| /* |
| * Copyright (C) 2017-2019 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "KeyframeEffect.h" |
| |
| #include "Animation.h" |
| #include "CSSAnimation.h" |
| #include "CSSComputedStyleDeclaration.h" |
| #include "CSSKeyframeRule.h" |
| #include "CSSPropertyAnimation.h" |
| #include "CSSPropertyNames.h" |
| #include "CSSStyleDeclaration.h" |
| #include "CSSTimingFunctionValue.h" |
| #include "CSSTransition.h" |
| #include "Element.h" |
| #include "FontCascade.h" |
| #include "FrameView.h" |
| #include "GeometryUtilities.h" |
| #include "InspectorInstrumentation.h" |
| #include "JSCompositeOperation.h" |
| #include "JSCompositeOperationOrAuto.h" |
| #include "JSDOMConvert.h" |
| #include "JSKeyframeEffect.h" |
| #include "KeyframeEffectStack.h" |
| #include "Logging.h" |
| #include "RenderBox.h" |
| #include "RenderBoxModelObject.h" |
| #include "RenderElement.h" |
| #include "RenderStyle.h" |
| #include "RuntimeEnabledFeatures.h" |
| #include "StyleAdjuster.h" |
| #include "StylePendingResources.h" |
| #include "StyleResolver.h" |
| #include "TimingFunction.h" |
| #include "TranslateTransformOperation.h" |
| #include "WillChangeData.h" |
| #include <JavaScriptCore/Exception.h> |
| #include <wtf/UUID.h> |
| #include <wtf/text/TextStream.h> |
| |
| namespace WebCore { |
| using namespace JSC; |
| |
| static inline void invalidateElement(Element* element) |
| { |
| if (element) |
| element->invalidateStyle(); |
| } |
| |
| static inline String CSSPropertyIDToIDLAttributeName(CSSPropertyID cssPropertyId) |
| { |
| // https://drafts.csswg.org/web-animations-1/#animation-property-name-to-idl-attribute-name |
| // 1. If property follows the <custom-property-name> production, return property. |
| // FIXME: We don't handle custom properties yet. |
| |
| // 2. If property refers to the CSS float property, return the string "cssFloat". |
| if (cssPropertyId == CSSPropertyFloat) |
| return "cssFloat"; |
| |
| // 3. If property refers to the CSS offset property, return the string "cssOffset". |
| // FIXME: we don't support the CSS "offset" property |
| |
| // 4. Otherwise, return the result of applying the CSS property to IDL attribute algorithm [CSSOM] to property. |
| return getJSPropertyName(cssPropertyId); |
| } |
| |
| static inline CSSPropertyID IDLAttributeNameToAnimationPropertyName(const String& idlAttributeName) |
| { |
| // https://drafts.csswg.org/web-animations-1/#idl-attribute-name-to-animation-property-name |
| // 1. If attribute conforms to the <custom-property-name> production, return attribute. |
| // FIXME: We don't handle custom properties yet. |
| |
| // 2. If attribute is the string "cssFloat", then return an animation property representing the CSS float property. |
| if (idlAttributeName == "cssFloat") |
| return CSSPropertyFloat; |
| |
| // 3. If attribute is the string "cssOffset", then return an animation property representing the CSS offset property. |
| // FIXME: We don't support the CSS "offset" property. |
| |
| // 4. Otherwise, return the result of applying the IDL attribute to CSS property algorithm [CSSOM] to attribute. |
| auto cssPropertyId = CSSStyleDeclaration::getCSSPropertyIDFromJavaScriptPropertyName(idlAttributeName); |
| |
| // We need to check that converting the property back to IDL form yields the same result such that a property passed |
| // in non-IDL form is rejected, for instance "font-size". |
| if (idlAttributeName != CSSPropertyIDToIDLAttributeName(cssPropertyId)) |
| return CSSPropertyInvalid; |
| |
| return cssPropertyId; |
| } |
| |
| static inline void computeMissingKeyframeOffsets(Vector<KeyframeEffect::ParsedKeyframe>& keyframes) |
| { |
| // https://drafts.csswg.org/web-animations-1/#compute-missing-keyframe-offsets |
| |
| if (keyframes.isEmpty()) |
| return; |
| |
| // 1. For each keyframe, in keyframes, let the computed keyframe offset of the keyframe be equal to its keyframe offset value. |
| // In our implementation, we only set non-null values to avoid making computedOffset Optional<double>. Instead, we'll know |
| // that a keyframe hasn't had a computed offset by checking if it has a null offset and a 0 computedOffset, since the first |
| // keyframe will already have a 0 computedOffset. |
| for (auto& keyframe : keyframes) { |
| auto computedOffset = keyframe.offset; |
| keyframe.computedOffset = computedOffset ? *computedOffset : 0; |
| } |
| |
| // 2. If keyframes contains more than one keyframe and the computed keyframe offset of the first keyframe in keyframes is null, |
| // set the computed keyframe offset of the first keyframe to 0. |
| if (keyframes.size() > 1 && !keyframes[0].offset) |
| keyframes[0].computedOffset = 0; |
| |
| // 3. If the computed keyframe offset of the last keyframe in keyframes is null, set its computed keyframe offset to 1. |
| if (!keyframes.last().offset) |
| keyframes.last().computedOffset = 1; |
| |
| // 4. For each pair of keyframes A and B where: |
| // - A appears before B in keyframes, and |
| // - A and B have a computed keyframe offset that is not null, and |
| // - all keyframes between A and B have a null computed keyframe offset, |
| // calculate the computed keyframe offset of each keyframe between A and B as follows: |
| // 1. Let offsetk be the computed keyframe offset of a keyframe k. |
| // 2. Let n be the number of keyframes between and including A and B minus 1. |
| // 3. Let index refer to the position of keyframe in the sequence of keyframes between A and B such that the first keyframe after A has an index of 1. |
| // 4. Set the computed keyframe offset of keyframe to offsetA + (offsetB − offsetA) × index / n. |
| size_t indexOfLastKeyframeWithNonNullOffset = 0; |
| for (size_t i = 1; i < keyframes.size(); ++i) { |
| auto& keyframe = keyframes[i]; |
| // Keyframes with a null offset that don't yet have a non-zero computed offset are keyframes |
| // with an offset that needs to be computed. |
| if (!keyframe.offset && !keyframe.computedOffset) |
| continue; |
| if (indexOfLastKeyframeWithNonNullOffset != i - 1) { |
| double lastNonNullOffset = keyframes[indexOfLastKeyframeWithNonNullOffset].computedOffset; |
| double offsetDelta = keyframe.computedOffset - lastNonNullOffset; |
| double offsetIncrement = offsetDelta / (i - indexOfLastKeyframeWithNonNullOffset); |
| size_t indexOfFirstKeyframeWithNullOffset = indexOfLastKeyframeWithNonNullOffset + 1; |
| for (size_t j = indexOfFirstKeyframeWithNullOffset; j < i; ++j) |
| keyframes[j].computedOffset = lastNonNullOffset + (j - indexOfLastKeyframeWithNonNullOffset) * offsetIncrement; |
| } |
| indexOfLastKeyframeWithNonNullOffset = i; |
| } |
| } |
| |
| static inline ExceptionOr<KeyframeEffect::KeyframeLikeObject> processKeyframeLikeObject(JSGlobalObject& lexicalGlobalObject, Strong<JSObject>&& keyframesInput, bool allowLists) |
| { |
| // https://drafts.csswg.org/web-animations-1/#process-a-keyframe-like-object |
| |
| VM& vm = lexicalGlobalObject.vm(); |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| |
| // 1. Run the procedure to convert an ECMAScript value to a dictionary type [WEBIDL] with keyframe input as the ECMAScript value as follows: |
| // |
| // If allow lists is true, use the following dictionary type: |
| // |
| // dictionary BasePropertyIndexedKeyframe { |
| // (double? or sequence<double?>) offset = []; |
| // (DOMString or sequence<DOMString>) easing = []; |
| // (CompositeOperationOrAuto or sequence<CompositeOperationOrAuto>) composite = []; |
| // }; |
| // |
| // Otherwise, use the following dictionary type: |
| // |
| // dictionary BaseKeyframe { |
| // double? offset = null; |
| // DOMString easing = "linear"; |
| // CompositeOperationOrAuto composite = "auto"; |
| // }; |
| // |
| // Store the result of this procedure as keyframe output. |
| KeyframeEffect::BasePropertyIndexedKeyframe baseProperties; |
| if (allowLists) |
| baseProperties = convert<IDLDictionary<KeyframeEffect::BasePropertyIndexedKeyframe>>(lexicalGlobalObject, keyframesInput.get()); |
| else { |
| auto baseKeyframe = convert<IDLDictionary<KeyframeEffect::BaseKeyframe>>(lexicalGlobalObject, keyframesInput.get()); |
| if (baseKeyframe.offset) |
| baseProperties.offset = baseKeyframe.offset.value(); |
| else |
| baseProperties.offset = nullptr; |
| baseProperties.easing = baseKeyframe.easing; |
| if (RuntimeEnabledFeatures::sharedFeatures().webAnimationsCompositeOperationsEnabled()) |
| baseProperties.composite = baseKeyframe.composite; |
| } |
| RETURN_IF_EXCEPTION(scope, Exception { TypeError }); |
| |
| KeyframeEffect::KeyframeLikeObject keyframeOuput; |
| keyframeOuput.baseProperties = baseProperties; |
| |
| // 2. Build up a list of animatable properties as follows: |
| // |
| // 1. Let animatable properties be a list of property names (including shorthand properties that have longhand sub-properties |
| // that are animatable) that can be animated by the implementation. |
| // 2. Convert each property name in animatable properties to the equivalent IDL attribute by applying the animation property |
| // name to IDL attribute name algorithm. |
| |
| // 3. Let input properties be the result of calling the EnumerableOwnNames operation with keyframe input as the object. |
