blob: c7ab01e0c76bb611b91d2898680c99e4c21b6099 [file] [log] [blame]
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
* Copyright (C) 2013, 2014 Igalia S.L.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "RenderGrid.h"
#if ENABLE(CSS_GRID_LAYOUT)
#include "GridCoordinate.h"
#include "GridResolvedPosition.h"
#include "LayoutRepainter.h"
#include "RenderLayer.h"
#include "RenderView.h"
#include <wtf/NeverDestroyed.h>
namespace WebCore {
static const int infinity = -1;
class GridTrack {
public:
GridTrack() {}
const LayoutUnit& baseSize() const
{
ASSERT(isGrowthLimitBiggerThanBaseSize());
return m_baseSize;
}
const LayoutUnit& growthLimit() const
{
ASSERT(isGrowthLimitBiggerThanBaseSize());
return m_growthLimit;
}
void setBaseSize(LayoutUnit baseSize)
{
m_baseSize = baseSize;
ensureGrowthLimitIsBiggerThanBaseSize();
}
void setGrowthLimit(LayoutUnit growthLimit)
{
m_growthLimit = growthLimit;
ensureGrowthLimitIsBiggerThanBaseSize();
}
bool growthLimitIsInfinite() const
{
return m_growthLimit == infinity;
}
bool infiniteGrowthPotential() const
{
return growthLimitIsInfinite() || m_infinitelyGrowable;
}
const LayoutUnit& growthLimitIfNotInfinite() const
{
ASSERT(isGrowthLimitBiggerThanBaseSize());
return (m_growthLimit == infinity) ? m_baseSize : m_growthLimit;
}
const LayoutUnit& plannedSize() const { return m_plannedSize; }
void setPlannedSize(LayoutUnit plannedSize)
{
m_plannedSize = plannedSize;
}
LayoutUnit& tempSize() { return m_tempSize; }
bool infinitelyGrowable() const { return m_infinitelyGrowable; }
void setInfinitelyGrowable(bool infinitelyGrowable)
{
m_infinitelyGrowable = infinitelyGrowable;
}
private:
bool isGrowthLimitBiggerThanBaseSize() const { return growthLimitIsInfinite() || m_growthLimit >= m_baseSize; }
void ensureGrowthLimitIsBiggerThanBaseSize()
{
if (m_growthLimit != infinity && m_growthLimit < m_baseSize)
m_growthLimit = m_baseSize;
}
LayoutUnit m_baseSize { 0 };
LayoutUnit m_growthLimit { 0 };
LayoutUnit m_plannedSize { 0 };
LayoutUnit m_tempSize { 0 };
bool m_infinitelyGrowable { false };
};
struct GridTrackForNormalization {
GridTrackForNormalization(const GridTrack& track, double flex)
: m_track(&track)
, m_flex(flex)
, m_normalizedFlexValue(track.baseSize() / flex)
{
}
const GridTrack* m_track;
double m_flex;
LayoutUnit m_normalizedFlexValue;
};
class RenderGrid::GridIterator {
WTF_MAKE_NONCOPYABLE(GridIterator);
public:
// |direction| is the direction that is fixed to |fixedTrackIndex| so e.g
// GridIterator(m_grid, ForColumns, 1) will walk over the rows of the 2nd column.
GridIterator(const Vector<Vector<Vector<RenderBox*, 1>>>& grid, GridTrackSizingDirection direction, unsigned fixedTrackIndex, unsigned varyingTrackIndex = 0)
: m_grid(grid)
, m_direction(direction)
, m_rowIndex((direction == ForColumns) ? varyingTrackIndex : fixedTrackIndex)
, m_columnIndex((direction == ForColumns) ? fixedTrackIndex : varyingTrackIndex)
, m_childIndex(0)
{
ASSERT(m_rowIndex < m_grid.size());
ASSERT(m_columnIndex < m_grid[0].size());
}
RenderBox* nextGridItem()
{
if (!m_grid.size())
return 0;
unsigned& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
const unsigned endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
const auto& children = m_grid[m_rowIndex][m_columnIndex];
if (m_childIndex < children.size())
return children[m_childIndex++];
m_childIndex = 0;
}
return 0;
}
bool isEmptyAreaEnough(unsigned rowSpan, unsigned columnSpan) const
{
// Ignore cells outside current grid as we will grow it later if needed.
unsigned maxRows = std::min<unsigned>(m_rowIndex + rowSpan, m_grid.size());
unsigned maxColumns = std::min<unsigned>(m_columnIndex + columnSpan, m_grid[0].size());
// This adds a O(N^2) behavior that shouldn't be a big deal as we expect spanning areas to be small.
for (unsigned row = m_rowIndex; row < maxRows; ++row) {
for (unsigned column = m_columnIndex; column < maxColumns; ++column) {
auto& children = m_grid[row][column];
if (!children.isEmpty())
return false;
}
}
return true;
}
std::unique_ptr<GridCoordinate> nextEmptyGridArea(unsigned fixedTrackSpan, unsigned varyingTrackSpan)
{
ASSERT(fixedTrackSpan >= 1 && varyingTrackSpan >= 1);
if (m_grid.isEmpty())
return nullptr;
unsigned rowSpan = (m_direction == ForColumns) ? varyingTrackSpan : fixedTrackSpan;
unsigned columnSpan = (m_direction == ForColumns) ? fixedTrackSpan : varyingTrackSpan;
unsigned& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
const unsigned endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
if (isEmptyAreaEnough(rowSpan, columnSpan)) {
std::unique_ptr<GridCoordinate> result = std::make_unique<GridCoordinate>(GridSpan(m_rowIndex, m_rowIndex + rowSpan - 1), GridSpan(m_columnIndex, m_columnIndex + columnSpan - 1));
// Advance the iterator to avoid an infinite loop where we would return the same grid area over and over.
++varyingTrackIndex;
return result;
}
}
return nullptr;
}
private:
const Vector<Vector<Vector<RenderBox*, 1>>>& m_grid;
GridTrackSizingDirection m_direction;
unsigned m_rowIndex;
unsigned m_columnIndex;
unsigned m_childIndex;
};
class RenderGrid::GridSizingData {
WTF_MAKE_NONCOPYABLE(GridSizingData);
public:
GridSizingData(unsigned gridColumnCount, unsigned gridRowCount)
: columnTracks(gridColumnCount)
, rowTracks(gridRowCount)
{
}
Vector<GridTrack> columnTracks;
Vector<GridTrack> rowTracks;
Vector<unsigned> contentSizedTracksIndex;
// Performance optimization: hold onto these Vectors until the end of Layout to avoid repeated malloc / free.
Vector<GridTrack*> filteredTracks;
Vector<GridTrack*> growBeyondGrowthLimitsTracks;
Vector<GridItemWithSpan> itemsSortedByIncreasingSpan;
};
RenderGrid::RenderGrid(Element& element, Ref<RenderStyle>&& style)
: RenderBlock(element, WTF::move(style), 0)
, m_orderIterator(*this)
{
// All of our children must be block level.
setChildrenInline(false);
}
RenderGrid::~RenderGrid()
{
}
void RenderGrid::layoutBlock(bool relayoutChildren, LayoutUnit)
{
ASSERT(needsLayout());
if (!relayoutChildren && simplifiedLayout())
return;
// FIXME: Much of this method is boiler plate that matches RenderBox::layoutBlock and Render*FlexibleBox::layoutBlock.
// It would be nice to refactor some of the duplicate code.
