blob: 9188a83a54b36042a082f77d6506c54ae9fcc6d5 [file] [log] [blame]
/*
* Copyright (C) 2011-2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef DFGSpeculativeJIT_h
#define DFGSpeculativeJIT_h
#if ENABLE(DFG_JIT)
#include "DFGAbstractInterpreter.h"
#include "DFGGenerationInfo.h"
#include "DFGInPlaceAbstractState.h"
#include "DFGJITCompiler.h"
#include "DFGOSRExit.h"
#include "DFGOSRExitJumpPlaceholder.h"
#include "DFGSilentRegisterSavePlan.h"
#include "DFGValueSource.h"
#include "JITOperations.h"
#include "MarkedAllocator.h"
#include "PutKind.h"
#include "SpillRegistersMode.h"
#include "ValueRecovery.h"
#include "VirtualRegister.h"
namespace JSC { namespace DFG {
class GPRTemporary;
class JSValueOperand;
class SlowPathGenerator;
class SpeculativeJIT;
class SpeculateInt32Operand;
class SpeculateStrictInt32Operand;
class SpeculateDoubleOperand;
class SpeculateCellOperand;
class SpeculateBooleanOperand;
enum GeneratedOperandType { GeneratedOperandTypeUnknown, GeneratedOperandInteger, GeneratedOperandJSValue};
inline GPRReg extractResult(GPRReg result) { return result; }
#if USE(JSVALUE64)
inline GPRReg extractResult(JSValueRegs result) { return result.gpr(); }
#else
inline JSValueRegs extractResult(JSValueRegs result) { return result; }
#endif
inline NoResultTag extractResult(NoResultTag) { return NoResult; }
// === SpeculativeJIT ===
//
// The SpeculativeJIT is used to generate a fast, but potentially
// incomplete code path for the dataflow. When code generating
// we may make assumptions about operand types, dynamically check,
// and bail-out to an alternate code path if these checks fail.
// Importantly, the speculative code path cannot be reentered once
// a speculative check has failed. This allows the SpeculativeJIT
// to propagate type information (including information that has
// only speculatively been asserted) through the dataflow.
class SpeculativeJIT {
WTF_MAKE_FAST_ALLOCATED;
friend struct OSRExit;
private:
typedef JITCompiler::TrustedImm32 TrustedImm32;
typedef JITCompiler::Imm32 Imm32;
typedef JITCompiler::TrustedImmPtr TrustedImmPtr;
typedef JITCompiler::ImmPtr ImmPtr;
typedef JITCompiler::TrustedImm64 TrustedImm64;
typedef JITCompiler::Imm64 Imm64;
// These constants are used to set priorities for spill order for
// the register allocator.
#if USE(JSVALUE64)
enum SpillOrder {
SpillOrderConstant = 1, // no spill, and cheap fill
SpillOrderSpilled = 2, // no spill
SpillOrderJS = 4, // needs spill
SpillOrderCell = 4, // needs spill
SpillOrderStorage = 4, // needs spill
SpillOrderInteger = 5, // needs spill and box
SpillOrderBoolean = 5, // needs spill and box
SpillOrderDouble = 6, // needs spill and convert
};
#elif USE(JSVALUE32_64)
enum SpillOrder {
SpillOrderConstant = 1, // no spill, and cheap fill
SpillOrderSpilled = 2, // no spill
SpillOrderJS = 4, // needs spill
SpillOrderStorage = 4, // needs spill
SpillOrderDouble = 4, // needs spill
SpillOrderInteger = 5, // needs spill and box
SpillOrderCell = 5, // needs spill and box
SpillOrderBoolean = 5, // needs spill and box
};
#endif
enum UseChildrenMode { CallUseChildren, UseChildrenCalledExplicitly };
public:
SpeculativeJIT(JITCompiler&);
~SpeculativeJIT();
bool compile();
void createOSREntries();
void linkOSREntries(LinkBuffer&);
BasicBlock* nextBlock()
{
for (BlockIndex resultIndex = m_block->index + 1; ; resultIndex++) {
if (resultIndex >= m_jit.graph().numBlocks())
return 0;
if (BasicBlock* result = m_jit.graph().block(resultIndex))
return result;
}
}
#if USE(JSVALUE64)
GPRReg fillJSValue(Edge);
#elif USE(JSVALUE32_64)
bool fillJSValue(Edge, GPRReg&, GPRReg&, FPRReg&);
#endif
GPRReg fillStorage(Edge);
// lock and unlock GPR & FPR registers.
void lock(GPRReg reg)
{
m_gprs.lock(reg);
}
void lock(FPRReg reg)
{
m_fprs.lock(reg);
}
void unlock(GPRReg reg)
{
m_gprs.unlock(reg);
}
void unlock(FPRReg reg)
{
m_fprs.unlock(reg);
}
// Used to check whether a child node is on its last use,
// and its machine registers may be reused.
bool canReuse(Node* node)
{
return generationInfo(node).useCount() == 1;
}
bool canReuse(Node* nodeA, Node* nodeB)
{
return nodeA == nodeB && generationInfo(nodeA).useCount() == 2;
}
bool canReuse(Edge nodeUse)
{
return canReuse(nodeUse.node());
}
GPRReg reuse(GPRReg reg)
{
m_gprs.lock(reg);
return reg;
}
FPRReg reuse(FPRReg reg)
{
m_fprs.lock(reg);
return reg;
}
// Allocate a gpr/fpr.
GPRReg allocate()
{
#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset());
#endif
VirtualRegister spillMe;
GPRReg gpr = m_gprs.allocate(spillMe);
if (spillMe.isValid()) {
#if USE(JSVALUE32_64)
GenerationInfo& info = generationInfoFromVirtualRegister(spillMe);
if ((info.registerFormat() & DataFormatJS))
m_gprs.release(info.tagGPR() == gpr ? info.payloadGPR() : info.tagGPR());
#endif
spill(spillMe);
}
return gpr;
}
GPRReg allocate(GPRReg specific)
{
#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset());
#endif
VirtualRegister spillMe = m_gprs.allocateSpecific(specific);
if (spillMe.isValid()) {
#if USE(JSVALUE32_64)
GenerationInfo& info = generationInfoFromVirtualRegister(spillMe);
RELEASE_ASSERT(info.registerFormat() != DataFormatJSDouble);
if ((info.registerFormat() & DataFormatJS))
m_gprs.release(info.tagGPR() == specific ? info.payloadGPR() : info.tagGPR());
#endif
spill(spillMe);
}
return specific;
}
GPRReg tryAllocate()
{
return m_gprs.tryAllocate();
}
FPRReg fprAllocate()
{
#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset());
#endif
VirtualRegister spillMe;
FPRReg fpr = m_fprs.allocate(spillMe);
if (spillMe.isValid())
spill(spillMe);
return fpr;
}
// Check whether a VirtualRegsiter is currently in a machine register.
// We use this when filling operands to fill those that are already in
// machine registers first (by locking VirtualRegsiters that are already
// in machine register before filling those that are not we attempt to
// avoid spilling values we will need immediately).
bool isFilled(Node* node)
{
return generationInfo(node).registerFormat() != DataFormatNone;
}
bool isFilledDouble(Node* node)
{
return generationInfo(node).registerFormat() == DataFormatDouble;
}
// Called on an operand once it has been consumed by a parent node.
void use(Node* node)
{
if (!node->hasResult())
return;
GenerationInfo& info = generationInfo(node);
// use() returns true when the value becomes dead, and any
// associated resources may be freed.
if (!info.use(*m_stream))
return;
// Release the associated machine registers.
DataFormat registerFormat = info.registerFormat();
#if USE(JSVALUE64)
if (registerFormat == DataFormatDouble)
m_fprs.release(info.fpr());
else if (registerFormat != DataFormatNone)
m_gprs.release(info.gpr());
#elif USE(JSVALUE32_64)
if (registerFormat == DataFormatDouble)
m_fprs.release(info.fpr());
else if (registerFormat & DataFormatJS) {
m_gprs.release(info.tagGPR());
m_gprs.release(info.payloadGPR());
} else if (registerFormat != DataFormatNone)
m_gprs.release(info.gpr());
#endif
}
void use(Edge nodeUse)
{
use(nodeUse.node());
}
RegisterSet usedRegisters();
bool masqueradesAsUndefinedWatchpointIsStillValid(const CodeOrigin& codeOrigin)
{
return m_jit.graph().masqueradesAsUndefinedWatchpointIsStillValid(codeOrigin);
}
bool masqueradesAsUndefinedWatchpointIsStillValid()
{
return masqueradesAsUndefinedWatchpointIsStillValid(m_currentNode->origin.semantic);
}
void storeToWriteBarrierBuffer(GPRReg cell, GPRReg scratch1, GPRReg scratch2);
void writeBarrier(GPRReg owner, GPRReg scratch1, GPRReg scratch2);
void writeBarrier(GPRReg owner, GPRReg value, Edge valueUse, GPRReg scratch1, GPRReg scratch2);
void compileStoreBarrier(Node*);
static GPRReg selectScratchGPR(GPRReg preserve1 = InvalidGPRReg, GPRReg preserve2 = InvalidGPRReg, GPRReg preserve3 = InvalidGPRReg, GPRReg preserve4 = InvalidGPRReg)
{
return AssemblyHelpers::selectScratchGPR(preserve1, preserve2, preserve3, preserve4);
}
// Called by the speculative operand types, below, to fill operand to
// machine registers, implicitly generating speculation checks as needed.
GPRReg fillSpeculateInt32(Edge, DataFormat& returnFormat);
GPRReg fillSpeculateInt32Strict(Edge);
GPRReg fillSpeculateInt52(Edge, DataFormat desiredFormat);
FPRReg fillSpeculateDouble(Edge);
GPRReg fillSpeculateCell(Edge);
GPRReg fillSpeculateBoolean(Edge);
GeneratedOperandType checkGeneratedTypeForToInt32(Node*);
void addSlowPathGenerator(std::unique_ptr<SlowPathGenerator>);
void runSlowPathGenerators(PCToCodeOriginMapBuilder&);
void compile(Node*);
void noticeOSRBirth(Node*);
void bail(AbortReason);
void compileCurrentBlock();
void checkArgumentTypes();
void clearGenerationInfo();
// These methods are used when generating 'unexpected'
// calls out from JIT code to C++ helper routines -
// they spill all live values to the appropriate
// slots in the JSStack without changing any state
// in the GenerationInfo.