| PropertyNameArray inputProperties(vm, PropertyNameMode::Strings, PrivateSymbolMode::Exclude); |
| JSObject::getOwnPropertyNames(keyframesInput.get(), &lexicalGlobalObject, inputProperties, EnumerationMode()); |
| |
| // 4. Make up a new list animation properties that consists of all of the properties that are in both input properties and animatable |
| // properties, or which are in input properties and conform to the <custom-property-name> production. |
| Vector<JSC::Identifier> animationProperties; |
| size_t numberOfProperties = inputProperties.size(); |
| for (size_t i = 0; i < numberOfProperties; ++i) { |
| if (CSSPropertyAnimation::isPropertyAnimatable(IDLAttributeNameToAnimationPropertyName(inputProperties[i].string()))) |
| animationProperties.append(inputProperties[i]); |
| } |
| |
| // 5. Sort animation properties in ascending order by the Unicode codepoints that define each property name. |
| std::sort(animationProperties.begin(), animationProperties.end(), [](auto& lhs, auto& rhs) { |
| return lhs.string().utf8() < rhs.string().utf8(); |
| }); |
| |
| // 6. For each property name in animation properties, |
| size_t numberOfAnimationProperties = animationProperties.size(); |
| for (size_t i = 0; i < numberOfAnimationProperties; ++i) { |
| // 1. Let raw value be the result of calling the [[Get]] internal method on keyframe input, with property name as the property |
| // key and keyframe input as the receiver. |
| auto rawValue = keyframesInput->get(&lexicalGlobalObject, animationProperties[i]); |
| |
| // 2. Check the completion record of raw value. |
| RETURN_IF_EXCEPTION(scope, Exception { TypeError }); |
| |
| // 3. Convert raw value to a DOMString or sequence of DOMStrings property values as follows: |
| Vector<String> propertyValues; |
| if (allowLists) { |
| // If allow lists is true, |
| // Let property values be the result of converting raw value to IDL type (DOMString or sequence<DOMString>) |
| // using the procedures defined for converting an ECMAScript value to an IDL value [WEBIDL]. |
| // If property values is a single DOMString, replace property values with a sequence of DOMStrings with the original value of property |
| // Values as the only element. |
| if (rawValue.isObject()) |
| propertyValues = convert<IDLSequence<IDLDOMString>>(lexicalGlobalObject, rawValue); |
| else |
| propertyValues = { rawValue.toWTFString(&lexicalGlobalObject) }; |
| } else { |
| // Otherwise, |
| // Let property values be the result of converting raw value to a DOMString using the procedure for converting an ECMAScript value to a DOMString. |
| propertyValues = { convert<IDLDOMString>(lexicalGlobalObject, rawValue) }; |
| } |
| RETURN_IF_EXCEPTION(scope, Exception { TypeError }); |
| |
| // 4. Calculate the normalized property name as the result of applying the IDL attribute name to animation property name algorithm to property name. |
| auto cssPropertyID = IDLAttributeNameToAnimationPropertyName(animationProperties[i].string()); |
| |
| // 5. Add a property to to keyframe output with normalized property name as the property name, and property values as the property value. |
| keyframeOuput.propertiesAndValues.append({ cssPropertyID, propertyValues }); |
| } |
| |
| // 7. Return keyframe output. |
| return { WTFMove(keyframeOuput) }; |
| } |
| |
| static inline ExceptionOr<void> processIterableKeyframes(JSGlobalObject& lexicalGlobalObject, Strong<JSObject>&& keyframesInput, JSValue method, Vector<KeyframeEffect::ParsedKeyframe>& parsedKeyframes) |
| { |
| // 1. Let iter be GetIterator(object, method). |
| forEachInIterable(lexicalGlobalObject, keyframesInput.get(), method, [&parsedKeyframes](VM& vm, JSGlobalObject& lexicalGlobalObject, JSValue nextValue) -> ExceptionOr<void> { |
| // Steps 2 through 6 are already implemented by forEachInIterable(). |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| if (!nextValue || !nextValue.isObject()) { |
| throwException(&lexicalGlobalObject, scope, JSC::Exception::create(vm, createTypeError(&lexicalGlobalObject))); |
| return { }; |
| } |
| |
| // 7. Append to processed keyframes the result of running the procedure to process a keyframe-like object passing nextItem |
| // as the keyframe input and with the allow lists flag set to false. |
| auto processKeyframeLikeObjectResult = processKeyframeLikeObject(lexicalGlobalObject, Strong<JSObject>(vm, nextValue.toObject(&lexicalGlobalObject)), false); |
| if (processKeyframeLikeObjectResult.hasException()) |
| return processKeyframeLikeObjectResult.releaseException(); |
| auto keyframeLikeObject = processKeyframeLikeObjectResult.returnValue(); |
| |
| KeyframeEffect::ParsedKeyframe keyframeOutput; |
| |
| // When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only offset |
| // alternatives we should expect are double and nullptr. |
| if (WTF::holds_alternative<double>(keyframeLikeObject.baseProperties.offset)) |
| keyframeOutput.offset = WTF::get<double>(keyframeLikeObject.baseProperties.offset); |
| else |
| ASSERT(WTF::holds_alternative<std::nullptr_t>(keyframeLikeObject.baseProperties.offset)); |
| |
| // When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only easing |
| // alternative we should expect is String. |
| ASSERT(WTF::holds_alternative<String>(keyframeLikeObject.baseProperties.easing)); |
| keyframeOutput.easing = WTF::get<String>(keyframeLikeObject.baseProperties.easing); |
| |
| // When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only composite |
| // alternatives we should expect is CompositeOperationAuto. |
| if (RuntimeEnabledFeatures::sharedFeatures().webAnimationsCompositeOperationsEnabled()) { |
| ASSERT(WTF::holds_alternative<CompositeOperationOrAuto>(keyframeLikeObject.baseProperties.composite)); |
| keyframeOutput.composite = WTF::get<CompositeOperationOrAuto>(keyframeLikeObject.baseProperties.composite); |
| } |
| |
| for (auto& propertyAndValue : keyframeLikeObject.propertiesAndValues) { |
| auto cssPropertyId = propertyAndValue.property; |
| // When calling processKeyframeLikeObject() with the "allow lists" flag set to false, |
| // there should only ever be a single value for a given property. |
| ASSERT(propertyAndValue.values.size() == 1); |
| auto stringValue = propertyAndValue.values[0]; |
| if (keyframeOutput.style->setProperty(cssPropertyId, stringValue)) |
| keyframeOutput.unparsedStyle.set(cssPropertyId, stringValue); |
| } |
| |
| parsedKeyframes.append(WTFMove(keyframeOutput)); |
| |
| return { }; |
| }); |
| |
| return { }; |
| } |
| |
| static inline ExceptionOr<void> processPropertyIndexedKeyframes(JSGlobalObject& lexicalGlobalObject, Strong<JSObject>&& keyframesInput, Vector<KeyframeEffect::ParsedKeyframe>& parsedKeyframes, Vector<String>& unusedEasings) |
| { |
| // 1. Let property-indexed keyframe be the result of running the procedure to process a keyframe-like object passing object as the keyframe input. |
| auto processKeyframeLikeObjectResult = processKeyframeLikeObject(lexicalGlobalObject, WTFMove(keyframesInput), true); |
| if (processKeyframeLikeObjectResult.hasException()) |
| return processKeyframeLikeObjectResult.releaseException(); |
| auto propertyIndexedKeyframe = processKeyframeLikeObjectResult.returnValue(); |
| |
| // 2. For each member, m, in property-indexed keyframe, perform the following steps: |
| for (auto& m : propertyIndexedKeyframe.propertiesAndValues) { |
| // 1. Let property name be the key for m. |
| auto propertyName = m.property; |
| // 2. If property name is “composite”, or “easing”, or “offset”, skip the remaining steps in this loop and continue from the next member in property-indexed |
| // keyframe after m. |
| // We skip this test since we split those properties and the actual CSS properties that we're currently iterating over. |
| // 3. Let property values be the value for m. |
| auto propertyValues = m.values; |
| // 4. Let property keyframes be an empty sequence of keyframes. |
| Vector<KeyframeEffect::ParsedKeyframe> propertyKeyframes; |
| // 5. For each value, v, in property values perform the following steps: |
| for (auto& v : propertyValues) { |
| // 1. Let k be a new keyframe with a null keyframe offset. |
| KeyframeEffect::ParsedKeyframe k; |
| // 2. Add the property-value pair, property name → v, to k. |
| if (k.style->setProperty(propertyName, v)) |
| k.unparsedStyle.set(propertyName, v); |
| // 3. Append k to property keyframes. |
| propertyKeyframes.append(WTFMove(k)); |
| } |
| // 6. Apply the procedure to compute missing keyframe offsets to property keyframes. |
| computeMissingKeyframeOffsets(propertyKeyframes); |
| |
| // 7. Add keyframes in property keyframes to processed keyframes. |
| for (auto& keyframe : propertyKeyframes) |
| parsedKeyframes.append(WTFMove(keyframe)); |
| } |
| |
| // 3. Sort processed keyframes by the computed keyframe offset of each keyframe in increasing order. |
| std::sort(parsedKeyframes.begin(), parsedKeyframes.end(), [](auto& lhs, auto& rhs) { |
| return lhs.computedOffset < rhs.computedOffset; |
| }); |
| |
| // 4. Merge adjacent keyframes in processed keyframes when they have equal computed keyframe offsets. |
| size_t i = 1; |
