blob: 3a46b350184e434d2cd365cef389e093e924050a [file] [log] [blame]
/*
* Copyright (C) 2015-2020 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "B3LowerMacros.h"
#if ENABLE(B3_JIT)
#include "AllowMacroScratchRegisterUsage.h"
#include "B3AtomicValue.h"
#include "B3BasicBlockInlines.h"
#include "B3BlockInsertionSet.h"
#include "B3CCallValue.h"
#include "B3CaseCollectionInlines.h"
#include "B3ConstPtrValue.h"
#include "B3FenceValue.h"
#include "B3InsertionSetInlines.h"
#include "B3MemoryValueInlines.h"
#include "B3PatchpointValue.h"
#include "B3PhaseScope.h"
#include "B3StackmapGenerationParams.h"
#include "B3SwitchValue.h"
#include "B3UpsilonValue.h"
#include "B3UseCounts.h"
#include "B3ValueInlines.h"
#include "CCallHelpers.h"
#include "LinkBuffer.h"
#include <cmath>
#include <wtf/BitVector.h>
namespace JSC { namespace B3 {
namespace {
class LowerMacros {
public:
LowerMacros(Procedure& proc)
: m_proc(proc)
, m_blockInsertionSet(proc)
, m_insertionSet(proc)
, m_useCounts(proc)
{
}
bool run()
{
RELEASE_ASSERT(!m_proc.hasQuirks());
for (BasicBlock* block : m_proc) {
m_block = block;
processCurrentBlock();
}
m_changed |= m_blockInsertionSet.execute();
if (m_changed) {
m_proc.resetReachability();
m_proc.invalidateCFG();
}
// This indicates that we've
m_proc.setHasQuirks(true);
return m_changed;
}
private:
void processCurrentBlock()
{
for (m_index = 0; m_index < m_block->size(); ++m_index) {
m_value = m_block->at(m_index);
m_origin = m_value->origin();
switch (m_value->opcode()) {
case Mod: {
if (m_value->isChill()) {
if (isARM64()) {
BasicBlock* before = m_blockInsertionSet.splitForward(m_block, m_index, &m_insertionSet);
BasicBlock* zeroDenCase = m_blockInsertionSet.insertBefore(m_block);
BasicBlock* normalModCase = m_blockInsertionSet.insertBefore(m_block);
before->replaceLastWithNew<Value>(m_proc, Branch, m_origin, m_value->child(1));
before->setSuccessors(
FrequentedBlock(normalModCase, FrequencyClass::Normal),
FrequentedBlock(zeroDenCase, FrequencyClass::Rare));
Value* divResult = normalModCase->appendNew<Value>(m_proc, chill(Div), m_origin, m_value->child(0), m_value->child(1));
Value* multipliedBack = normalModCase->appendNew<Value>(m_proc, Mul, m_origin, divResult, m_value->child(1));
Value* result = normalModCase->appendNew<Value>(m_proc, Sub, m_origin, m_value->child(0), multipliedBack);
UpsilonValue* normalResult = normalModCase->appendNew<UpsilonValue>(m_proc, m_origin, result);
normalModCase->appendNew<Value>(m_proc, Jump, m_origin);
normalModCase->setSuccessors(FrequentedBlock(m_block));
UpsilonValue* zeroResult = zeroDenCase->appendNew<UpsilonValue>(
m_proc, m_origin,
zeroDenCase->appendIntConstant(m_proc, m_value, 0));
zeroDenCase->appendNew<Value>(m_proc, Jump, m_origin);
zeroDenCase->setSuccessors(FrequentedBlock(m_block));
Value* phi = m_insertionSet.insert<Value>(m_index, Phi, m_value->type(), m_origin);
normalResult->setPhi(phi);
zeroResult->setPhi(phi);
m_value->replaceWithIdentity(phi);
before->updatePredecessorsAfter();
m_changed = true;
} else
makeDivisionChill(Mod);
break;
}
double(*fmodDouble)(double, double) = fmod;
fmodDouble = tagCFunction<B3CCallPtrTag>(fmodDouble);
if (m_value->type() == Double) {
Value* functionAddress = m_insertionSet.insert<ConstPtrValue>(m_index, m_origin, fmodDouble);
Value* result = m_insertionSet.insert<CCallValue>(m_index, Double, m_origin,
Effects::none(),
functionAddress,
m_value->child(0),
m_value->child(1));
m_value->replaceWithIdentity(result);
m_changed = true;
} else if (m_value->type() == Float) {
Value* numeratorAsDouble = m_insertionSet.insert<Value>(m_index, FloatToDouble, m_origin, m_value->child(0));
