers, let's occupy r1 or r3 with a dummy argument when necessary. |
| #if (COMPILER_SUPPORTS(EABI) && CPU(ARM)) || CPU(MIPS) |
| #define EABI_32BIT_DUMMY_ARG TrustedImm32(0), |
| #else |
| #define EABI_32BIT_DUMMY_ARG |
| #endif |
| |
| // JSVALUE32_64 is a 64-bit integer that cannot be put half in an argument register and half on stack when using SH4 architecture. |
| // To avoid this, let's occupy the 4th argument register (r7) with a dummy argument when necessary. This must only be done when there |
| // is no other 32-bit value argument behind this 64-bit JSValue. |
| #if CPU(SH4) |
| #define SH4_32BIT_DUMMY_ARG TrustedImm32(0), |
| #else |
| #define SH4_32BIT_DUMMY_ARG |
| #endif |
| |
| JITCompiler::Call callOperation(D_JITOperation_G operation, FPRReg result, JSGlobalObject* globalObject) |
| { |
| m_jit.setupArguments(TrustedImmPtr(globalObject)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(Z_JITOperation_D operation, GPRReg result, FPRReg arg1) |
| { |
| prepareForExternalCall(); |
| m_jit.setupArguments(arg1); |
| JITCompiler::Call call = m_jit.appendCall(operation); |
| m_jit.zeroExtend32ToPtr(GPRInfo::returnValueGPR, result); |
| return call; |
| } |
| JITCompiler::Call callOperation(J_JITOperation_E operation, GPRReg resultTag, GPRReg resultPayload) |
| { |
| m_jit.setupArgumentsExecState(); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EP operation, GPRReg resultTag, GPRReg resultPayload, void* pointer) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer)); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EPP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, void* pointer) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(pointer)); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EI operation, GPRReg resultTag, GPRReg resultPayload, UniquedStringImpl* uid) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(uid)); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EA operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EAZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJ operation, JSValueRegs result, JSValueRegs arg1) |
| { |
| return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1.tagGPR(), arg1.payloadGPR()); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJ operation, GPRReg resultPayload, GPRReg resultTag, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJC operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJssZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EPS operation, GPRReg resultTag, GPRReg resultPayload, void* pointer, size_t size) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer), TrustedImmPtr(size)); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_ESS operation, GPRReg resultTag, GPRReg resultPayload, int startConstant, int numConstants) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImm32(startConstant), TrustedImm32(numConstants)); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, void* pointer) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, TrustedImmPtr(pointer)); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| |
| JITCompiler::Call callOperation(J_JITOperation_EC operation, GPRReg resultTag, GPRReg resultPayload, JSCell* cell) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell)); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_ECZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJscC operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, JSCell* cell) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell)); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJscCJ operation, GPRReg result, GPRReg arg1, JSCell* cell, GPRReg arg2Tag, GPRReg arg2Payload) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell), EABI_32BIT_DUMMY_ARG arg2Payload, arg2Tag); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_ESsiCI operation, GPRReg resultTag, GPRReg resultPayload, StructureStubInfo* stubInfo, GPRReg arg1, const UniquedStringImpl* uid) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1, TrustedImmPtr(uid)); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_ESsiJI operation, GPRReg resultTag, GPRReg resultPayload, StructureStubInfo* stubInfo, GPRReg arg1Tag, GPRReg arg1Payload, UniquedStringImpl* uid) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1Payload, arg1Tag, TrustedImmPtr(uid)); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_ESsiJI operation, GPRReg resultTag, GPRReg resultPayload, StructureStubInfo* stubInfo, int32_t arg1Tag, GPRReg arg1Payload, UniquedStringImpl* uid) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1Payload, TrustedImm32(arg1Tag), TrustedImmPtr(uid)); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EDA operation, GPRReg resultTag, GPRReg resultPayload, FPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1, arg2); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJA operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJA operation, GPRReg resultTag, GPRReg resultPayload, TrustedImm32 arg1Tag, GPRReg arg1Payload, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1) |
| { |
| m_jit.setupArgumentsWithExecState(arg1); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImm32(arg1)); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EZIcfZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1, InlineCallFrame* inlineCallFrame, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), TrustedImmPtr(inlineCallFrame), arg2); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EZZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| |
| JITCompiler::Call callOperation(P_JITOperation_EJS operation, GPRReg result, JSValueRegs value, size_t index) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG value.payloadGPR(), value.tagGPR(), TrustedImmPtr(index)); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(P_JITOperation_EStJ operation, GPRReg result, Structure* structure, GPRReg arg2Tag, GPRReg arg2Payload) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), arg2Payload, arg2Tag); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(C_JITOperation_EJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(C_JITOperation_EJJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2Payload, arg2Tag); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(C_JITOperation_EJJJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload, GPRReg arg3Tag, GPRReg arg3Payload) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2Payload, arg2Tag, arg3Payload, arg3Tag); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(S_JITOperation_EJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag); |
| return appendCallSetResult(operation, result); |
| } |
| |
| JITCompiler::Call callOperation(S_JITOperation_EJJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, SH4_32BIT_DUMMY_ARG arg2Payload, arg2Tag); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, SH4_32BIT_DUMMY_ARG arg2Payload, arg2Tag); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, MacroAssembler::TrustedImm32 imm) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, SH4_32BIT_DUMMY_ARG imm, TrustedImm32(JSValue::Int32Tag)); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, MacroAssembler::TrustedImm32 imm, GPRReg arg2Tag, GPRReg arg2Payload) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG imm, TrustedImm32(JSValue::Int32Tag), SH4_32BIT_DUMMY_ARG arg2Payload, arg2Tag); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_EJJ operation, JSValueRegs result, JSValueRegs arg1, JSValueRegs arg2) |