| while (i < parsedKeyframes.size()) { |
| auto& keyframe = parsedKeyframes[i]; |
| auto& previousKeyframe = parsedKeyframes[i - 1]; |
| // If the offsets of this keyframe and the previous keyframe are different, |
| // this means that the two keyframes should not be merged and we can move |
| // on to the next keyframe. |
| if (keyframe.computedOffset != previousKeyframe.computedOffset) { |
| i++; |
| continue; |
| } |
| // Otherwise, both this keyframe and the previous keyframe should be merged. |
| // Unprocessed keyframes in parsedKeyframes at this stage have at most a single |
| // property in cssPropertiesAndValues, so just set this on the previous keyframe. |
| // In case an invalid or null value was originally provided, then the property |
| // was not set and the property count is 0, in which case there is nothing to merge. |
| if (keyframe.style->propertyCount()) { |
| auto property = keyframe.style->propertyAt(0); |
| previousKeyframe.style->setProperty(property.id(), property.value()); |
| previousKeyframe.unparsedStyle.set(property.id(), keyframe.unparsedStyle.get(property.id())); |
| } |
| // Since we've processed this keyframe, we can remove it and keep i the same |
| // so that we process the next keyframe in the next loop iteration. |
| parsedKeyframes.remove(i); |
| } |
| |
| // 5. Let offsets be a sequence of nullable double values assigned based on the type of the “offset” member of the property-indexed keyframe as follows: |
| // - sequence<double?>, the value of “offset” as-is. |
| // - double?, a sequence of length one with the value of “offset” as its single item, i.e. « offset », |
| Vector<Optional<double>> offsets; |
| if (WTF::holds_alternative<Vector<Optional<double>>>(propertyIndexedKeyframe.baseProperties.offset)) |
| offsets = WTF::get<Vector<Optional<double>>>(propertyIndexedKeyframe.baseProperties.offset); |
| else if (WTF::holds_alternative<double>(propertyIndexedKeyframe.baseProperties.offset)) |
| offsets.append(WTF::get<double>(propertyIndexedKeyframe.baseProperties.offset)); |
| else if (WTF::holds_alternative<std::nullptr_t>(propertyIndexedKeyframe.baseProperties.offset)) |
| offsets.append(WTF::nullopt); |
| |
| // 6. Assign each value in offsets to the keyframe offset of the keyframe with corresponding position in property keyframes until the end of either sequence is reached. |
| for (size_t i = 0; i < offsets.size() && i < parsedKeyframes.size(); ++i) |
| parsedKeyframes[i].offset = offsets[i]; |
| |
| // 7. Let easings be a sequence of DOMString values assigned based on the type of the “easing” member of the property-indexed keyframe as follows: |
| // - sequence<DOMString>, the value of “easing” as-is. |
| // - DOMString, a sequence of length one with the value of “easing” as its single item, i.e. « easing », |
| Vector<String> easings; |
| if (WTF::holds_alternative<Vector<String>>(propertyIndexedKeyframe.baseProperties.easing)) |
| easings = WTF::get<Vector<String>>(propertyIndexedKeyframe.baseProperties.easing); |
| else if (WTF::holds_alternative<String>(propertyIndexedKeyframe.baseProperties.easing)) |
| easings.append(WTF::get<String>(propertyIndexedKeyframe.baseProperties.easing)); |
| |
| // 8. If easings is an empty sequence, let it be a sequence of length one containing the single value “linear”, i.e. « "linear" ». |
| if (easings.isEmpty()) |
| easings.append("linear"); |
| |
| // 9. If easings has fewer items than property keyframes, repeat the elements in easings successively starting from the beginning of the list until easings has as many |
| // items as property keyframes. |
| if (easings.size() < parsedKeyframes.size()) { |
| size_t initialNumberOfEasings = easings.size(); |
| for (i = initialNumberOfEasings; i < parsedKeyframes.size(); ++i) |
| easings.append(easings[i % initialNumberOfEasings]); |
| } |
| |
| // 10. If easings has more items than property keyframes, store the excess items as unused easings. |
| while (easings.size() > parsedKeyframes.size()) |
| unusedEasings.append(easings.takeLast()); |
| |
| // 11. Assign each value in easings to a property named “easing” on the keyframe with the corresponding position in property keyframes until the end of property keyframes |
| // is reached. |
| for (size_t i = 0; i < parsedKeyframes.size(); ++i) |
| parsedKeyframes[i].easing = easings[i]; |
| |
| // 12. If the “composite” member of the property-indexed keyframe is not an empty sequence: |
| if (RuntimeEnabledFeatures::sharedFeatures().webAnimationsCompositeOperationsEnabled()) { |
| Vector<CompositeOperationOrAuto> compositeModes; |
| if (WTF::holds_alternative<Vector<CompositeOperationOrAuto>>(propertyIndexedKeyframe.baseProperties.composite)) |
| compositeModes = WTF::get<Vector<CompositeOperationOrAuto>>(propertyIndexedKeyframe.baseProperties.composite); |
| else if (WTF::holds_alternative<CompositeOperationOrAuto>(propertyIndexedKeyframe.baseProperties.composite)) |
| compositeModes.append(WTF::get<CompositeOperationOrAuto>(propertyIndexedKeyframe.baseProperties.composite)); |
| if (!compositeModes.isEmpty()) { |
| // 1. Let composite modes be a sequence of CompositeOperationOrAuto values assigned from the “composite” member of property-indexed keyframe. If that member is a single |
| // CompositeOperationOrAuto value operation, let composite modes be a sequence of length one, with the value of the “composite” as its single item. |
| // 2. As with easings, if composite modes has fewer items than processed keyframes, repeat the elements in composite modes successively starting from the beginning of |
| // the list until composite modes has as many items as processed keyframes. |
| if (compositeModes.size() < parsedKeyframes.size()) { |
| size_t initialNumberOfCompositeModes = compositeModes.size(); |
| for (i = initialNumberOfCompositeModes; i < parsedKeyframes.size(); ++i) |
| compositeModes.append(compositeModes[i % initialNumberOfCompositeModes]); |
| } |
| // 3. Assign each value in composite modes that is not auto to the keyframe-specific composite operation on the keyframe with the corresponding position in processed |
| // keyframes until the end of processed keyframes is reached. |
| for (size_t i = 0; i < compositeModes.size() && i < parsedKeyframes.size(); ++i) { |
| if (compositeModes[i] != CompositeOperationOrAuto::Auto) |
| parsedKeyframes[i].composite = compositeModes[i]; |
| } |
| } |
| } |
| |
| return { }; |
| } |
| |
| ExceptionOr<Ref<KeyframeEffect>> KeyframeEffect::create(JSGlobalObject& lexicalGlobalObject, Element* target, Strong<JSObject>&& keyframes, Optional<Variant<double, KeyframeEffectOptions>>&& options) |
| { |
| auto keyframeEffect = adoptRef(*new KeyframeEffect(target)); |
| |
| if (options) { |
| OptionalEffectTiming timing; |
| auto optionsValue = options.value(); |
| if (WTF::holds_alternative<double>(optionsValue)) { |
| Variant<double, String> duration = WTF::get<double>(optionsValue); |
| timing.duration = duration; |
| } else { |
| auto keyframeEffectOptions = WTF::get<KeyframeEffectOptions>(optionsValue); |
| timing = { |
| keyframeEffectOptions.duration, |
| keyframeEffectOptions.iterations, |
| keyframeEffectOptions.delay, |
| keyframeEffectOptions.endDelay, |
| keyframeEffectOptions.iterationStart, |
| keyframeEffectOptions.easing, |
| keyframeEffectOptions.fill, |
| keyframeEffectOptions.direction |
| }; |
| } |
| auto updateTimingResult = keyframeEffect->updateTiming(timing); |
| if (updateTimingResult.hasException()) |
| return updateTimingResult.releaseException(); |
| } |
| |
| auto processKeyframesResult = keyframeEffect->processKeyframes(lexicalGlobalObject, WTFMove(keyframes)); |
| if (processKeyframesResult.hasException()) |
| return processKeyframesResult.releaseException(); |
| |
| return keyframeEffect; |
| } |
| |
| ExceptionOr<Ref<KeyframeEffect>> KeyframeEffect::create(JSC::JSGlobalObject&, Ref<KeyframeEffect>&& source) |
| { |
| auto keyframeEffect = adoptRef(*new KeyframeEffect(nullptr)); |
| keyframeEffect->copyPropertiesFromSource(WTFMove(source)); |
| return keyframeEffect; |
| } |
| |
| Ref<KeyframeEffect> KeyframeEffect::create(const Element& target) |
| { |
| return adoptRef(*new KeyframeEffect(const_cast<Element*>(&target))); |
| } |
| |
| KeyframeEffect::KeyframeEffect(Element* target) |
| : m_target(target) |
| { |
| } |
| |
| void KeyframeEffect::copyPropertiesFromSource(Ref<KeyframeEffect>&& source) |
| { |
| m_target = source->m_target; |
| m_compositeOperation = source->m_compositeOperation; |
| m_iterationCompositeOperation = source->m_iterationCompositeOperation; |
| |
| Vector<ParsedKeyframe> parsedKeyframes; |
| for (auto& sourceParsedKeyframe : source->m_parsedKeyframes) { |
| ParsedKeyframe parsedKeyframe; |
| parsedKeyframe.easing = sourceParsedKeyframe.easing; |
| parsedKeyframe.offset = sourceParsedKeyframe.offset; |
| parsedKeyframe.composite = sourceParsedKeyframe.composite; |
| parsedKeyframe.unparsedStyle = sourceParsedKeyframe.unparsedStyle; |
| parsedKeyframe.computedOffset = sourceParsedKeyframe.computedOffset; |
| parsedKeyframe.timingFunction = sourceParsedKeyframe.timingFunction; |
| parsedKeyframe.style = sourceParsedKeyframe.style->mutableCopy(); |
