| /* |
| * Copyright (C) 2010, 2011 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS |
| * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| * THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "Region.h" |
| |
| #include <stdio.h> |
| #include <wtf/text/TextStream.h> |
| |
| // A region class based on the paper "Scanline Coherent Shape Algebra" |
| // by Jonathan E. Steinhart from the book "Graphics Gems II". |
| // |
| // This implementation uses two vectors instead of linked list, and |
| // also compresses regions when possible. |
| |
| namespace WebCore { |
| |
| Region::Region() |
| { |
| } |
| |
| Region::Region(const IntRect& rect) |
| : m_bounds(rect) |
| { |
| } |
| |
| Region::Region(const Region& other) |
| : m_bounds(other.m_bounds) |
| , m_shape(other.copyShape()) |
| { |
| } |
| |
| Region::Region(Region&& other) |
| : m_bounds(WTFMove(other.m_bounds)) |
| , m_shape(WTFMove(other.m_shape)) |
| { |
| } |
| |
| Region::~Region() |
| { |
| } |
| |
| Region& Region::operator=(const Region& other) |
| { |
| m_bounds = other.m_bounds; |
| m_shape = other.copyShape(); |
| return *this; |
| } |
| |
| Region& Region::operator=(Region&& other) |
| { |
| m_bounds = WTFMove(other.m_bounds); |
| m_shape = WTFMove(other.m_shape); |
| return *this; |
| } |
| |
| Vector<IntRect, 1> Region::rects() const |
| { |
| Vector<IntRect, 1> rects; |
| |
| if (!m_shape) { |
| if (!m_bounds.isEmpty()) |
| rects.uncheckedAppend(m_bounds); |
| return rects; |
| } |
| |
| for (Shape::SpanIterator span = m_shape->spans_begin(), end = m_shape->spans_end(); span != end && span + 1 != end; ++span) { |
| int y = span->y; |
| int height = (span + 1)->y - y; |
| |
| for (Shape::SegmentIterator segment = m_shape->segments_begin(span), end = m_shape->segments_end(span); segment != end && segment + 1 != end; segment += 2) { |
| int x = *segment; |
| int width = *(segment + 1) - x; |
| |
| rects.append(IntRect(x, y, width, height)); |
| } |
| } |
| |
| return rects; |
| } |
| |
| bool Region::contains(const Region& region) const |
| { |
| if (!m_bounds.contains(region.m_bounds)) |
| return false; |
| |
| if (!m_shape) |
| return true; |
| |
| return Shape::compareShapes<Shape::CompareContainsOperation>(*m_shape, region.m_shape ? *region.m_shape : Shape(region.m_bounds)); |
| } |
| |
| bool Region::contains(const IntPoint& point) const |
| { |
| if (!m_bounds.contains(point)) |
| return false; |
| |
| if (!m_shape) |
| return true; |
| |
| for (Shape::SpanIterator span = m_shape->spans_begin(), end = m_shape->spans_end(); span != end && span + 1 != end; ++span) { |
| int y = span->y; |
| int maxY = (span + 1)->y; |
| |
| if (y > point.y()) |
| break; |
| if (maxY <= point.y()) |
| continue; |
| |
| for (Shape::SegmentIterator segment = m_shape->segments_begin(span), end = m_shape->segments_end(span); segment != end && segment + 1 != end; segment += 2) { |
| int x = *segment; |
| int maxX = *(segment + 1); |
| |
| if (x > point.x()) |
| break; |
| if (maxX > point.x()) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool Region::intersects(const Region& region) const |
| { |
| if (!m_bounds.intersects(region.m_bounds)) |
| return false; |
| |
| if (!m_shape && !region.m_shape) |
| return true; |
| |
| return Shape::compareShapes<Shape::CompareIntersectsOperation>(m_shape ? *m_shape : m_bounds, region.m_shape ? *region.m_shape : region.m_bounds); |
| } |
| |
| uint64_t Region::totalArea() const |
| { |
| uint64_t totalArea = 0; |
| |
| for (auto& rect : rects()) |
| totalArea += (rect.width() * rect.height()); |
| |
| return totalArea; |
| } |
| |
| template<typename CompareOperation> |