| { |
| return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1.tagGPR(), arg1.payloadGPR(), arg2.tagGPR(), arg2.payloadGPR()); |
| } |
| |
| JITCompiler::Call callOperation(J_JITOperation_ECJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_ECJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2Payload) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2Payload, MacroAssembler::TrustedImm32(JSValue::CellTag)); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_ECJ operation, JSValueRegs result, GPRReg arg1, JSValueRegs arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2.payloadGPR(), arg2.tagGPR()); |
| return appendCallSetResult(operation, result.payloadGPR(), result.tagGPR()); |
| } |
| JITCompiler::Call callOperation(J_JITOperation_ECC operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2); |
| return appendCallSetResult(operation, resultPayload, resultTag); |
| } |
| |
| JITCompiler::Call callOperation(V_JITOperation_EOZD operation, GPRReg arg1, GPRReg arg2, FPRReg arg3) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG arg3); |
| return appendCall(operation); |
| } |
| |
| JITCompiler::Call callOperation(V_JITOperation_EJ operation, GPRReg arg1Tag, GPRReg arg1Payload) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag); |
| return appendCall(operation); |
| } |
| |
| JITCompiler::Call callOperation(V_JITOperation_EJPP operation, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2, void* pointer) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2, TrustedImmPtr(pointer)); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_ESsiJJI operation, StructureStubInfo* stubInfo, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Payload, UniquedStringImpl* uid) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1Payload, arg1Tag, arg2Payload, TrustedImm32(JSValue::CellTag), TrustedImmPtr(uid)); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_ECJJ operation, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload, GPRReg arg3Tag, GPRReg arg3Payload) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag, arg3Payload, arg3Tag); |
| return appendCall(operation); |
| } |
| |
| JITCompiler::Call callOperation(V_JITOperation_EPZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG SH4_32BIT_DUMMY_ARG arg3Payload, arg3Tag); |
| return appendCall(operation); |
| } |
| |
| JITCompiler::Call callOperation(V_JITOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG SH4_32BIT_DUMMY_ARG arg3Payload, arg3Tag); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, TrustedImm32 arg3Tag, GPRReg arg3Payload) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG SH4_32BIT_DUMMY_ARG arg3Payload, arg3Tag); |
| return appendCall(operation); |
| } |
| |
| JITCompiler::Call callOperation(Z_JITOperation_EJOJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2, EABI_32BIT_DUMMY_ARG arg3Payload, arg3Tag); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(Z_JITOperation_EJOJ operation, GPRReg result, JSValueRegs arg1, GPRReg arg2, JSValueRegs arg3) |
| { |
| return callOperation(operation, result, arg1.tagGPR(), arg1.payloadGPR(), arg2, arg3.tagGPR(), arg3.payloadGPR()); |
| } |
| |
| JITCompiler::Call callOperation(Z_JITOperation_EJZZ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, unsigned arg2, unsigned arg3) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, TrustedImm32(arg2), TrustedImm32(arg3)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(F_JITOperation_EFJZZ operation, GPRReg result, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload, unsigned arg3, GPRReg arg4) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag, TrustedImm32(arg3), arg4); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(Z_JITOperation_EJZ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, unsigned arg2) |
| { |
| m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, TrustedImm32(arg2)); |
| return appendCallSetResult(operation, result); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_EZJZZZ operation, unsigned arg1, GPRReg arg2Tag, GPRReg arg2Payload, unsigned arg3, GPRReg arg4, unsigned arg5) |
| { |
| m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2Payload, arg2Tag, TrustedImm32(arg3), arg4, TrustedImm32(arg5)); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_ECJZC operation, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload, int32_t arg3, GPRReg arg4) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag, TrustedImm32(arg3), arg4); |
| return appendCall(operation); |
| } |
| JITCompiler::Call callOperation(V_JITOperation_ECIZCC operation, GPRReg arg1, UniquedStringImpl* identOp2, int32_t op3, GPRReg arg4, GPRReg arg5) |
| { |
| m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identOp2), TrustedImm32(op3), arg4, arg5); |
| return appendCall(operation); |
| } |
| #undef EABI_32BIT_DUMMY_ARG |
| #undef SH4_32BIT_DUMMY_ARG |
| |
| template<typename FunctionType> |
| JITCompiler::Call callOperation( |
| FunctionType operation, JSValueRegs result) |
| { |
| return callOperation(operation, result.tagGPR(), result.payloadGPR()); |
| } |
| template<typename FunctionType, typename ArgumentType1> |
| JITCompiler::Call callOperation( |
| FunctionType operation, JSValueRegs result, ArgumentType1 arg1) |
| { |
| return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1); |
| } |
| template<typename FunctionType, typename ArgumentType1, typename ArgumentType2> |
| JITCompiler::Call callOperation( |
| FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2) |
| { |
| return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2); |
| } |
| template< |
| typename FunctionType, typename ArgumentType1, typename ArgumentType2, |
| typename ArgumentType3> |
| JITCompiler::Call callOperation( |
| FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2, |
| ArgumentType3 arg3) |
| { |
| return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3); |
| } |
| template< |
| typename FunctionType, typename ArgumentType1, typename ArgumentType2, |
| typename ArgumentType3, typename ArgumentType4> |
| JITCompiler::Call callOperation( |
| FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2, |
| ArgumentType3 arg3, ArgumentType4 arg4) |
| { |
| return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3, arg4); |
| } |
| template< |
| typename FunctionType, typename ArgumentType1, typename ArgumentType2, |
| typename ArgumentType3, typename ArgumentType4, typename ArgumentType5> |
| JITCompiler::Call callOperation( |
| FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2, |
| ArgumentType3 arg3, ArgumentType4 arg4, ArgumentType5 arg5) |
| { |
| return callOperation( |
| operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3, arg4, arg5); |
| } |
| #endif // USE(JSVALUE32_64) |
| |
| #if !defined(NDEBUG) && !CPU(ARM) && !CPU(MIPS) && !CPU(SH4) |
| void prepareForExternalCall() |
| { |
| // We're about to call out to a "native" helper function. The helper |
| // function is expected to set topCallFrame itself with the ExecState |
| // that is passed to it. |
| // |
| // We explicitly trash topCallFrame here so that we'll know if some of |
| // the helper functions are not setting topCallFrame when they should |
| // be doing so. Note: the previous value in topcallFrame was not valid |
| // anyway since it was not being updated by JIT'ed code by design. |
| |
| for (unsigned i = 0; i < sizeof(void*) / 4; i++) |