Value* denominatorAsDouble = m_insertionSet.insert<Value>(m_index, FloatToDouble, m_origin, m_value->child(1));
Value* functionAddress = m_insertionSet.insert<ConstPtrValue>(m_index, m_origin, fmodDouble);
Value* doubleMod = m_insertionSet.insert<CCallValue>(m_index, Double, m_origin,
Effects::none(),
functionAddress,
numeratorAsDouble,
denominatorAsDouble);
Value* result = m_insertionSet.insert<Value>(m_index, DoubleToFloat, m_origin, doubleMod);
m_value->replaceWithIdentity(result);
m_changed = true;
} else if (isARM64()) {
Value* divResult = m_insertionSet.insert<Value>(m_index, chill(Div), m_origin, m_value->child(0), m_value->child(1));
Value* multipliedBack = m_insertionSet.insert<Value>(m_index, Mul, m_origin, divResult, m_value->child(1));
Value* result = m_insertionSet.insert<Value>(m_index, Sub, m_origin, m_value->child(0), multipliedBack);
m_value->replaceWithIdentity(result);
m_changed = true;
}
break;
}
case UMod: {
if (isARM64()) {
Value* divResult = m_insertionSet.insert<Value>(m_index, UDiv, m_origin, m_value->child(0), m_value->child(1));
Value* multipliedBack = m_insertionSet.insert<Value>(m_index, Mul, m_origin, divResult, m_value->child(1));
Value* result = m_insertionSet.insert<Value>(m_index, Sub, m_origin, m_value->child(0), multipliedBack);
m_value->replaceWithIdentity(result);
m_changed = true;
}
break;
}
case Div: {
if (m_value->isChill())
makeDivisionChill(Div);
break;
}
case CheckMul: {
if (isARM64() && m_value->child(0)->type() == Int32) {
CheckValue* checkMul = m_value->as<CheckValue>();
Value* left = m_insertionSet.insert<Value>(m_index, SExt32, m_origin, m_value->child(0));
Value* right = m_insertionSet.insert<Value>(m_index, SExt32, m_origin, m_value->child(1));
Value* mulResult = m_insertionSet.insert<Value>(m_index, Mul, m_origin, left, right);
Value* mulResult32 = m_insertionSet.insert<Value>(m_index, Trunc, m_origin, mulResult);
Value* upperResult = m_insertionSet.insert<Value>(m_index, Trunc, m_origin,
m_insertionSet.insert<Value>(m_index, SShr, m_origin, mulResult, m_insertionSet.insert<Const32Value>(m_index, m_origin, 32)));
Value* signBit = m_insertionSet.insert<Value>(m_index, SShr, m_origin,
mulResult32,
m_insertionSet.insert<Const32Value>(m_index, m_origin, 31));
Value* hasOverflowed = m_insertionSet.insert<Value>(m_index, NotEqual, m_origin, upperResult, signBit);
CheckValue* check = m_insertionSet.insert<CheckValue>(m_index, Check, m_origin, hasOverflowed);
check->setGenerator(checkMul->generator());
check->clobberEarly(checkMul->earlyClobbered());
check->clobberLate(checkMul->lateClobbered());
auto children = checkMul->constrainedChildren();
auto it = children.begin();
for (std::advance(it, 2); it != children.end(); ++it)
check->append(*it);
m_value->replaceWithIdentity(mulResult32);
m_changed = true;
}
break;
}
case Switch: {
SwitchValue* switchValue = m_value->as<SwitchValue>();
Vector<SwitchCase> cases;
for (SwitchCase switchCase : switchValue->cases(m_block))
cases.append(switchCase);
std::sort(
cases.begin(), cases.end(),
[] (const SwitchCase& left, const SwitchCase& right) {
return left.caseValue() < right.caseValue();
});
FrequentedBlock fallThrough = m_block->fallThrough();
m_block->values().removeLast();
recursivelyBuildSwitch(cases, fallThrough, 0, false, cases.size(), m_block);
m_proc.deleteValue(switchValue);
m_block->updatePredecessorsAfter();
m_changed = true;
break;
}
case Depend: {
if (isX86()) {
// Create a load-load fence. This codegens to nothing on X86. We use it to tell the
// compiler not to block load motion.