SilentRegisterSavePlan silentSavePlanForGPR(VirtualRegister spillMe, GPRReg source);
SilentRegisterSavePlan silentSavePlanForFPR(VirtualRegister spillMe, FPRReg source);
void silentSpill(const SilentRegisterSavePlan&);
void silentFill(const SilentRegisterSavePlan&, GPRReg canTrample);
template<typename CollectionType>
void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, GPRReg exclude, GPRReg exclude2 = InvalidGPRReg, FPRReg fprExclude = InvalidFPRReg)
{
ASSERT(plans.isEmpty());
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
GPRReg gpr = iter.regID();
if (iter.name().isValid() && gpr != exclude && gpr != exclude2) {
SilentRegisterSavePlan plan = silentSavePlanForGPR(iter.name(), gpr);
if (doSpill)
silentSpill(plan);
plans.append(plan);
}
}
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name().isValid() && iter.regID() != fprExclude) {
SilentRegisterSavePlan plan = silentSavePlanForFPR(iter.name(), iter.regID());
if (doSpill)
silentSpill(plan);
plans.append(plan);
}
}
}
template<typename CollectionType>
void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, NoResultTag)
{
silentSpillAllRegistersImpl(doSpill, plans, InvalidGPRReg, InvalidGPRReg, InvalidFPRReg);
}
template<typename CollectionType>
void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, FPRReg exclude)
{
silentSpillAllRegistersImpl(doSpill, plans, InvalidGPRReg, InvalidGPRReg, exclude);
}
#if USE(JSVALUE32_64)
template<typename CollectionType>
void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, JSValueRegs exclude)
{
silentSpillAllRegistersImpl(doSpill, plans, exclude.tagGPR(), exclude.payloadGPR());
}
#endif
void silentSpillAllRegisters(GPRReg exclude, GPRReg exclude2 = InvalidGPRReg, FPRReg fprExclude = InvalidFPRReg)
{
silentSpillAllRegistersImpl(true, m_plans, exclude, exclude2, fprExclude);
}
void silentSpillAllRegisters(FPRReg exclude)
{
silentSpillAllRegisters(InvalidGPRReg, InvalidGPRReg, exclude);
}
void silentSpillAllRegisters(JSValueRegs exclude)
{
#if USE(JSVALUE64)
silentSpillAllRegisters(exclude.payloadGPR());
#else
silentSpillAllRegisters(exclude.payloadGPR(), exclude.tagGPR());
#endif
}
static GPRReg pickCanTrample(GPRReg exclude)
{
GPRReg result = GPRInfo::regT0;
if (result == exclude)
result = GPRInfo::regT1;
return result;
}
static GPRReg pickCanTrample(FPRReg)
{
return GPRInfo::regT0;
}
static GPRReg pickCanTrample(NoResultTag)
{
return GPRInfo::regT0;
}
#if USE(JSVALUE64)
static GPRReg pickCanTrample(JSValueRegs exclude)
{
return pickCanTrample(exclude.payloadGPR());
}
#else
static GPRReg pickCanTrample(JSValueRegs exclude)
{
GPRReg result = GPRInfo::regT0;
if (result == exclude.tagGPR()) {
result = GPRInfo::regT1;
if (result == exclude.payloadGPR())
result = GPRInfo::regT2;
} else if (result == exclude.payloadGPR()) {
result = GPRInfo::regT1;
if (result == exclude.tagGPR())
result = GPRInfo::regT2;
}
return result;
}
#endif
template<typename RegisterType>
void silentFillAllRegisters(RegisterType exclude)
{
GPRReg canTrample = pickCanTrample(exclude);
while (!m_plans.isEmpty()) {
SilentRegisterSavePlan& plan = m_plans.last();
silentFill(plan, canTrample);
m_plans.removeLast();
}
}
// These methods convert between doubles, and doubles boxed and JSValues.
#if USE(JSVALUE64)
GPRReg boxDouble(FPRReg fpr, GPRReg gpr)
{
return m_jit.boxDouble(fpr, gpr);
}
FPRReg unboxDouble(GPRReg gpr, FPRReg fpr)
{
return m_jit.unboxDouble(gpr, fpr);
}
GPRReg boxDouble(FPRReg fpr)
{
return boxDouble(fpr, allocate());
}
void boxInt52(GPRReg sourceGPR, GPRReg targetGPR, DataFormat);
#elif USE(JSVALUE32_64)
void boxDouble(FPRReg fpr, GPRReg tagGPR, GPRReg payloadGPR)
{
m_jit.boxDouble(fpr, tagGPR, payloadGPR);
}
void unboxDouble(GPRReg tagGPR, GPRReg payloadGPR, FPRReg fpr, FPRReg scratchFPR)
{
m_jit.unboxDouble(tagGPR, payloadGPR, fpr, scratchFPR);
}
#endif
void boxDouble(FPRReg fpr, JSValueRegs regs)
{
m_jit.boxDouble(fpr, regs);
}
// Spill a VirtualRegister to the JSStack.
void spill(VirtualRegister spillMe)
{
GenerationInfo& info = generationInfoFromVirtualRegister(spillMe);
#if USE(JSVALUE32_64)
if (info.registerFormat() == DataFormatNone) // it has been spilled. JS values which have two GPRs can reach here
return;
#endif
// Check the GenerationInfo to see if this value need writing
// to the JSStack - if not, mark it as spilled & return.
if (!info.needsSpill()) {
info.setSpilled(*m_stream, spillMe);
return;
}
DataFormat spillFormat = info.registerFormat();
switch (spillFormat) {
case DataFormatStorage: {
// This is special, since it's not a JS value - as in it's not visible to JS
// code.
m_jit.storePtr(info.gpr(), JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, DataFormatStorage);
return;
}
case DataFormatInt32: {
m_jit.store32(info.gpr(), JITCompiler::payloadFor(spillMe));
info.spill(*m_stream, spillMe, DataFormatInt32);
return;
}
#if USE(JSVALUE64)
case DataFormatDouble: {
m_jit.storeDouble(info.fpr(), JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, DataFormatDouble);
return;
}
case DataFormatInt52:
case DataFormatStrictInt52: {
m_jit.store64(info.gpr(), JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, spillFormat);
return;
}
default:
// The following code handles JSValues, int32s, and cells.
RELEASE_ASSERT(spillFormat == DataFormatCell || spillFormat & DataFormatJS);
GPRReg reg = info.gpr();
// We need to box int32 and cell values ...
// but on JSVALUE64 boxing a cell is a no-op!
if (spillFormat == DataFormatInt32)
m_jit.or64(GPRInfo::tagTypeNumberRegister, reg);
// Spill the value, and record it as spilled in its boxed form.
m_jit.store64(reg, JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, (DataFormat)(spillFormat | DataFormatJS));
return;
#elif USE(JSVALUE32_64)
case DataFormatCell:
case DataFormatBoolean: {
m_jit.store32(info.gpr(), JITCompiler::payloadFor(spillMe));
info.spill(*m_stream, spillMe, spillFormat);
return;
}
case DataFormatDouble: {
// On JSVALUE32_64 boxing a double is a no-op.
m_jit.storeDouble(info.fpr(), JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, DataFormatDouble);
return;
}
default:
// The following code handles JSValues.
RELEASE_ASSERT(spillFormat & DataFormatJS);
m_jit.store32(info.tagGPR(), JITCompiler::tagFor(spillMe));
m_jit.store32(info.payloadGPR(), JITCompiler::payloadFor(spillMe));
info.spill(*m_stream, spillMe, spillFormat);
return;
#endif
}
}
bool isKnownInteger(Node* node) { return m_state.forNode(node).isType(SpecInt32); }
bool isKnownCell(Node* node) { return m_state.forNode(node).isType(SpecCell); }
bool isKnownNotInteger(Node* node) { return !(m_state.forNode(node).m_type & SpecInt32); }
bool isKnownNotNumber(Node* node) { return !(m_state.forNode(node).m_type & SpecFullNumber); }
bool isKnownNotCell(Node* node) { return !(m_state.forNode(node).m_type & SpecCell); }
bool isKnownNotOther(Node* node) { return !(m_state.forNode(node).m_type & SpecOther); }
UniquedStringImpl* identifierUID(unsigned index)
{
return m_jit.graph().identifiers()[index];
}
// Spill all VirtualRegisters back to the JSStack.
void flushRegisters()
{
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
if (iter.name().isValid()) {
spill(iter.name());
iter.release();
}
}
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name().isValid()) {
spill(iter.name());
iter.release();
}
}
}
// Used to ASSERT flushRegisters() has been called prior to
// calling out from JIT code to a C helper function.
bool isFlushed()
{
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
if (iter.name().isValid())
return false;
}
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name().isValid())
return false;
}
return true;
}
#if USE(JSVALUE64)
static MacroAssembler::Imm64 valueOfJSConstantAsImm64(Node* node)
{
return MacroAssembler::Imm64(JSValue::encode(node->asJSValue()));
}
#endif
// Helper functions to enable code sharing in implementations of bit/shift ops.
void bitOp(NodeType op, int32_t imm, GPRReg op1, GPRReg result)
{
switch (op) {
case BitAnd:
m_jit.and32(Imm32(imm), op1, result);
break;
case BitOr:
m_jit.or32(Imm32(imm), op1, result);
break;
case BitXor:
m_jit.xor32(Imm32(imm), op1, result);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void bitOp(NodeType op, GPRReg op1, GPRReg op2, GPRReg result)
{
switch (op) {
case BitAnd:
m_jit.and32(op1, op2, result);
break;
case BitOr:
m_jit.or32(op1, op2, result);
break;
case BitXor:
m_jit.xor32(op1, op2, result);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void shiftOp(NodeType op, GPRReg op1, int32_t shiftAmount, GPRReg result)
{
switch (op) {
case BitRShift:
m_jit.rshift32(op1, Imm32(shiftAmount), result);
break;
case BitLShift:
m_jit.lshift32(op1, Imm32(shiftAmount), result);
break;
case BitURShift:
m_jit.urshift32(op1, Imm32(shiftAmount), result);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void shiftOp(NodeType op, GPRReg op1, GPRReg shiftAmount, GPRReg result)
{
switch (op) {
case BitRShift:
m_jit.rshift32(op1, shiftAmount, result);
break;
case BitLShift:
m_jit.lshift32(op1, shiftAmount, result);
break;
case BitURShift:
m_jit.urshift32(op1, shiftAmount, result);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
// Returns the index of the branch node if peephole is okay, UINT_MAX otherwise.
unsigned detectPeepHoleBranch()
{
// Check that no intervening nodes will be generated.
for (unsigned index = m_indexInBlock + 1; index < m_block->size() - 1; ++index) {
Node* node = m_block->at(index);
if (!node->shouldGenerate())
continue;
// Check if it's a Phantom that can be safely ignored.
if (node->op() == Phantom && !node->child1())
continue;
return UINT_MAX;
}
// Check if the lastNode is a branch on this node.