| m_jit.store32(TrustedImm32(0xbadbeef), reinterpret_cast<char*>(&m_jit.vm()->topCallFrame) + i * 4); |
| } |
| #else |
| void prepareForExternalCall() { } |
| #endif |
| |
| // These methods add call instructions, optionally setting results, and optionally rolling back the call frame on an exception. |
| JITCompiler::Call appendCall(const FunctionPtr& function) |
| { |
| prepareForExternalCall(); |
| m_jit.emitStoreCodeOrigin(m_currentNode->origin.semantic); |
| return m_jit.appendCall(function); |
| } |
| JITCompiler::Call appendCallWithCallFrameRollbackOnException(const FunctionPtr& function) |
| { |
| JITCompiler::Call call = appendCall(function); |
| m_jit.exceptionCheckWithCallFrameRollback(); |
| return call; |
| } |
| JITCompiler::Call appendCallWithCallFrameRollbackOnExceptionSetResult(const FunctionPtr& function, GPRReg result) |
| { |
| JITCompiler::Call call = appendCallWithCallFrameRollbackOnException(function); |
| if ((result != InvalidGPRReg) && (result != GPRInfo::returnValueGPR)) |
| m_jit.move(GPRInfo::returnValueGPR, result); |
| return call; |
| } |
| JITCompiler::Call appendCallSetResult(const FunctionPtr& function, GPRReg result) |
| { |
| JITCompiler::Call call = appendCall(function); |
| if (result != InvalidGPRReg) |
| m_jit.move(GPRInfo::returnValueGPR, result); |
| return call; |
| } |
| JITCompiler::Call appendCallSetResult(const FunctionPtr& function, GPRReg result1, GPRReg result2) |
| { |
| JITCompiler::Call call = appendCall(function); |
| m_jit.setupResults(result1, result2); |
| return call; |
| } |
| #if CPU(X86) |
| JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result) |
| { |
| JITCompiler::Call call = appendCall(function); |
| if (result != InvalidFPRReg) { |
| m_jit.assembler().fstpl(0, JITCompiler::stackPointerRegister); |
| m_jit.loadDouble(JITCompiler::stackPointerRegister, result); |
| } |
| return call; |
| } |
| #elif CPU(ARM) && !CPU(ARM_HARDFP) |
| JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result) |
| { |
| JITCompiler::Call call = appendCall(function); |
| if (result != InvalidFPRReg) |
| m_jit.assembler().vmov(result, GPRInfo::returnValueGPR, GPRInfo::returnValueGPR2); |
| return call; |
| } |
| #else // CPU(X86_64) || (CPU(ARM) && CPU(ARM_HARDFP)) || CPU(ARM64) || CPU(MIPS) || CPU(SH4) |
| JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result) |
| { |
| JITCompiler::Call call = appendCall(function); |
| if (result != InvalidFPRReg) |
| m_jit.moveDouble(FPRInfo::returnValueFPR, result); |
| return call; |
| } |
| #endif |
| |
| void branchDouble(JITCompiler::DoubleCondition cond, FPRReg left, FPRReg right, BasicBlock* destination) |
| { |
| return addBranch(m_jit.branchDouble(cond, left, right), destination); |
| } |
| |
| void branchDoubleNonZero(FPRReg value, FPRReg scratch, BasicBlock* destination) |
| { |
| return addBranch(m_jit.branchDoubleNonZero(value, scratch), destination); |
| } |
| |
| template<typename T, typename U> |
| void branch32(JITCompiler::RelationalCondition cond, T left, U right, BasicBlock* destination) |
| { |
| return addBranch(m_jit.branch32(cond, left, right), destination); |
| } |
| |
| template<typename T, typename U> |
| void branchTest32(JITCompiler::ResultCondition cond, T value, U mask, BasicBlock* destination) |
| { |
| return addBranch(m_jit.branchTest32(cond, value, mask), destination); |
| } |
| |
| template<typename T> |
| void branchTest32(JITCompiler::ResultCondition cond, T value, BasicBlock* destination) |
| { |
| return addBranch(m_jit.branchTest32(cond, value), destination); |
| } |
| |
| #if USE(JSVALUE64) |
| template<typename T, typename U> |
| void branch64(JITCompiler::RelationalCondition cond, T left, U right, BasicBlock* destination) |
| { |
| return addBranch(m_jit.branch64(cond, left, right), destination); |
| } |
| #endif |
| |
| template<typename T, typename U> |
| void branch8(JITCompiler::RelationalCondition cond, T left, U right, BasicBlock* destination) |
| { |
| return addBranch(m_jit.branch8(cond, left, right), destination); |
| } |
| |
| template<typename T, typename U> |
| void branchPtr(JITCompiler::RelationalCondition cond, T left, U right, BasicBlock* destination) |
| { |
| return addBranch(m_jit.branchPtr(cond, left, right), destination); |
| } |
| |
| template<typename T, typename U> |
| void branchTestPtr(JITCompiler::ResultCondition cond, T value, U mask, BasicBlock* destination) |
| { |
| return addBranch(m_jit.branchTestPtr(cond, value, mask), destination); |
| } |
| |
| template<typename T> |
| void branchTestPtr(JITCompiler::ResultCondition cond, T value, BasicBlock* destination) |
| { |
| return addBranch(m_jit.branchTestPtr(cond, value), destination); |
| } |
| |
| template<typename T, typename U> |
| void branchTest8(JITCompiler::ResultCondition cond, T value, U mask, BasicBlock* destination) |
| { |
| return addBranch(m_jit.branchTest8(cond, value, mask), destination); |
| } |
| |
| template<typename T> |
| void branchTest8(JITCompiler::ResultCondition cond, T value, BasicBlock* destination) |
| { |
| return addBranch(m_jit.branchTest8(cond, value), destination); |
| } |
| |
| enum FallThroughMode { |
| AtFallThroughPoint, |
| ForceJump |
| }; |
| void jump(BasicBlock* destination, FallThroughMode fallThroughMode = AtFallThroughPoint) |
| { |
| if (destination == nextBlock() |
| && fallThroughMode == AtFallThroughPoint) |
| return; |
| addBranch(m_jit.jump(), destination); |
| } |
| |
| void addBranch(const MacroAssembler::Jump& jump, BasicBlock* destination) |
| { |
| m_branches.append(BranchRecord(jump, destination)); |
| } |
| void addBranch(const MacroAssembler::JumpList& jump, BasicBlock* destination); |
| |
| void linkBranches(); |
| |
| void dump(const char* label = 0); |
| |
| bool betterUseStrictInt52(Node* node) |
| { |
| return !generationInfo(node).isInt52(); |
| } |
| bool betterUseStrictInt52(Edge edge) |
| { |
| return betterUseStrictInt52(edge.node()); |
| } |
| |
| bool compare(Node*, MacroAssembler::RelationalCondition, MacroAssembler::DoubleCondition, S_JITOperation_EJJ); |
| bool compilePeepHoleBranch(Node*, MacroAssembler::RelationalCondition, MacroAssembler::DoubleCondition, S_JITOperation_EJJ); |
| void compilePeepHoleInt32Branch(Node*, Node* branchNode, JITCompiler::RelationalCondition); |
| void compilePeepHoleInt52Branch(Node*, Node* branchNode, JITCompiler::RelationalCondition); |
| void compilePeepHoleBooleanBranch(Node*, Node* branchNode, JITCompiler::RelationalCondition); |
| void compilePeepHoleDoubleBranch(Node*, Node* branchNode, JITCompiler::DoubleCondition); |
| void compilePeepHoleObjectEquality(Node*, Node* branchNode); |
| void compilePeepHoleObjectStrictEquality(Edge objectChild, Edge otherChild, Node* branchNode); |
| void compilePeepHoleObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild, Node* branchNode); |
| void compileObjectEquality(Node*); |
| void compileObjectStrictEquality(Edge objectChild, Edge otherChild); |
| void compileObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild); |
| void compileObjectOrOtherLogicalNot(Edge value); |
| void compileLogicalNot(Node*); |
| void compileStringEquality( |
| Node*, GPRReg leftGPR, GPRReg rightGPR, GPRReg lengthGPR, |
| GPRReg leftTempGPR, GPRReg rightTempGPR, GPRReg leftTemp2GPR, |
| GPRReg rightTemp2GPR, JITCompiler::JumpList fastTrue, |
| JITCompiler::JumpList fastSlow); |
| void compileStringEquality(Node*); |
| void compileStringIdentEquality(Node*); |