| parsedKeyframes.append(WTFMove(parsedKeyframe)); |
| } |
| m_parsedKeyframes = WTFMove(parsedKeyframes); |
| |
| setFill(source->fill()); |
| setDelay(source->delay()); |
| setEndDelay(source->endDelay()); |
| setDirection(source->direction()); |
| setIterations(source->iterations()); |
| setTimingFunction(source->timingFunction()); |
| setIterationStart(source->iterationStart()); |
| setIterationDuration(source->iterationDuration()); |
| updateStaticTimingProperties(); |
| |
| KeyframeList keyframeList("keyframe-effect-" + createCanonicalUUIDString()); |
| for (auto& keyframe : source->m_blendingKeyframes.keyframes()) { |
| KeyframeValue keyframeValue(keyframe.key(), RenderStyle::clonePtr(*keyframe.style())); |
| for (auto propertyId : keyframe.properties()) |
| keyframeValue.addProperty(propertyId); |
| keyframeList.insert(WTFMove(keyframeValue)); |
| } |
| setBlendingKeyframes(keyframeList); |
| } |
| |
| Vector<Strong<JSObject>> KeyframeEffect::getKeyframes(JSGlobalObject& lexicalGlobalObject) |
| { |
| // https://drafts.csswg.org/web-animations-1/#dom-keyframeeffectreadonly-getkeyframes |
| |
| auto lock = JSLockHolder { &lexicalGlobalObject }; |
| |
| // Since keyframes are represented by a partially open-ended dictionary type that is not currently able to be expressed with WebIDL, |
| // the procedure used to prepare the result of this method is defined in prose below: |
| // |
| // 1. Let result be an empty sequence of objects. |
| Vector<Strong<JSObject>> result; |
| |
| // 2. Let keyframes be the result of applying the procedure to compute missing keyframe offsets to the keyframes for this keyframe effect. |
| |
| // 3. For each keyframe in keyframes perform the following steps: |
| if (is<DeclarativeAnimation>(animation())) { |
| auto* renderer = m_target->renderer(); |
| auto computedStyleExtractor = ComputedStyleExtractor(m_target.get()); |
| for (size_t i = 0; i < m_blendingKeyframes.size(); ++i) { |
| // 1. Initialize a dictionary object, output keyframe, using the following definition: |
| // |
| // dictionary BaseComputedKeyframe { |
| // double? offset = null; |
| // double computedOffset; |
| // DOMString easing = "linear"; |
| // CompositeOperationOrAuto composite = "auto"; |
| // }; |
| |
| auto& keyframe = m_blendingKeyframes[i]; |
| |
| // 2. Set offset, computedOffset, easing members of output keyframe to the respective values keyframe offset, computed keyframe offset, |
| // and keyframe-specific timing function of keyframe. |
| BaseComputedKeyframe computedKeyframe; |
| computedKeyframe.offset = keyframe.key(); |
| computedKeyframe.computedOffset = keyframe.key(); |
| // For CSS transitions, all keyframes should return "linear" since the effect's global timing function applies. |
| computedKeyframe.easing = is<CSSTransition>(animation()) ? "linear" : timingFunctionForKeyframeAtIndex(i)->cssText(); |
| |
| auto outputKeyframe = convertDictionaryToJS(lexicalGlobalObject, *jsCast<JSDOMGlobalObject*>(&lexicalGlobalObject), computedKeyframe); |
| |
| // 3. For each animation property-value pair specified on keyframe, declaration, perform the following steps: |
| auto& style = *keyframe.style(); |
| for (auto cssPropertyId : keyframe.properties()) { |
| if (cssPropertyId == CSSPropertyCustom) |
| continue; |
| // 1. Let property name be the result of applying the animation property name to IDL attribute name algorithm to the property name of declaration. |
| auto propertyName = CSSPropertyIDToIDLAttributeName(cssPropertyId); |
| // 2. Let IDL value be the result of serializing the property value of declaration by passing declaration to the algorithm to serialize a CSS value. |
| String idlValue = ""; |
| if (auto cssValue = computedStyleExtractor.valueForPropertyInStyle(style, cssPropertyId, renderer)) |
| idlValue = cssValue->cssText(); |
| // 3. Let value be the result of converting IDL value to an ECMAScript String value. |
| auto value = toJS<IDLDOMString>(lexicalGlobalObject, idlValue); |
| // 4. Call the [[DefineOwnProperty]] internal method on output keyframe with property name property name, |
| // Property Descriptor { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true, [[Value]]: value } and Boolean flag false. |
| JSObject::defineOwnProperty(outputKeyframe, &lexicalGlobalObject, AtomString(propertyName).impl(), PropertyDescriptor(value, 0), false); |
| } |
| |
| // 5. Append output keyframe to result. |
| result.append(JSC::Strong<JSC::JSObject> { lexicalGlobalObject.vm(), outputKeyframe }); |
| } |
| } else { |
| for (size_t i = 0; i < m_parsedKeyframes.size(); ++i) { |
| // 1. Initialize a dictionary object, output keyframe, using the following definition: |
| // |
| // dictionary BaseComputedKeyframe { |
| // double? offset = null; |
| // double computedOffset; |
| // DOMString easing = "linear"; |
| // CompositeOperationOrAuto composite = "auto"; |
| // }; |
| |
| auto& parsedKeyframe = m_parsedKeyframes[i]; |
| |
| // 2. Set offset, computedOffset, easing, composite members of output keyframe to the respective values keyframe offset, computed keyframe |
| // offset, keyframe-specific timing function and keyframe-specific composite operation of keyframe. |
| BaseComputedKeyframe computedKeyframe; |
| computedKeyframe.offset = parsedKeyframe.offset; |
| computedKeyframe.computedOffset = parsedKeyframe.computedOffset; |
| computedKeyframe.easing = timingFunctionForKeyframeAtIndex(i)->cssText(); |
| if (RuntimeEnabledFeatures::sharedFeatures().webAnimationsCompositeOperationsEnabled()) |
| computedKeyframe.composite = parsedKeyframe.composite; |
| |
| auto outputKeyframe = convertDictionaryToJS(lexicalGlobalObject, *jsCast<JSDOMGlobalObject*>(&lexicalGlobalObject), computedKeyframe); |
| |
| // 3. For each animation property-value pair specified on keyframe, declaration, perform the following steps: |
| for (auto it = parsedKeyframe.unparsedStyle.begin(), end = parsedKeyframe.unparsedStyle.end(); it != end; ++it) { |
| // 1. Let property name be the result of applying the animation property name to IDL attribute name algorithm to the property name of declaration. |
| auto propertyName = CSSPropertyIDToIDLAttributeName(it->key); |
| // 2. Let IDL value be the result of serializing the property value of declaration by passing declaration to the algorithm to serialize a CSS value. |
| // 3. Let value be the result of converting IDL value to an ECMAScript String value. |
| auto value = toJS<IDLDOMString>(lexicalGlobalObject, it->value); |
| // 4. Call the [[DefineOwnProperty]] internal method on output keyframe with property name property name, |
| // Property Descriptor { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true, [[Value]]: value } and Boolean flag false. |
| JSObject::defineOwnProperty(outputKeyframe, &lexicalGlobalObject, AtomString(propertyName).impl(), PropertyDescriptor(value, 0), false); |
| } |
| |
| // 4. Append output keyframe to result. |
| result.append(JSC::Strong<JSC::JSObject> { lexicalGlobalObject.vm(), outputKeyframe }); |
| } |
| } |
| |
| // 4. Return result. |
| return result; |
| } |
| |
| ExceptionOr<void> KeyframeEffect::setKeyframes(JSGlobalObject& lexicalGlobalObject, Strong<JSObject>&& keyframesInput) |
| { |
| auto processKeyframesResult = processKeyframes(lexicalGlobalObject, WTFMove(keyframesInput)); |
| if (!processKeyframesResult.hasException() && animation()) |
| animation()->effectTimingDidChange(); |
| return processKeyframesResult; |
| } |
| |
| ExceptionOr<void> KeyframeEffect::processKeyframes(JSGlobalObject& lexicalGlobalObject, Strong<JSObject>&& keyframesInput) |
| { |
| // 1. If object is null, return an empty sequence of keyframes. |
| if (!keyframesInput.get()) |
| return { }; |
| |
| VM& vm = lexicalGlobalObject.vm(); |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| |
| // 2. Let processed keyframes be an empty sequence of keyframes. |
| Vector<ParsedKeyframe> parsedKeyframes; |
| |
| // 3. Let method be the result of GetMethod(object, @@iterator). |
| auto method = keyframesInput.get()->get(&lexicalGlobalObject, vm.propertyNames->iteratorSymbol); |
| |
| // 4. Check the completion record of method. |
| RETURN_IF_EXCEPTION(scope, Exception { TypeError }); |
| |
| // 5. Perform the steps corresponding to the first matching condition from below, |
| Vector<String> unusedEasings; |
| if (!method.isUndefined()) |
| processIterableKeyframes(lexicalGlobalObject, WTFMove(keyframesInput), WTFMove(method), parsedKeyframes); |
| else |
| processPropertyIndexedKeyframes(lexicalGlobalObject, WTFMove(keyframesInput), parsedKeyframes, unusedEasings); |
| |
| // 6. If processed keyframes is not loosely sorted by offset, throw a TypeError and abort these steps. |
| // 7. If there exist any keyframe in processed keyframes whose keyframe offset is non-null and less than |
| // zero or greater than one, throw a TypeError and abort these steps. |
| double lastNonNullOffset = -1; |
| for (auto& keyframe : parsedKeyframes) { |
| if (!keyframe.offset) |
| continue; |
| auto offset = keyframe.offset.value(); |
| if (offset < lastNonNullOffset || offset < 0 || offset > 1) |
| return Exception { TypeError }; |
| lastNonNullOffset = offset; |
| } |
| |