Node* lastNode = m_block->terminal();
return lastNode->op() == Branch && lastNode->child1() == m_currentNode ? m_block->size() - 1 : UINT_MAX;
}
void compileMovHint(Node*);
void compileMovHintAndCheck(Node*);
#if USE(JSVALUE64)
void cachedGetById(CodeOrigin, GPRReg baseGPR, GPRReg resultGPR, unsigned identifierNumber, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill);
void cachedPutById(CodeOrigin, GPRReg base, GPRReg value, GPRReg scratchGPR, unsigned identifierNumber, PutKind, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill);
#elif USE(JSVALUE32_64)
void cachedGetById(CodeOrigin, GPRReg baseTagGPROrNone, GPRReg basePayloadGPR, GPRReg resultTagGPR, GPRReg resultPayloadGPR, unsigned identifierNumber, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill);
void cachedPutById(CodeOrigin, GPRReg basePayloadGPR, GPRReg valueTagGPR, GPRReg valuePayloadGPR, GPRReg scratchGPR, unsigned identifierNumber, PutKind, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill);
#endif
void compileIn(Node*);
void compileBaseValueStoreBarrier(Edge& baseEdge, Edge& valueEdge);
void nonSpeculativeNonPeepholeCompareNullOrUndefined(Edge operand);
void nonSpeculativePeepholeBranchNullOrUndefined(Edge operand, Node* branchNode);
void nonSpeculativePeepholeBranch(Node*, Node* branchNode, MacroAssembler::RelationalCondition, S_JITOperation_EJJ helperFunction);
void nonSpeculativeNonPeepholeCompare(Node*, MacroAssembler::RelationalCondition, S_JITOperation_EJJ helperFunction);
bool nonSpeculativeCompare(Node*, MacroAssembler::RelationalCondition, S_JITOperation_EJJ helperFunction);
void nonSpeculativePeepholeStrictEq(Node*, Node* branchNode, bool invert = false);
void nonSpeculativeNonPeepholeStrictEq(Node*, bool invert = false);
bool nonSpeculativeStrictEq(Node*, bool invert = false);
void compileInstanceOfForObject(Node*, GPRReg valueReg, GPRReg prototypeReg, GPRReg scratchAndResultReg, GPRReg scratch2Reg);
void compileInstanceOf(Node*);
void compileInstanceOfCustom(Node*);
void emitCall(Node*);
// Called once a node has completed code generation but prior to setting
// its result, to free up its children. (This must happen prior to setting
// the nodes result, since the node may have the same VirtualRegister as
// a child, and as such will use the same GeneratioInfo).
void useChildren(Node*);
// These method called to initialize the the GenerationInfo
// to describe the result of an operation.
void int32Result(GPRReg reg, Node* node, DataFormat format = DataFormatInt32, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
if (format == DataFormatInt32) {
m_jit.jitAssertIsInt32(reg);
m_gprs.retain(reg, virtualRegister, SpillOrderInteger);
info.initInt32(node, node->refCount(), reg);
} else {
#if USE(JSVALUE64)
RELEASE_ASSERT(format == DataFormatJSInt32);
m_jit.jitAssertIsJSInt32(reg);
m_gprs.retain(reg, virtualRegister, SpillOrderJS);
info.initJSValue(node, node->refCount(), reg, format);
#elif USE(JSVALUE32_64)
RELEASE_ASSERT_NOT_REACHED();
#endif
}
}
void int32Result(GPRReg reg, Node* node, UseChildrenMode mode)
{
int32Result(reg, node, DataFormatInt32, mode);
}
void int52Result(GPRReg reg, Node* node, DataFormat format, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
m_gprs.retain(reg, virtualRegister, SpillOrderJS);
info.initInt52(node, node->refCount(), reg, format);
}
void int52Result(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
int52Result(reg, node, DataFormatInt52, mode);
}
void strictInt52Result(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
int52Result(reg, node, DataFormatStrictInt52, mode);
}
void noResult(Node* node, UseChildrenMode mode = CallUseChildren)
{
if (mode == UseChildrenCalledExplicitly)
return;
useChildren(node);
}
void cellResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderCell);
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
info.initCell(node, node->refCount(), reg);
}
void blessedBooleanResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
#if USE(JSVALUE64)
jsValueResult(reg, node, DataFormatJSBoolean, mode);
#else
booleanResult(reg, node, mode);
#endif
}
void unblessedBooleanResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
#if USE(JSVALUE64)
blessBoolean(reg);
#endif
blessedBooleanResult(reg, node, mode);
}
#if USE(JSVALUE64)
void jsValueResult(GPRReg reg, Node* node, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren)
{
if (format == DataFormatJSInt32)
m_jit.jitAssertIsJSInt32(reg);
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderJS);
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
info.initJSValue(node, node->refCount(), reg, format);
}
void jsValueResult(GPRReg reg, Node* node, UseChildrenMode mode)
{
jsValueResult(reg, node, DataFormatJS, mode);
}
#elif USE(JSVALUE32_64)
void booleanResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderBoolean);
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
info.initBoolean(node, node->refCount(), reg);
}
void jsValueResult(GPRReg tag, GPRReg payload, Node* node, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(tag, virtualRegister, SpillOrderJS);
m_gprs.retain(payload, virtualRegister, SpillOrderJS);
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
info.initJSValue(node, node->refCount(), tag, payload, format);
}
void jsValueResult(GPRReg tag, GPRReg payload, Node* node, UseChildrenMode mode)
{
jsValueResult(tag, payload, node, DataFormatJS, mode);
}
#endif
void jsValueResult(JSValueRegs regs, Node* node, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren)
{
#if USE(JSVALUE64)
jsValueResult(regs.gpr(), node, format, mode);
#else
jsValueResult(regs.tagGPR(), regs.payloadGPR(), node, format, mode);
#endif
}
void storageResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderStorage);
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
info.initStorage(node, node->refCount(), reg);
}
void doubleResult(FPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_fprs.retain(reg, virtualRegister, SpillOrderDouble);
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
info.initDouble(node, node->refCount(), reg);
}
void initConstantInfo(Node* node)
{
ASSERT(node->hasConstant());
generationInfo(node).initConstant(node, node->refCount());
}
// These methods add calls to C++ helper functions.
// These methods are broadly value representation specific (i.e.
// deal with the fact that a JSValue may be passed in one or two
// machine registers, and delegate the calling convention specific
// decision as to how to fill the regsiters to setupArguments* methods.
JITCompiler::Call callOperation(V_JITOperation_E operation)
{
m_jit.setupArgumentsExecState();
return appendCall(operation);
}
JITCompiler::Call callOperation(P_JITOperation_E operation, GPRReg result)
{
m_jit.setupArgumentsExecState();
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(P_JITOperation_EC operation, GPRReg result, GPRReg cell)
{
m_jit.setupArgumentsWithExecState(cell);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(P_JITOperation_EO operation, GPRReg result, GPRReg object)
{
m_jit.setupArgumentsWithExecState(object);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(P_JITOperation_EOS operation, GPRReg result, GPRReg object, size_t size)
{
m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(size));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(P_JITOperation_EOZ operation, GPRReg result, GPRReg object, int32_t size)
{
m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(size));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EOZ operation, GPRReg result, GPRReg object, int32_t size)
{
m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(static_cast<size_t>(size)));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(P_JITOperation_EPS operation, GPRReg result, GPRReg old, size_t size)
{
m_jit.setupArgumentsWithExecState(old, TrustedImmPtr(size));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(P_JITOperation_ES operation, GPRReg result, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(size));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(P_JITOperation_ESJss operation, GPRReg result, size_t index, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(index), arg1);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(P_JITOperation_ESt operation, GPRReg result, Structure* structure)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(P_JITOperation_EStZ operation, GPRReg result, Structure* structure, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(P_JITOperation_EStZ operation, GPRReg result, Structure* structure, size_t arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImm32(arg2));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(P_JITOperation_EStZ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(P_JITOperation_EStPS operation, GPRReg result, Structure* structure, void* pointer, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImmPtr(pointer), TrustedImmPtr(size));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(P_JITOperation_EStSS operation, GPRReg result, Structure* structure, size_t index, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImmPtr(index), TrustedImmPtr(size));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_E operation, GPRReg result)
{
m_jit.setupArgumentsExecState();
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EC operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EC operation, GPRReg result, JSCell* cell)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_ECZ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_ECZC operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EJscC operation, GPRReg result, GPRReg arg1, JSCell* cell)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EIcf operation, GPRReg result, InlineCallFrame* inlineCallFrame)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(inlineCallFrame));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_ESt operation, GPRReg result, Structure* structure)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure));
return appendCallSetResult(operation, result);
}
#if USE(JSVALUE64)
JITCompiler::Call callOperation(C_JITOperation_EStJscSymtabJ operation, GPRReg result, Structure* structure, GPRReg scope, SymbolTable* table, TrustedImm64 initialValue)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), scope, TrustedImmPtr(table), initialValue);
return appendCallSetResult(operation, result);
}
#else
JITCompiler::Call callOperation(C_JITOperation_EStJscSymtabJ operation, GPRReg result, Structure* structure, GPRReg scope, SymbolTable* table, TrustedImm32 tag, TrustedImm32 payload)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), scope, TrustedImmPtr(table), payload, tag);
return appendCallSetResult(operation, result);
}
#endif
JITCompiler::Call callOperation(C_JITOperation_EStZ operation, GPRReg result, Structure* structure, unsigned knownLength)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImm32(knownLength));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EStZZ operation, GPRReg result, Structure* structure, unsigned knownLength, unsigned minCapacity)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImm32(knownLength), TrustedImm32(minCapacity));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EStZ operation, GPRReg result, Structure* structure, GPRReg length)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), length);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EStZZ operation, GPRReg result, Structure* structure, GPRReg length, unsigned minCapacity)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), length, TrustedImm32(minCapacity));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EJssSt operation, GPRReg result, GPRReg arg1, Structure* structure)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(structure));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EJssJss operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EJssJssJss operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(S_JITOperation_ECC operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(S_JITOperation_EGC operation, GPRReg result, JSGlobalObject* globalObject, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(globalObject), arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EGC operation, GPRReg result, JSGlobalObject* globalObject, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(globalObject), arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(Jss_JITOperation_EZ operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(V_JITOperation_EC operation, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_EC operation, JSCell* arg1)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(arg1));
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_ECIcf operation, GPRReg arg1, InlineCallFrame* inlineCallFrame)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(inlineCallFrame));
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_ECCIcf operation, GPRReg arg1, GPRReg arg2, InlineCallFrame* inlineCallFrame)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(inlineCallFrame));
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_ECZ operation, GPRReg arg1, int arg2)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImm32(arg2));