| void compileStringToUntypedEquality(Node*, Edge stringEdge, Edge untypedEdge); |
| void compileStringIdentToNotStringVarEquality(Node*, Edge stringEdge, Edge notStringVarEdge); |
| void compileStringZeroLength(Node*); |
| void compileMiscStrictEq(Node*); |
| |
| template<typename Functor> |
| void extractStringImplFromBinarySymbols(Edge leftSymbolEdge, Edge rightSymbolEdge, const Functor&); |
| void compileSymbolEquality(Node*); |
| void compilePeepHoleSymbolEquality(Node*, Node* branchNode); |
| |
| void emitObjectOrOtherBranch(Edge value, BasicBlock* taken, BasicBlock* notTaken); |
| void emitStringBranch(Edge value, BasicBlock* taken, BasicBlock* notTaken); |
| void emitBranch(Node*); |
| |
| struct StringSwitchCase { |
| StringSwitchCase() { } |
| |
| StringSwitchCase(StringImpl* string, BasicBlock* target) |
| : string(string) |
| , target(target) |
| { |
| } |
| |
| bool operator<(const StringSwitchCase& other) const |
| { |
| return stringLessThan(*string, *other.string); |
| } |
| |
| StringImpl* string; |
| BasicBlock* target; |
| }; |
| |
| void emitSwitchIntJump(SwitchData*, GPRReg value, GPRReg scratch); |
| void emitSwitchImm(Node*, SwitchData*); |
| void emitSwitchCharStringJump(SwitchData*, GPRReg value, GPRReg scratch); |
| void emitSwitchChar(Node*, SwitchData*); |
| void emitBinarySwitchStringRecurse( |
| SwitchData*, const Vector<StringSwitchCase>&, unsigned numChecked, |
| unsigned begin, unsigned end, GPRReg buffer, GPRReg length, GPRReg temp, |
| unsigned alreadyCheckedLength, bool checkedExactLength); |
| void emitSwitchStringOnString(SwitchData*, GPRReg string); |
| void emitSwitchString(Node*, SwitchData*); |
| void emitSwitch(Node*); |
| |
| void compileToStringOrCallStringConstructorOnCell(Node*); |
| void compileNewStringObject(Node*); |
| |
| void compileNewTypedArray(Node*); |
| |
| void compileInt32Compare(Node*, MacroAssembler::RelationalCondition); |
| void compileInt52Compare(Node*, MacroAssembler::RelationalCondition); |
| void compileBooleanCompare(Node*, MacroAssembler::RelationalCondition); |
| void compileDoubleCompare(Node*, MacroAssembler::DoubleCondition); |
| |
| bool compileStrictEq(Node*); |
| |
| void compileAllocatePropertyStorage(Node*); |
| void compileReallocatePropertyStorage(Node*); |
| void compileGetButterfly(Node*); |
| |
| #if USE(JSVALUE32_64) |
| template<typename BaseOperandType, typename PropertyOperandType, typename ValueOperandType, typename TagType> |
| void compileContiguousPutByVal(Node*, BaseOperandType&, PropertyOperandType&, ValueOperandType&, GPRReg valuePayloadReg, TagType valueTag); |
| #endif |
| void compileDoublePutByVal(Node*, SpeculateCellOperand& base, SpeculateStrictInt32Operand& property); |
| bool putByValWillNeedExtraRegister(ArrayMode arrayMode) |
| { |
| return arrayMode.mayStoreToHole(); |
| } |
| GPRReg temporaryRegisterForPutByVal(GPRTemporary&, ArrayMode); |
| GPRReg temporaryRegisterForPutByVal(GPRTemporary& temporary, Node* node) |
| { |
| return temporaryRegisterForPutByVal(temporary, node->arrayMode()); |
| } |
| |
| void compileGetCharCodeAt(Node*); |
| void compileGetByValOnString(Node*); |
| void compileFromCharCode(Node*); |
| |
| void compileGetByValOnDirectArguments(Node*); |
| void compileGetByValOnScopedArguments(Node*); |
| |
| void compileGetScope(Node*); |
| void compileSkipScope(Node*); |
| |
| void compileGetArrayLength(Node*); |
| |
| void compileCheckTypeInfoFlags(Node*); |
| void compileCheckIdent(Node*); |
| |
| void compileValueRep(Node*); |
| void compileDoubleRep(Node*); |
| |
| void compileValueToInt32(Node*); |
| void compileUInt32ToNumber(Node*); |
| void compileDoubleAsInt32(Node*); |
| |
| template<typename SnippetGenerator, J_JITOperation_EJJ slowPathFunction> |
| void emitUntypedBitOp(Node*); |
| void compileBitwiseOp(Node*); |
| |
| void emitUntypedRightShiftBitOp(Node*); |
| void compileShiftOp(Node*); |
| |
| void compileValueAdd(Node*); |
| void compileArithAdd(Node*); |
| void compileMakeRope(Node*); |
| void compileArithClz32(Node*); |
| void compileArithSub(Node*); |
| void compileArithNegate(Node*); |
| void compileArithMul(Node*); |
| void compileArithDiv(Node*); |
| void compileArithMod(Node*); |
| void compileArithPow(Node*); |
| void compileArithRound(Node*); |
| void compileArithRandom(Node*); |
| void compileArithSqrt(Node*); |
| void compileArithLog(Node*); |
| void compileConstantStoragePointer(Node*); |
| void compileGetIndexedPropertyStorage(Node*); |
| JITCompiler::Jump jumpForTypedArrayOutOfBounds(Node*, GPRReg baseGPR, GPRReg indexGPR); |
| void emitTypedArrayBoundsCheck(Node*, GPRReg baseGPR, GPRReg indexGPR); |
| void compileGetTypedArrayByteOffset(Node*); |
| void compileGetByValOnIntTypedArray(Node*, TypedArrayType); |
| void compilePutByValForIntTypedArray(GPRReg base, GPRReg property, Node*, TypedArrayType); |
| void compileGetByValOnFloatTypedArray(Node*, TypedArrayType); |
| void compilePutByValForFloatTypedArray(GPRReg base, GPRReg property, Node*, TypedArrayType); |
| template <typename ClassType> void compileNewFunctionCommon(GPRReg, Structure*, GPRReg, GPRReg, GPRReg, MacroAssembler::JumpList&, size_t, FunctionExecutable*, ptrdiff_t, ptrdiff_t, ptrdiff_t); |
| void compileNewFunction(Node*); |
| void compileForwardVarargs(Node*); |
| void compileCreateActivation(Node*); |
| void compileCreateDirectArguments(Node*); |
| void compileGetFromArguments(Node*); |
| void compilePutToArguments(Node*); |
| void compileCreateScopedArguments(Node*); |
| void compileCreateClonedArguments(Node*); |
| void compileCopyRest(Node*); |
| void compileGetRestLength(Node*); |
| void compileNotifyWrite(Node*); |
| bool compileRegExpExec(Node*); |
| void compileIsObjectOrNull(Node*); |
| void compileIsFunction(Node*); |
| void compileTypeOf(Node*); |
| void compileCheckStructure(Node*, GPRReg cellGPR, GPRReg tempGPR); |
| void compileCheckStructure(Node*); |
| void compilePutAccessorById(Node*); |
| void compilePutGetterSetterById(Node*); |
| void compilePutAccessorByVal(Node*); |
| |
| void moveTrueTo(GPRReg); |
| void moveFalseTo(GPRReg); |
| void blessBoolean(GPRReg); |
| |
| // size can be an immediate or a register, and must be in bytes. If size is a register, |
| // it must be a different register than resultGPR. Emits code that place a pointer to |
| // the end of the allocation. The returned jump is the jump to the slow path. |
| template<typename SizeType> |
| MacroAssembler::Jump emitAllocateBasicStorage(SizeType size, GPRReg resultGPR) |
| { |
| CopiedAllocator* copiedAllocator = &m_jit.vm()->heap.storageAllocator(); |
| |
| // It's invalid to allocate zero bytes in CopiedSpace. |
| #ifndef NDEBUG |
| m_jit.move(size, resultGPR); |
| MacroAssembler::Jump nonZeroSize = m_jit.branchTest32(MacroAssembler::NonZero, resultGPR); |
| m_jit.abortWithReason(DFGBasicStorageAllocatorZeroSize); |
| nonZeroSize.link(&m_jit); |
| #endif |
| |
| m_jit.loadPtr(&copiedAllocator->m_currentRemaining, resultGPR); |
| MacroAssembler::Jump slowPath = m_jit.branchSubPtr(JITCompiler::Signed, size, resultGPR); |
| m_jit.storePtr(resultGPR, &copiedAllocator->m_currentRemaining); |
| m_jit.negPtr(resultGPR); |
| m_jit.addPtr(JITCompiler::AbsoluteAddress(&copiedAllocator->m_currentPayloadEnd), resultGPR); |
| |
| return slowPath; |
| } |
| |
| // Allocator for a cell of a specific size. |
| template <typename StructureType> // StructureType can be GPR or ImmPtr. |
| void emitAllocateJSCell(GPRReg resultGPR, GPRReg allocatorGPR, StructureType structure, |