| // We take a slight detour from the spec text and compute the missing keyframe offsets right away |
| // since they can be computed up-front. |
| computeMissingKeyframeOffsets(parsedKeyframes); |
| |
| // 8. For each frame in processed keyframes, perform the following steps: |
| for (auto& keyframe : parsedKeyframes) { |
| // Let the timing function of frame be the result of parsing the “easing” property on frame using the CSS syntax |
| // defined for the easing property of the AnimationEffectTiming interface. |
| // If parsing the “easing” property fails, throw a TypeError and abort this procedure. |
| auto timingFunctionResult = TimingFunction::createFromCSSText(keyframe.easing); |
| if (timingFunctionResult.hasException()) |
| return timingFunctionResult.releaseException(); |
| keyframe.timingFunction = timingFunctionResult.returnValue(); |
| } |
| |
| // 9. Parse each of the values in unused easings using the CSS syntax defined for easing property of the |
| // AnimationEffectTiming interface, and if any of the values fail to parse, throw a TypeError |
| // and abort this procedure. |
| for (auto& easing : unusedEasings) { |
| auto timingFunctionResult = TimingFunction::createFromCSSText(easing); |
| if (timingFunctionResult.hasException()) |
| return timingFunctionResult.releaseException(); |
| } |
| |
| m_parsedKeyframes = WTFMove(parsedKeyframes); |
| |
| clearBlendingKeyframes(); |
| |
| return { }; |
| } |
| |
| void KeyframeEffect::updateBlendingKeyframes(RenderStyle& elementStyle) |
| { |
| if (!m_blendingKeyframes.isEmpty() || !m_target) |
| return; |
| |
| KeyframeList keyframeList("keyframe-effect-" + createCanonicalUUIDString()); |
| auto& styleResolver = m_target->styleResolver(); |
| |
| for (auto& keyframe : m_parsedKeyframes) { |
| KeyframeValue keyframeValue(keyframe.computedOffset, nullptr); |
| |
| auto styleProperties = keyframe.style->immutableCopyIfNeeded(); |
| for (unsigned i = 0; i < styleProperties->propertyCount(); ++i) |
| keyframeList.addProperty(styleProperties->propertyAt(i).id()); |
| |
| auto keyframeRule = StyleRuleKeyframe::create(WTFMove(styleProperties)); |
| keyframeValue.setStyle(styleResolver.styleForKeyframe(*m_target, &elementStyle, keyframeRule.ptr(), keyframeValue)); |
| keyframeList.insert(WTFMove(keyframeValue)); |
| } |
| |
| setBlendingKeyframes(keyframeList); |
| } |
| |
| bool KeyframeEffect::forceLayoutIfNeeded() |
| { |
| if (!m_needsForcedLayout || !m_target) |
| return false; |
| |
| auto* renderer = m_target->renderer(); |
| if (!renderer || !renderer->parent()) |
| return false; |
| |
| auto* frameView = m_target->document().view(); |
| if (!frameView) |
| return false; |
| |
| frameView->forceLayout(); |
| return true; |
| } |
| |
| |
| void KeyframeEffect::clearBlendingKeyframes() |
| { |
| m_blendingKeyframesSource = BlendingKeyframesSource::WebAnimation; |
| m_blendingKeyframes.clear(); |
| } |
| |
| void KeyframeEffect::setBlendingKeyframes(KeyframeList& blendingKeyframes) |
| { |
| m_blendingKeyframes = WTFMove(blendingKeyframes); |
| |
| computedNeedsForcedLayout(); |
| computeStackingContextImpact(); |
| computeAcceleratedPropertiesState(); |
| |
| checkForMatchingTransformFunctionLists(); |
| checkForMatchingFilterFunctionLists(); |
| #if ENABLE(FILTERS_LEVEL_2) |
| checkForMatchingBackdropFilterFunctionLists(); |
| #endif |
| checkForMatchingColorFilterFunctionLists(); |
| } |
| |
| void KeyframeEffect::checkForMatchingTransformFunctionLists() |
| { |
| m_transformFunctionListsMatch = false; |
| |
| if (m_blendingKeyframes.size() < 2 || !m_blendingKeyframes.containsProperty(CSSPropertyTransform)) |
| return; |
| |
| // Empty transforms match anything, so find the first non-empty entry as the reference. |
| size_t numKeyframes = m_blendingKeyframes.size(); |
| size_t firstNonEmptyTransformKeyframeIndex = numKeyframes; |
| |
| for (size_t i = 0; i < numKeyframes; ++i) { |
| const KeyframeValue& currentKeyframe = m_blendingKeyframes[i]; |
| if (currentKeyframe.style()->transform().operations().size()) { |
| firstNonEmptyTransformKeyframeIndex = i; |
| break; |
| } |
| } |
| |
| if (firstNonEmptyTransformKeyframeIndex == numKeyframes) |
| return; |
| |
| const TransformOperations* firstVal = &m_blendingKeyframes[firstNonEmptyTransformKeyframeIndex].style()->transform(); |
| for (size_t i = firstNonEmptyTransformKeyframeIndex + 1; i < numKeyframes; ++i) { |
| const KeyframeValue& currentKeyframe = m_blendingKeyframes[i]; |
| const TransformOperations* val = ¤tKeyframe.style()->transform(); |
| |
| // An empty transform list matches anything. |
| if (val->operations().isEmpty()) |
| continue; |
| |
| if (!firstVal->operationsMatch(*val)) |
| return; |
| } |
| |
| m_transformFunctionListsMatch = true; |
| } |
| |
| bool KeyframeEffect::checkForMatchingFilterFunctionLists(CSSPropertyID propertyID, const std::function<const FilterOperations& (const RenderStyle&)>& filtersGetter) const |
| { |
| if (m_blendingKeyframes.size() < 2 || !m_blendingKeyframes.containsProperty(propertyID)) |
| return false; |
| |
| // Empty filters match anything, so find the first non-empty entry as the reference. |
| size_t numKeyframes = m_blendingKeyframes.size(); |
| size_t firstNonEmptyKeyframeIndex = numKeyframes; |
| |
| for (size_t i = 0; i < numKeyframes; ++i) { |
| if (filtersGetter(*m_blendingKeyframes[i].style()).operations().size()) { |
| firstNonEmptyKeyframeIndex = i; |
| break; |
| } |
| } |
| |
| if (firstNonEmptyKeyframeIndex == numKeyframes) |
| return false; |
| |
| auto& firstVal = filtersGetter(*m_blendingKeyframes[firstNonEmptyKeyframeIndex].style()); |
| for (size_t i = firstNonEmptyKeyframeIndex + 1; i < numKeyframes; ++i) { |
| auto& value = filtersGetter(*m_blendingKeyframes[i].style()); |
| |
| // An empty filter list matches anything. |
| if (value.operations().isEmpty()) |
| continue; |
| |
| if (!firstVal.operationsMatch(value)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void KeyframeEffect::checkForMatchingFilterFunctionLists() |
| { |
| m_filterFunctionListsMatch = checkForMatchingFilterFunctionLists(CSSPropertyFilter, [] (const RenderStyle& style) -> const FilterOperations& { |
| return style.filter(); |
| }); |
| } |
| |
| #if ENABLE(FILTERS_LEVEL_2) |
| void KeyframeEffect::checkForMatchingBackdropFilterFunctionLists() |
| { |
| m_backdropFilterFunctionListsMatch = checkForMatchingFilterFunctionLists(CSSPropertyWebkitBackdropFilter, [] (const RenderStyle& style) -> const FilterOperations& { |
| return style.backdropFilter(); |
| }); |
| } |
| #endif |
| |
| void KeyframeEffect::checkForMatchingColorFilterFunctionLists() |
| { |
| m_colorFilterFunctionListsMatch = checkForMatchingFilterFunctionLists(CSSPropertyAppleColorFilter, [] (const RenderStyle& style) -> const FilterOperations& { |
| return style.appleColorFilter(); |
| }); |
| } |
| |
| void KeyframeEffect::computeDeclarativeAnimationBlendingKeyframes(const RenderStyle* oldStyle, const RenderStyle& newStyle) |
| { |
| ASSERT(is<DeclarativeAnimation>(animation())); |
| if (is<CSSAnimation>(animation())) |
| computeCSSAnimationBlendingKeyframes(); |
| else if (is<CSSTransition>(animation())) |
| computeCSSTransitionBlendingKeyframes(oldStyle, newStyle); |
| } |
| |
| void KeyframeEffect::computeCSSAnimationBlendingKeyframes() |
| { |
| ASSERT(is<CSSAnimation>(animation())); |
| |
| auto cssAnimation = downcast<CSSAnimation>(animation()); |
| auto& backingAnimation = cssAnimation->backingAnimation(); |
| |
| KeyframeList keyframeList(backingAnimation.name()); |
| if (auto* styleScope = Style::Scope::forOrdinal(*m_target, backingAnimation.nameStyleScopeOrdinal())) |
| styleScope->resolver().keyframeStylesForAnimation(*m_target, &cssAnimation->unanimatedStyle(), keyframeList); |
| |
| // Ensure resource loads for all the frames. |
| for (auto& keyframe : keyframeList.keyframes()) { |
| if (auto* style = const_cast<RenderStyle*>(keyframe.style())) |
| Style::loadPendingResources(*style, m_target->document(), m_target.get()); |
| } |
| |
| m_blendingKeyframesSource = BlendingKeyframesSource::CSSAnimation; |
| setBlendingKeyframes(keyframeList); |
| } |
| |
| void KeyframeEffect::computeCSSTransitionBlendingKeyframes(const RenderStyle* oldStyle, const RenderStyle& newStyle) |
| { |
| ASSERT(is<CSSTransition>(animation())); |
| |
| if (!oldStyle || m_blendingKeyframes.size()) |
| return; |
| |
| auto property = downcast<CSSTransition>(animation())->property(); |
| |
| auto toStyle = RenderStyle::clonePtr(newStyle); |
| if (m_target) |
| Style::loadPendingResources(*toStyle, m_target->document(), m_target.get()); |
| |
| KeyframeList keyframeList("keyframe-effect-" + createCanonicalUUIDString()); |
| keyframeList.addProperty(property); |
| |
| KeyframeValue fromKeyframeValue(0, RenderStyle::clonePtr(*oldStyle)); |
| fromKeyframeValue.addProperty(property); |
| keyframeList.insert(WTFMove(fromKeyframeValue)); |
| |
| KeyframeValue toKeyframeValue(1, WTFMove(toStyle)); |
| toKeyframeValue.addProperty(property); |
| keyframeList.insert(WTFMove(toKeyframeValue)); |
| |
| m_blendingKeyframesSource = BlendingKeyframesSource::CSSTransition; |
| setBlendingKeyframes(keyframeList); |
| } |
| |