LayoutRepainter repainter(*this, checkForRepaintDuringLayout());
LayoutStateMaintainer statePusher(view(), *this, locationOffset(), hasTransform() || hasReflection() || style().isFlippedBlocksWritingMode());
preparePaginationBeforeBlockLayout(relayoutChildren);
LayoutSize previousSize = size();
setLogicalHeight(0);
updateLogicalWidth();
layoutGridItems();
LayoutUnit oldClientAfterEdge = clientLogicalBottom();
updateLogicalHeight();
if (size() != previousSize)
relayoutChildren = true;
layoutPositionedObjects(relayoutChildren || isRoot());
computeOverflow(oldClientAfterEdge);
statePusher.pop();
updateLayerTransform();
// Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
// we overflow or not.
updateScrollInfoAfterLayout();
repainter.repaintAfterLayout();
clearNeedsLayout();
}
void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
{
bool wasPopulated = gridWasPopulated();
if (!wasPopulated)
const_cast<RenderGrid*>(this)->placeItemsOnGrid();
GridSizingData sizingData(gridColumnCount(), gridRowCount());
LayoutUnit availableLogicalSpace = 0;
const_cast<RenderGrid*>(this)->computeUsedBreadthOfGridTracks(ForColumns, sizingData, availableLogicalSpace);
for (auto& column : sizingData.columnTracks) {
LayoutUnit minTrackBreadth = column.baseSize();
LayoutUnit maxTrackBreadth = column.growthLimit();
minLogicalWidth += minTrackBreadth;
maxLogicalWidth += maxTrackBreadth;
}
LayoutUnit scrollbarWidth = intrinsicScrollbarLogicalWidth();
minLogicalWidth += scrollbarWidth;
maxLogicalWidth += scrollbarWidth;
if (!wasPopulated)
const_cast<RenderGrid*>(this)->clearGrid();
}
void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData)
{
LayoutUnit availableLogicalSpace = (direction == ForColumns) ? availableLogicalWidth() : availableLogicalHeight(IncludeMarginBorderPadding);
computeUsedBreadthOfGridTracks(direction, sizingData, availableLogicalSpace);
}
bool RenderGrid::gridElementIsShrinkToFit()
{
return isFloatingOrOutOfFlowPositioned();
}
void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
{
const LayoutUnit initialAvailableLogicalSpace = availableLogicalSpace;
Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks;
Vector<unsigned> flexibleSizedTracksIndex;
sizingData.contentSizedTracksIndex.shrink(0);
// 1. Initialize per Grid track variables.
for (unsigned i = 0; i < tracks.size(); ++i) {
GridTrack& track = tracks[i];
const GridTrackSize& trackSize = gridTrackSize(direction, i);
const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
const GridLength& maxTrackBreadth = trackSize.maxTrackBreadth();
track.setBaseSize(computeUsedBreadthOfMinLength(direction, minTrackBreadth));
track.setGrowthLimit(computeUsedBreadthOfMaxLength(direction, maxTrackBreadth, track.baseSize()));
track.setInfinitelyGrowable(false);
if (trackSize.isContentSized())
sizingData.contentSizedTracksIndex.append(i);
if (trackSize.maxTrackBreadth().isFlex())
flexibleSizedTracksIndex.append(i);
}
// 2. Resolve content-based TrackSizingFunctions.
if (!sizingData.contentSizedTracksIndex.isEmpty())
resolveContentBasedTrackSizingFunctions(direction, sizingData);
for (auto& track : tracks) {
ASSERT(!track.growthLimitIsInfinite());
availableLogicalSpace -= track.baseSize();
}
const bool hasUndefinedRemainingSpace = (direction == ForRows) ? style().logicalHeight().isAuto() : gridElementIsShrinkToFit();
if (!hasUndefinedRemainingSpace && availableLogicalSpace <= 0)
return;
// 3. Grow all Grid tracks in GridTracks from their UsedBreadth up to their MaxBreadth value until availableLogicalSpace is exhausted.
if (!hasUndefinedRemainingSpace) {
const unsigned tracksSize = tracks.size();
Vector<GridTrack*> tracksForDistribution(tracksSize);
for (unsigned i = 0; i < tracksSize; ++i) {
tracksForDistribution[i] = tracks.data() + i;
tracksForDistribution[i]->setPlannedSize(tracksForDistribution[i]->baseSize());
}
distributeSpaceToTracks<MaximizeTracks>(tracksForDistribution, nullptr, availableLogicalSpace);
for (auto* track : tracksForDistribution)
track->setBaseSize(track->plannedSize());
} else {
for (auto& track : tracks)
track.setBaseSize(track.growthLimit());
}
if (flexibleSizedTracksIndex.isEmpty())
return;
// 4. Grow all Grid tracks having a fraction as the MaxTrackSizingFunction.
double normalizedFractionBreadth = 0;
if (!hasUndefinedRemainingSpace)
normalizedFractionBreadth = computeNormalizedFractionBreadth(tracks, GridSpan(0, tracks.size() - 1), direction, initialAvailableLogicalSpace);
else {
for (auto trackIndex : flexibleSizedTracksIndex) {
const GridTrackSize& trackSize = gridTrackSize(direction, trackIndex);
normalizedFractionBreadth = std::max(normalizedFractionBreadth, tracks[trackIndex].baseSize() / trackSize.maxTrackBreadth().flex());
}
for (unsigned i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
GridIterator iterator(m_grid, direction, flexibleSizedTracksIndex[i]);
while (RenderBox* gridItem = iterator.nextGridItem()) {
const GridCoordinate coordinate = cachedGridCoordinate(*gridItem);
const GridSpan span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
// Do not include already processed items.
if (i > 0 && span.resolvedInitialPosition.toInt() <= flexibleSizedTracksIndex[i - 1])
continue;
double itemNormalizedFlexBreadth = computeNormalizedFractionBreadth(tracks, span, direction, maxContentForChild(*gridItem, direction, sizingData.columnTracks));
normalizedFractionBreadth = std::max(normalizedFractionBreadth, itemNormalizedFlexBreadth);
}
}
}
for (auto trackIndex : flexibleSizedTracksIndex) {
const GridTrackSize& trackSize = gridTrackSize(direction, trackIndex);
GridTrack& track = tracks[trackIndex];
LayoutUnit baseSize = std::max<LayoutUnit>(track.baseSize(), normalizedFractionBreadth * trackSize.maxTrackBreadth().flex());
track.setBaseSize(baseSize);
availableLogicalSpace -= baseSize;
}
}
LayoutUnit RenderGrid::computeUsedBreadthOfMinLength(GridTrackSizingDirection direction, const GridLength& gridLength) const
{
if (gridLength.isFlex())
return 0;
const Length& trackLength = gridLength.length();
ASSERT(!trackLength.isAuto());
if (trackLength.isSpecified())
return computeUsedBreadthOfSpecifiedLength(direction, trackLength);
ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
return 0;
}
LayoutUnit RenderGrid::computeUsedBreadthOfMaxLength(GridTrackSizingDirection direction, const GridLength& gridLength, LayoutUnit usedBreadth) const
{
if (gridLength.isFlex())
return usedBreadth;
const Length& trackLength = gridLength.length();
ASSERT(!trackLength.isAuto());
if (trackLength.isSpecified()) {
LayoutUnit computedBreadth = computeUsedBreadthOfSpecifiedLength(direction, trackLength);
ASSERT(computedBreadth != infinity);
return computedBreadth;
}
ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
return infinity;
}
LayoutUnit RenderGrid::computeUsedBreadthOfSpecifiedLength(GridTrackSizingDirection direction, const Length& trackLength) const
{
ASSERT(trackLength.isSpecified());
if (direction == ForColumns)
return valueForLength(trackLength, logicalWidth());
return valueForLength(trackLength, computeContentLogicalHeight(style().logicalHeight(), Nullopt).valueOr(0));
}
double RenderGrid::computeNormalizedFractionBreadth(Vector<GridTrack>& tracks, const GridSpan& tracksSpan, GridTrackSizingDirection direction, LayoutUnit spaceToFill) const
{
LayoutUnit allocatedSpace;
Vector<GridTrackForNormalization> tracksForNormalization;
for (auto& position : tracksSpan) {
GridTrack& track = tracks[position.toInt()];
allocatedSpace += track.baseSize();
const GridTrackSize& trackSize = gridTrackSize(direction, position.toInt());
if (!trackSize.maxTrackBreadth().isFlex())
continue;
tracksForNormalization.append(GridTrackForNormalization(track, trackSize.maxTrackBreadth().flex()));
}
// The function is not called if we don't have <flex> grid tracks
ASSERT(!tracksForNormalization.isEmpty());
std::sort(tracksForNormalization.begin(), tracksForNormalization.end(),
[](const GridTrackForNormalization& track1, const GridTrackForNormalization& track2) {
return track1.m_normalizedFlexValue < track2.m_normalizedFlexValue;
});
// These values work together: as we walk over our grid tracks, we increase fractionValueBasedOnGridItemsRatio
// to match a grid track's usedBreadth to <flex> ratio until the total fractions sized grid tracks wouldn't
// fit into availableLogicalSpaceIgnoringFractionTracks.