| GPRReg scratchGPR, MacroAssembler::JumpList& slowPath) |
| { |
| if (Options::forceGCSlowPaths()) |
| slowPath.append(m_jit.jump()); |
| else { |
| m_jit.loadPtr(MacroAssembler::Address(allocatorGPR, MarkedAllocator::offsetOfFreeListHead()), resultGPR); |
| slowPath.append(m_jit.branchTestPtr(MacroAssembler::Zero, resultGPR)); |
| } |
| |
| // The object is half-allocated: we have what we know is a fresh object, but |
| // it's still on the GC's free list. |
| m_jit.loadPtr(MacroAssembler::Address(resultGPR), scratchGPR); |
| m_jit.storePtr(scratchGPR, MacroAssembler::Address(allocatorGPR, MarkedAllocator::offsetOfFreeListHead())); |
| |
| // Initialize the object's Structure. |
| m_jit.emitStoreStructureWithTypeInfo(structure, resultGPR, scratchGPR); |
| } |
| |
| // Allocator for an object of a specific size. |
| template <typename StructureType, typename StorageType> // StructureType and StorageType can be GPR or ImmPtr. |
| void emitAllocateJSObject(GPRReg resultGPR, GPRReg allocatorGPR, StructureType structure, |
| StorageType storage, GPRReg scratchGPR, MacroAssembler::JumpList& slowPath) |
| { |
| emitAllocateJSCell(resultGPR, allocatorGPR, structure, scratchGPR, slowPath); |
| |
| // Initialize the object's property storage pointer. |
| m_jit.storePtr(storage, MacroAssembler::Address(resultGPR, JSObject::butterflyOffset())); |
| } |
| |
| template <typename ClassType, typename StructureType, typename StorageType> // StructureType and StorageType can be GPR or ImmPtr. |
| void emitAllocateJSObjectWithKnownSize( |
| GPRReg resultGPR, StructureType structure, StorageType storage, GPRReg scratchGPR1, |
| GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath, size_t size) |
| { |
| MarkedAllocator* allocator = &m_jit.vm()->heap.allocatorForObjectOfType<ClassType>(size); |
| m_jit.move(TrustedImmPtr(allocator), scratchGPR1); |
| emitAllocateJSObject(resultGPR, scratchGPR1, structure, storage, scratchGPR2, slowPath); |
| } |
| |
| // Convenience allocator for a built-in object. |
| template <typename ClassType, typename StructureType, typename StorageType> // StructureType and StorageType can be GPR or ImmPtr. |
| void emitAllocateJSObject(GPRReg resultGPR, StructureType structure, StorageType storage, |
| GPRReg scratchGPR1, GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath) |
| { |
| emitAllocateJSObjectWithKnownSize<ClassType>( |
| resultGPR, structure, storage, scratchGPR1, scratchGPR2, slowPath, |
| ClassType::allocationSize(0)); |
| } |
| |
| template <typename ClassType, typename StructureType> // StructureType and StorageType can be GPR or ImmPtr. |
| void emitAllocateVariableSizedJSObject(GPRReg resultGPR, StructureType structure, GPRReg allocationSize, GPRReg scratchGPR1, GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath) |
| { |
| static_assert(!(MarkedSpace::preciseStep & (MarkedSpace::preciseStep - 1)), "MarkedSpace::preciseStep must be a power of two."); |
| static_assert(!(MarkedSpace::impreciseStep & (MarkedSpace::impreciseStep - 1)), "MarkedSpace::impreciseStep must be a power of two."); |
| |
| MarkedSpace::Subspace& subspace = m_jit.vm()->heap.subspaceForObjectOfType<ClassType>(); |
| m_jit.add32(TrustedImm32(MarkedSpace::preciseStep - 1), allocationSize); |
| MacroAssembler::Jump notSmall = m_jit.branch32(MacroAssembler::AboveOrEqual, allocationSize, TrustedImm32(MarkedSpace::preciseCutoff)); |
| m_jit.rshift32(allocationSize, TrustedImm32(getLSBSet(MarkedSpace::preciseStep)), scratchGPR1); |
| m_jit.mul32(TrustedImm32(sizeof(MarkedAllocator)), scratchGPR1, scratchGPR1); |
| m_jit.addPtr(MacroAssembler::TrustedImmPtr(&subspace.preciseAllocators[0]), scratchGPR1); |
| |
| MacroAssembler::Jump selectedSmallSpace = m_jit.jump(); |
| notSmall.link(&m_jit); |
| slowPath.append(m_jit.branch32(MacroAssembler::AboveOrEqual, allocationSize, TrustedImm32(MarkedSpace::impreciseCutoff))); |
| m_jit.rshift32(allocationSize, TrustedImm32(getLSBSet(MarkedSpace::impreciseStep)), scratchGPR1); |
| m_jit.mul32(TrustedImm32(sizeof(MarkedAllocator)), scratchGPR1, scratchGPR1); |
| m_jit.addPtr(MacroAssembler::TrustedImmPtr(&subspace.impreciseAllocators[0]), scratchGPR1); |
| |
| selectedSmallSpace.link(&m_jit); |
| |
| emitAllocateJSObject(resultGPR, scratchGPR1, structure, TrustedImmPtr(0), scratchGPR2, slowPath); |
| } |
| |
| template <typename T> |
| void emitAllocateDestructibleObject(GPRReg resultGPR, Structure* structure, |
| GPRReg scratchGPR1, GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath) |
| { |
| emitAllocateJSObject<T>(resultGPR, TrustedImmPtr(structure), TrustedImmPtr(0), scratchGPR1, scratchGPR2, slowPath); |
| m_jit.storePtr(TrustedImmPtr(structure->classInfo()), MacroAssembler::Address(resultGPR, JSDestructibleObject::classInfoOffset())); |
| } |
| |
| void emitAllocateJSArray(GPRReg resultGPR, Structure*, GPRReg storageGPR, unsigned numElements); |
| |
| void emitGetLength(InlineCallFrame*, GPRReg lengthGPR, bool includeThis = false); |
| void emitGetLength(CodeOrigin, GPRReg lengthGPR, bool includeThis = false); |
| void emitGetCallee(CodeOrigin, GPRReg calleeGPR); |
| void emitGetArgumentStart(CodeOrigin, GPRReg startGPR); |
| |
| // Generate an OSR exit fuzz check. Returns Jump() if OSR exit fuzz is not enabled, or if |
| // it's in training mode. |
| MacroAssembler::Jump emitOSRExitFuzzCheck(); |
| |
| // Add a speculation check. |
| void speculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail); |
| void speculationCheck(ExitKind, JSValueSource, Node*, const MacroAssembler::JumpList& jumpsToFail); |
| |
| // Add a speculation check without additional recovery, and with a promise to supply a jump later. |
| OSRExitJumpPlaceholder speculationCheck(ExitKind, JSValueSource, Node*); |
| OSRExitJumpPlaceholder speculationCheck(ExitKind, JSValueSource, Edge); |
| void speculationCheck(ExitKind, JSValueSource, Edge, MacroAssembler::Jump jumpToFail); |
| void speculationCheck(ExitKind, JSValueSource, Edge, const MacroAssembler::JumpList& jumpsToFail); |
| // Add a speculation check with additional recovery. |
| void speculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&); |
| void speculationCheck(ExitKind, JSValueSource, Edge, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&); |
| |
| void emitInvalidationPoint(Node*); |
| |
| // Called when we statically determine that a speculation will fail. |
| void terminateSpeculativeExecution(ExitKind, JSValueRegs, Node*); |
| void terminateSpeculativeExecution(ExitKind, JSValueRegs, Edge); |
| |
| // Helpers for performing type checks on an edge stored in the given registers. |
| bool needsTypeCheck(Edge edge, SpeculatedType typesPassedThrough) { return m_interpreter.needsTypeCheck(edge, typesPassedThrough); } |
| void typeCheck(JSValueSource, Edge, SpeculatedType typesPassedThrough, MacroAssembler::Jump jumpToFail, ExitKind = BadType); |
| |
| void speculateCellTypeWithoutTypeFiltering(Edge, GPRReg cellGPR, JSType); |
| void speculateCellType(Edge, GPRReg cellGPR, SpeculatedType, JSType); |
| |
| void speculateInt32(Edge); |
| #if USE(JSVALUE64) |
| void convertMachineInt(Edge, GPRReg resultGPR); |
| void speculateMachineInt(Edge); |
| void speculateDoubleRepMachineInt(Edge); |
| #endif // USE(JSVALUE64) |
| void speculateNumber(Edge); |
| void speculateRealNumber(Edge); |
| void speculateDoubleRepReal(Edge); |
| void speculateBoolean(Edge); |
| void speculateCell(Edge); |