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_ECC operation, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_ECC operation, GPRReg arg1, JSCell* arg2)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(arg2));
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_ECC operation, JSCell* arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(arg1), arg2);
return appendCall(operation);
}
JITCompiler::Call callOperationWithCallFrameRollbackOnException(V_JITOperation_ECb operation, void* pointer)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer));
return appendCallWithCallFrameRollbackOnException(operation);
}
JITCompiler::Call callOperationWithCallFrameRollbackOnException(Z_JITOperation_E operation, GPRReg result)
{
m_jit.setupArgumentsExecState();
return appendCallWithCallFrameRollbackOnExceptionSetResult(operation, result);
}
JITCompiler::Call callOperation(Z_JITOperation_EC operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(V_JITOperation_ECIZC operation, GPRReg regOp1, UniquedStringImpl* identOp2, int32_t op3, GPRReg regOp4)
{
m_jit.setupArgumentsWithExecState(regOp1, TrustedImmPtr(identOp2), TrustedImm32(op3), regOp4);
return appendCall(operation);
}
template<typename FunctionType, typename... Args>
JITCompiler::Call callOperation(FunctionType operation, NoResultTag, Args... args)
{
return callOperation(operation, args...);
}
JITCompiler::Call callOperation(D_JITOperation_ZZ operation, FPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArguments(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(D_JITOperation_D operation, FPRReg result, FPRReg arg1)
{
m_jit.setupArguments(arg1);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(D_JITOperation_DD operation, FPRReg result, FPRReg arg1, FPRReg arg2)
{
m_jit.setupArguments(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(T_JITOperation_EJss operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EJscZ operation, GPRReg result, GPRReg arg1, int32_t arg2)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImm32(arg2));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EZ operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EZ operation, GPRReg result, int32_t arg1)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EJscC operation, GPRReg result, GPRReg arg1, JSCell* cell)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EJscCJ operation, GPRReg result, GPRReg arg1, JSCell* cell, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell), arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(V_JITOperation_EWs operation, WatchpointSet* watchpointSet)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(watchpointSet));
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_ECRUiUi operation, GPRReg arg1, GPRReg arg2, Imm32 arg3, GPRReg arg4)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3.asTrustedImm32(), arg4);
return appendCall(operation);
}
#if USE(JSVALUE64)
JITCompiler::Call callOperation(J_JITOperation_E operation, GPRReg result)
{
m_jit.setupArgumentsExecState();
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EP operation, GPRReg result, void* pointer)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(Z_JITOperation_D operation, GPRReg result, FPRReg arg1)
{
m_jit.setupArguments(arg1);
JITCompiler::Call call = m_jit.appendCall(operation);
m_jit.zeroExtend32ToPtr(GPRInfo::returnValueGPR, result);
return call;
}
JITCompiler::Call callOperation(Q_JITOperation_J operation, GPRReg result, GPRReg value)
{
m_jit.setupArguments(value);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(Q_JITOperation_D operation, GPRReg result, FPRReg value)
{
m_jit.setupArguments(value);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EI operation, GPRReg result, UniquedStringImpl* uid)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(uid));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EA operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EAZ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EJssZ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EPS operation, GPRReg result, void* pointer, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer), TrustedImmPtr(size));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_ESS operation, GPRReg result, int startConstant, int numConstants)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(startConstant), TrustedImm32(numConstants));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EPP operation, GPRReg result, GPRReg arg1, void* pointer)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(pointer));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EC operation, GPRReg result, JSCell* cell)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_ECZ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_ESsiCI operation, GPRReg result, StructureStubInfo* stubInfo, GPRReg arg1, const UniquedStringImpl* uid)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1, TrustedImmPtr(uid));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_ESsiJI operation, GPRReg result, StructureStubInfo* stubInfo, GPRReg arg1, UniquedStringImpl* uid)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1, TrustedImmPtr(uid));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EDA operation, GPRReg result, FPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EJC operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EJZ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EJA operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EP operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EZ operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EZ operation, GPRReg result, int32_t arg1)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EZZ operation, GPRReg result, int32_t arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EZIcfZ operation, GPRReg result, int32_t arg1, InlineCallFrame* inlineCallFrame, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), TrustedImmPtr(inlineCallFrame), arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(P_JITOperation_EJS operation, GPRReg result, GPRReg value, size_t index)
{
m_jit.setupArgumentsWithExecState(value, TrustedImmPtr(index));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(P_JITOperation_EStJ operation, GPRReg result, Structure* structure, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EJ operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EJJC operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EJJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EJZ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EJZC operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(S_JITOperation_J operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArguments(arg1);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(S_JITOperation_EJ operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EJ operation, JSValueRegs result, JSValueRegs arg1)
{
return callOperation(operation, result.payloadGPR(), arg1.payloadGPR());
}
JITCompiler::Call callOperation(J_JITOperation_EJ operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(S_JITOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EPP operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg result, GPRReg arg1, MacroAssembler::TrustedImm32 imm)
{
m_jit.setupArgumentsWithExecState(arg1, MacroAssembler::TrustedImm64(JSValue::encode(jsNumber(imm.m_value))));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg result, MacroAssembler::TrustedImm32 imm, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(MacroAssembler::TrustedImm64(JSValue::encode(jsNumber(imm.m_value))), arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EJJ operation, JSValueRegs result, JSValueRegs arg1, JSValueRegs arg2)
{
return callOperation(operation, result.payloadGPR(), arg1.payloadGPR(), arg2.payloadGPR());
}
JITCompiler::Call callOperation(J_JITOperation_ECC operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_ECJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_ECJ operation, GPRReg result, GPRReg arg1, JSValueRegs arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2.gpr());
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(V_JITOperation_EOZD operation, GPRReg arg1, GPRReg arg2, FPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_EJ operation, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_EJPP operation, GPRReg arg1, GPRReg arg2, void* pointer)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(pointer));
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_ESsiJJI operation, StructureStubInfo* stubInfo, GPRReg arg1, GPRReg arg2, UniquedStringImpl* uid)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1, arg2, TrustedImmPtr(uid));
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_EJJJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_EPZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_ECJJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCall(operation);
}
JITCompiler::Call callOperation(Z_JITOperation_EJZZ operation, GPRReg result, GPRReg arg1, unsigned arg2, unsigned arg3)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImm32(arg2), TrustedImm32(arg3));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(F_JITOperation_EFJZZ operation, GPRReg result, GPRReg arg1, GPRReg arg2, unsigned arg3, GPRReg arg4)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImm32(arg3), arg4);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(Z_JITOperation_EJOJ operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(Z_JITOperation_EJOJ operation, GPRReg result, JSValueRegs arg1, GPRReg arg2, JSValueRegs arg3)
{
return callOperation(operation, result, arg1.payloadGPR(), arg2, arg3.payloadGPR());
}
JITCompiler::Call callOperation(Z_JITOperation_EJZ operation, GPRReg result, GPRReg arg1, unsigned arg2)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImm32(arg2));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(V_JITOperation_EZJZZZ operation, unsigned arg1, GPRReg arg2, unsigned arg3, GPRReg arg4, unsigned arg5)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2, TrustedImm32(arg3), arg4, TrustedImm32(arg5));
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_ECJZC operation, GPRReg regOp1, GPRReg regOp2, int32_t op3, GPRReg regOp4)
{
m_jit.setupArgumentsWithExecState(regOp1, regOp2, TrustedImm32(op3), regOp4);
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_ECIZJJ operation, GPRReg regOp1, UniquedStringImpl* identOp2, int32_t op3, GPRReg regOp4, GPRReg regOp5)
{
m_jit.setupArgumentsWithExecState(regOp1, TrustedImmPtr(identOp2), TrustedImm32(op3), regOp4, regOp5);
return appendCall(operation);
}
#else // USE(JSVALUE32_64)
// EncodedJSValue in JSVALUE32_64 is a 64-bit integer. When being compiled in ARM EABI, it must be aligned on an even-numbered register (r0, r2 or [sp]).
// To prevent the assembler from using wrong registers, let's occupy r1 or r3 with a dummy argument when necessary.
#if (COMPILER_SUPPORTS(EABI) && CPU(ARM)) || CPU(MIPS)
#define EABI_32BIT_DUMMY_ARG TrustedImm32(0),
#else
#define EABI_32BIT_DUMMY_ARG
#endif
// JSVALUE32_64 is a 64-bit integer that cannot be put half in an argument register and half on stack when using SH4 architecture.
// To avoid this, let's occupy the 4th argument register (r7) with a dummy argument when necessary. This must only be done when there
// is no other 32-bit value argument behind this 64-bit JSValue.
#if CPU(SH4)
#define SH4_32BIT_DUMMY_ARG TrustedImm32(0),
#else
#define SH4_32BIT_DUMMY_ARG
#endif
JITCompiler::Call callOperation(D_JITOperation_G operation, FPRReg result, JSGlobalObject* globalObject)
{
m_jit.setupArguments(TrustedImmPtr(globalObject));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(Z_JITOperation_D operation, GPRReg result, FPRReg arg1)
{
prepareForExternalCall();
m_jit.setupArguments(arg1);
JITCompiler::Call call = m_jit.appendCall(operation);
m_jit.zeroExtend32ToPtr(GPRInfo::returnValueGPR, result);
return call;
}
JITCompiler::Call callOperation(J_JITOperation_E operation, GPRReg resultTag, GPRReg resultPayload)
{
m_jit.setupArgumentsExecState();
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EP operation, GPRReg resultTag, GPRReg resultPayload, void* pointer)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer));
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EPP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, void* pointer)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(pointer));
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EI operation, GPRReg resultTag, GPRReg resultPayload, UniquedStringImpl* uid)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(uid));
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EA operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EAZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EJ operation, JSValueRegs result, JSValueRegs arg1)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1.tagGPR(), arg1.payloadGPR());
}
JITCompiler::Call callOperation(J_JITOperation_EJ operation, GPRReg resultPayload, GPRReg resultTag, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EJC operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EJssZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EPS operation, GPRReg resultTag, GPRReg resultPayload, void* pointer, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer), TrustedImmPtr(size));