double accumulatedFractions = 0;
LayoutUnit fractionValueBasedOnGridItemsRatio = 0;
LayoutUnit availableLogicalSpaceIgnoringFractionTracks = spaceToFill - allocatedSpace;
for (auto& track : tracksForNormalization) {
if (track.m_normalizedFlexValue > fractionValueBasedOnGridItemsRatio) {
// If the normalized flex value (we ordered |tracksForNormalization| by increasing normalized flex value)
// will make us overflow our container, then stop. We have the previous step's ratio is the best fit.
if (track.m_normalizedFlexValue * accumulatedFractions > availableLogicalSpaceIgnoringFractionTracks)
break;
fractionValueBasedOnGridItemsRatio = track.m_normalizedFlexValue;
}
accumulatedFractions += track.m_flex;
// This item was processed so we re-add its used breadth to the available space to accurately count the remaining space.
availableLogicalSpaceIgnoringFractionTracks += track.m_track->baseSize();
}
// Let flex factor sum be the sum of the flex factors of the flexible tracks. If this value
// is less than 1, set it to 1 instead.
if (accumulatedFractions < 1)
return availableLogicalSpaceIgnoringFractionTracks;
return availableLogicalSpaceIgnoringFractionTracks / accumulatedFractions;
}
bool RenderGrid::hasDefiniteLogicalSize(GridTrackSizingDirection direction) const
{
return (direction == ForRows) ? hasDefiniteLogicalHeight() : hasDefiniteLogicalWidth();
}
GridTrackSize RenderGrid::gridTrackSize(GridTrackSizingDirection direction, unsigned i) const
{
bool isForColumns = (direction == ForColumns);
auto& trackStyles = isForColumns ? style().gridColumns() : style().gridRows();
auto& trackSize = (i >= trackStyles.size()) ? (isForColumns ? style().gridAutoColumns() : style().gridAutoRows()) : trackStyles[i];
GridLength minTrackBreadth = trackSize.minTrackBreadth();
GridLength maxTrackBreadth = trackSize.maxTrackBreadth();
if (minTrackBreadth.isPercentage() || maxTrackBreadth.isPercentage()) {
if (!hasDefiniteLogicalSize(direction)) {
if (minTrackBreadth.isPercentage())
minTrackBreadth = Length(MinContent);
if (maxTrackBreadth.isPercentage())
maxTrackBreadth = Length(MaxContent);
}
}
return GridTrackSize(minTrackBreadth, maxTrackBreadth);
}
LayoutUnit RenderGrid::logicalContentHeightForChild(RenderBox& child, Vector<GridTrack>& columnTracks)
{
Optional<LayoutUnit> oldOverrideContainingBlockContentLogicalWidth = child.hasOverrideContainingBlockLogicalWidth() ? child.overrideContainingBlockContentLogicalWidth() : LayoutUnit();
LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(child, ForColumns, columnTracks);
if (child.hasRelativeLogicalHeight() || !oldOverrideContainingBlockContentLogicalWidth || oldOverrideContainingBlockContentLogicalWidth.value() != overrideContainingBlockContentLogicalWidth) {
child.setNeedsLayout(MarkOnlyThis);
// We need to clear the stretched height to properly compute logical height during layout.
child.clearOverrideLogicalContentHeight();
}
child.setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
// If |child| has a relative logical height, we shouldn't let it override its intrinsic height, which is
// what we are interested in here. Thus we need to set the override logical height to Nullopt (no possible resolution).
if (child.hasRelativeLogicalHeight())
child.setOverrideContainingBlockContentLogicalHeight(Nullopt);
child.layoutIfNeeded();
return child.logicalHeight() + child.marginLogicalHeight();
}
LayoutUnit RenderGrid::minContentForChild(RenderBox& child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
// FIXME: Properly support orthogonal writing mode.
if (hasOrthogonalWritingMode)
return 0;
if (direction == ForColumns) {
// If |child| has a relative logical width, we shouldn't let it override its intrinsic width, which is
// what we are interested in here. Thus we need to set the override logical width to Nullopt (no possible resolution).
if (child.hasRelativeLogicalWidth())
child.setOverrideContainingBlockContentLogicalWidth(Nullopt);
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child.minPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child);
}
return logicalContentHeightForChild(child, columnTracks);
}
LayoutUnit RenderGrid::maxContentForChild(RenderBox& child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
// FIXME: Properly support orthogonal writing mode.
if (hasOrthogonalWritingMode)
return LayoutUnit();
if (direction == ForColumns) {
// If |child| has a relative logical width, we shouldn't let it override its intrinsic width, which is
// what we are interested in here. Thus we need to set the override logical width to Nullopt (no possible resolution).
if (child.hasRelativeLogicalWidth())
child.setOverrideContainingBlockContentLogicalWidth(Nullopt);
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child.maxPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child);
}
return logicalContentHeightForChild(child, columnTracks);
}
class GridItemWithSpan {
public:
GridItemWithSpan(RenderBox& gridItem, GridCoordinate coordinate, GridTrackSizingDirection direction)
: m_gridItem(gridItem)
, m_coordinate(coordinate)
{
const GridSpan& span = (direction == ForRows) ? coordinate.rows : coordinate.columns;
m_span = span.resolvedFinalPosition.toInt() - span.resolvedInitialPosition.toInt() + 1;
}
RenderBox& gridItem() const { return m_gridItem; }
GridCoordinate coordinate() const { return m_coordinate; }
#if !ASSERT_DISABLED
size_t span() const { return m_span; }
#endif
bool operator<(const GridItemWithSpan other) const
{
return m_span < other.m_span;
}
private:
std::reference_wrapper<RenderBox> m_gridItem;
GridCoordinate m_coordinate;
unsigned m_span;
};
bool RenderGrid::spanningItemCrossesFlexibleSizedTracks(const GridCoordinate& coordinate, GridTrackSizingDirection direction) const
{
const GridSpan itemSpan = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
for (auto trackPosition : itemSpan) {
const GridTrackSize& trackSize = gridTrackSize(direction, trackPosition.toInt());
if (trackSize.minTrackBreadth().isFlex() || trackSize.maxTrackBreadth().isFlex())
return true;
}
return false;
}
static inline unsigned integerSpanForDirection(const GridCoordinate& coordinate, GridTrackSizingDirection direction)
{
return (direction == ForRows) ? coordinate.rows.integerSpan() : coordinate.columns.integerSpan();
}
struct GridItemsSpanGroupRange {
Vector<GridItemWithSpan>::iterator rangeStart;
Vector<GridItemWithSpan>::iterator rangeEnd;
};
void RenderGrid::resolveContentBasedTrackSizingFunctions(GridTrackSizingDirection direction, GridSizingData& sizingData)
{
sizingData.itemsSortedByIncreasingSpan.shrink(0);
HashSet<RenderBox*> itemsSet;
for (auto trackIndex : sizingData.contentSizedTracksIndex) {
GridIterator iterator(m_grid, direction, trackIndex);
GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndex] : sizingData.rowTracks[trackIndex];
while (RenderBox* gridItem = iterator.nextGridItem()) {
if (itemsSet.add(gridItem).isNewEntry) {
const GridCoordinate& coordinate = cachedGridCoordinate(*gridItem);
if (integerSpanForDirection(coordinate, direction) == 1)
resolveContentBasedTrackSizingFunctionsForNonSpanningItems(direction, coordinate, *gridItem, track, sizingData.columnTracks);
else if (!spanningItemCrossesFlexibleSizedTracks(coordinate, direction))
sizingData.itemsSortedByIncreasingSpan.append(GridItemWithSpan(*gridItem, coordinate, direction));
}
}
}
std::sort(sizingData.itemsSortedByIncreasingSpan.begin(), sizingData.itemsSortedByIncreasingSpan.end());
auto it = sizingData.itemsSortedByIncreasingSpan.begin();