| void speculateCellOrOther(Edge); |
| void speculateObject(Edge); |
| void speculateFunction(Edge); |
| void speculateFinalObject(Edge); |
| void speculateObjectOrOther(Edge); |
| void speculateString(Edge edge, GPRReg cell); |
| void speculateStringIdentAndLoadStorage(Edge edge, GPRReg string, GPRReg storage); |
| void speculateStringIdent(Edge edge, GPRReg string); |
| void speculateStringIdent(Edge); |
| void speculateString(Edge); |
| void speculateNotStringVar(Edge); |
| template<typename StructureLocationType> |
| void speculateStringObjectForStructure(Edge, StructureLocationType); |
| void speculateStringObject(Edge, GPRReg); |
| void speculateStringObject(Edge); |
| void speculateStringOrStringObject(Edge); |
| void speculateSymbol(Edge, GPRReg cell); |
| void speculateSymbol(Edge); |
| void speculateNotCell(Edge); |
| void speculateOther(Edge); |
| void speculateMisc(Edge, JSValueRegs); |
| void speculateMisc(Edge); |
| void speculate(Node*, Edge); |
| |
| JITCompiler::Jump jumpSlowForUnwantedArrayMode(GPRReg tempWithIndexingTypeReg, ArrayMode, IndexingType); |
| JITCompiler::JumpList jumpSlowForUnwantedArrayMode(GPRReg tempWithIndexingTypeReg, ArrayMode); |
| void checkArray(Node*); |
| void arrayify(Node*, GPRReg baseReg, GPRReg propertyReg); |
| void arrayify(Node*); |
| |
| template<bool strict> |
| GPRReg fillSpeculateInt32Internal(Edge, DataFormat& returnFormat); |
| |
| // It is possible, during speculative generation, to reach a situation in which we |
| // can statically determine a speculation will fail (for example, when two nodes |
| // will make conflicting speculations about the same operand). In such cases this |
| // flag is cleared, indicating no further code generation should take place. |
| bool m_compileOkay; |
| |
| void recordSetLocal( |
| VirtualRegister bytecodeReg, VirtualRegister machineReg, DataFormat format) |
| { |
| m_stream->appendAndLog(VariableEvent::setLocal(bytecodeReg, machineReg, format)); |
| } |
| |
| void recordSetLocal(DataFormat format) |
| { |
| VariableAccessData* variable = m_currentNode->variableAccessData(); |
| recordSetLocal(variable->local(), variable->machineLocal(), format); |
| } |
| |
| GenerationInfo& generationInfoFromVirtualRegister(VirtualRegister virtualRegister) |
| { |
| return m_generationInfo[virtualRegister.toLocal()]; |
| } |
| |
| GenerationInfo& generationInfo(Node* node) |
| { |
| return generationInfoFromVirtualRegister(node->virtualRegister()); |
| } |
| |
| GenerationInfo& generationInfo(Edge edge) |
| { |
| return generationInfo(edge.node()); |
| } |
| |
| // The JIT, while also provides MacroAssembler functionality. |
| JITCompiler& m_jit; |
| |
| // The current node being generated. |
| BasicBlock* m_block; |
| Node* m_currentNode; |
| NodeType m_lastGeneratedNode; |
| unsigned m_indexInBlock; |
| // Virtual and physical register maps. |
| Vector<GenerationInfo, 32> m_generationInfo; |
| RegisterBank<GPRInfo> m_gprs; |
| RegisterBank<FPRInfo> m_fprs; |
| |
| Vector<MacroAssembler::Label> m_osrEntryHeads; |
| |
| struct BranchRecord { |
| BranchRecord(MacroAssembler::Jump jump, BasicBlock* destination) |
| : jump(jump) |
| , destination(destination) |
| { |
| } |
| |
| MacroAssembler::Jump jump; |
| BasicBlock* destination; |
| }; |
| Vector<BranchRecord, 8> m_branches; |
| |
| NodeOrigin m_origin; |
| |
| InPlaceAbstractState m_state; |
| AbstractInterpreter<InPlaceAbstractState> m_interpreter; |
| |
| VariableEventStream* m_stream; |
| MinifiedGraph* m_minifiedGraph; |
| |
| Vector<std::unique_ptr<SlowPathGenerator>, 8> m_slowPathGenerators; |
| Vector<SilentRegisterSavePlan> m_plans; |
| unsigned m_outOfLineStreamIndex { UINT_MAX }; |
| }; |
| |
| |
| // === Operand types === |
| // |
| // These classes are used to lock the operands to a node into machine |
| // registers. These classes implement of pattern of locking a value |
| // into register at the point of construction only if it is already in |
| // registers, and otherwise loading it lazily at the point it is first |
| // used. We do so in order to attempt to avoid spilling one operand |
| // in order to make space available for another. |
| |
| class JSValueOperand { |
| public: |
| explicit JSValueOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) |
| : m_jit(jit) |
| , m_edge(edge) |
| #if USE(JSVALUE64) |
| , m_gprOrInvalid(InvalidGPRReg) |
| #elif USE(JSVALUE32_64) |
| , m_isDouble(false) |
| #endif |
| { |
| ASSERT(m_jit); |
| if (!edge) |
| return; |
| ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == UntypedUse); |
| #if USE(JSVALUE64) |
| if (jit->isFilled(node())) |
| gpr(); |
| #elif USE(JSVALUE32_64) |
| m_register.pair.tagGPR = InvalidGPRReg; |
| m_register.pair.payloadGPR = InvalidGPRReg; |
| if (jit->isFilled(node())) |
| fill(); |
| #endif |
| } |
| |
| explicit JSValueOperand(JSValueOperand&& other) |
| : m_jit(other.m_jit) |
| , m_edge(other.m_edge) |
| { |
| #if USE(JSVALUE64) |
| m_gprOrInvalid = other.m_gprOrInvalid; |
| #elif USE(JSVALUE32_64) |
| m_register.pair.tagGPR = InvalidGPRReg; |
| m_register.pair.payloadGPR = InvalidGPRReg; |
| m_isDouble = other.m_isDouble; |
| |
| if (m_edge) { |
| if (m_isDouble) |
| m_register.fpr = other.m_register.fpr; |
| else |
| m_register.pair = other.m_register.pair; |
| } |
| #endif |
| other.m_edge = Edge(); |
| #if USE(JSVALUE64) |
| other.m_gprOrInvalid = InvalidGPRReg; |
| #elif USE(JSVALUE32_64) |
| other.m_isDouble = false; |
| #endif |
| } |
| |
| ~JSValueOperand() |
| { |
| if (!m_edge) |
| return; |
| #if USE(JSVALUE64) |
| ASSERT(m_gprOrInvalid != InvalidGPRReg); |
| m_jit->unlock(m_gprOrInvalid); |
| #elif USE(JSVALUE32_64) |
| if (m_isDouble) { |
| ASSERT(m_register.fpr != InvalidFPRReg); |
| m_jit->unlock(m_register.fpr); |
| } else { |
| ASSERT(m_register.pair.tagGPR != InvalidGPRReg && m_register.pair.payloadGPR != InvalidGPRReg); |
| m_jit->unlock(m_register.pair.tagGPR); |
| m_jit->unlock(m_register.pair.payloadGPR); |
| } |
| #endif |
| } |
| |
| Edge edge() const |
| { |
| return m_edge; |
| } |
| |
| Node* node() const |
| { |
| return edge().node(); |
| } |
| |
| #if USE(JSVALUE64) |
| GPRReg gpr() |
| { |
| if (m_gprOrInvalid == InvalidGPRReg) |
| m_gprOrInvalid = m_jit->fillJSValue(m_edge); |
| return m_gprOrInvalid; |
| } |
| JSValueRegs jsValueRegs() |
| { |
| return JSValueRegs(gpr()); |
| } |
| #elif USE(JSVALUE32_64) |
| bool isDouble() { return m_isDouble; } |
| |
| void fill() |
| { |
| if (m_register.pair.tagGPR == InvalidGPRReg && m_register.pair.payloadGPR == InvalidGPRReg) |
| m_isDouble = !m_jit->fillJSValue(m_edge, m_register.pair.tagGPR, m_register.pair.payloadGPR, m_register.fpr); |
| } |
| |
| GPRReg tagGPR() |
| { |
| fill(); |
| ASSERT(!m_isDouble); |
| return m_register.pair.tagGPR; |
| } |
| |
| GPRReg payloadGPR() |
| { |
| fill(); |
| ASSERT(!m_isDouble); |
| return m_register.pair.payloadGPR; |
| } |
| |
| JSValueRegs jsValueRegs() |
| { |
| return JSValueRegs(tagGPR(), payloadGPR()); |
| } |
| |
| GPRReg gpr(WhichValueWord which) |
| { |
| return jsValueRegs().gpr(which); |
| } |
| |
| FPRReg fpr() |
| { |
| fill(); |
| ASSERT(m_isDouble); |
| return m_register.fpr; |
| } |
| #endif |
| |
| void use() |
| { |
| m_jit->use(node()); |
| } |
| |
| private: |
| SpeculativeJIT* m_jit; |
| Edge m_edge; |
| #if USE(JSVALUE64) |
| GPRReg m_gprOrInvalid; |
| #elif USE(JSVALUE32_64) |
| union { |
| struct { |
| GPRReg tagGPR; |
| GPRReg payloadGPR; |
| } pair; |