| bool Region::Shape::compareShapes(const Shape& aShape, const Shape& bShape) |
| { |
| bool result = CompareOperation::defaultResult; |
| |
| Shape::SpanIterator aSpan = aShape.spans_begin(); |
| Shape::SpanIterator aSpanEnd = aShape.spans_end(); |
| Shape::SpanIterator bSpan = bShape.spans_begin(); |
| Shape::SpanIterator bSpanEnd = bShape.spans_end(); |
| |
| bool aHadSegmentInPreviousSpan = false; |
| bool bHadSegmentInPreviousSpan = false; |
| while (aSpan != aSpanEnd && aSpan + 1 != aSpanEnd && bSpan != bSpanEnd && bSpan + 1 != bSpanEnd) { |
| int aY = aSpan->y; |
| int aMaxY = (aSpan + 1)->y; |
| int bY = bSpan->y; |
| int bMaxY = (bSpan + 1)->y; |
| |
| Shape::SegmentIterator aSegment = aShape.segments_begin(aSpan); |
| Shape::SegmentIterator aSegmentEnd = aShape.segments_end(aSpan); |
| Shape::SegmentIterator bSegment = bShape.segments_begin(bSpan); |
| Shape::SegmentIterator bSegmentEnd = bShape.segments_end(bSpan); |
| |
| // Look for a non-overlapping part of the spans. If B had a segment in its previous span, then we already tested A against B within that span. |
| bool aHasSegmentInSpan = aSegment != aSegmentEnd; |
| bool bHasSegmentInSpan = bSegment != bSegmentEnd; |
| if (aY < bY && !bHadSegmentInPreviousSpan && aHasSegmentInSpan && CompareOperation::aOutsideB(result)) |
| return result; |
| if (bY < aY && !aHadSegmentInPreviousSpan && bHasSegmentInSpan && CompareOperation::bOutsideA(result)) |
| return result; |
| |
| aHadSegmentInPreviousSpan = aHasSegmentInSpan; |
| bHadSegmentInPreviousSpan = bHasSegmentInSpan; |
| |
| bool spansOverlap = bMaxY > aY && bY < aMaxY; |
| if (spansOverlap) { |
| while (aSegment != aSegmentEnd && bSegment != bSegmentEnd) { |
| int aX = *aSegment; |
| int aMaxX = *(aSegment + 1); |
| int bX = *bSegment; |
| int bMaxX = *(bSegment + 1); |
| |
| bool segmentsOverlap = bMaxX > aX && bX < aMaxX; |
| if (segmentsOverlap && CompareOperation::aOverlapsB(result)) |
| return result; |
| if (aX < bX && CompareOperation::aOutsideB(result)) |
| return result; |
| if (bX < aX && CompareOperation::bOutsideA(result)) |
| return result; |
| |
| if (aMaxX < bMaxX) |
| aSegment += 2; |
| else if (bMaxX < aMaxX) |
| bSegment += 2; |
| else { |
| aSegment += 2; |
| bSegment += 2; |
| } |
| } |
| |
| if (aSegment != aSegmentEnd && CompareOperation::aOutsideB(result)) |
| return result; |
| if (bSegment != bSegmentEnd && CompareOperation::bOutsideA(result)) |
| return result; |
| } |
| |
| if (aMaxY < bMaxY) |
| aSpan += 1; |
| else if (bMaxY < aMaxY) |
| bSpan += 1; |
| else { |
| aSpan += 1; |
| bSpan += 1; |
| } |
| } |
| |
| if (aSpan != aSpanEnd && aSpan + 1 != aSpanEnd && CompareOperation::aOutsideB(result)) |
| return result; |
| if (bSpan != bSpanEnd && bSpan + 1 != bSpanEnd && CompareOperation::bOutsideA(result)) |
| return result; |
| |
| return result; |
| } |
| |
| struct Region::Shape::CompareContainsOperation { |
| const static bool defaultResult = true; |
| inline static bool aOutsideB(bool& /* result */) { return false; } |
| inline static bool bOutsideA(bool& result) { result = false; return true; } |
| inline static bool aOverlapsB(bool& /* result */) { return false; } |
| }; |
| |
| struct Region::Shape::CompareIntersectsOperation { |
| const static bool defaultResult = false; |
| inline static bool aOutsideB(bool& /* result */) { return false; } |
| inline static bool bOutsideA(bool& /* result */) { return false; } |
| inline static bool aOverlapsB(bool& result) { result = true; return true; } |
| }; |
| |
| Region::Shape::Shape(const IntRect& rect) |
| : m_segments({ rect.x(), rect.maxX() }) |