auto end = sizingData.itemsSortedByIncreasingSpan.end();
while (it != end) {
GridItemsSpanGroupRange spanGroupRange = { it, std::upper_bound(it, end, *it) };
resolveContentBasedTrackSizingFunctionsForItems<ResolveIntrinsicMinimums>(direction, sizingData, spanGroupRange);
resolveContentBasedTrackSizingFunctionsForItems<ResolveMaxContentMinimums>(direction, sizingData, spanGroupRange);
resolveContentBasedTrackSizingFunctionsForItems<ResolveIntrinsicMaximums>(direction, sizingData, spanGroupRange);
resolveContentBasedTrackSizingFunctionsForItems<ResolveMaxContentMaximums>(direction, sizingData, spanGroupRange);
it = spanGroupRange.rangeEnd;
}
for (auto trackIndex : sizingData.contentSizedTracksIndex) {
GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndex] : sizingData.rowTracks[trackIndex];
if (track.growthLimitIsInfinite())
track.setGrowthLimit(track.baseSize());
}
}
void RenderGrid::resolveContentBasedTrackSizingFunctionsForNonSpanningItems(GridTrackSizingDirection direction, const GridCoordinate& coordinate, RenderBox& gridItem, GridTrack& track, Vector<GridTrack>& columnTracks)
{
const GridResolvedPosition trackPosition = (direction == ForColumns) ? coordinate.columns.resolvedInitialPosition : coordinate.rows.resolvedInitialPosition;
GridTrackSize trackSize = gridTrackSize(direction, trackPosition.toInt());
if (trackSize.hasMinContentMinTrackBreadth())
track.setBaseSize(std::max(track.baseSize(), minContentForChild(gridItem, direction, columnTracks)));
else if (trackSize.hasMaxContentMinTrackBreadth())
track.setBaseSize(std::max(track.baseSize(), maxContentForChild(gridItem, direction, columnTracks)));
if (trackSize.hasMinContentMaxTrackBreadth())
track.setGrowthLimit(std::max(track.growthLimit(), minContentForChild(gridItem, direction, columnTracks)));
else if (trackSize.hasMaxContentMaxTrackBreadth())
track.setGrowthLimit(std::max(track.growthLimit(), maxContentForChild(gridItem, direction, columnTracks)));
}
const LayoutUnit& RenderGrid::trackSizeForTrackSizeComputationPhase(TrackSizeComputationPhase phase, GridTrack& track, TrackSizeRestriction restriction)
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveMaxContentMinimums:
case MaximizeTracks:
return track.baseSize();
case ResolveIntrinsicMaximums:
case ResolveMaxContentMaximums:
return restriction == AllowInfinity ? track.growthLimit() : track.growthLimitIfNotInfinite();
}
ASSERT_NOT_REACHED();
return track.baseSize();
}
bool RenderGrid::shouldProcessTrackForTrackSizeComputationPhase(TrackSizeComputationPhase phase, const GridTrackSize& trackSize)
{
switch (phase) {
case ResolveIntrinsicMinimums:
return trackSize.hasMinOrMaxContentMinTrackBreadth();
case ResolveMaxContentMinimums:
return trackSize.hasMaxContentMinTrackBreadth();
case ResolveIntrinsicMaximums:
return trackSize.hasMinOrMaxContentMaxTrackBreadth();
case ResolveMaxContentMaximums:
return trackSize.hasMaxContentMaxTrackBreadth();
case MaximizeTracks:
ASSERT_NOT_REACHED();
return false;
}
ASSERT_NOT_REACHED();
return false;
}
bool RenderGrid::trackShouldGrowBeyondGrowthLimitsForTrackSizeComputationPhase(TrackSizeComputationPhase phase, const GridTrackSize& trackSize)
{
switch (phase) {
case ResolveIntrinsicMinimums:
return trackSize.hasMinContentMinTrackBreadthAndMinOrMaxContentMaxTrackBreadth();
case ResolveMaxContentMinimums:
return trackSize.hasMaxContentMinTrackBreadthAndMaxContentMaxTrackBreadth();
case ResolveIntrinsicMaximums:
case ResolveMaxContentMaximums:
return true;
case MaximizeTracks:
ASSERT_NOT_REACHED();
return false;
}
ASSERT_NOT_REACHED();
return false;
}
void RenderGrid::markAsInfinitelyGrowableForTrackSizeComputationPhase(TrackSizeComputationPhase phase, GridTrack& track)
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveMaxContentMinimums:
return;
case ResolveIntrinsicMaximums:
if (trackSizeForTrackSizeComputationPhase(phase, track, AllowInfinity) == infinity && track.plannedSize() != infinity)
track.setInfinitelyGrowable(true);
return;
case ResolveMaxContentMaximums:
if (track.infinitelyGrowable())
track.setInfinitelyGrowable(false);
return;
case MaximizeTracks:
ASSERT_NOT_REACHED();
return;
}
ASSERT_NOT_REACHED();
}
void RenderGrid::updateTrackSizeForTrackSizeComputationPhase(TrackSizeComputationPhase phase, GridTrack& track)
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveMaxContentMinimums:
track.setBaseSize(track.plannedSize());
return;
case ResolveIntrinsicMaximums:
case ResolveMaxContentMaximums:
track.setGrowthLimit(track.plannedSize());
return;
case MaximizeTracks:
ASSERT_NOT_REACHED();
return;
}
ASSERT_NOT_REACHED();
}
LayoutUnit RenderGrid::currentItemSizeForTrackSizeComputationPhase(TrackSizeComputationPhase phase, RenderBox& gridItem, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveIntrinsicMaximums:
return minContentForChild(gridItem, direction, columnTracks);
case ResolveMaxContentMinimums:
case ResolveMaxContentMaximums:
return maxContentForChild(gridItem, direction, columnTracks);
case MaximizeTracks:
ASSERT_NOT_REACHED();
return 0;
}
ASSERT_NOT_REACHED();
return 0;
}
template <RenderGrid::TrackSizeComputationPhase phase>
void RenderGrid::resolveContentBasedTrackSizingFunctionsForItems(GridTrackSizingDirection direction, GridSizingData& sizingData, const GridItemsSpanGroupRange& gridItemsWithSpan)
{
Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks;
for (const auto& trackIndex : sizingData.contentSizedTracksIndex) {
GridTrack& track = tracks[trackIndex];
track.setPlannedSize(trackSizeForTrackSizeComputationPhase(phase, track, AllowInfinity));
}
for (auto it = gridItemsWithSpan.rangeStart; it != gridItemsWithSpan.rangeEnd; ++it) {
GridItemWithSpan& gridItemWithSpan = *it;
ASSERT(gridItemWithSpan.span() > 1);
const GridCoordinate& coordinate = gridItemWithSpan.coordinate();
const GridSpan& itemSpan = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
sizingData.filteredTracks.shrink(0);
sizingData.growBeyondGrowthLimitsTracks.shrink(0);
LayoutUnit spanningTracksSize;
for (auto& trackPosition : itemSpan) {
const GridTrackSize& trackSize = gridTrackSize(direction, trackPosition.toInt());
GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackPosition.toInt()] : sizingData.rowTracks[trackPosition.toInt()];
spanningTracksSize += trackSizeForTrackSizeComputationPhase(phase, track, ForbidInfinity);
if (!shouldProcessTrackForTrackSizeComputationPhase(phase, trackSize))
continue;
sizingData.filteredTracks.append(&track);
if (trackShouldGrowBeyondGrowthLimitsForTrackSizeComputationPhase(phase, trackSize))
sizingData.growBeyondGrowthLimitsTracks.append(&track);
}
if (sizingData.filteredTracks.isEmpty())
continue;
LayoutUnit extraSpace = currentItemSizeForTrackSizeComputationPhase(phase, gridItemWithSpan.gridItem(), direction, sizingData.columnTracks) - spanningTracksSize;
extraSpace = std::max<LayoutUnit>(extraSpace, 0);
auto& tracksToGrowBeyondGrowthLimits = sizingData.growBeyondGrowthLimitsTracks.isEmpty() ? sizingData.filteredTracks : sizingData.growBeyondGrowthLimitsTracks;
distributeSpaceToTracks<phase>(sizingData.filteredTracks, &tracksToGrowBeyondGrowthLimits, extraSpace);
}
for (const auto& trackIndex : sizingData.contentSizedTracksIndex) {
GridTrack& track = tracks[trackIndex];
markAsInfinitelyGrowableForTrackSizeComputationPhase(phase, track);
updateTrackSizeForTrackSizeComputationPhase(phase, track);
}
}
static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2)
{
// This check ensures that we respect the irreflexivity property of the strict weak ordering required by std::sort
// (forall x: NOT x < x).