FenceValue* fence = m_insertionSet.insert<FenceValue>(m_index, m_origin);
fence->read = HeapRange();
fence->write = HeapRange::top();
// Kill the Depend, which should unlock a bunch of code simplification.
m_value->replaceWithBottom(m_insertionSet, m_index);
m_changed = true;
}
break;
}
case AtomicWeakCAS:
case AtomicStrongCAS: {
AtomicValue* atomic = m_value->as<AtomicValue>();
Width width = atomic->accessWidth();
if (isCanonicalWidth(width))
break;
Value* expectedValue = atomic->child(0);
if (!isX86()) {
// On ARM, the load part of the CAS does a load with zero extension. Therefore, we need
// to zero-extend the input.
Value* maskedExpectedValue = m_insertionSet.insert<Value>(
m_index, BitAnd, m_origin, expectedValue,
m_insertionSet.insertIntConstant(m_index, expectedValue, mask(width)));
atomic->child(0) = maskedExpectedValue;
m_changed = true;
}
if (atomic->opcode() == AtomicStrongCAS) {
Value* newValue = m_insertionSet.insert<Value>(
m_index, signExtendOpcode(width), m_origin,
m_insertionSet.insertClone(m_index, atomic));
atomic->replaceWithIdentity(newValue);
m_changed = true;
}
break;
}
case AtomicXchgAdd:
case AtomicXchgAnd:
case AtomicXchgOr:
case AtomicXchgSub:
case AtomicXchgXor:
case AtomicXchg: {
// On X86, these may actually return garbage in the high bits. On ARM64, these sorta
// zero-extend their high bits, except that the high bits might get polluted by high
// bits in the operand. So, either way, we need to throw a sign-extend on these
// things.
if (isX86()) {
if (m_value->opcode() == AtomicXchgSub && m_useCounts.numUses(m_value)) {
// On x86, xchgadd is better than xchgsub if it has any users.
m_value->setOpcodeUnsafely(AtomicXchgAdd);
m_value->child(0) = m_insertionSet.insert<Value>(
m_index, Neg, m_origin, m_value->child(0));
}
bool exempt = false;
switch (m_value->opcode()) {
case AtomicXchgAnd:
case AtomicXchgOr:
case AtomicXchgSub:
case AtomicXchgXor:
exempt = true;
break;
default:
break;
}
if (exempt)
break;
}
AtomicValue* atomic = m_value->as<AtomicValue>();
Width width = atomic->accessWidth();
if (isCanonicalWidth(width))
break;
Value* newValue = m_insertionSet.insert<Value>(
m_index, signExtendOpcode(width), m_origin,
m_insertionSet.insertClone(m_index, atomic));
atomic->replaceWithIdentity(newValue);
m_changed = true;
break;
}
case Load8Z:
case Load16Z: {
if (isX86())
break;
MemoryValue* memory = m_value->as<MemoryValue>();
if (!memory->hasFence())
break;
// Sub-width load-acq on ARM64 always sign extends.