| void KeyframeEffect::computedNeedsForcedLayout() |
| { |
| m_needsForcedLayout = false; |
| if (is<CSSTransition>(animation()) || !m_blendingKeyframes.containsProperty(CSSPropertyTransform)) |
| return; |
| |
| size_t numberOfKeyframes = m_blendingKeyframes.size(); |
| for (size_t i = 0; i < numberOfKeyframes; i++) { |
| auto* keyframeStyle = m_blendingKeyframes[i].style(); |
| if (!keyframeStyle) { |
| ASSERT_NOT_REACHED(); |
| continue; |
| } |
| if (keyframeStyle->hasTransform()) { |
| auto& transformOperations = keyframeStyle->transform(); |
| for (const auto& operation : transformOperations.operations()) { |
| if (operation->isTranslateTransformOperationType()) { |
| auto translation = downcast<TranslateTransformOperation>(operation.get()); |
| if (translation->x().isPercent() || translation->y().isPercent()) { |
| m_needsForcedLayout = true; |
| return; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void KeyframeEffect::computeStackingContextImpact() |
| { |
| m_triggersStackingContext = false; |
| for (auto cssPropertyId : m_blendingKeyframes.properties()) { |
| if (WillChangeData::propertyCreatesStackingContext(cssPropertyId)) { |
| m_triggersStackingContext = true; |
| break; |
| } |
| } |
| } |
| |
| void KeyframeEffect::animationTimelineDidChange(AnimationTimeline* timeline) |
| { |
| if (!m_target) |
| return; |
| |
| if (timeline) |
| m_inTargetEffectStack = m_target->ensureKeyframeEffectStack().addEffect(*this); |
| else { |
| m_target->ensureKeyframeEffectStack().removeEffect(*this); |
| m_inTargetEffectStack = false; |
| } |
| } |
| |
| void KeyframeEffect::animationTimingDidChange() |
| { |
| updateEffectStackMembership(); |
| } |
| |
| void KeyframeEffect::updateEffectStackMembership() |
| { |
| if (!m_target) |
| return; |
| |
| bool isRelevant = animation() && animation()->isRelevant(); |
| if (isRelevant && !m_inTargetEffectStack) |
| m_inTargetEffectStack = m_target->ensureKeyframeEffectStack().addEffect(*this); |
| else if (!isRelevant && m_inTargetEffectStack) { |
| m_target->ensureKeyframeEffectStack().removeEffect(*this); |
| m_inTargetEffectStack = false; |
| } |
| } |
| |
| void KeyframeEffect::setAnimation(WebAnimation* animation) |
| { |
| bool animationChanged = animation != this->animation(); |
| AnimationEffect::setAnimation(animation); |
| |
| if (!animationChanged) |
| return; |
| |
| if (animation) |
| animation->updateRelevance(); |
| updateEffectStackMembership(); |
| } |
| |
| void KeyframeEffect::setTarget(RefPtr<Element>&& newTarget) |
| { |
| if (m_target == newTarget) |
| return; |
| |
| auto previousTarget = std::exchange(m_target, WTFMove(newTarget)); |
| |
| if (auto* effectAnimation = animation()) |
| effectAnimation->effectTargetDidChange(previousTarget.get(), m_target.get()); |
| |
| clearBlendingKeyframes(); |
| |
| // We need to invalidate the effect now that the target has changed |
| // to ensure the effect's styles are applied to the new target right away. |
| invalidate(); |
| |
| // Likewise, we need to invalidate styles on the previous target so that |
| // any animated styles are removed immediately. |
| invalidateElement(previousTarget.get()); |
| |
| if (previousTarget) { |
| previousTarget->ensureKeyframeEffectStack().removeEffect(*this); |
| m_inTargetEffectStack = false; |
| } |
| if (m_target) |
| m_inTargetEffectStack = m_target->ensureKeyframeEffectStack().addEffect(*this); |
| } |
| |
| void KeyframeEffect::apply(RenderStyle& targetStyle) |
| { |
| if (!m_target) |
| return; |
| |
| updateBlendingKeyframes(targetStyle); |
| |
| auto computedTiming = getComputedTiming(); |
| m_phaseAtLastApplication = computedTiming.phase; |
| |
| InspectorInstrumentation::willApplyKeyframeEffect(*m_target, *this, computedTiming); |
| |
| if (!computedTiming.progress) |
| return; |
| |
| setAnimatedPropertiesInStyle(targetStyle, computedTiming.progress.value()); |
| } |
| |
| bool KeyframeEffect::isCurrentlyAffectingProperty(CSSPropertyID property, Accelerated accelerated) const |
| { |
| if (accelerated == Accelerated::Yes && !isRunningAccelerated() && !isAboutToRunAccelerated()) |
| return false; |
| |
| if (!m_blendingKeyframes.properties().contains(property)) |
| return false; |
| |
| return m_phaseAtLastApplication == AnimationEffectPhase::Active; |
| } |
| |
| bool KeyframeEffect::isRunningAcceleratedAnimationForProperty(CSSPropertyID property) const |
| { |
| return m_isRunningAccelerated && CSSPropertyAnimation::animationOfPropertyIsAccelerated(property) && m_blendingKeyframes.properties().contains(property); |
| } |
| |
| void KeyframeEffect::invalidate() |
| { |
| invalidateElement(m_target.get()); |
| } |
| |
| void KeyframeEffect::computeAcceleratedPropertiesState() |
| { |
| bool hasSomeAcceleratedProperties = false; |
| bool hasSomeUnacceleratedProperties = false; |
| |
| for (auto cssPropertyId : m_blendingKeyframes.properties()) { |
| // If any animated property can be accelerated, then the animation should run accelerated. |
| if (CSSPropertyAnimation::animationOfPropertyIsAccelerated(cssPropertyId)) |
| hasSomeAcceleratedProperties = true; |
| else |
| hasSomeUnacceleratedProperties = true; |
| if (hasSomeAcceleratedProperties && hasSomeUnacceleratedProperties) |
| break; |
| } |
| |
| if (!hasSomeAcceleratedProperties) |
| m_acceleratedPropertiesState = AcceleratedProperties::None; |
| else if (hasSomeUnacceleratedProperties) |
| m_acceleratedPropertiesState = AcceleratedProperties::Some; |
| else |
| m_acceleratedPropertiesState = AcceleratedProperties::All; |
| } |
| |
| void KeyframeEffect::getAnimatedStyle(std::unique_ptr<RenderStyle>& animatedStyle) |
| { |
| if (!m_target || !animation()) |
| return; |
| |
| auto progress = getComputedTiming().progress; |
| LOG_WITH_STREAM(Animations, stream << "KeyframeEffect " << this << " getAnimatedStyle - progress " << progress); |
| if (!progress) |
| return; |
| |
| if (!animatedStyle) |
| animatedStyle = RenderStyle::clonePtr(renderer()->style()); |
| |
| setAnimatedPropertiesInStyle(*animatedStyle.get(), progress.value()); |
| } |
| |
| void KeyframeEffect::setAnimatedPropertiesInStyle(RenderStyle& targetStyle, double iterationProgress) |
| { |
| auto& properties = m_blendingKeyframes.properties(); |
| |
| // In the case of CSS Transitions we already know that there are only two keyframes, one where offset=0 and one where offset=1, |
| // and only a single CSS property so we can simply blend based on the style available on those keyframes with the provided iteration |
| // progress which already accounts for the transition's timing function. |
| if (m_blendingKeyframesSource == BlendingKeyframesSource::CSSTransition) { |
| ASSERT(properties.size() == 1); |
| CSSPropertyAnimation::blendProperties(this, *properties.begin(), &targetStyle, m_blendingKeyframes[0].style(), m_blendingKeyframes[1].style(), iterationProgress); |
| return; |
| } |
| |
| // 4.4.3. The effect value of a keyframe effect |
| // https://drafts.csswg.org/web-animations-1/#the-effect-value-of-a-keyframe-animation-effect |
| // |
| // The effect value of a single property referenced by a keyframe effect as one of its target properties, |
| // for a given iteration progress, current iteration and underlying value is calculated as follows. |
| |
| updateBlendingKeyframes(targetStyle); |
| if (m_blendingKeyframes.isEmpty()) |
| return; |
| |
| for (auto cssPropertyId : properties) { |
| // 1. If iteration progress is unresolved abort this procedure. |
| // 2. Let target property be the longhand property for which the effect value is to be calculated. |
| // 3. If animation type of the target property is not animatable abort this procedure since the effect cannot be applied. |
| // 4. Define the neutral value for composition as a value which, when combined with an underlying value using the add composite operation, |
| // produces the underlying value. |
| |
| // 5. Let property-specific keyframes be the result of getting the set of computed keyframes for this keyframe effect. |
| // 6. Remove any keyframes from property-specific keyframes that do not have a property value for target property. |
| unsigned numberOfKeyframesWithZeroOffset = 0; |
| unsigned numberOfKeyframesWithOneOffset = 0; |
| Vector<Optional<size_t>> propertySpecificKeyframes; |
| for (size_t i = 0; i < m_blendingKeyframes.size(); ++i) { |
| auto& keyframe = m_blendingKeyframes[i]; |
| auto offset = keyframe.key(); |
| if (!keyframe.containsProperty(cssPropertyId)) { |
| // If we're dealing with a CSS animation, we consider the first and last keyframes to always have the property listed |
| // since the underlying style was provided and should be captured. |
| if (m_blendingKeyframesSource == BlendingKeyframesSource::WebAnimation || (offset && offset < 1)) |
| continue; |
| } |
| if (!offset) |
| numberOfKeyframesWithZeroOffset++; |
| if (offset == 1) |
| numberOfKeyframesWithOneOffset++; |
| propertySpecificKeyframes.append(i); |
| } |
| |
| // 7. If property-specific keyframes is empty, return underlying value. |
| if (propertySpecificKeyframes.isEmpty()) |
| continue; |
| |
| // 8. If there is no keyframe in property-specific keyframes with a computed keyframe offset of 0, create a new keyframe with a computed keyframe |