if (track1->infiniteGrowthPotential() && track2->infiniteGrowthPotential())
return false;
if (track1->infiniteGrowthPotential() || track2->infiniteGrowthPotential())
return track2->infiniteGrowthPotential();
return (track1->growthLimit() - track1->baseSize()) < (track2->growthLimit() - track2->baseSize());
}
template <RenderGrid::TrackSizeComputationPhase phase>
void RenderGrid::distributeSpaceToTracks(Vector<GridTrack*>& tracks, const Vector<GridTrack*>* growBeyondGrowthLimitsTracks, LayoutUnit& availableLogicalSpace)
{
ASSERT(availableLogicalSpace >= 0);
for (auto* track : tracks)
track->tempSize() = trackSizeForTrackSizeComputationPhase(phase, *track, ForbidInfinity);
if (availableLogicalSpace > 0) {
std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential);
unsigned tracksSize = tracks.size();
for (unsigned i = 0; i < tracksSize; ++i) {
GridTrack& track = *tracks[i];
const LayoutUnit& trackBreadth = trackSizeForTrackSizeComputationPhase(phase, track, ForbidInfinity);
bool infiniteGrowthPotential = track.infiniteGrowthPotential();
LayoutUnit trackGrowthPotential = infiniteGrowthPotential ? track.growthLimit() : track.growthLimit() - trackBreadth;
// Let's avoid computing availableLogicalSpaceShare as much as possible as it's a hot spot in performance tests.
if (trackGrowthPotential > 0 || infiniteGrowthPotential) {
LayoutUnit availableLogicalSpaceShare = availableLogicalSpace / (tracksSize - i);
LayoutUnit growthShare = infiniteGrowthPotential ? availableLogicalSpaceShare : std::min(availableLogicalSpaceShare, trackGrowthPotential);
ASSERT_WITH_MESSAGE(growthShare >= 0, "We should never shrink any grid track or else we can't guarantee we abide by our min-sizing function. We can still have 0 as growthShare if the amount of tracks greatly exceeds the availableLogicalSpace.");
track.tempSize() += growthShare;
availableLogicalSpace -= growthShare;
}
}
}
if (availableLogicalSpace > 0 && growBeyondGrowthLimitsTracks) {
unsigned tracksGrowingBeyondGrowthLimitsSize = growBeyondGrowthLimitsTracks->size();
for (unsigned i = 0; i < tracksGrowingBeyondGrowthLimitsSize; ++i) {
GridTrack* track = growBeyondGrowthLimitsTracks->at(i);
LayoutUnit growthShare = availableLogicalSpace / (tracksGrowingBeyondGrowthLimitsSize - i);
track->tempSize() += growthShare;
availableLogicalSpace -= growthShare;
}
}
for (auto* track : tracks)
track->setPlannedSize(track->plannedSize() == infinity ? track->tempSize() : std::max(track->plannedSize(), track->tempSize()));
}
#ifndef NDEBUG
bool RenderGrid::tracksAreWiderThanMinTrackBreadth(GridTrackSizingDirection direction, const Vector<GridTrack>& tracks)
{
for (unsigned i = 0; i < tracks.size(); ++i) {
const GridTrackSize& trackSize = gridTrackSize(direction, i);
const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
if (computeUsedBreadthOfMinLength(direction, minTrackBreadth) > tracks[i].baseSize())
return false;
}
return true;
}
#endif
void RenderGrid::ensureGridSize(unsigned maximumRowIndex, unsigned maximumColumnIndex)
{
const unsigned oldRowCount = gridRowCount();
if (maximumRowIndex >= oldRowCount) {
m_grid.grow(maximumRowIndex + 1);
for (unsigned row = oldRowCount; row < gridRowCount(); ++row)
m_grid[row].grow(gridColumnCount());
}
if (maximumColumnIndex >= gridColumnCount()) {
for (unsigned row = 0; row < gridRowCount(); ++row)
m_grid[row].grow(maximumColumnIndex + 1);
}
}
void RenderGrid::insertItemIntoGrid(RenderBox& child, const GridCoordinate& coordinate)
{
ensureGridSize(coordinate.rows.resolvedFinalPosition.toInt(), coordinate.columns.resolvedFinalPosition.toInt());
for (auto& row : coordinate.rows) {
for (auto& column : coordinate.columns)
m_grid[row.toInt()][column.toInt()].append(&child);
}
m_gridItemCoordinate.set(&child, coordinate);
}
void RenderGrid::placeItemsOnGrid()
{
ASSERT(!gridWasPopulated());
ASSERT(m_gridItemCoordinate.isEmpty());
populateExplicitGridAndOrderIterator();
Vector<RenderBox*> autoMajorAxisAutoGridItems;
Vector<RenderBox*> specifiedMajorAxisAutoGridItems;
for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) {
auto unresolvedRowPositions = GridResolvedPosition::unresolvedSpanFromStyle(style(), *child, ForRows);
auto unresolvedColumnPositions = GridResolvedPosition::unresolvedSpanFromStyle(style(), *child, ForColumns);
if (unresolvedRowPositions.requiresAutoPlacement() || unresolvedColumnPositions.requiresAutoPlacement()) {
bool majorAxisDirectionIsForColumns = autoPlacementMajorAxisDirection() == ForColumns;
if ((majorAxisDirectionIsForColumns && unresolvedColumnPositions.requiresAutoPlacement())
|| (!majorAxisDirectionIsForColumns && unresolvedRowPositions.requiresAutoPlacement()))
autoMajorAxisAutoGridItems.append(child);
else
specifiedMajorAxisAutoGridItems.append(child);
continue;
}
GridSpan rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(unresolvedRowPositions, style());
GridSpan columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(unresolvedColumnPositions, style());
insertItemIntoGrid(*child, GridCoordinate(rowPositions, columnPositions));
}
ASSERT(gridRowCount() >= GridResolvedPosition::explicitGridRowCount(style()));
ASSERT(gridColumnCount() >= GridResolvedPosition::explicitGridColumnCount(style()));
placeSpecifiedMajorAxisItemsOnGrid(specifiedMajorAxisAutoGridItems);
placeAutoMajorAxisItemsOnGrid(autoMajorAxisAutoGridItems);
}
void RenderGrid::populateExplicitGridAndOrderIterator()
{
OrderIteratorPopulator populator(m_orderIterator);
unsigned maximumRowIndex = std::max<unsigned>(1, GridResolvedPosition::explicitGridRowCount(style()));
unsigned maximumColumnIndex = std::max<unsigned>(1, GridResolvedPosition::explicitGridColumnCount(style()));
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
populator.collectChild(*child);
auto unresolvedRowPositions = GridResolvedPosition::unresolvedSpanFromStyle(style(), *child, ForRows);
if (!unresolvedRowPositions.requiresAutoPlacement()) {
GridSpan rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(unresolvedRowPositions, style());
maximumRowIndex = std::max(maximumRowIndex, rowPositions.resolvedFinalPosition.next().toInt());
} else {
// Grow the grid for items with a definite row span, getting the largest such span.
GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), *child, ForRows, GridResolvedPosition(0));
maximumRowIndex = std::max(maximumRowIndex, positions.resolvedFinalPosition.next().toInt());
}
auto unresolvedColumnPositions = GridResolvedPosition::unresolvedSpanFromStyle(style(), *child, ForColumns);
if (!unresolvedColumnPositions.requiresAutoPlacement()) {
GridSpan columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(unresolvedColumnPositions, style());
maximumColumnIndex = std::max(maximumColumnIndex, columnPositions.resolvedFinalPosition.next().toInt());
} else {
// Grow the grid for items with a definite column span, getting the largest such span.
GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), *child, ForColumns, GridResolvedPosition(0));
maximumColumnIndex = std::max(maximumColumnIndex, positions.resolvedFinalPosition.next().toInt());
}
}
m_grid.grow(maximumRowIndex);
for (auto& column : m_grid)
column.grow(maximumColumnIndex);
}
std::unique_ptr<GridCoordinate> RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(const RenderBox& gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const
{
GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns;
const unsigned endOfCrossDirection = crossDirection == ForColumns ? gridColumnCount() : gridRowCount();
GridSpan crossDirectionPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), gridItem, crossDirection, GridResolvedPosition(endOfCrossDirection));
return std::make_unique<GridCoordinate>(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions);
}
void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems)
{
bool isForColumns = autoPlacementMajorAxisDirection() == ForColumns;
bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense();
// Mapping between the major axis tracks (rows or columns) and the last auto-placed item's position inserted on
// that track. This is needed to implement "sparse" packing for items locked to a given track.