| , m_spans({ { rect.y(), 0 }, { rect.maxY(), 2 } }) |
| { |
| } |
| |
| void Region::Shape::appendSpan(int y) |
| { |
| m_spans.append({ y, m_segments.size() }); |
| } |
| |
| bool Region::Shape::canCoalesce(SegmentIterator begin, SegmentIterator end) |
| { |
| if (m_spans.isEmpty()) |
| return false; |
| |
| SegmentIterator lastSpanBegin = m_segments.data() + m_spans.last().segmentIndex; |
| SegmentIterator lastSpanEnd = m_segments.data() + m_segments.size(); |
| |
| // Check if both spans have an equal number of segments. |
| if (lastSpanEnd - lastSpanBegin != end - begin) |
| return false; |
| |
| // Check if both spans are equal. |
| if (!std::equal(begin, end, lastSpanBegin)) |
| return false; |
| |
| // Since the segments are equal the second segment can just be ignored. |
| return true; |
| } |
| |
| void Region::Shape::appendSpan(int y, SegmentIterator begin, SegmentIterator end) |
| { |
| if (canCoalesce(begin, end)) |
| return; |
| |
| appendSpan(y); |
| m_segments.appendRange(begin, end); |
| } |
| |
| void Region::Shape::appendSpans(const Shape& shape, SpanIterator begin, SpanIterator end) |
| { |
| for (SpanIterator it = begin; it != end; ++it) |
| appendSpan(it->y, shape.segments_begin(it), shape.segments_end(it)); |
| } |
| |
| void Region::Shape::appendSegment(int x) |
| { |
| m_segments.append(x); |
| } |
| |
| Region::Shape::SpanIterator Region::Shape::spans_begin() const |
| { |
| return m_spans.data(); |
| } |
| |
| Region::Shape::SpanIterator Region::Shape::spans_end() const |
| { |
| return m_spans.data() + m_spans.size(); |
| } |
| |
| Region::Shape::SegmentIterator Region::Shape::segments_begin(SpanIterator it) const |
| { |
| ASSERT(it >= m_spans.data()); |
| ASSERT(it < m_spans.data() + m_spans.size()); |
| |
| // Check if this span has any segments. |
| if (it->segmentIndex == m_segments.size()) |
| return 0; |
| |
| return &m_segments[it->segmentIndex]; |
| } |
| |
| Region::Shape::SegmentIterator Region::Shape::segments_end(SpanIterator it) const |
| { |
| ASSERT(it >= m_spans.data()); |
| ASSERT(it < m_spans.data() + m_spans.size()); |
| |
| // Check if this span has any segments. |
| if (it->segmentIndex == m_segments.size()) |
| return 0; |
| |
| ASSERT(it + 1 < m_spans.data() + m_spans.size()); |
| size_t segmentIndex = (it + 1)->segmentIndex; |
| |
| ASSERT_WITH_SECURITY_IMPLICATION(segmentIndex <= m_segments.size()); |
| return m_segments.data() + segmentIndex; |
| } |
| |
| #ifndef NDEBUG |
| void Region::Shape::dump() const |
| { |
| for (auto span = spans_begin(), end = spans_end(); span != end; ++span) { |
| printf("%6d: (", span->y); |
| |
| for (auto segment = segments_begin(span), end = segments_end(span); segment != end; ++segment) |
| printf("%d ", *segment); |
| printf(")\n"); |
| } |
| |
| printf("\n"); |
| } |
| #endif |
| |
| IntRect Region::Shape::bounds() const |
| { |
| if (isEmpty()) |
| return IntRect(); |
| |
| SpanIterator span = spans_begin(); |
| int minY = span->y; |
| |
| SpanIterator lastSpan = spans_end() - 1; |
| int maxY = lastSpan->y; |
| |
| int minX = std::numeric_limits<int>::max(); |
| int maxX = std::numeric_limits<int>::min(); |
| |
| while (span != lastSpan) { |
| SegmentIterator firstSegment = segments_begin(span); |
| SegmentIterator lastSegment = segments_end(span) - 1; |
| |
| if (firstSegment && lastSegment) { |
| ASSERT(firstSegment != lastSegment); |
| |
| if (*firstSegment < minX) |
| minX = *firstSegment; |
| |
| if (*lastSegment > maxX) |
| maxX = *lastSegment; |
| } |
| |
| ++span; |
| } |
| |
| ASSERT(minX <= maxX); |
| ASSERT(minY <= maxY); |
| |