| // offset of 0, a property value set to the neutral value for composition, and a composite operation of add, and prepend it to the beginning of |
| // property-specific keyframes. |
| if (!numberOfKeyframesWithZeroOffset) { |
| propertySpecificKeyframes.insert(0, WTF::nullopt); |
| numberOfKeyframesWithZeroOffset = 1; |
| } |
| |
| // 9. Similarly, if there is no keyframe in property-specific keyframes with a computed keyframe offset of 1, create a new keyframe with a computed |
| // keyframe offset of 1, a property value set to the neutral value for composition, and a composite operation of add, and append it to the end of |
| // property-specific keyframes. |
| if (!numberOfKeyframesWithOneOffset) { |
| propertySpecificKeyframes.append(WTF::nullopt); |
| numberOfKeyframesWithOneOffset = 1; |
| } |
| |
| // 10. Let interval endpoints be an empty sequence of keyframes. |
| Vector<Optional<size_t>> intervalEndpoints; |
| |
| // 11. Populate interval endpoints by following the steps from the first matching condition from below: |
| if (iterationProgress < 0 && numberOfKeyframesWithZeroOffset > 1) { |
| // If iteration progress < 0 and there is more than one keyframe in property-specific keyframes with a computed keyframe offset of 0, |
| // Add the first keyframe in property-specific keyframes to interval endpoints. |
| intervalEndpoints.append(propertySpecificKeyframes.first()); |
| } else if (iterationProgress >= 1 && numberOfKeyframesWithOneOffset > 1) { |
| // If iteration progress ≥ 1 and there is more than one keyframe in property-specific keyframes with a computed keyframe offset of 1, |
| // Add the last keyframe in property-specific keyframes to interval endpoints. |
| intervalEndpoints.append(propertySpecificKeyframes.last()); |
| } else { |
| // Otherwise, |
| // 1. Append to interval endpoints the last keyframe in property-specific keyframes whose computed keyframe offset is less than or equal |
| // to iteration progress and less than 1. If there is no such keyframe (because, for example, the iteration progress is negative), |
| // add the last keyframe whose computed keyframe offset is 0. |
| // 2. Append to interval endpoints the next keyframe in property-specific keyframes after the one added in the previous step. |
| size_t indexOfLastKeyframeWithZeroOffset = 0; |
| int indexOfFirstKeyframeToAddToIntervalEndpoints = -1; |
| for (size_t i = 0; i < propertySpecificKeyframes.size(); ++i) { |
| auto keyframeIndex = propertySpecificKeyframes[i]; |
| auto offset = [&] () -> double { |
| if (!keyframeIndex) |
| return i ? 1 : 0; |
| return m_blendingKeyframes[keyframeIndex.value()].key(); |
| }(); |
| if (!offset) |
| indexOfLastKeyframeWithZeroOffset = i; |
| if (offset <= iterationProgress && offset < 1) |
| indexOfFirstKeyframeToAddToIntervalEndpoints = i; |
| else |
| break; |
| } |
| |
| if (indexOfFirstKeyframeToAddToIntervalEndpoints >= 0) { |
| intervalEndpoints.append(propertySpecificKeyframes[indexOfFirstKeyframeToAddToIntervalEndpoints]); |
| intervalEndpoints.append(propertySpecificKeyframes[indexOfFirstKeyframeToAddToIntervalEndpoints + 1]); |
| } else { |
| ASSERT(indexOfLastKeyframeWithZeroOffset < propertySpecificKeyframes.size() - 1); |
| intervalEndpoints.append(propertySpecificKeyframes[indexOfLastKeyframeWithZeroOffset]); |
| intervalEndpoints.append(propertySpecificKeyframes[indexOfLastKeyframeWithZeroOffset + 1]); |
| } |
| } |
| |
| // 12. For each keyframe in interval endpoints… |
| // FIXME: we don't support this step yet since we don't deal with any composite operation other than "replace". |
| |
| // 13. If there is only one keyframe in interval endpoints return the property value of target property on that keyframe. |
| if (intervalEndpoints.size() == 1) { |
| auto keyframeIndex = intervalEndpoints[0]; |
| auto keyframeStyle = !keyframeIndex ? &targetStyle : m_blendingKeyframes[keyframeIndex.value()].style(); |
| CSSPropertyAnimation::blendProperties(this, cssPropertyId, &targetStyle, keyframeStyle, keyframeStyle, 0); |
| continue; |
| } |
| |
| // 14. Let start offset be the computed keyframe offset of the first keyframe in interval endpoints. |
| auto startKeyframeIndex = intervalEndpoints.first(); |
| auto startOffset = !startKeyframeIndex ? 0 : m_blendingKeyframes[startKeyframeIndex.value()].key(); |
| |
| // 15. Let end offset be the computed keyframe offset of last keyframe in interval endpoints. |
| auto endKeyframeIndex = intervalEndpoints.last(); |
| auto endOffset = !endKeyframeIndex ? 1 : m_blendingKeyframes[endKeyframeIndex.value()].key(); |
| |
| // 16. Let interval distance be the result of evaluating (iteration progress - start offset) / (end offset - start offset). |
| auto intervalDistance = (iterationProgress - startOffset) / (endOffset - startOffset); |
| |
| // 17. Let transformed distance be the result of evaluating the timing function associated with the first keyframe in interval endpoints |
| // passing interval distance as the input progress. |
| auto transformedDistance = intervalDistance; |
| if (startKeyframeIndex) { |
| if (auto duration = iterationDuration()) { |
| auto rangeDuration = (endOffset - startOffset) * duration.seconds(); |
| if (auto* timingFunction = timingFunctionForKeyframeAtIndex(startKeyframeIndex.value())) |
| transformedDistance = timingFunction->transformTime(intervalDistance, rangeDuration); |
| } |
| } |
| |
| // 18. Return the result of applying the interpolation procedure defined by the animation type of the target property, to the values of the target |
| // property specified on the two keyframes in interval endpoints taking the first such value as Vstart and the second as Vend and using transformed |
| // distance as the interpolation parameter p. |
| auto startStyle = !startKeyframeIndex ? &targetStyle : m_blendingKeyframes[startKeyframeIndex.value()].style(); |
| auto endStyle = !endKeyframeIndex ? &targetStyle : m_blendingKeyframes[endKeyframeIndex.value()].style(); |
| CSSPropertyAnimation::blendProperties(this, cssPropertyId, &targetStyle, startStyle, endStyle, transformedDistance); |
| } |
| } |
| |
| TimingFunction* KeyframeEffect::timingFunctionForKeyframeAtIndex(size_t index) |
| { |
| if (!m_parsedKeyframes.isEmpty()) |
| return m_parsedKeyframes[index].timingFunction.get(); |
| |
| auto effectAnimation = animation(); |
| if (is<DeclarativeAnimation>(effectAnimation)) { |
| // If we're dealing with a CSS Animation, the timing function is specified either on the keyframe itself. |
| if (is<CSSAnimation>(effectAnimation)) { |
| if (auto* timingFunction = m_blendingKeyframes[index].timingFunction()) |
| return timingFunction; |
| } |
| |
| // Failing that, or for a CSS Transition, the timing function is inherited from the backing Animation object. |
| return downcast<DeclarativeAnimation>(effectAnimation)->backingAnimation().timingFunction(); |
| } |
| |
| return nullptr; |
| } |
| |
| void KeyframeEffect::updateAcceleratedActions() |
| { |
| if (m_acceleratedPropertiesState == AcceleratedProperties::None) |
| return; |
| |
| auto computedTiming = getComputedTiming(); |
| |
| // If we're not already running accelerated, the only thing we're interested in is whether we need to start the animation |
| // which we need to do once we're in the active phase. Otherwise, there's no change in accelerated state to consider. |
| bool isActive = computedTiming.phase == AnimationEffectPhase::Active; |
| if (!m_isRunningAccelerated) { |
| if (isActive && animation()->playState() == WebAnimation::PlayState::Running) |
| addPendingAcceleratedAction(AcceleratedAction::Play); |
| return; |
| } |
| |
| // If we're no longer active, we need to remove the accelerated animation. |
| if (!isActive) { |
| addPendingAcceleratedAction(AcceleratedAction::Stop); |
| return; |
| } |
| |
| auto playState = animation()->playState(); |
| // The only thing left to consider is whether we need to pause or resume the animation following a change of play-state. |
| if (playState == WebAnimation::PlayState::Paused) { |
| if (m_lastRecordedAcceleratedAction != AcceleratedAction::Pause) { |
| if (m_lastRecordedAcceleratedAction == AcceleratedAction::Stop) |
| addPendingAcceleratedAction(AcceleratedAction::Play); |
| addPendingAcceleratedAction(AcceleratedAction::Pause); |
| } |
| } else if (playState == WebAnimation::PlayState::Running && isActive) { |
| if (m_lastRecordedAcceleratedAction != AcceleratedAction::Play) |
| addPendingAcceleratedAction(AcceleratedAction::Play); |
| } |
| } |
| |
| void KeyframeEffect::addPendingAcceleratedAction(AcceleratedAction action) |
| { |
| if (action == m_lastRecordedAcceleratedAction) |
| return; |
| |
| if (action == AcceleratedAction::Stop) |
| m_pendingAcceleratedActions.clear(); |
| m_pendingAcceleratedActions.append(action); |
| if (action != AcceleratedAction::Seek) |
| m_lastRecordedAcceleratedAction = action; |
| animation()->acceleratedStateDidChange(); |
| } |
| |
| void KeyframeEffect::animationDidTick() |
| { |
| invalidate(); |
| updateAcceleratedActions(); |
| } |
| |
| void KeyframeEffect::animationDidPlay() |
| { |