// See http://dev.w3.org/csswg/css-grid/#auto-placement-algo
HashMap<unsigned, unsigned, DefaultHash<unsigned>::Hash, WTF::UnsignedWithZeroKeyHashTraits<unsigned>> minorAxisCursors;
for (auto& autoGridItem : autoGridItems) {
auto unresolvedMajorAxisPositions = GridResolvedPosition::unresolvedSpanFromStyle(style(), *autoGridItem, autoPlacementMajorAxisDirection());
ASSERT(!unresolvedMajorAxisPositions.requiresAutoPlacement());
GridSpan majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(unresolvedMajorAxisPositions, style());
GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), *autoGridItem, autoPlacementMinorAxisDirection(), GridResolvedPosition(0));
unsigned majorAxisInitialPosition = majorAxisPositions.resolvedInitialPosition.toInt();
GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisPositions.resolvedInitialPosition.toInt(), isGridAutoFlowDense ? 0 : minorAxisCursors.get(majorAxisInitialPosition));
std::unique_ptr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisPositions.integerSpan());
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(*autoGridItem, autoPlacementMajorAxisDirection(), majorAxisPositions);
insertItemIntoGrid(*autoGridItem, *emptyGridArea);
if (!isGridAutoFlowDense)
minorAxisCursors.set(majorAxisInitialPosition, isForColumns ? emptyGridArea->rows.resolvedInitialPosition.toInt() : emptyGridArea->columns.resolvedInitialPosition.toInt());
}
}
void RenderGrid::placeAutoMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems)
{
AutoPlacementCursor autoPlacementCursor = {0, 0};
bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense();
for (auto& autoGridItem : autoGridItems) {
placeAutoMajorAxisItemOnGrid(*autoGridItem, autoPlacementCursor);
if (isGridAutoFlowDense) {
autoPlacementCursor.first = 0;
autoPlacementCursor.second = 0;
}
}
}
void RenderGrid::placeAutoMajorAxisItemOnGrid(RenderBox& gridItem, AutoPlacementCursor& autoPlacementCursor)
{
ASSERT(GridResolvedPosition::unresolvedSpanFromStyle(style(), gridItem, autoPlacementMajorAxisDirection()).requiresAutoPlacement());
GridSpan majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), gridItem, autoPlacementMajorAxisDirection(), GridResolvedPosition(0));
const unsigned endOfMajorAxis = (autoPlacementMajorAxisDirection() == ForColumns) ? gridColumnCount() : gridRowCount();
unsigned majorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.second : autoPlacementCursor.first;
unsigned minorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.first : autoPlacementCursor.second;
std::unique_ptr<GridCoordinate> emptyGridArea;
auto unresolvedMinorAxisPositions = GridResolvedPosition::unresolvedSpanFromStyle(style(), gridItem, autoPlacementMinorAxisDirection());
if (!unresolvedMinorAxisPositions.requiresAutoPlacement()) {
GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(unresolvedMinorAxisPositions, style());
// Move to the next track in major axis if initial position in minor axis is before auto-placement cursor.
if (minorAxisPositions.resolvedInitialPosition.toInt() < minorAxisAutoPlacementCursor)
majorAxisAutoPlacementCursor++;
if (majorAxisAutoPlacementCursor < endOfMajorAxis) {
GridIterator iterator(m_grid, autoPlacementMinorAxisDirection(), minorAxisPositions.resolvedInitialPosition.toInt(), majorAxisAutoPlacementCursor);
emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions.integerSpan(), majorAxisPositions.integerSpan());
}
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions);
} else {
GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), gridItem, autoPlacementMinorAxisDirection(), GridResolvedPosition(0));
for (unsigned majorAxisIndex = majorAxisAutoPlacementCursor; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) {
GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisIndex, minorAxisAutoPlacementCursor);
emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisPositions.integerSpan());
if (emptyGridArea) {
// Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()).
GridResolvedPosition minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.resolvedFinalPosition : emptyGridArea->rows.resolvedFinalPosition;
const unsigned endOfMinorAxis = autoPlacementMinorAxisDirection() == ForColumns ? gridColumnCount() : gridRowCount();
if (minorAxisFinalPositionIndex.toInt() < endOfMinorAxis)
break;
// Discard empty grid area as it does not fit in the minor axis direction.
// We don't need to create a new empty grid area yet as we might find a valid one in the next iteration.
emptyGridArea = nullptr;
}
// As we're moving to the next track in the major axis we should reset the auto-placement cursor in the minor axis.
minorAxisAutoPlacementCursor = 0;
}
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions);
}
insertItemIntoGrid(gridItem, *emptyGridArea);
autoPlacementCursor.first = emptyGridArea->rows.resolvedInitialPosition.toInt();
autoPlacementCursor.second = emptyGridArea->columns.resolvedInitialPosition.toInt();
}
GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const
{
return style().isGridAutoFlowDirectionColumn() ? ForColumns : ForRows;
}
GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const
{
return style().isGridAutoFlowDirectionColumn() ? ForRows : ForColumns;
}
void RenderGrid::clearGrid()
{
m_grid.clear();
m_gridItemCoordinate.clear();
}
void RenderGrid::layoutGridItems()
{
placeItemsOnGrid();
GridSizingData sizingData(gridColumnCount(), gridRowCount());
computeUsedBreadthOfGridTracks(ForColumns, sizingData);
ASSERT(tracksAreWiderThanMinTrackBreadth(ForColumns, sizingData.columnTracks));
computeUsedBreadthOfGridTracks(ForRows, sizingData);
ASSERT(tracksAreWiderThanMinTrackBreadth(ForRows, sizingData.rowTracks));
populateGridPositions(sizingData);
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
// Because the grid area cannot be styled, we don't need to adjust
// the grid breadth to account for 'box-sizing'.
Optional<LayoutUnit> oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
Optional<LayoutUnit> oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit();
LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(*child, ForColumns, sizingData.columnTracks);
LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChild(*child, ForRows, sizingData.rowTracks);
if (!oldOverrideContainingBlockContentLogicalWidth || oldOverrideContainingBlockContentLogicalWidth.value() != overrideContainingBlockContentLogicalWidth
|| ((!oldOverrideContainingBlockContentLogicalHeight || oldOverrideContainingBlockContentLogicalHeight.value() != overrideContainingBlockContentLogicalHeight)
&& child->hasRelativeLogicalHeight()))
child->setNeedsLayout(MarkOnlyThis);
else
resetAutoMarginsAndLogicalTopInColumnAxis(*child);
child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight);
LayoutRect oldChildRect = child->frameRect();
// Stretching logic might force a child layout, so we need to run it before the layoutIfNeeded
// call to avoid unnecessary relayouts. This might imply that child margins, needed to correctly
// determine the available space before stretching, are not set yet.
applyStretchAlignmentToChildIfNeeded(*child);
child->layoutIfNeeded();
// We need pending layouts to be done in order to compute auto-margins properly.
updateAutoMarginsInColumnAxisIfNeeded(*child);
updateAutoMarginsInRowAxisIfNeeded(*child);
child->setLogicalLocation(findChildLogicalPosition(*child));
// If the child moved, we have to repaint it as well as any floating/positioned
// descendants. An exception is if we need a layout. In this case, we know we're going to
// repaint ourselves (and the child) anyway.
if (!selfNeedsLayout() && child->checkForRepaintDuringLayout())
child->repaintDuringLayoutIfMoved(oldChildRect);
}
for (auto& row : sizingData.rowTracks)
setLogicalHeight(logicalHeight() + row.baseSize());
// min / max logical height is handled in updateLogicalHeight().