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_ESS operation, GPRReg resultTag, GPRReg resultPayload, int startConstant, int numConstants)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(startConstant), TrustedImm32(numConstants));
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EJP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, void* pointer)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, TrustedImmPtr(pointer));
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EJP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EC operation, GPRReg resultTag, GPRReg resultPayload, JSCell* cell)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell));
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_ECZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EJscC operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, JSCell* cell)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell));
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EJscCJ operation, GPRReg result, GPRReg arg1, JSCell* cell, GPRReg arg2Tag, GPRReg arg2Payload)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell), EABI_32BIT_DUMMY_ARG arg2Payload, arg2Tag);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_ESsiCI operation, GPRReg resultTag, GPRReg resultPayload, StructureStubInfo* stubInfo, GPRReg arg1, const UniquedStringImpl* uid)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1, TrustedImmPtr(uid));
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_ESsiJI operation, GPRReg resultTag, GPRReg resultPayload, StructureStubInfo* stubInfo, GPRReg arg1Tag, GPRReg arg1Payload, UniquedStringImpl* uid)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1Payload, arg1Tag, TrustedImmPtr(uid));
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_ESsiJI operation, GPRReg resultTag, GPRReg resultPayload, StructureStubInfo* stubInfo, int32_t arg1Tag, GPRReg arg1Payload, UniquedStringImpl* uid)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1Payload, TrustedImm32(arg1Tag), TrustedImmPtr(uid));
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EDA operation, GPRReg resultTag, GPRReg resultPayload, FPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1, arg2);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EJA operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EJA operation, GPRReg resultTag, GPRReg resultPayload, TrustedImm32 arg1Tag, GPRReg arg1Payload, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1));
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EZIcfZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1, InlineCallFrame* inlineCallFrame, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), TrustedImmPtr(inlineCallFrame), arg2);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EZZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(P_JITOperation_EJS operation, GPRReg result, JSValueRegs value, size_t index)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG value.payloadGPR(), value.tagGPR(), TrustedImmPtr(index));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(P_JITOperation_EStJ operation, GPRReg result, Structure* structure, GPRReg arg2Tag, GPRReg arg2Payload)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), arg2Payload, arg2Tag);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EJJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2Payload, arg2Tag);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(C_JITOperation_EJJJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload, GPRReg arg3Tag, GPRReg arg3Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2Payload, arg2Tag, arg3Payload, arg3Tag);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(S_JITOperation_EJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(S_JITOperation_EJJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, SH4_32BIT_DUMMY_ARG arg2Payload, arg2Tag);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, SH4_32BIT_DUMMY_ARG arg2Payload, arg2Tag);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, MacroAssembler::TrustedImm32 imm)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, SH4_32BIT_DUMMY_ARG imm, TrustedImm32(JSValue::Int32Tag));
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, MacroAssembler::TrustedImm32 imm, GPRReg arg2Tag, GPRReg arg2Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG imm, TrustedImm32(JSValue::Int32Tag), SH4_32BIT_DUMMY_ARG arg2Payload, arg2Tag);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_EJJ operation, JSValueRegs result, JSValueRegs arg1, JSValueRegs arg2)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1.tagGPR(), arg1.payloadGPR(), arg2.tagGPR(), arg2.payloadGPR());
}
JITCompiler::Call callOperation(J_JITOperation_ECJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload)
{
m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_ECJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2Payload)
{
m_jit.setupArgumentsWithExecState(arg1, arg2Payload, MacroAssembler::TrustedImm32(JSValue::CellTag));
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_JITOperation_ECJ operation, JSValueRegs result, GPRReg arg1, JSValueRegs arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2.payloadGPR(), arg2.tagGPR());
return appendCallSetResult(operation, result.payloadGPR(), result.tagGPR());
}
JITCompiler::Call callOperation(J_JITOperation_ECC operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(V_JITOperation_EOZD operation, GPRReg arg1, GPRReg arg2, FPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG arg3);
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_EJ operation, GPRReg arg1Tag, GPRReg arg1Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag);
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_EJPP operation, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2, void* pointer)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2, TrustedImmPtr(pointer));
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_ESsiJJI operation, StructureStubInfo* stubInfo, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Payload, UniquedStringImpl* uid)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1Payload, arg1Tag, arg2Payload, TrustedImm32(JSValue::CellTag), TrustedImmPtr(uid));
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_ECJJ operation, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload, GPRReg arg3Tag, GPRReg arg3Payload)
{
m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag, arg3Payload, arg3Tag);
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_EPZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG SH4_32BIT_DUMMY_ARG arg3Payload, arg3Tag);
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG SH4_32BIT_DUMMY_ARG arg3Payload, arg3Tag);
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, TrustedImm32 arg3Tag, GPRReg arg3Payload)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG SH4_32BIT_DUMMY_ARG arg3Payload, arg3Tag);
return appendCall(operation);
}
JITCompiler::Call callOperation(Z_JITOperation_EJOJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2, EABI_32BIT_DUMMY_ARG arg3Payload, arg3Tag);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(Z_JITOperation_EJOJ operation, GPRReg result, JSValueRegs arg1, GPRReg arg2, JSValueRegs arg3)
{
return callOperation(operation, result, arg1.tagGPR(), arg1.payloadGPR(), arg2, arg3.tagGPR(), arg3.payloadGPR());
}
JITCompiler::Call callOperation(Z_JITOperation_EJZZ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, unsigned arg2, unsigned arg3)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, TrustedImm32(arg2), TrustedImm32(arg3));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(F_JITOperation_EFJZZ operation, GPRReg result, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload, unsigned arg3, GPRReg arg4)
{
m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag, TrustedImm32(arg3), arg4);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(Z_JITOperation_EJZ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, unsigned arg2)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, TrustedImm32(arg2));
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(V_JITOperation_EZJZZZ operation, unsigned arg1, GPRReg arg2Tag, GPRReg arg2Payload, unsigned arg3, GPRReg arg4, unsigned arg5)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2Payload, arg2Tag, TrustedImm32(arg3), arg4, TrustedImm32(arg5));
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_ECJZC operation, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload, int32_t arg3, GPRReg arg4)
{
m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag, TrustedImm32(arg3), arg4);
return appendCall(operation);
}
JITCompiler::Call callOperation(V_JITOperation_ECIZCC operation, GPRReg arg1, UniquedStringImpl* identOp2, int32_t op3, GPRReg arg4, GPRReg arg5)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identOp2), TrustedImm32(op3), arg4, arg5);
return appendCall(operation);
}
#undef EABI_32BIT_DUMMY_ARG
#undef SH4_32BIT_DUMMY_ARG
template<typename FunctionType>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR());
}
template<typename FunctionType, typename ArgumentType1>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result, ArgumentType1 arg1)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1);
}
template<typename FunctionType, typename ArgumentType1, typename ArgumentType2>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2);
}
template<
typename FunctionType, typename ArgumentType1, typename ArgumentType2,
typename ArgumentType3>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2,
ArgumentType3 arg3)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3);
}
template<
typename FunctionType, typename ArgumentType1, typename ArgumentType2,
typename ArgumentType3, typename ArgumentType4>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2,
ArgumentType3 arg3, ArgumentType4 arg4)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3, arg4);
}
template<
typename FunctionType, typename ArgumentType1, typename ArgumentType2,
typename ArgumentType3, typename ArgumentType4, typename ArgumentType5>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2,
ArgumentType3 arg3, ArgumentType4 arg4, ArgumentType5 arg5)
{
return callOperation(
operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3, arg4, arg5);
}
#endif // USE(JSVALUE32_64)
#if !defined(NDEBUG) && !CPU(ARM) && !CPU(MIPS) && !CPU(SH4)
void prepareForExternalCall()
{
// We're about to call out to a "native" helper function. The helper
// function is expected to set topCallFrame itself with the ExecState
// that is passed to it.
//
// We explicitly trash topCallFrame here so that we'll know if some of
// the helper functions are not setting topCallFrame when they should
// be doing so. Note: the previous value in topcallFrame was not valid
// anyway since it was not being updated by JIT'ed code by design.
for (unsigned i = 0; i < sizeof(void*) / 4; i++)
m_jit.store32(TrustedImm32(0xbadbeef), reinterpret_cast<char*>(&m_jit.vm()->topCallFrame) + i * 4);
}
#else
void prepareForExternalCall() { }
#endif
// These methods add call instructions, optionally setting results, and optionally rolling back the call frame on an exception.
JITCompiler::Call appendCall(const FunctionPtr& function)
{
prepareForExternalCall();
m_jit.emitStoreCodeOrigin(m_currentNode->origin.semantic);
return m_jit.appendCall(function);
}
JITCompiler::Call appendCallWithCallFrameRollbackOnException(const FunctionPtr& function)
{
JITCompiler::Call call = appendCall(function);
m_jit.exceptionCheckWithCallFrameRollback();
return call;
}
JITCompiler::Call appendCallWithCallFrameRollbackOnExceptionSetResult(const FunctionPtr& function, GPRReg result)
{
JITCompiler::Call call = appendCallWithCallFrameRollbackOnException(function);
if ((result != InvalidGPRReg) && (result != GPRInfo::returnValueGPR))
m_jit.move(GPRInfo::returnValueGPR, result);
return call;
}
JITCompiler::Call appendCallSetResult(const FunctionPtr& function, GPRReg result)
{
JITCompiler::Call call = appendCall(function);
if (result != InvalidGPRReg)
m_jit.move(GPRInfo::returnValueGPR, result);
return call;
}
JITCompiler::Call appendCallSetResult(const FunctionPtr& function, GPRReg result1, GPRReg result2)
{
JITCompiler::Call call = appendCall(function);
m_jit.setupResults(result1, result2);
return call;
}
#if CPU(X86)
JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = appendCall(function);
if (result != InvalidFPRReg) {
m_jit.assembler().fstpl(0, JITCompiler::stackPointerRegister);
m_jit.loadDouble(JITCompiler::stackPointerRegister, result);
}
return call;
}
#elif CPU(ARM) && !CPU(ARM_HARDFP)
JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = appendCall(function);
if (result != InvalidFPRReg)
m_jit.assembler().vmov(result, GPRInfo::returnValueGPR, GPRInfo::returnValueGPR2);
return call;
}
#else // CPU(X86_64) || (CPU(ARM) && CPU(ARM_HARDFP)) || CPU(ARM64) || CPU(MIPS) || CPU(SH4)
JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = appendCall(function);
if (result != InvalidFPRReg)
m_jit.moveDouble(FPRInfo::returnValueFPR, result);
return call;
}
#endif
void branchDouble(JITCompiler::DoubleCondition cond, FPRReg left, FPRReg right, BasicBlock* destination)
{
return addBranch(m_jit.branchDouble(cond, left, right), destination);
}
void branchDoubleNonZero(FPRReg value, FPRReg scratch, BasicBlock* destination)
{