| FPRReg fpr; |
| } m_register; |
| bool m_isDouble; |
| #endif |
| }; |
| |
| class StorageOperand { |
| public: |
| explicit StorageOperand(SpeculativeJIT* jit, Edge edge) |
| : m_jit(jit) |
| , m_edge(edge) |
| , m_gprOrInvalid(InvalidGPRReg) |
| { |
| ASSERT(m_jit); |
| ASSERT(edge.useKind() == UntypedUse || edge.useKind() == KnownCellUse); |
| if (jit->isFilled(node())) |
| gpr(); |
| } |
| |
| ~StorageOperand() |
| { |
| ASSERT(m_gprOrInvalid != InvalidGPRReg); |
| m_jit->unlock(m_gprOrInvalid); |
| } |
| |
| Edge edge() const |
| { |
| return m_edge; |
| } |
| |
| Node* node() const |
| { |
| return edge().node(); |
| } |
| |
| GPRReg gpr() |
| { |
| if (m_gprOrInvalid == InvalidGPRReg) |
| m_gprOrInvalid = m_jit->fillStorage(edge()); |
| return m_gprOrInvalid; |
| } |
| |
| void use() |
| { |
| m_jit->use(node()); |
| } |
| |
| private: |
| SpeculativeJIT* m_jit; |
| Edge m_edge; |
| GPRReg m_gprOrInvalid; |
| }; |
| |
| |
| // === Temporaries === |
| // |
| // These classes are used to allocate temporary registers. |
| // A mechanism is provided to attempt to reuse the registers |
| // currently allocated to child nodes whose value is consumed |
| // by, and not live after, this operation. |
| |
| enum ReuseTag { Reuse }; |
| |
| class GPRTemporary { |
| public: |
| GPRTemporary(); |
| GPRTemporary(SpeculativeJIT*); |
| GPRTemporary(SpeculativeJIT*, GPRReg specific); |
| template<typename T> |
| GPRTemporary(SpeculativeJIT* jit, ReuseTag, T& operand) |
| : m_jit(jit) |
| , m_gpr(InvalidGPRReg) |
| { |
| if (m_jit->canReuse(operand.node())) |
| m_gpr = m_jit->reuse(operand.gpr()); |
| else |
| m_gpr = m_jit->allocate(); |
| } |
| template<typename T1, typename T2> |
| GPRTemporary(SpeculativeJIT* jit, ReuseTag, T1& op1, T2& op2) |
| : m_jit(jit) |
| , m_gpr(InvalidGPRReg) |
| { |
| if (m_jit->canReuse(op1.node())) |
| m_gpr = m_jit->reuse(op1.gpr()); |
| else if (m_jit->canReuse(op2.node())) |
| m_gpr = m_jit->reuse(op2.gpr()); |
| else if (m_jit->canReuse(op1.node(), op2.node()) && op1.gpr() == op2.gpr()) |
| m_gpr = m_jit->reuse(op1.gpr()); |
| else |
| m_gpr = m_jit->allocate(); |
| } |
| #if USE(JSVALUE32_64) |
| GPRTemporary(SpeculativeJIT*, ReuseTag, JSValueOperand&, WhichValueWord); |
| #endif |
| |
| void adopt(GPRTemporary&); |
| |
| ~GPRTemporary() |
| { |
| if (m_jit && m_gpr != InvalidGPRReg) |
| m_jit->unlock(gpr()); |
| } |
| |
| GPRReg gpr() |
| { |
| return m_gpr; |
| } |
| |
| private: |
| SpeculativeJIT* m_jit; |
| GPRReg m_gpr; |
| }; |
| |
| class JSValueRegsTemporary { |
| public: |
| JSValueRegsTemporary(); |
| JSValueRegsTemporary(SpeculativeJIT*); |
| ~JSValueRegsTemporary(); |
| |
| JSValueRegs regs(); |
| |
| private: |
| #if USE(JSVALUE64) |
| GPRTemporary m_gpr; |
| #else |
| GPRTemporary m_payloadGPR; |
| GPRTemporary m_tagGPR; |
| #endif |
| }; |
| |
| class FPRTemporary { |
| public: |
| FPRTemporary(SpeculativeJIT*); |
| FPRTemporary(SpeculativeJIT*, SpeculateDoubleOperand&); |
| FPRTemporary(SpeculativeJIT*, SpeculateDoubleOperand&, SpeculateDoubleOperand&); |
| #if USE(JSVALUE32_64) |
| FPRTemporary(SpeculativeJIT*, JSValueOperand&); |
| #endif |
| |
| ~FPRTemporary() |
| { |
| m_jit->unlock(fpr()); |
| } |
| |
| FPRReg fpr() const |
| { |
| ASSERT(m_fpr != InvalidFPRReg); |
| return m_fpr; |
| } |
| |
| protected: |
| FPRTemporary(SpeculativeJIT* jit, FPRReg lockedFPR) |
| : m_jit(jit) |
| , m_fpr(lockedFPR) |
| { |
| } |
| |
| private: |
| SpeculativeJIT* m_jit; |
| FPRReg m_fpr; |
| }; |
| |
| |
| // === Results === |
| // |
| // These classes lock the result of a call to a C++ helper function. |
| |
| class GPRFlushedCallResult : public GPRTemporary { |
| public: |
| GPRFlushedCallResult(SpeculativeJIT* jit) |
| : GPRTemporary(jit, GPRInfo::returnValueGPR) |
| { |
| } |
| }; |
| |
| #if USE(JSVALUE32_64) |
| class GPRFlushedCallResult2 : public GPRTemporary { |
| public: |
| GPRFlushedCallResult2(SpeculativeJIT* jit) |
| : GPRTemporary(jit, GPRInfo::returnValueGPR2) |
| { |
| } |
| }; |
| #endif |
| |
| class FPRResult : public FPRTemporary { |
| public: |
| FPRResult(SpeculativeJIT* jit) |
| : FPRTemporary(jit, lockedResult(jit)) |
| { |
| } |
| |
| private: |
| static FPRReg lockedResult(SpeculativeJIT* jit) |
| { |
| jit->lock(FPRInfo::returnValueFPR); |
| return FPRInfo::returnValueFPR; |
| } |
| }; |
| |
| |
| // === Speculative Operand types === |
| // |
| // SpeculateInt32Operand, SpeculateStrictInt32Operand and SpeculateCellOperand. |
| // |
| // These are used to lock the operands to a node into machine registers within the |
| // SpeculativeJIT. The classes operate like those above, however these will |
| // perform a speculative check for a more restrictive type than we can statically |
| // determine the operand to have. If the operand does not have the requested type, |
| // a bail-out to the non-speculative path will be taken. |
| |
| class SpeculateInt32Operand { |
| public: |
| explicit SpeculateInt32Operand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) |
| : m_jit(jit) |
| , m_edge(edge) |
| , m_gprOrInvalid(InvalidGPRReg) |
| #ifndef NDEBUG |
| , m_format(DataFormatNone) |
| #endif |
| { |
| ASSERT(m_jit); |
| ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == Int32Use || edge.useKind() == KnownInt32Use)); |
| if (jit->isFilled(node())) |
| gpr(); |
| } |
| |
| ~SpeculateInt32Operand() |
| { |
| ASSERT(m_gprOrInvalid != InvalidGPRReg); |
| m_jit->unlock(m_gprOrInvalid); |
| } |
| |
| Edge edge() const |
| { |
| return m_edge; |
| } |
| |
| Node* node() const |
| { |
| return edge().node(); |
| } |
| |
| DataFormat format() |
| { |
| gpr(); // m_format is set when m_gpr is locked. |
| ASSERT(m_format == DataFormatInt32 || m_format == DataFormatJSInt32); |
| return m_format; |
| } |
| |
| GPRReg gpr() |
| { |
| if (m_gprOrInvalid == InvalidGPRReg) |
| m_gprOrInvalid = m_jit->fillSpeculateInt32(edge(), m_format); |
| return m_gprOrInvalid; |
| } |
| |
| void use() |
| { |
| m_jit->use(node()); |
| } |
| |
| private: |
| SpeculativeJIT* m_jit; |
| Edge m_edge; |
| GPRReg m_gprOrInvalid; |
| DataFormat m_format; |
| }; |
| |
| class SpeculateStrictInt32Operand { |
| public: |
| explicit SpeculateStrictInt32Operand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) |
| : m_jit(jit) |
| , m_edge(edge) |
| , m_gprOrInvalid(InvalidGPRReg) |
| { |
| ASSERT(m_jit); |
| ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == Int32Use || edge.useKind() == KnownInt32Use)); |
| if (jit->isFilled(node())) |
| gpr(); |
| } |
| |
| ~SpeculateStrictInt32Operand() |
| { |
| ASSERT(m_gprOrInvalid != InvalidGPRReg); |
| m_jit->unlock(m_gprOrInvalid); |
| } |
| |
| Edge edge() const |
| { |
| return m_edge; |
| } |
| |
| Node* node() const |
| { |
| return edge().node(); |
| } |
| |
| GPRReg gpr() |
| { |
| if (m_gprOrInvalid == InvalidGPRReg) |
| m_gprOrInvalid = m_jit->fillSpeculateInt32Strict(edge()); |
| return m_gprOrInvalid; |
| } |
| |
| void use() |
| { |
| m_jit->use(node()); |
| } |
| |
| private: |
| SpeculativeJIT* m_jit; |
| Edge m_edge; |
| GPRReg m_gprOrInvalid; |
| }; |
| |
| // Gives you a canonical Int52 (i.e. it's left-shifted by 16, low bits zero). |
| class SpeculateInt52Operand { |
| public: |
| explicit SpeculateInt52Operand(SpeculativeJIT* jit, Edge edge) |
| : m_jit(jit) |
| , m_edge(edge) |
| , m_gprOrInvalid(InvalidGPRReg) |
| { |
| RELEASE_ASSERT(edge.useKind() == Int52RepUse); |
| if (jit->isFilled(node())) |
| gpr(); |
| } |
| |