| return IntRect(minX, minY, maxX - minX, maxY - minY); |
| } |
| |
| void Region::Shape::translate(const IntSize& offset) |
| { |
| for (size_t i = 0; i < m_segments.size(); ++i) |
| m_segments[i] += offset.width(); |
| for (size_t i = 0; i < m_spans.size(); ++i) |
| m_spans[i].y += offset.height(); |
| } |
| |
| enum { |
| Shape1, |
| Shape2, |
| }; |
| |
| template<typename Operation> |
| Region::Shape Region::Shape::shapeOperation(const Shape& shape1, const Shape& shape2) |
| { |
| COMPILE_ASSERT(!(!Operation::shouldAddRemainingSegmentsFromSpan1 && Operation::shouldAddRemainingSegmentsFromSpan2), invalid_segment_combination); |
| COMPILE_ASSERT(!(!Operation::shouldAddRemainingSpansFromShape1 && Operation::shouldAddRemainingSpansFromShape2), invalid_span_combination); |
| |
| Shape result; |
| if (Operation::trySimpleOperation(shape1, shape2, result)) |
| return result; |
| |
| SpanIterator spans1 = shape1.spans_begin(); |
| SpanIterator spans1End = shape1.spans_end(); |
| |
| SpanIterator spans2 = shape2.spans_begin(); |
| SpanIterator spans2End = shape2.spans_end(); |
| |
| SegmentIterator segments1 = 0; |
| SegmentIterator segments1End = 0; |
| |
| SegmentIterator segments2 = 0; |
| SegmentIterator segments2End = 0; |
| |
| // Iterate over all spans. |
| while (spans1 != spans1End && spans2 != spans2End) { |
| int y = 0; |
| int test = spans1->y - spans2->y; |
| |
| if (test <= 0) { |
| y = spans1->y; |
| |
| segments1 = shape1.segments_begin(spans1); |
| segments1End = shape1.segments_end(spans1); |
| ++spans1; |
| } |
| if (test >= 0) { |
| y = spans2->y; |
| |
| segments2 = shape2.segments_begin(spans2); |
| segments2End = shape2.segments_end(spans2); |
| ++spans2; |
| } |
| |
| int flag = 0; |
| int oldFlag = 0; |
| |
| SegmentIterator s1 = segments1; |
| SegmentIterator s2 = segments2; |
| |
| Vector<int, 32> segments; |
| |
| // Now iterate over the segments in each span and construct a new vector of segments. |
| while (s1 != segments1End && s2 != segments2End) { |
| int test = *s1 - *s2; |
| int x; |
| |
| if (test <= 0) { |
| x = *s1; |
| flag = flag ^ 1; |
| ++s1; |
| } |
| if (test >= 0) { |
| x = *s2; |
| flag = flag ^ 2; |
| ++s2; |
| } |
| |
| if (flag == Operation::opCode || oldFlag == Operation::opCode) |
| segments.append(x); |
| |
| oldFlag = flag; |
| } |
| |
| // Add any remaining segments. |
| if (Operation::shouldAddRemainingSegmentsFromSpan1 && s1 != segments1End) |
| segments.appendRange(s1, segments1End); |
| else if (Operation::shouldAddRemainingSegmentsFromSpan2 && s2 != segments2End) |
| segments.appendRange(s2, segments2End); |
| |
| // Add the span. |
| if (!segments.isEmpty() || !result.isEmpty()) |
| result.appendSpan(y, segments.data(), segments.data() + segments.size()); |
| } |
| |
| // Add any remaining spans. |
| if (Operation::shouldAddRemainingSpansFromShape1 && spans1 != spans1End) |
| result.appendSpans(shape1, spans1, spans1End); |
| else if (Operation::shouldAddRemainingSpansFromShape2 && spans2 != spans2End) |
| result.appendSpans(shape2, spans2, spans2End); |
| |
| return result; |
| } |
| |
| struct Region::Shape::UnionOperation { |
| static bool trySimpleOperation(const Shape& shape1, const Shape& shape2, Shape& result) |
| { |
| if (shape1.isEmpty()) { |
| result = shape2; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static const int opCode = 0; |
| |
| static const bool shouldAddRemainingSegmentsFromSpan1 = true; |
| static const bool shouldAddRemainingSegmentsFromSpan2 = true; |
| static const bool shouldAddRemainingSpansFromShape1 = true; |
| static const bool shouldAddRemainingSpansFromShape2 = true; |
| }; |
| |