return addBranch(m_jit.branchDoubleNonZero(value, scratch), destination);
}
template<typename T, typename U>
void branch32(JITCompiler::RelationalCondition cond, T left, U right, BasicBlock* destination)
{
return addBranch(m_jit.branch32(cond, left, right), destination);
}
template<typename T, typename U>
void branchTest32(JITCompiler::ResultCondition cond, T value, U mask, BasicBlock* destination)
{
return addBranch(m_jit.branchTest32(cond, value, mask), destination);
}
template<typename T>
void branchTest32(JITCompiler::ResultCondition cond, T value, BasicBlock* destination)
{
return addBranch(m_jit.branchTest32(cond, value), destination);
}
#if USE(JSVALUE64)
template<typename T, typename U>
void branch64(JITCompiler::RelationalCondition cond, T left, U right, BasicBlock* destination)
{
return addBranch(m_jit.branch64(cond, left, right), destination);
}
#endif
template<typename T, typename U>
void branch8(JITCompiler::RelationalCondition cond, T left, U right, BasicBlock* destination)
{
return addBranch(m_jit.branch8(cond, left, right), destination);
}
template<typename T, typename U>
void branchPtr(JITCompiler::RelationalCondition cond, T left, U right, BasicBlock* destination)
{
return addBranch(m_jit.branchPtr(cond, left, right), destination);
}
template<typename T, typename U>
void branchTestPtr(JITCompiler::ResultCondition cond, T value, U mask, BasicBlock* destination)
{
return addBranch(m_jit.branchTestPtr(cond, value, mask), destination);
}
template<typename T>
void branchTestPtr(JITCompiler::ResultCondition cond, T value, BasicBlock* destination)
{
return addBranch(m_jit.branchTestPtr(cond, value), destination);
}
template<typename T, typename U>
void branchTest8(JITCompiler::ResultCondition cond, T value, U mask, BasicBlock* destination)
{
return addBranch(m_jit.branchTest8(cond, value, mask), destination);
}
template<typename T>
void branchTest8(JITCompiler::ResultCondition cond, T value, BasicBlock* destination)
{
return addBranch(m_jit.branchTest8(cond, value), destination);
}
enum FallThroughMode {
AtFallThroughPoint,
ForceJump
};
void jump(BasicBlock* destination, FallThroughMode fallThroughMode = AtFallThroughPoint)
{
if (destination == nextBlock()
&& fallThroughMode == AtFallThroughPoint)
return;
addBranch(m_jit.jump(), destination);
}
void addBranch(const MacroAssembler::Jump& jump, BasicBlock* destination)
{
m_branches.append(BranchRecord(jump, destination));
}
void addBranch(const MacroAssembler::JumpList& jump, BasicBlock* destination);
void linkBranches();
void dump(const char* label = 0);
bool betterUseStrictInt52(Node* node)
{
return !generationInfo(node).isInt52();
}
bool betterUseStrictInt52(Edge edge)
{
return betterUseStrictInt52(edge.node());
}
bool compare(Node*, MacroAssembler::RelationalCondition, MacroAssembler::DoubleCondition, S_JITOperation_EJJ);
bool compilePeepHoleBranch(Node*, MacroAssembler::RelationalCondition, MacroAssembler::DoubleCondition, S_JITOperation_EJJ);
void compilePeepHoleInt32Branch(Node*, Node* branchNode, JITCompiler::RelationalCondition);
void compilePeepHoleInt52Branch(Node*, Node* branchNode, JITCompiler::RelationalCondition);
void compilePeepHoleBooleanBranch(Node*, Node* branchNode, JITCompiler::RelationalCondition);
void compilePeepHoleDoubleBranch(Node*, Node* branchNode, JITCompiler::DoubleCondition);
void compilePeepHoleObjectEquality(Node*, Node* branchNode);
void compilePeepHoleObjectStrictEquality(Edge objectChild, Edge otherChild, Node* branchNode);
void compilePeepHoleObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild, Node* branchNode);
void compileObjectEquality(Node*);
void compileObjectStrictEquality(Edge objectChild, Edge otherChild);
void compileObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild);
void compileObjectOrOtherLogicalNot(Edge value);
void compileLogicalNot(Node*);
void compileStringEquality(
Node*, GPRReg leftGPR, GPRReg rightGPR, GPRReg lengthGPR,
GPRReg leftTempGPR, GPRReg rightTempGPR, GPRReg leftTemp2GPR,
GPRReg rightTemp2GPR, JITCompiler::JumpList fastTrue,
JITCompiler::JumpList fastSlow);
void compileStringEquality(Node*);
void compileStringIdentEquality(Node*);
void compileStringToUntypedEquality(Node*, Edge stringEdge, Edge untypedEdge);
void compileStringIdentToNotStringVarEquality(Node*, Edge stringEdge, Edge notStringVarEdge);
void compileStringZeroLength(Node*);
void compileMiscStrictEq(Node*);
template<typename Functor>
void extractStringImplFromBinarySymbols(Edge leftSymbolEdge, Edge rightSymbolEdge, const Functor&);
void compileSymbolEquality(Node*);
void compilePeepHoleSymbolEquality(Node*, Node* branchNode);
void emitObjectOrOtherBranch(Edge value, BasicBlock* taken, BasicBlock* notTaken);
void emitStringBranch(Edge value, BasicBlock* taken, BasicBlock* notTaken);
void emitBranch(Node*);
struct StringSwitchCase {
StringSwitchCase() { }
StringSwitchCase(StringImpl* string, BasicBlock* target)
: string(string)
, target(target)
{
}
bool operator<(const StringSwitchCase& other) const
{
return stringLessThan(*string, *other.string);
}
StringImpl* string;
BasicBlock* target;
};
void emitSwitchIntJump(SwitchData*, GPRReg value, GPRReg scratch);
void emitSwitchImm(Node*, SwitchData*);
void emitSwitchCharStringJump(SwitchData*, GPRReg value, GPRReg scratch);
void emitSwitchChar(Node*, SwitchData*);
void emitBinarySwitchStringRecurse(
SwitchData*, const Vector<StringSwitchCase>&, unsigned numChecked,
unsigned begin, unsigned end, GPRReg buffer, GPRReg length, GPRReg temp,
unsigned alreadyCheckedLength, bool checkedExactLength);
void emitSwitchStringOnString(SwitchData*, GPRReg string);
void emitSwitchString(Node*, SwitchData*);
void emitSwitch(Node*);
void compileToStringOrCallStringConstructorOnCell(Node*);
void compileNewStringObject(Node*);
void compileNewTypedArray(Node*);
void compileInt32Compare(Node*, MacroAssembler::RelationalCondition);
void compileInt52Compare(Node*, MacroAssembler::RelationalCondition);
void compileBooleanCompare(Node*, MacroAssembler::RelationalCondition);
void compileDoubleCompare(Node*, MacroAssembler::DoubleCondition);
bool compileStrictEq(Node*);
void compileAllocatePropertyStorage(Node*);
void compileReallocatePropertyStorage(Node*);
void compileGetButterfly(Node*);
#if USE(JSVALUE32_64)
template<typename BaseOperandType, typename PropertyOperandType, typename ValueOperandType, typename TagType>
void compileContiguousPutByVal(Node*, BaseOperandType&, PropertyOperandType&, ValueOperandType&, GPRReg valuePayloadReg, TagType valueTag);
#endif
void compileDoublePutByVal(Node*, SpeculateCellOperand& base, SpeculateStrictInt32Operand& property);
bool putByValWillNeedExtraRegister(ArrayMode arrayMode)
{
return arrayMode.mayStoreToHole();
}
GPRReg temporaryRegisterForPutByVal(GPRTemporary&, ArrayMode);
GPRReg temporaryRegisterForPutByVal(GPRTemporary& temporary, Node* node)
{
return temporaryRegisterForPutByVal(temporary, node->arrayMode());
}
void compileGetCharCodeAt(Node*);
void compileGetByValOnString(Node*);
void compileFromCharCode(Node*);
void compileGetByValOnDirectArguments(Node*);
void compileGetByValOnScopedArguments(Node*);
void compileGetScope(Node*);
void compileSkipScope(Node*);
void compileGetArrayLength(Node*);
void compileCheckTypeInfoFlags(Node*);
void compileCheckIdent(Node*);
void compileValueRep(Node*);
void compileDoubleRep(Node*);
void compileValueToInt32(Node*);
void compileUInt32ToNumber(Node*);
void compileDoubleAsInt32(Node*);
template<typename SnippetGenerator, J_JITOperation_EJJ slowPathFunction>
void emitUntypedBitOp(Node*);
void compileBitwiseOp(Node*);
void emitUntypedRightShiftBitOp(Node*);
void compileShiftOp(Node*);
void compileValueAdd(Node*);
void compileArithAdd(Node*);
void compileMakeRope(Node*);
void compileArithClz32(Node*);
void compileArithSub(Node*);
void compileArithNegate(Node*);
void compileArithMul(Node*);
void compileArithDiv(Node*);
void compileArithMod(Node*);
void compileArithPow(Node*);
void compileArithRound(Node*);
void compileArithRandom(Node*);
void compileArithSqrt(Node*);
void compileArithLog(Node*);
void compileConstantStoragePointer(Node*);
void compileGetIndexedPropertyStorage(Node*);
JITCompiler::Jump jumpForTypedArrayOutOfBounds(Node*, GPRReg baseGPR, GPRReg indexGPR);
void emitTypedArrayBoundsCheck(Node*, GPRReg baseGPR, GPRReg indexGPR);
void compileGetTypedArrayByteOffset(Node*);
void compileGetByValOnIntTypedArray(Node*, TypedArrayType);
void compilePutByValForIntTypedArray(GPRReg base, GPRReg property, Node*, TypedArrayType);
void compileGetByValOnFloatTypedArray(Node*, TypedArrayType);
void compilePutByValForFloatTypedArray(GPRReg base, GPRReg property, Node*, TypedArrayType);
template <typename ClassType> void compileNewFunctionCommon(GPRReg, Structure*, GPRReg, GPRReg, GPRReg, MacroAssembler::JumpList&, size_t, FunctionExecutable*, ptrdiff_t, ptrdiff_t, ptrdiff_t);
void compileNewFunction(Node*);
void compileForwardVarargs(Node*);
void compileCreateActivation(Node*);
void compileCreateDirectArguments(Node*);
void compileGetFromArguments(Node*);
void compilePutToArguments(Node*);
void compileCreateScopedArguments(Node*);
void compileCreateClonedArguments(Node*);
void compileCopyRest(Node*);
void compileGetRestLength(Node*);
void compileNotifyWrite(Node*);
bool compileRegExpExec(Node*);
void compileIsObjectOrNull(Node*);
void compileIsFunction(Node*);
void compileTypeOf(Node*);
void compileCheckStructure(Node*, GPRReg cellGPR, GPRReg tempGPR);
void compileCheckStructure(Node*);
void compilePutAccessorById(Node*);
void compilePutGetterSetterById(Node*);
void compilePutAccessorByVal(Node*);
void moveTrueTo(GPRReg);
void moveFalseTo(GPRReg);
void blessBoolean(GPRReg);
// size can be an immediate or a register, and must be in bytes. If size is a register,
// it must be a different register than resultGPR. Emits code that place a pointer to
// the end of the allocation. The returned jump is the jump to the slow path.
template<typename SizeType>
MacroAssembler::Jump emitAllocateBasicStorage(SizeType size, GPRReg resultGPR)
{
CopiedAllocator* copiedAllocator = &m_jit.vm()->heap.storageAllocator();
// It's invalid to allocate zero bytes in CopiedSpace.
#ifndef NDEBUG
m_jit.move(size, resultGPR);
MacroAssembler::Jump nonZeroSize = m_jit.branchTest32(MacroAssembler::NonZero, resultGPR);
m_jit.abortWithReason(DFGBasicStorageAllocatorZeroSize);
nonZeroSize.link(&m_jit);
#endif
m_jit.loadPtr(&copiedAllocator->m_currentRemaining, resultGPR);
MacroAssembler::Jump slowPath = m_jit.branchSubPtr(JITCompiler::Signed, size, resultGPR);
m_jit.storePtr(resultGPR, &copiedAllocator->m_currentRemaining);
m_jit.negPtr(resultGPR);
m_jit.addPtr(JITCompiler::AbsoluteAddress(&copiedAllocator->m_currentPayloadEnd), resultGPR);
return slowPath;
}
// Allocator for a cell of a specific size.
template <typename StructureType> // StructureType can be GPR or ImmPtr.
void emitAllocateJSCell(GPRReg resultGPR, GPRReg allocatorGPR, StructureType structure,
GPRReg scratchGPR, MacroAssembler::JumpList& slowPath)
{
if (Options::forceGCSlowPaths())
slowPath.append(m_jit.jump());
else {
m_jit.loadPtr(MacroAssembler::Address(allocatorGPR, MarkedAllocator::offsetOfFreeListHead()), resultGPR);
slowPath.append(m_jit.branchTestPtr(MacroAssembler::Zero, resultGPR));
}
// The object is half-allocated: we have what we know is a fresh object, but
// it's still on the GC's free list.
m_jit.loadPtr(MacroAssembler::Address(resultGPR), scratchGPR);
m_jit.storePtr(scratchGPR, MacroAssembler::Address(allocatorGPR, MarkedAllocator::offsetOfFreeListHead()));
// Initialize the object's Structure.
m_jit.emitStoreStructureWithTypeInfo(structure, resultGPR, scratchGPR);
}
// Allocator for an object of a specific size.
template <typename StructureType, typename StorageType> // StructureType and StorageType can be GPR or ImmPtr.
void emitAllocateJSObject(GPRReg resultGPR, GPRReg allocatorGPR, StructureType structure,
StorageType storage, GPRReg scratchGPR, MacroAssembler::JumpList& slowPath)
{
emitAllocateJSCell(resultGPR, allocatorGPR, structure, scratchGPR, slowPath);
// Initialize the object's property storage pointer.
m_jit.storePtr(storage, MacroAssembler::Address(resultGPR, JSObject::butterflyOffset()));
}
template <typename ClassType, typename StructureType, typename StorageType> // StructureType and StorageType can be GPR or ImmPtr.
void emitAllocateJSObjectWithKnownSize(
GPRReg resultGPR, StructureType structure, StorageType storage, GPRReg scratchGPR1,
GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath, size_t size)
{
MarkedAllocator* allocator = &m_jit.vm()->heap.allocatorForObjectOfType<ClassType>(size);
m_jit.move(TrustedImmPtr(allocator), scratchGPR1);
emitAllocateJSObject(resultGPR, scratchGPR1, structure, storage, scratchGPR2, slowPath);
}
// Convenience allocator for a built-in object.
template <typename ClassType, typename StructureType, typename StorageType> // StructureType and StorageType can be GPR or ImmPtr.
void emitAllocateJSObject(GPRReg resultGPR, StructureType structure, StorageType storage,
GPRReg scratchGPR1, GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath)
{
emitAllocateJSObjectWithKnownSize<ClassType>(
resultGPR, structure, storage, scratchGPR1, scratchGPR2, slowPath,
ClassType::allocationSize(0));
}
template <typename ClassType, typename StructureType> // StructureType and StorageType can be GPR or ImmPtr.