setLogicalHeight(logicalHeight() + borderAndPaddingLogicalHeight());
if (hasLineIfEmpty()) {
LayoutUnit minHeight = borderAndPaddingLogicalHeight()
+ lineHeight(true, isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes)
+ scrollbarLogicalHeight();
if (height() < minHeight)
setLogicalHeight(minHeight);
}
clearGrid();
}
GridCoordinate RenderGrid::cachedGridCoordinate(const RenderBox& gridItem) const
{
ASSERT(m_gridItemCoordinate.contains(&gridItem));
return m_gridItemCoordinate.get(&gridItem);
}
LayoutUnit RenderGrid::gridAreaBreadthForChild(const RenderBox& child, GridTrackSizingDirection direction, const Vector<GridTrack>& tracks) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
const GridSpan& span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
LayoutUnit gridAreaBreadth = 0;
for (auto& trackPosition : span)
gridAreaBreadth += tracks[trackPosition.toInt()].baseSize();
return gridAreaBreadth;
}
void RenderGrid::populateGridPositions(const GridSizingData& sizingData)
{
m_columnPositions.resizeToFit(sizingData.columnTracks.size() + 1);
m_columnPositions[0] = borderAndPaddingStart();
for (unsigned i = 0; i < m_columnPositions.size() - 1; ++i)
m_columnPositions[i + 1] = m_columnPositions[i] + sizingData.columnTracks[i].baseSize();
m_rowPositions.resizeToFit(sizingData.rowTracks.size() + 1);
m_rowPositions[0] = borderAndPaddingBefore();
for (unsigned i = 0; i < m_rowPositions.size() - 1; ++i)
m_rowPositions[i + 1] = m_rowPositions[i] + sizingData.rowTracks[i].baseSize();
}
static inline LayoutUnit computeOverflowAlignmentOffset(OverflowAlignment overflow, LayoutUnit trackBreadth, LayoutUnit childBreadth)
{
LayoutUnit offset = trackBreadth - childBreadth;
switch (overflow) {
case OverflowAlignmentSafe:
// If overflow is 'safe', we have to make sure we don't overflow the 'start'
// edge (potentially cause some data loss as the overflow is unreachable).
return std::max<LayoutUnit>(0, offset);
case OverflowAlignmentTrue:
case OverflowAlignmentDefault:
// If we overflow our alignment container and overflow is 'true' (default), we
// ignore the overflow and just return the value regardless (which may cause data
// loss as we overflow the 'start' edge).
return offset;
}
ASSERT_NOT_REACHED();
return 0;
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
bool RenderGrid::needToStretchChildLogicalHeight(const RenderBox& child) const
{
if (RenderStyle::resolveAlignment(style(), child.style(), ItemPositionStretch) != ItemPositionStretch)
return false;
return isHorizontalWritingMode() && child.style().height().isAuto();
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
LayoutUnit RenderGrid::marginLogicalHeightForChild(const RenderBox& child) const
{
return isHorizontalWritingMode() ? child.verticalMarginExtent() : child.horizontalMarginExtent();
}
LayoutUnit RenderGrid::availableAlignmentSpaceForChildBeforeStretching(LayoutUnit gridAreaBreadthForChild, const RenderBox& child) const
{
return gridAreaBreadthForChild - marginLogicalHeightForChild(child);
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
void RenderGrid::applyStretchAlignmentToChildIfNeeded(RenderBox& child)
{
ASSERT(child.overrideContainingBlockContentLogicalWidth() && child.overrideContainingBlockContentLogicalHeight());
// We clear both width and height override values because we will decide now whether they
// are allowed or not, evaluating the conditions which might have changed since the old
// values were set.
child.clearOverrideSize();
auto& gridStyle = style();
auto& childStyle = child.style();
bool isHorizontalMode = isHorizontalWritingMode();
bool hasAutoSizeInRowAxis = isHorizontalMode ? childStyle.width().isAuto() : childStyle.height().isAuto();
bool allowedToStretchChildAlongRowAxis = hasAutoSizeInRowAxis && !childStyle.marginStartUsing(&gridStyle).isAuto() && !childStyle.marginEndUsing(&gridStyle).isAuto();
if (!allowedToStretchChildAlongRowAxis || RenderStyle::resolveJustification(gridStyle, childStyle, ItemPositionStretch) != ItemPositionStretch) {
bool hasAutoMinSizeInRowAxis = isHorizontalMode ? childStyle.minWidth().isAuto() : childStyle.minHeight().isAuto();
bool canShrinkToFitInRowAxisForChild = !hasAutoMinSizeInRowAxis || child.minPreferredLogicalWidth() <= child.overrideContainingBlockContentLogicalWidth().value();
// TODO(lajava): how to handle orthogonality in this case ?.
// TODO(lajava): grid track sizing and positioning do not support orthogonal modes yet.
if (hasAutoSizeInRowAxis && canShrinkToFitInRowAxisForChild) {
LayoutUnit childWidthToFitContent = std::max(std::min(child.maxPreferredLogicalWidth(), child.overrideContainingBlockContentLogicalWidth().value() - child.marginLogicalWidth()), child.minPreferredLogicalWidth());
LayoutUnit desiredLogicalWidth = child.constrainLogicalHeightByMinMax(childWidthToFitContent, Nullopt);
child.setOverrideLogicalContentWidth(desiredLogicalWidth - child.borderAndPaddingLogicalWidth());
if (desiredLogicalWidth != child.logicalWidth())
child.setNeedsLayout();
}
}
bool hasAutoSizeInColumnAxis = isHorizontalMode ? childStyle.height().isAuto() : childStyle.width().isAuto();
bool allowedToStretchChildAlongColumnAxis = hasAutoSizeInColumnAxis && !childStyle.marginBeforeUsing(&gridStyle).isAuto() && !childStyle.marginAfterUsing(&gridStyle).isAuto();
if (allowedToStretchChildAlongColumnAxis && RenderStyle::resolveAlignment(gridStyle, childStyle, ItemPositionStretch) == ItemPositionStretch) {
// TODO (lajava): If the child has orthogonal flow, then it already has an override height set, so use it.
// TODO (lajava): grid track sizing and positioning do not support orthogonal modes yet.
if (child.isHorizontalWritingMode() == isHorizontalMode) {
LayoutUnit stretchedLogicalHeight = availableAlignmentSpaceForChildBeforeStretching(child.overrideContainingBlockContentLogicalHeight().value(), child);
LayoutUnit desiredLogicalHeight = child.constrainLogicalHeightByMinMax(stretchedLogicalHeight, Nullopt);
child.setOverrideLogicalContentHeight(desiredLogicalHeight - child.borderAndPaddingLogicalHeight());
if (desiredLogicalHeight != child.logicalHeight()) {
// TODO (lajava): Can avoid laying out here in some cases. See https://webkit.org/b/87905.
child.setLogicalHeight(0);
child.setNeedsLayout();
}
}
}
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
bool RenderGrid::hasAutoMarginsInColumnAxis(const RenderBox& child) const
{
if (isHorizontalWritingMode())
return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto();
return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto();
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
bool RenderGrid::hasAutoMarginsInRowAxis(const RenderBox& child) const
{
if (isHorizontalWritingMode())
return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto();
return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto();
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
void RenderGrid::resetAutoMarginsAndLogicalTopInColumnAxis(RenderBox& child)
{
if (hasAutoMarginsInColumnAxis(child) || child.needsLayout()) {
child.clearOverrideLogicalContentHeight();
child.updateLogicalHeight();
if (isHorizontalWritingMode()) {
if (child.style().marginTop().isAuto())
child.setMarginTop(0);
if (child.style().marginBottom().isAuto())
child.setMarginBottom(0);
} else {
if (child.style().marginLeft().isAuto())
child.setMarginLeft(0);
if (child.style().marginRight().isAuto())
child.setMarginRight(0);
}
}
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
void RenderGrid::updateAutoMarginsInRowAxisIfNeeded(RenderBox& child)
{
ASSERT(!child.isOutOfFlowPositioned());
ASSERT(child.overrideContainingBlockContentLogicalWidth());
LayoutUnit availableAlignmentSpace = child.overrideContainingBlockContentLogicalWidth().value() - child.logicalWidth();
if (availableAlignmentSpace <= 0)
return;
bool isHorizontal = isHorizontalWritingMode();
Length topOrLeft = isHorizontal ? child.style().marginLeft() : child.style().marginTop();
Length bottomOrRight = isHorizontal ? child.style().marginRight() : child.style().marginBottom();
if (topOrLeft.isAuto() && bottomOrRight.isAuto()) {
if (isHorizontal) {
child.setMarginLeft(availableAlignmentSpace / 2);
child.setMarginRight(availableAlignmentSpace / 2);
} else {
child.setMarginTop(availableAlignmentSpace / 2);
child.setMarginBottom(availableAlignmentSpace / 2);
}
} else if (topOrLeft.isAuto()) {
if (isHorizontal)
child.setMarginLeft(availableAlignmentSpace);
else
child.setMarginTop(availableAlignmentSpace);
} else if (bottomOrRight.isAuto()) {
if (isHorizontal)
child.setMarginRight(availableAlignmentSpace);
else
child.setMarginBottom(availableAlignmentSpace);
}
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
void RenderGrid::updateAutoMarginsInColumnAxisIfNeeded(RenderBox& child)
{
ASSERT(!child.isOutOfFlowPositioned());
ASSERT(child.overrideContainingBlockContentLogicalHeight());
LayoutUnit availableAlignmentSpace = child.overrideContainingBlockContentLogicalHeight().value() - child.logicalHeight();
if (availableAlignmentSpace <= 0)
return;
bool isHorizontal = isHorizontalWritingMode();
Length topOrLeft = isHorizontal ? child.style().marginTop() : child.style().marginLeft();
Length bottomOrRight = isHorizontal ? child.style().marginBottom() : child.style().marginRight();
if (topOrLeft.isAuto() && bottomOrRight.isAuto()) {
if (isHorizontal) {
child.setMarginTop(availableAlignmentSpace / 2);
child.setMarginBottom(availableAlignmentSpace / 2);
} else {
child.setMarginLeft(availableAlignmentSpace / 2);
child.setMarginRight(availableAlignmentSpace / 2);
}
} else if (topOrLeft.isAuto()) {
if (isHorizontal)
child.setMarginTop(availableAlignmentSpace);
else
child.setMarginLeft(availableAlignmentSpace);
} else if (bottomOrRight.isAuto()) {
if (isHorizontal)
child.setMarginBottom(availableAlignmentSpace);
else
child.setMarginRight(availableAlignmentSpace);
}
}
GridAxisPosition RenderGrid::columnAxisPositionForChild(const RenderBox& child) const
{
bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
bool hasSameWritingMode = child.style().writingMode() == style().writingMode();
switch (RenderStyle::resolveAlignment(style(), child.style(), ItemPositionStretch)) {
case ItemPositionSelfStart:
// If orthogonal writing-modes, this computes to 'start'.