| ~SpeculateInt52Operand() |
| { |
| ASSERT(m_gprOrInvalid != InvalidGPRReg); |
| m_jit->unlock(m_gprOrInvalid); |
| } |
| |
| Edge edge() const |
| { |
| return m_edge; |
| } |
| |
| Node* node() const |
| { |
| return edge().node(); |
| } |
| |
| GPRReg gpr() |
| { |
| if (m_gprOrInvalid == InvalidGPRReg) |
| m_gprOrInvalid = m_jit->fillSpeculateInt52(edge(), DataFormatInt52); |
| return m_gprOrInvalid; |
| } |
| |
| void use() |
| { |
| m_jit->use(node()); |
| } |
| |
| private: |
| SpeculativeJIT* m_jit; |
| Edge m_edge; |
| GPRReg m_gprOrInvalid; |
| }; |
| |
| // Gives you a strict Int52 (i.e. the payload is in the low 48 bits, high 16 bits are sign-extended). |
| class SpeculateStrictInt52Operand { |
| public: |
| explicit SpeculateStrictInt52Operand(SpeculativeJIT* jit, Edge edge) |
| : m_jit(jit) |
| , m_edge(edge) |
| , m_gprOrInvalid(InvalidGPRReg) |
| { |
| RELEASE_ASSERT(edge.useKind() == Int52RepUse); |
| if (jit->isFilled(node())) |
| gpr(); |
| } |
| |
| ~SpeculateStrictInt52Operand() |
| { |
| ASSERT(m_gprOrInvalid != InvalidGPRReg); |
| m_jit->unlock(m_gprOrInvalid); |
| } |
| |
| Edge edge() const |
| { |
| return m_edge; |
| } |
| |
| Node* node() const |
| { |
| return edge().node(); |
| } |
| |
| GPRReg gpr() |
| { |
| if (m_gprOrInvalid == InvalidGPRReg) |
| m_gprOrInvalid = m_jit->fillSpeculateInt52(edge(), DataFormatStrictInt52); |
| return m_gprOrInvalid; |
| } |
| |
| void use() |
| { |
| m_jit->use(node()); |
| } |
| |
| private: |
| SpeculativeJIT* m_jit; |
| Edge m_edge; |
| GPRReg m_gprOrInvalid; |
| }; |
| |
| enum OppositeShiftTag { OppositeShift }; |
| |
| class SpeculateWhicheverInt52Operand { |
| public: |
| explicit SpeculateWhicheverInt52Operand(SpeculativeJIT* jit, Edge edge) |
| : m_jit(jit) |
| , m_edge(edge) |
| , m_gprOrInvalid(InvalidGPRReg) |
| , m_strict(jit->betterUseStrictInt52(edge)) |
| { |
| RELEASE_ASSERT(edge.useKind() == Int52RepUse); |
| if (jit->isFilled(node())) |
| gpr(); |
| } |
| |
| explicit SpeculateWhicheverInt52Operand(SpeculativeJIT* jit, Edge edge, const SpeculateWhicheverInt52Operand& other) |
| : m_jit(jit) |
| , m_edge(edge) |
| , m_gprOrInvalid(InvalidGPRReg) |
| , m_strict(other.m_strict) |
| { |
| RELEASE_ASSERT(edge.useKind() == Int52RepUse); |
| if (jit->isFilled(node())) |
| gpr(); |
| } |
| |
| explicit SpeculateWhicheverInt52Operand(SpeculativeJIT* jit, Edge edge, OppositeShiftTag, const SpeculateWhicheverInt52Operand& other) |
| : m_jit(jit) |
| , m_edge(edge) |
| , m_gprOrInvalid(InvalidGPRReg) |
| , m_strict(!other.m_strict) |
| { |
| RELEASE_ASSERT(edge.useKind() == Int52RepUse); |
| if (jit->isFilled(node())) |
| gpr(); |
| } |
| |
| ~SpeculateWhicheverInt52Operand() |
| { |
| ASSERT(m_gprOrInvalid != InvalidGPRReg); |
| m_jit->unlock(m_gprOrInvalid); |
| } |
| |
| Edge edge() const |
| { |
| return m_edge; |
| } |
| |
| Node* node() const |
| { |
| return edge().node(); |
| } |
| |
| GPRReg gpr() |
| { |
| if (m_gprOrInvalid == InvalidGPRReg) { |
| m_gprOrInvalid = m_jit->fillSpeculateInt52( |
| edge(), m_strict ? DataFormatStrictInt52 : DataFormatInt52); |
| } |
| return m_gprOrInvalid; |
| } |
| |
| void use() |
| { |
| m_jit->use(node()); |
| } |
| |
| DataFormat format() const |
| { |
| return m_strict ? DataFormatStrictInt52 : DataFormatInt52; |
| } |
| |
| private: |
| SpeculativeJIT* m_jit; |
| Edge m_edge; |
| GPRReg m_gprOrInvalid; |
| bool m_strict; |
| }; |
| |
| class SpeculateDoubleOperand { |
| public: |
| explicit SpeculateDoubleOperand(SpeculativeJIT* jit, Edge edge) |
| : m_jit(jit) |
| , m_edge(edge) |
| , m_fprOrInvalid(InvalidFPRReg) |
| { |
| ASSERT(m_jit); |
| RELEASE_ASSERT(isDouble(edge.useKind())); |
| if (jit->isFilled(node())) |
| fpr(); |
| } |
| |
| ~SpeculateDoubleOperand() |
| { |
| ASSERT(m_fprOrInvalid != InvalidFPRReg); |
| m_jit->unlock(m_fprOrInvalid); |
| } |
| |
| Edge edge() const |
| { |
| return m_edge; |
| } |
| |
| Node* node() const |
| { |
| return edge().node(); |
| } |
| |
| FPRReg fpr() |
| { |
| if (m_fprOrInvalid == InvalidFPRReg) |
| m_fprOrInvalid = m_jit->fillSpeculateDouble(edge()); |
| return m_fprOrInvalid; |
| } |
| |
| void use() |
| { |
| m_jit->use(node()); |
| } |
| |
| private: |
| SpeculativeJIT* m_jit; |
| Edge m_edge; |
| FPRReg m_fprOrInvalid; |
| }; |
| |
| class SpeculateCellOperand { |
| public: |
| explicit SpeculateCellOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) |
| : m_jit(jit) |
| , m_edge(edge) |
| , m_gprOrInvalid(InvalidGPRReg) |
| { |
| ASSERT(m_jit); |
| if (!edge) |
| return; |
| ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || isCell(edge.useKind())); |
| if (jit->isFilled(node())) |
| gpr(); |
| } |
| |
| ~SpeculateCellOperand() |
| { |
| if (!m_edge) |
| return; |
| ASSERT(m_gprOrInvalid != InvalidGPRReg); |
| m_jit->unlock(m_gprOrInvalid); |
| } |
| |
| Edge edge() const |
| { |
| return m_edge; |
| } |
| |
| Node* node() const |
| { |
| return edge().node(); |
| } |
| |
| GPRReg gpr() |
| { |
| ASSERT(m_edge); |
| if (m_gprOrInvalid == InvalidGPRReg) |
| m_gprOrInvalid = m_jit->fillSpeculateCell(edge()); |
| return m_gprOrInvalid; |
| } |
| |
| void use() |
| { |
| ASSERT(m_edge); |
| m_jit->use(node()); |
| } |
| |
| private: |
| SpeculativeJIT* m_jit; |
| Edge m_edge; |
| GPRReg m_gprOrInvalid; |
| }; |
| |
| class SpeculateBooleanOperand { |
| public: |
| explicit SpeculateBooleanOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) |
| : m_jit(jit) |
| , m_edge(edge) |
| , m_gprOrInvalid(InvalidGPRReg) |
| { |
| ASSERT(m_jit); |
| ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == BooleanUse || edge.useKind() == KnownBooleanUse); |
| if (jit->isFilled(node())) |
| gpr(); |
| } |
| |
| ~SpeculateBooleanOperand() |
| { |
| ASSERT(m_gprOrInvalid != InvalidGPRReg); |
| m_jit->unlock(m_gprOrInvalid); |
| } |
| |
| Edge edge() const |
| { |
| return m_edge; |
| } |
| |
| Node* node() const |
| { |
| return edge().node(); |
| } |
| |
| GPRReg gpr() |
| { |
| if (m_gprOrInvalid == InvalidGPRReg) |
| m_gprOrInvalid = m_jit->fillSpeculateBoolean(edge()); |
| return m_gprOrInvalid; |
| } |
| |
| void use() |
| { |
| m_jit->use(node()); |
| } |
| |
| private: |
| SpeculativeJIT* m_jit; |
| Edge m_edge; |
| GPRReg m_gprOrInvalid; |
| }; |
| |
| template<typename StructureLocationType> |
| void SpeculativeJIT::speculateStringObjectForStructure(Edge edge, StructureLocationType structureLocation) |
| { |
| Structure* stringObjectStructure = |
| m_jit.globalObjectFor(m_currentNode->origin.semantic)->stringObjectStructure(); |
| |
| if (!m_state.forNode(edge).m_structure.isSubsetOf(StructureSet(stringObjectStructure))) { |
| speculationCheck( |
| NotStringObject, JSValueRegs(), 0, |
| m_jit.branchStructure( |
| JITCompiler::NotEqual, structureLocation, stringObjectStructure)); |
| } |
| } |
| |
| #define DFG_TYPE_CHECK_WITH_EXIT_KIND(exitKind, source, edge, typesPassedThrough, jumpToFail) do { \ |
| JSValueSource _dtc_source = (source); \ |
| Edge _dtc_edge = (edge); \ |
| SpeculatedType _dtc_typesPassedThrough = typesPassedThrough; \ |
| if (!needsTypeCheck(_dtc_edge, _dtc_typesPassedThrough)) \ |
| break; \ |
| typeCheck(_dtc_source, _dtc_edge, _dtc_typesPassedThrough, (jumpToFail), exitKind); \ |
| } while (0) |
| |
| #define DFG_TYPE_CHECK(source, edge, typesPassedThrough, jumpToFail) \ |
| DFG_TYPE_CHECK_WITH_EXIT_KIND(BadType, source, edge, typesPassedThrough, jumpToFail) |
| |
| } } // namespace JSC::DFG |
| |
| #endif |
| #endif |
| |