void emitAllocateVariableSizedJSObject(GPRReg resultGPR, StructureType structure, GPRReg allocationSize, GPRReg scratchGPR1, GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath)
{
static_assert(!(MarkedSpace::preciseStep & (MarkedSpace::preciseStep - 1)), "MarkedSpace::preciseStep must be a power of two.");
static_assert(!(MarkedSpace::impreciseStep & (MarkedSpace::impreciseStep - 1)), "MarkedSpace::impreciseStep must be a power of two.");
MarkedSpace::Subspace& subspace = m_jit.vm()->heap.subspaceForObjectOfType<ClassType>();
m_jit.add32(TrustedImm32(MarkedSpace::preciseStep - 1), allocationSize);
MacroAssembler::Jump notSmall = m_jit.branch32(MacroAssembler::AboveOrEqual, allocationSize, TrustedImm32(MarkedSpace::preciseCutoff));
m_jit.rshift32(allocationSize, TrustedImm32(getLSBSet(MarkedSpace::preciseStep)), scratchGPR1);
m_jit.mul32(TrustedImm32(sizeof(MarkedAllocator)), scratchGPR1, scratchGPR1);
m_jit.addPtr(MacroAssembler::TrustedImmPtr(&subspace.preciseAllocators[0]), scratchGPR1);
MacroAssembler::Jump selectedSmallSpace = m_jit.jump();
notSmall.link(&m_jit);
slowPath.append(m_jit.branch32(MacroAssembler::AboveOrEqual, allocationSize, TrustedImm32(MarkedSpace::impreciseCutoff)));
m_jit.rshift32(allocationSize, TrustedImm32(getLSBSet(MarkedSpace::impreciseStep)), scratchGPR1);
m_jit.mul32(TrustedImm32(sizeof(MarkedAllocator)), scratchGPR1, scratchGPR1);
m_jit.addPtr(MacroAssembler::TrustedImmPtr(&subspace.impreciseAllocators[0]), scratchGPR1);
selectedSmallSpace.link(&m_jit);
emitAllocateJSObject(resultGPR, scratchGPR1, structure, TrustedImmPtr(0), scratchGPR2, slowPath);
}
template <typename T>
void emitAllocateDestructibleObject(GPRReg resultGPR, Structure* structure,
GPRReg scratchGPR1, GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath)
{
emitAllocateJSObject<T>(resultGPR, TrustedImmPtr(structure), TrustedImmPtr(0), scratchGPR1, scratchGPR2, slowPath);
m_jit.storePtr(TrustedImmPtr(structure->classInfo()), MacroAssembler::Address(resultGPR, JSDestructibleObject::classInfoOffset()));
}
void emitAllocateJSArray(GPRReg resultGPR, Structure*, GPRReg storageGPR, unsigned numElements);
void emitGetLength(InlineCallFrame*, GPRReg lengthGPR, bool includeThis = false);
void emitGetLength(CodeOrigin, GPRReg lengthGPR, bool includeThis = false);
void emitGetCallee(CodeOrigin, GPRReg calleeGPR);
void emitGetArgumentStart(CodeOrigin, GPRReg startGPR);
// Generate an OSR exit fuzz check. Returns Jump() if OSR exit fuzz is not enabled, or if
// it's in training mode.
MacroAssembler::Jump emitOSRExitFuzzCheck();
// Add a speculation check.
void speculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail);
void speculationCheck(ExitKind, JSValueSource, Node*, const MacroAssembler::JumpList& jumpsToFail);
// Add a speculation check without additional recovery, and with a promise to supply a jump later.
OSRExitJumpPlaceholder speculationCheck(ExitKind, JSValueSource, Node*);
OSRExitJumpPlaceholder speculationCheck(ExitKind, JSValueSource, Edge);
void speculationCheck(ExitKind, JSValueSource, Edge, MacroAssembler::Jump jumpToFail);
void speculationCheck(ExitKind, JSValueSource, Edge, const MacroAssembler::JumpList& jumpsToFail);
// Add a speculation check with additional recovery.
void speculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&);
void speculationCheck(ExitKind, JSValueSource, Edge, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&);
void emitInvalidationPoint(Node*);
// Called when we statically determine that a speculation will fail.
void terminateSpeculativeExecution(ExitKind, JSValueRegs, Node*);
void terminateSpeculativeExecution(ExitKind, JSValueRegs, Edge);
// Helpers for performing type checks on an edge stored in the given registers.
bool needsTypeCheck(Edge edge, SpeculatedType typesPassedThrough) { return m_interpreter.needsTypeCheck(edge, typesPassedThrough); }
void typeCheck(JSValueSource, Edge, SpeculatedType typesPassedThrough, MacroAssembler::Jump jumpToFail, ExitKind = BadType);
void speculateCellTypeWithoutTypeFiltering(Edge, GPRReg cellGPR, JSType);
void speculateCellType(Edge, GPRReg cellGPR, SpeculatedType, JSType);
void speculateInt32(Edge);
#if USE(JSVALUE64)
void convertMachineInt(Edge, GPRReg resultGPR);
void speculateMachineInt(Edge);
void speculateDoubleRepMachineInt(Edge);
#endif // USE(JSVALUE64)
void speculateNumber(Edge);
void speculateRealNumber(Edge);
void speculateDoubleRepReal(Edge);
void speculateBoolean(Edge);
void speculateCell(Edge);
void speculateCellOrOther(Edge);
void speculateObject(Edge);
void speculateFunction(Edge);
void speculateFinalObject(Edge);
void speculateObjectOrOther(Edge);
void speculateString(Edge edge, GPRReg cell);
void speculateStringIdentAndLoadStorage(Edge edge, GPRReg string, GPRReg storage);
void speculateStringIdent(Edge edge, GPRReg string);
void speculateStringIdent(Edge);
void speculateString(Edge);
void speculateNotStringVar(Edge);
template<typename StructureLocationType>
void speculateStringObjectForStructure(Edge, StructureLocationType);
void speculateStringObject(Edge, GPRReg);
void speculateStringObject(Edge);
void speculateStringOrStringObject(Edge);
void speculateSymbol(Edge, GPRReg cell);
void speculateSymbol(Edge);
void speculateNotCell(Edge);
void speculateOther(Edge);
void speculateMisc(Edge, JSValueRegs);
void speculateMisc(Edge);
void speculate(Node*, Edge);
JITCompiler::Jump jumpSlowForUnwantedArrayMode(GPRReg tempWithIndexingTypeReg, ArrayMode, IndexingType);
JITCompiler::JumpList jumpSlowForUnwantedArrayMode(GPRReg tempWithIndexingTypeReg, ArrayMode);
void checkArray(Node*);
void arrayify(Node*, GPRReg baseReg, GPRReg propertyReg);
void arrayify(Node*);
template<bool strict>
GPRReg fillSpeculateInt32Internal(Edge, DataFormat& returnFormat);
// It is possible, during speculative generation, to reach a situation in which we
// can statically determine a speculation will fail (for example, when two nodes
// will make conflicting speculations about the same operand). In such cases this
// flag is cleared, indicating no further code generation should take place.
bool m_compileOkay;
void recordSetLocal(
VirtualRegister bytecodeReg, VirtualRegister machineReg, DataFormat format)
{
m_stream->appendAndLog(VariableEvent::setLocal(bytecodeReg, machineReg, format));
}
void recordSetLocal(DataFormat format)
{
VariableAccessData* variable = m_currentNode->variableAccessData();
recordSetLocal(variable->local(), variable->machineLocal(), format);
}
GenerationInfo& generationInfoFromVirtualRegister(VirtualRegister virtualRegister)
{
return m_generationInfo[virtualRegister.toLocal()];
}
GenerationInfo& generationInfo(Node* node)
{
return generationInfoFromVirtualRegister(node->virtualRegister());
}
GenerationInfo& generationInfo(Edge edge)
{
return generationInfo(edge.node());
}
// The JIT, while also provides MacroAssembler functionality.
JITCompiler& m_jit;
// The current node being generated.
BasicBlock* m_block;
Node* m_currentNode;
NodeType m_lastGeneratedNode;
unsigned m_indexInBlock;
// Virtual and physical register maps.
Vector<GenerationInfo, 32> m_generationInfo;
RegisterBank<GPRInfo> m_gprs;
RegisterBank<FPRInfo> m_fprs;
Vector<MacroAssembler::Label> m_osrEntryHeads;
struct BranchRecord {
BranchRecord(MacroAssembler::Jump jump, BasicBlock* destination)
: jump(jump)
, destination(destination)
{
}
MacroAssembler::Jump jump;
BasicBlock* destination;
};
Vector<BranchRecord, 8> m_branches;
NodeOrigin m_origin;
InPlaceAbstractState m_state;
AbstractInterpreter<InPlaceAbstractState> m_interpreter;
VariableEventStream* m_stream;
MinifiedGraph* m_minifiedGraph;
Vector<std::unique_ptr<SlowPathGenerator>, 8> m_slowPathGenerators;
Vector<SilentRegisterSavePlan> m_plans;
unsigned m_outOfLineStreamIndex { UINT_MAX };
};
// === Operand types ===
//
// These classes are used to lock the operands to a node into machine
// registers. These classes implement of pattern of locking a value
// into register at the point of construction only if it is already in
// registers, and otherwise loading it lazily at the point it is first
// used. We do so in order to attempt to avoid spilling one operand
// in order to make space available for another.
class JSValueOperand {
public:
explicit JSValueOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
#if USE(JSVALUE64)
, m_gprOrInvalid(InvalidGPRReg)
#elif USE(JSVALUE32_64)
, m_isDouble(false)
#endif
{
ASSERT(m_jit);
if (!edge)
return;
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == UntypedUse);
#if USE(JSVALUE64)
if (jit->isFilled(node()))
gpr();
#elif USE(JSVALUE32_64)
m_register.pair.tagGPR = InvalidGPRReg;
m_register.pair.payloadGPR = InvalidGPRReg;
if (jit->isFilled(node()))
fill();
#endif
}
explicit JSValueOperand(JSValueOperand&& other)
: m_jit(other.m_jit)
, m_edge(other.m_edge)
{
#if USE(JSVALUE64)
m_gprOrInvalid = other.m_gprOrInvalid;
#elif USE(JSVALUE32_64)
m_register.pair.tagGPR = InvalidGPRReg;
m_register.pair.payloadGPR = InvalidGPRReg;
m_isDouble = other.m_isDouble;
if (m_edge) {
if (m_isDouble)
m_register.fpr = other.m_register.fpr;
else
m_register.pair = other.m_register.pair;
}
#endif
other.m_edge = Edge();
#if USE(JSVALUE64)
other.m_gprOrInvalid = InvalidGPRReg;
#elif USE(JSVALUE32_64)
other.m_isDouble = false;
#endif
}
~JSValueOperand()
{
if (!m_edge)
return;
#if USE(JSVALUE64)
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
#elif USE(JSVALUE32_64)
if (m_isDouble) {
ASSERT(m_register.fpr != InvalidFPRReg);
m_jit->unlock(m_register.fpr);
} else {
ASSERT(m_register.pair.tagGPR != InvalidGPRReg && m_register.pair.payloadGPR != InvalidGPRReg);
m_jit->unlock(m_register.pair.tagGPR);
m_jit->unlock(m_register.pair.payloadGPR);
}
#endif
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
#if USE(JSVALUE64)
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillJSValue(m_edge);
return m_gprOrInvalid;
}
JSValueRegs jsValueRegs()
{
return JSValueRegs(gpr());
}
#elif USE(JSVALUE32_64)
bool isDouble() { return m_isDouble; }
void fill()
{
if (m_register.pair.tagGPR == InvalidGPRReg && m_register.pair.payloadGPR == InvalidGPRReg)
m_isDouble = !m_jit->fillJSValue(m_edge, m_register.pair.tagGPR, m_register.pair.payloadGPR, m_register.fpr);
}
GPRReg tagGPR()
{
fill();
ASSERT(!m_isDouble);
return m_register.pair.tagGPR;
}
GPRReg payloadGPR()
{
fill();
ASSERT(!m_isDouble);
return m_register.pair.payloadGPR;
}
JSValueRegs jsValueRegs()
{
return JSValueRegs(tagGPR(), payloadGPR());
}
GPRReg gpr(WhichValueWord which)
{
return jsValueRegs().gpr(which);
}
FPRReg fpr()
{
fill();
ASSERT(m_isDouble);
return m_register.fpr;
}
#endif
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
#if USE(JSVALUE64)
GPRReg m_gprOrInvalid;
#elif USE(JSVALUE32_64)
union {
struct {
GPRReg tagGPR;
GPRReg payloadGPR;
} pair;
FPRReg fpr;
} m_register;
bool m_isDouble;
#endif
};
class StorageOperand {
public:
explicit StorageOperand(SpeculativeJIT* jit, Edge edge)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
{
ASSERT(m_jit);
ASSERT(edge.useKind() == UntypedUse || edge.useKind() == KnownCellUse);
if (jit->isFilled(node()))
gpr();
}
~StorageOperand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillStorage(edge());
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
};
// === Temporaries ===
//
// These classes are used to allocate temporary registers.