| Region::Shape Region::Shape::unionShapes(const Shape& shape1, const Shape& shape2) |
| { |
| return shapeOperation<UnionOperation>(shape1, shape2); |
| } |
| |
| struct Region::Shape::IntersectOperation { |
| static bool trySimpleOperation(const Shape&, const Shape&, Shape&) |
| { |
| return false; |
| } |
| |
| static const int opCode = 3; |
| |
| static const bool shouldAddRemainingSegmentsFromSpan1 = false; |
| static const bool shouldAddRemainingSegmentsFromSpan2 = false; |
| static const bool shouldAddRemainingSpansFromShape1 = false; |
| static const bool shouldAddRemainingSpansFromShape2 = false; |
| }; |
| |
| Region::Shape Region::Shape::intersectShapes(const Shape& shape1, const Shape& shape2) |
| { |
| return shapeOperation<IntersectOperation>(shape1, shape2); |
| } |
| |
| struct Region::Shape::SubtractOperation { |
| static bool trySimpleOperation(const Shape&, const Shape&, Region::Shape&) |
| { |
| return false; |
| } |
| |
| static const int opCode = 1; |
| |
| static const bool shouldAddRemainingSegmentsFromSpan1 = true; |
| static const bool shouldAddRemainingSegmentsFromSpan2 = false; |
| static const bool shouldAddRemainingSpansFromShape1 = true; |
| static const bool shouldAddRemainingSpansFromShape2 = false; |
| }; |
| |
| Region::Shape Region::Shape::subtractShapes(const Shape& shape1, const Shape& shape2) |
| { |
| return shapeOperation<SubtractOperation>(shape1, shape2); |
| } |
| |
| #ifndef NDEBUG |
| void Region::dump() const |
| { |
| printf("Bounds: (%d, %d, %d, %d)\n", |
| m_bounds.x(), m_bounds.y(), m_bounds.width(), m_bounds.height()); |
| if (m_shape) |
| m_shape->dump(); |
| } |
| #endif |
| |
| void Region::intersect(const Region& region) |
| { |
| if (m_bounds.isEmpty()) |
| return; |
| if (!m_bounds.intersects(region.m_bounds)) { |
| m_shape = nullptr; |
| m_bounds = IntRect(); |
| return; |
| } |
| if (!m_shape && !region.m_shape) { |
| m_bounds = intersection(m_bounds, region.m_bounds); |
| return; |
| } |
| |
| setShape(Shape::intersectShapes(m_shape ? *m_shape : m_bounds, region.m_shape ? *region.m_shape : region.m_bounds)); |
| } |
| |
| void Region::unite(const Region& region) |
| { |
| if (region.isEmpty()) |
| return; |
| if (isEmpty()) { |
| m_bounds = region.m_bounds; |
| m_shape = region.copyShape(); |
| return; |
| } |
| if (region.isRect() && region.m_bounds.contains(m_bounds)) { |
| m_bounds = region.m_bounds; |
| m_shape = nullptr; |
| return; |
| } |
| if (contains(region)) |
| return; |
| |
| setShape(Shape::unionShapes(m_shape ? *m_shape : m_bounds, region.m_shape ? *region.m_shape : region.m_bounds)); |
| } |
| |
| void Region::subtract(const Region& region) |
| { |
| if (isEmpty()) |
| return; |
| if (region.isEmpty()) |
| return; |
| if (!m_bounds.intersects(region.m_bounds)) |
| return; |
| |
| setShape(Shape::subtractShapes(m_shape ? *m_shape : m_bounds, region.m_shape ? *region.m_shape : region.m_bounds)); |
| } |
| |
| void Region::translate(const IntSize& offset) |
| { |
| m_bounds.move(offset); |
| if (m_shape) |
| m_shape->translate(offset); |
| } |
| |
| void Region::setShape(Shape&& shape) |
| { |
| m_bounds = shape.bounds(); |
| |
| if (shape.isRect()) { |
| m_shape = nullptr; |
| return; |
| } |
| |
| if (!m_shape) |
| m_shape = makeUnique<Shape>(WTFMove(shape)); |
| else |
| *m_shape = WTFMove(shape); |
| } |
| |
| TextStream& operator<<(TextStream& ts, const Region& region) |
| { |
| ts << "\n"; |
| { |
| TextStream::IndentScope indentScope(ts); |
| for (auto& rect : region.rects()) |
| ts << indent << "(rect " << rect << ")\n"; |
| } |
| |
| return ts; |
| } |
| |
| } // namespace WebCore |