| if (m_acceleratedPropertiesState != AcceleratedProperties::None) |
| addPendingAcceleratedAction(AcceleratedAction::Play); |
| } |
| |
| void KeyframeEffect::animationDidSeek() |
| { |
| // There is no need to seek if we're not playing an animation already. If seeking |
| // means we're moving into an active lexicalGlobalObject, we'll pick this up in apply(). |
| if (m_isRunningAccelerated || isAboutToRunAccelerated()) |
| addPendingAcceleratedAction(AcceleratedAction::Seek); |
| } |
| |
| void KeyframeEffect::animationWasCanceled() |
| { |
| if (m_isRunningAccelerated || isAboutToRunAccelerated()) |
| addPendingAcceleratedAction(AcceleratedAction::Stop); |
| } |
| |
| void KeyframeEffect::willChangeRenderer() |
| { |
| if (m_isRunningAccelerated || isAboutToRunAccelerated()) |
| addPendingAcceleratedAction(AcceleratedAction::Stop); |
| } |
| |
| void KeyframeEffect::animationSuspensionStateDidChange(bool animationIsSuspended) |
| { |
| if (m_isRunningAccelerated || isAboutToRunAccelerated()) |
| addPendingAcceleratedAction(animationIsSuspended ? AcceleratedAction::Pause : AcceleratedAction::Play); |
| } |
| |
| void KeyframeEffect::applyPendingAcceleratedActions() |
| { |
| // Once an accelerated animation has been committed, we no longer want to force a layout. |
| // This should have been performed by a call to forceLayoutIfNeeded() prior to applying |
| // pending accelerated actions. |
| m_needsForcedLayout = false; |
| |
| if (m_pendingAcceleratedActions.isEmpty()) |
| return; |
| |
| auto* renderer = this->renderer(); |
| if (!renderer || !renderer->isComposited()) { |
| // The renderer may no longer be composited because the accelerated animation ended before we had a chance to update it, |
| // in which case if we asked for the animation to stop, we can discard the current set of accelerated actions. |
| if (m_lastRecordedAcceleratedAction == AcceleratedAction::Stop) { |
| m_pendingAcceleratedActions.clear(); |
| m_isRunningAccelerated = false; |
| } |
| return; |
| } |
| |
| auto pendingAcceleratedActions = m_pendingAcceleratedActions; |
| m_pendingAcceleratedActions.clear(); |
| |
| // To simplify the code we use a default of 0s for an unresolved current time since for a Stop action that is acceptable. |
| auto timeOffset = animation()->currentTime().valueOr(0_s).seconds() - delay().seconds(); |
| |
| for (const auto& action : pendingAcceleratedActions) { |
| switch (action) { |
| case AcceleratedAction::Play: |
| m_isRunningAccelerated = renderer->startAnimation(timeOffset, backingAnimationForCompositedRenderer(), m_blendingKeyframes); |
| if (!m_isRunningAccelerated) { |
| m_lastRecordedAcceleratedAction = AcceleratedAction::Stop; |
| return; |
| } |
| break; |
| case AcceleratedAction::Pause: |
| renderer->animationPaused(timeOffset, m_blendingKeyframes.animationName()); |
| break; |
| case AcceleratedAction::Seek: |
| renderer->animationSeeked(timeOffset, m_blendingKeyframes.animationName()); |
| break; |
| case AcceleratedAction::Stop: |
| renderer->animationFinished(m_blendingKeyframes.animationName()); |
| if (!m_target->document().renderTreeBeingDestroyed()) |
| m_target->invalidateStyleAndLayerComposition(); |
| m_isRunningAccelerated = false; |
| break; |
| } |
| } |
| } |
| |
| Ref<const Animation> KeyframeEffect::backingAnimationForCompositedRenderer() const |
| { |
| auto effectAnimation = animation(); |
| if (is<DeclarativeAnimation>(effectAnimation)) |
| return downcast<DeclarativeAnimation>(effectAnimation)->backingAnimation(); |
| |
| // FIXME: The iterationStart and endDelay AnimationEffectTiming properties do not have |
| // corresponding Animation properties. |
| auto animation = Animation::create(); |
| animation->setDuration(iterationDuration().seconds()); |
| animation->setDelay(delay().seconds()); |
| animation->setIterationCount(iterations()); |
| animation->setTimingFunction(timingFunction()->clone()); |
| |
| switch (fill()) { |
| case FillMode::None: |
| case FillMode::Auto: |
| animation->setFillMode(AnimationFillMode::None); |
| break; |
| case FillMode::Backwards: |
| animation->setFillMode(AnimationFillMode::Backwards); |
| break; |
| case FillMode::Forwards: |
| animation->setFillMode(AnimationFillMode::Forwards); |
| break; |
| case FillMode::Both: |
| animation->setFillMode(AnimationFillMode::Both); |
| break; |
| } |
| |
| switch (direction()) { |
| case PlaybackDirection::Normal: |
| animation->setDirection(Animation::AnimationDirectionNormal); |
| break; |
| case PlaybackDirection::Alternate: |
| animation->setDirection(Animation::AnimationDirectionAlternate); |
| break; |
| case PlaybackDirection::Reverse: |
| animation->setDirection(Animation::AnimationDirectionReverse); |
| break; |
| case PlaybackDirection::AlternateReverse: |
| animation->setDirection(Animation::AnimationDirectionAlternateReverse); |
| break; |
| } |
| |
| return animation; |
| } |
| |
| RenderElement* KeyframeEffect::renderer() const |
| { |
| return m_target ? m_target->renderer() : nullptr; |
| } |
| |
| const RenderStyle& KeyframeEffect::currentStyle() const |
| { |
| if (auto* renderer = this->renderer()) |
| return renderer->style(); |
| return RenderStyle::defaultStyle(); |
| } |
| |
| bool KeyframeEffect::computeExtentOfTransformAnimation(LayoutRect& bounds) const |
| { |
| ASSERT(m_blendingKeyframes.containsProperty(CSSPropertyTransform)); |
| |
| if (!is<RenderBox>(renderer())) |
| return true; // Non-boxes don't get transformed; |
| |
| auto& box = downcast<RenderBox>(*renderer()); |
| auto rendererBox = snapRectToDevicePixels(box.borderBoxRect(), box.document().deviceScaleFactor()); |
| |
| LayoutRect cumulativeBounds; |
| |
| for (const auto& keyframe : m_blendingKeyframes.keyframes()) { |
| const auto* keyframeStyle = keyframe.style(); |
| |
| // FIXME: maybe for declarative animations we always say it's true for the first and last keyframe. |
| if (!keyframe.containsProperty(CSSPropertyTransform)) { |
| // If the first keyframe is missing transform style, use the current style. |
| if (!keyframe.key()) |
| keyframeStyle = &box.style(); |
| else |
| continue; |
| } |
| |
| auto keyframeBounds = bounds; |
| |
| bool canCompute; |
| if (transformFunctionListsMatch()) |
| canCompute = computeTransformedExtentViaTransformList(rendererBox, *keyframeStyle, keyframeBounds); |
| else |
| canCompute = computeTransformedExtentViaMatrix(rendererBox, *keyframeStyle, keyframeBounds); |
| |
| if (!canCompute) |
| return false; |
| |
| cumulativeBounds.unite(keyframeBounds); |
| } |
| |
| bounds = cumulativeBounds; |
| return true; |
| } |
| |
| static bool containsRotation(const Vector<RefPtr<TransformOperation>>& operations) |
| { |
| for (const auto& operation : operations) { |
| if (operation->type() == TransformOperation::ROTATE) |
| return true; |
| } |
| return false; |
| } |
| |
| bool KeyframeEffect::computeTransformedExtentViaTransformList(const FloatRect& rendererBox, const RenderStyle& style, LayoutRect& bounds) const |
| { |
| FloatRect floatBounds = bounds; |
| FloatPoint transformOrigin; |
| |
| bool applyTransformOrigin = containsRotation(style.transform().operations()) || style.transform().affectedByTransformOrigin(); |
| if (applyTransformOrigin) { |
| transformOrigin.setX(rendererBox.x() + floatValueForLength(style.transformOriginX(), rendererBox.width())); |
| transformOrigin.setY(rendererBox.y() + floatValueForLength(style.transformOriginY(), rendererBox.height())); |
| // Ignore transformOriginZ because we'll bail if we encounter any 3D transforms. |
| |
| floatBounds.moveBy(-transformOrigin); |
| } |
| |
| for (const auto& operation : style.transform().operations()) { |
| if (operation->type() == TransformOperation::ROTATE) { |
| // For now, just treat this as a full rotation. This could take angle into account to reduce inflation. |
| floatBounds = boundsOfRotatingRect(floatBounds); |
| } else { |
| TransformationMatrix transform; |
| operation->apply(transform, rendererBox.size()); |
| if (!transform.isAffine()) |
| return false; |
| |
| if (operation->type() == TransformOperation::MATRIX || operation->type() == TransformOperation::MATRIX_3D) { |
| TransformationMatrix::Decomposed2Type toDecomp; |
| transform.decompose2(toDecomp); |
| // Any rotation prevents us from using a simple start/end rect union. |
| if (toDecomp.angle) |
| return false; |
| } |
| |
| floatBounds = transform.mapRect(floatBounds); |
| } |
| } |
| |
| if (applyTransformOrigin) |
| floatBounds.moveBy(transformOrigin); |
| |
| bounds = LayoutRect(floatBounds); |
| return true; |
| } |
| |
| bool KeyframeEffect::computeTransformedExtentViaMatrix(const FloatRect& rendererBox, const RenderStyle& style, LayoutRect& bounds) const |
| { |
| TransformationMatrix transform; |
| style.applyTransform(transform, rendererBox, RenderStyle::IncludeTransformOrigin); |
| if (!transform.isAffine()) |
| return false; |
| |
| TransformationMatrix::Decomposed2Type fromDecomp; |
| transform.decompose2(fromDecomp); |
| // Any rotation prevents us from using a simple start/end rect union. |
| if (fromDecomp.angle) |
| return false; |
| |
| bounds = LayoutRect(transform.mapRect(bounds)); |
| return true; |
| } |
| |
| } // namespace WebCore |