// A mechanism is provided to attempt to reuse the registers
// currently allocated to child nodes whose value is consumed
// by, and not live after, this operation.
enum ReuseTag { Reuse };
class GPRTemporary {
public:
GPRTemporary();
GPRTemporary(SpeculativeJIT*);
GPRTemporary(SpeculativeJIT*, GPRReg specific);
template<typename T>
GPRTemporary(SpeculativeJIT* jit, ReuseTag, T& operand)
: m_jit(jit)
, m_gpr(InvalidGPRReg)
{
if (m_jit->canReuse(operand.node()))
m_gpr = m_jit->reuse(operand.gpr());
else
m_gpr = m_jit->allocate();
}
template<typename T1, typename T2>
GPRTemporary(SpeculativeJIT* jit, ReuseTag, T1& op1, T2& op2)
: m_jit(jit)
, m_gpr(InvalidGPRReg)
{
if (m_jit->canReuse(op1.node()))
m_gpr = m_jit->reuse(op1.gpr());
else if (m_jit->canReuse(op2.node()))
m_gpr = m_jit->reuse(op2.gpr());
else if (m_jit->canReuse(op1.node(), op2.node()) && op1.gpr() == op2.gpr())
m_gpr = m_jit->reuse(op1.gpr());
else
m_gpr = m_jit->allocate();
}
#if USE(JSVALUE32_64)
GPRTemporary(SpeculativeJIT*, ReuseTag, JSValueOperand&, WhichValueWord);
#endif
void adopt(GPRTemporary&);
~GPRTemporary()
{
if (m_jit && m_gpr != InvalidGPRReg)
m_jit->unlock(gpr());
}
GPRReg gpr()
{
return m_gpr;
}
private:
SpeculativeJIT* m_jit;
GPRReg m_gpr;
};
class JSValueRegsTemporary {
public:
JSValueRegsTemporary();
JSValueRegsTemporary(SpeculativeJIT*);
~JSValueRegsTemporary();
JSValueRegs regs();
private:
#if USE(JSVALUE64)
GPRTemporary m_gpr;
#else
GPRTemporary m_payloadGPR;
GPRTemporary m_tagGPR;
#endif
};
class FPRTemporary {
public:
FPRTemporary(SpeculativeJIT*);
FPRTemporary(SpeculativeJIT*, SpeculateDoubleOperand&);
FPRTemporary(SpeculativeJIT*, SpeculateDoubleOperand&, SpeculateDoubleOperand&);
#if USE(JSVALUE32_64)
FPRTemporary(SpeculativeJIT*, JSValueOperand&);
#endif
~FPRTemporary()
{
m_jit->unlock(fpr());
}
FPRReg fpr() const
{
ASSERT(m_fpr != InvalidFPRReg);
return m_fpr;
}
protected:
FPRTemporary(SpeculativeJIT* jit, FPRReg lockedFPR)
: m_jit(jit)
, m_fpr(lockedFPR)
{
}
private:
SpeculativeJIT* m_jit;
FPRReg m_fpr;
};
// === Results ===
//
// These classes lock the result of a call to a C++ helper function.
class GPRFlushedCallResult : public GPRTemporary {
public:
GPRFlushedCallResult(SpeculativeJIT* jit)
: GPRTemporary(jit, GPRInfo::returnValueGPR)
{
}
};
#if USE(JSVALUE32_64)
class GPRFlushedCallResult2 : public GPRTemporary {
public:
GPRFlushedCallResult2(SpeculativeJIT* jit)
: GPRTemporary(jit, GPRInfo::returnValueGPR2)
{
}
};
#endif
class FPRResult : public FPRTemporary {
public:
FPRResult(SpeculativeJIT* jit)
: FPRTemporary(jit, lockedResult(jit))
{
}
private:
static FPRReg lockedResult(SpeculativeJIT* jit)
{
jit->lock(FPRInfo::returnValueFPR);
return FPRInfo::returnValueFPR;
}
};
// === Speculative Operand types ===
//
// SpeculateInt32Operand, SpeculateStrictInt32Operand and SpeculateCellOperand.
//
// These are used to lock the operands to a node into machine registers within the
// SpeculativeJIT. The classes operate like those above, however these will
// perform a speculative check for a more restrictive type than we can statically
// determine the operand to have. If the operand does not have the requested type,
// a bail-out to the non-speculative path will be taken.
class SpeculateInt32Operand {
public:
explicit SpeculateInt32Operand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
#ifndef NDEBUG
, m_format(DataFormatNone)
#endif
{
ASSERT(m_jit);
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == Int32Use || edge.useKind() == KnownInt32Use));
if (jit->isFilled(node()))
gpr();
}
~SpeculateInt32Operand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
DataFormat format()
{
gpr(); // m_format is set when m_gpr is locked.
ASSERT(m_format == DataFormatInt32 || m_format == DataFormatJSInt32);
return m_format;
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateInt32(edge(), m_format);
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
DataFormat m_format;
};
class SpeculateStrictInt32Operand {
public:
explicit SpeculateStrictInt32Operand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
{
ASSERT(m_jit);
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == Int32Use || edge.useKind() == KnownInt32Use));
if (jit->isFilled(node()))
gpr();
}
~SpeculateStrictInt32Operand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateInt32Strict(edge());
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
};
// Gives you a canonical Int52 (i.e. it's left-shifted by 16, low bits zero).
class SpeculateInt52Operand {
public:
explicit SpeculateInt52Operand(SpeculativeJIT* jit, Edge edge)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
{
RELEASE_ASSERT(edge.useKind() == Int52RepUse);
if (jit->isFilled(node()))
gpr();
}
~SpeculateInt52Operand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateInt52(edge(), DataFormatInt52);
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
};
// Gives you a strict Int52 (i.e. the payload is in the low 48 bits, high 16 bits are sign-extended).
class SpeculateStrictInt52Operand {
public:
explicit SpeculateStrictInt52Operand(SpeculativeJIT* jit, Edge edge)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
{
RELEASE_ASSERT(edge.useKind() == Int52RepUse);
if (jit->isFilled(node()))
gpr();
}
~SpeculateStrictInt52Operand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateInt52(edge(), DataFormatStrictInt52);
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
};
enum OppositeShiftTag { OppositeShift };
class SpeculateWhicheverInt52Operand {
public:
explicit SpeculateWhicheverInt52Operand(SpeculativeJIT* jit, Edge edge)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
, m_strict(jit->betterUseStrictInt52(edge))
{
RELEASE_ASSERT(edge.useKind() == Int52RepUse);
if (jit->isFilled(node()))
gpr();
}
explicit SpeculateWhicheverInt52Operand(SpeculativeJIT* jit, Edge edge, const SpeculateWhicheverInt52Operand& other)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
, m_strict(other.m_strict)
{
RELEASE_ASSERT(edge.useKind() == Int52RepUse);
if (jit->isFilled(node()))
gpr();
}
explicit SpeculateWhicheverInt52Operand(SpeculativeJIT* jit, Edge edge, OppositeShiftTag, const SpeculateWhicheverInt52Operand& other)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
, m_strict(!other.m_strict)
{
RELEASE_ASSERT(edge.useKind() == Int52RepUse);
if (jit->isFilled(node()))
gpr();
}
~SpeculateWhicheverInt52Operand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg) {
m_gprOrInvalid = m_jit->fillSpeculateInt52(
edge(), m_strict ? DataFormatStrictInt52 : DataFormatInt52);
}
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
DataFormat format() const
{
return m_strict ? DataFormatStrictInt52 : DataFormatInt52;
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
bool m_strict;
};
class SpeculateDoubleOperand {
public:
explicit SpeculateDoubleOperand(SpeculativeJIT* jit, Edge edge)
: m_jit(jit)
, m_edge(edge)
, m_fprOrInvalid(InvalidFPRReg)
{
ASSERT(m_jit);
RELEASE_ASSERT(isDouble(edge.useKind()));
if (jit->isFilled(node()))
fpr();
}
~SpeculateDoubleOperand()
{
ASSERT(m_fprOrInvalid != InvalidFPRReg);
m_jit->unlock(m_fprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
FPRReg fpr()
{
if (m_fprOrInvalid == InvalidFPRReg)
m_fprOrInvalid = m_jit->fillSpeculateDouble(edge());
return m_fprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
FPRReg m_fprOrInvalid;
};
class SpeculateCellOperand {
public:
explicit SpeculateCellOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
{
ASSERT(m_jit);
if (!edge)
return;
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || isCell(edge.useKind()));
if (jit->isFilled(node()))
gpr();
}
~SpeculateCellOperand()
{
if (!m_edge)
return;
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
ASSERT(m_edge);
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateCell(edge());
return m_gprOrInvalid;
}
void use()
{
ASSERT(m_edge);
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
};
class SpeculateBooleanOperand {
public:
explicit SpeculateBooleanOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
{
ASSERT(m_jit);
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == BooleanUse || edge.useKind() == KnownBooleanUse);
if (jit->isFilled(node()))
gpr();
}
~SpeculateBooleanOperand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateBoolean(edge());
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
};
template<typename StructureLocationType>
void SpeculativeJIT::speculateStringObjectForStructure(Edge edge, StructureLocationType structureLocation)
{
Structure* stringObjectStructure =
m_jit.globalObjectFor(m_currentNode->origin.semantic)->stringObjectStructure();
if (!m_state.forNode(edge).m_structure.isSubsetOf(StructureSet(stringObjectStructure))) {
speculationCheck(
NotStringObject, JSValueRegs(), 0,
m_jit.branchStructure(
JITCompiler::NotEqual, structureLocation, stringObjectStructure));
}
}
#define DFG_TYPE_CHECK_WITH_EXIT_KIND(exitKind, source, edge, typesPassedThrough, jumpToFail) do { \
JSValueSource _dtc_source = (source); \
Edge _dtc_edge = (edge); \
SpeculatedType _dtc_typesPassedThrough = typesPassedThrough; \
if (!needsTypeCheck(_dtc_edge, _dtc_typesPassedThrough)) \
break; \
typeCheck(_dtc_source, _dtc_edge, _dtc_typesPassedThrough, (jumpToFail), exitKind); \
} while (0)
#define DFG_TYPE_CHECK(source, edge, typesPassedThrough, jumpToFail) \
DFG_TYPE_CHECK_WITH_EXIT_KIND(BadType, source, edge, typesPassedThrough, jumpToFail)
} } // namespace JSC::DFG
#endif
#endif