// FIXME: grid track sizing and positioning do not support orthogonal modes yet.
// self-start is based on the child's block axis direction. That's why we need to check against the grid container's block flow.
return (hasOrthogonalWritingMode || hasSameWritingMode) ? GridAxisStart : GridAxisEnd;
case ItemPositionSelfEnd:
// If orthogonal writing-modes, this computes to 'end'.
// FIXME: grid track sizing and positioning do not support orthogonal modes yet.
// self-end is based on the child's block axis direction. That's why we need to check against the grid container's block flow.
return (hasOrthogonalWritingMode || hasSameWritingMode) ? GridAxisEnd : GridAxisStart;
case ItemPositionLeft:
// The alignment axis (column axis) and the inline axis are parallell in
// orthogonal writing mode. Otherwise this this is equivalent to 'start'.
// FIXME: grid track sizing and positioning do not support orthogonal modes yet.
return GridAxisStart;
case ItemPositionRight:
// The alignment axis (column axis) and the inline axis are parallell in
// orthogonal writing mode. Otherwise this this is equivalent to 'start'.
// FIXME: grid track sizing and positioning do not support orthogonal modes yet.
return hasOrthogonalWritingMode ? GridAxisEnd : GridAxisStart;
case ItemPositionCenter:
return GridAxisCenter;
case ItemPositionFlexStart: // Only used in flex layout, otherwise equivalent to 'start'.
case ItemPositionStart:
return GridAxisStart;
case ItemPositionFlexEnd: // Only used in flex layout, otherwise equivalent to 'end'.
case ItemPositionEnd:
return GridAxisEnd;
case ItemPositionStretch:
return GridAxisStart;
case ItemPositionBaseline:
case ItemPositionLastBaseline:
// FIXME: Implement the previous values. For now, we always 'start' align the child.
return GridAxisStart;
case ItemPositionAuto:
break;
}
ASSERT_NOT_REACHED();
return GridAxisStart;
}
GridAxisPosition RenderGrid::rowAxisPositionForChild(const RenderBox& child) const
{
bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
bool hasSameDirection = child.style().direction() == style().direction();
bool isLTR = style().isLeftToRightDirection();
switch (RenderStyle::resolveJustification(style(), child.style(), ItemPositionStretch)) {
case ItemPositionSelfStart:
// For orthogonal writing-modes, this computes to 'start'
// FIXME: grid track sizing and positioning do not support orthogonal modes yet.
// self-start is based on the child's direction. That's why we need to check against the grid container's direction.
return (hasOrthogonalWritingMode || hasSameDirection) ? GridAxisStart : GridAxisEnd;
case ItemPositionSelfEnd:
// For orthogonal writing-modes, this computes to 'start'
// FIXME: grid track sizing and positioning do not support orthogonal modes yet.
return (hasOrthogonalWritingMode || hasSameDirection) ? GridAxisEnd : GridAxisStart;
case ItemPositionLeft:
return isLTR ? GridAxisStart : GridAxisEnd;
case ItemPositionRight:
return isLTR ? GridAxisEnd : GridAxisStart;
case ItemPositionCenter:
return GridAxisCenter;
case ItemPositionFlexStart: // Only used in flex layout, otherwise equivalent to 'start'.
case ItemPositionStart:
return GridAxisStart;
case ItemPositionFlexEnd: // Only used in flex layout, otherwise equivalent to 'end'.
case ItemPositionEnd:
return GridAxisEnd;
case ItemPositionStretch:
return GridAxisStart;
case ItemPositionBaseline:
case ItemPositionLastBaseline:
// FIXME: Implement the previous values. For now, we always 'start' align the child.
return GridAxisStart;
case ItemPositionAuto:
break;
}
ASSERT_NOT_REACHED();
return GridAxisStart;
}
LayoutUnit RenderGrid::rowPositionForChild(const RenderBox& child) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
LayoutUnit startOfRow = m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()];
LayoutUnit startPosition = startOfRow + marginBeforeForChild(child);
if (hasAutoMarginsInColumnAxis(child))
return startPosition;
GridAxisPosition axisPosition = columnAxisPositionForChild(child);
switch (axisPosition) {
case GridAxisStart:
return startPosition;
case GridAxisEnd:
case GridAxisCenter: {
LayoutUnit endOfRow = m_rowPositions[coordinate.rows.resolvedFinalPosition.next().toInt()];
LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(RenderStyle::resolveAlignmentOverflow(style(), child.style()), endOfRow - startOfRow, child.logicalHeight() + child.marginLogicalHeight());
return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2);
}
}
ASSERT_NOT_REACHED();
return 0;
}
LayoutUnit RenderGrid::columnPositionForChild(const RenderBox& child) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()];
LayoutUnit startPosition = startOfColumn + marginStartForChild(child);
if (hasAutoMarginsInRowAxis(child))
return startPosition;
GridAxisPosition axisPosition = rowAxisPositionForChild(child);
switch (axisPosition) {
case GridAxisStart:
return startPosition;
case GridAxisEnd:
case GridAxisCenter: {
LayoutUnit endOfColumn = m_columnPositions[coordinate.columns.resolvedFinalPosition.next().toInt()];
LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(RenderStyle::resolveJustificationOverflow(style(), child.style()), endOfColumn - startOfColumn, child.logicalWidth() + child.marginLogicalWidth());
return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2);
}
}
ASSERT_NOT_REACHED();
return 0;
}
LayoutPoint RenderGrid::findChildLogicalPosition(const RenderBox& child) const
{
LayoutUnit columnPosition = columnPositionForChild(child);
// We stored m_columnPositions's data ignoring the direction, hence we might need now
// to translate positions from RTL to LTR, as it's more convenient for painting.
if (!style().isLeftToRightDirection())
columnPosition = (m_columnPositions[m_columnPositions.size() - 1] + borderAndPaddingLogicalLeft()) - columnPosition - child.logicalWidth();
// The grid items should be inside the grid container's border box, that's why they need to be shifted.
return LayoutPoint(columnPosition, rowPositionForChild(child));
}
void RenderGrid::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& forChild, bool usePrintRect)
{
for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next())
paintChild(*child, paintInfo, paintOffset, forChild, usePrintRect, PaintAsInlineBlock);
}
const char* RenderGrid::renderName() const
{
if (isFloating())
return "RenderGrid (floating)";
if (isOutOfFlowPositioned())
return "RenderGrid (positioned)";
if (isAnonymous())
return "RenderGrid (generated)";
if (isRelPositioned())
return "RenderGrid (relative positioned)";
return "RenderGrid";
}
} // namespace WebCore
#endif /* ENABLE(CSS_GRID_LAYOUT) */