Value* newLoad = m_insertionSet.insertClone(m_index, memory);
newLoad->setOpcodeUnsafely(memory->opcode() == Load8Z ? Load8S : Load16S);
Value* newValue = m_insertionSet.insert<Value>(
m_index, BitAnd, m_origin, newLoad,
m_insertionSet.insertIntConstant(
m_index, m_origin, Int32, mask(memory->accessWidth())));
m_value->replaceWithIdentity(newValue);
m_changed = true;
break;
}
default:
break;
}
}
m_insertionSet.execute(m_block);
}
void makeDivisionChill(Opcode nonChillOpcode)
{
ASSERT(nonChillOpcode == Div || nonChillOpcode == Mod);
// ARM supports this instruction natively.
if (isARM64())
return;
// We implement "res = Div<Chill>/Mod<Chill>(num, den)" as follows:
//
// if (den + 1 <=_unsigned 1) {
// if (!den) {
// res = 0;
// goto done;
// }
// if (num == -2147483648) {
// res = isDiv ? num : 0;
// goto done;
// }
// }
// res = num (/ or %) dev;
// done:
m_changed = true;
Value* num = m_value->child(0);
Value* den = m_value->child(1);
Value* one = m_insertionSet.insertIntConstant(m_index, m_value, 1);
Value* isDenOK = m_insertionSet.insert<Value>(
m_index, Above, m_origin,
m_insertionSet.insert<Value>(m_index, Add, m_origin, den, one),
one);
BasicBlock* before = m_blockInsertionSet.splitForward(m_block, m_index, &m_insertionSet);
BasicBlock* normalDivCase = m_blockInsertionSet.insertBefore(m_block);
BasicBlock* shadyDenCase = m_blockInsertionSet.insertBefore(m_block);
BasicBlock* zeroDenCase = m_blockInsertionSet.insertBefore(m_block);
BasicBlock* neg1DenCase = m_blockInsertionSet.insertBefore(m_block);
BasicBlock* intMinCase = m_blockInsertionSet.insertBefore(m_block);
before->replaceLastWithNew<Value>(m_proc, Branch, m_origin, isDenOK);
before->setSuccessors(
FrequentedBlock(normalDivCase, FrequencyClass::Normal),
FrequentedBlock(shadyDenCase, FrequencyClass::Rare));
UpsilonValue* normalResult = normalDivCase->appendNew<UpsilonValue>(
m_proc, m_origin,
normalDivCase->appendNew<Value>(m_proc, nonChillOpcode, m_origin, num, den));
normalDivCase->appendNew<Value>(m_proc, Jump, m_origin);
normalDivCase->setSuccessors(FrequentedBlock(m_block));
shadyDenCase->appendNew<Value>(m_proc, Branch, m_origin, den);
shadyDenCase->setSuccessors(
FrequentedBlock(neg1DenCase, FrequencyClass::Normal),
FrequentedBlock(zeroDenCase, FrequencyClass::Rare));
UpsilonValue* zeroResult = zeroDenCase->appendNew<UpsilonValue>(
m_proc, m_origin,
zeroDenCase->appendIntConstant(m_proc, m_value, 0));
zeroDenCase->appendNew<Value>(m_proc, Jump, m_origin);
zeroDenCase->setSuccessors(FrequentedBlock(m_block));
int64_t badNumeratorConst = 0;
switch (m_value->type().kind()) {
case Int32:
badNumeratorConst = std::numeric_limits<int32_t>::min();
break;
case Int64:
badNumeratorConst = std::numeric_limits<int64_t>::min();
break;
default:
ASSERT_NOT_REACHED();
badNumeratorConst = 0;
}
Value* badNumerator =
neg1DenCase->appendIntConstant(m_proc, m_value, badNumeratorConst);
neg1DenCase->appendNew<Value>(
m_proc, Branch, m_origin,
neg1DenCase->appendNew<Value>(
m_proc, Equal, m_origin, num, badNumerator));
neg1DenCase->setSuccessors(
FrequentedBlock(intMinCase, FrequencyClass::Rare),
FrequentedBlock(normalDivCase, FrequencyClass::Normal));
Value* intMinResult = nonChillOpcode == Div ? badNumerator : intMinCase->appendIntConstant(m_proc, m_value, 0);
UpsilonValue* intMinResultUpsilon = intMinCase->appendNew<UpsilonValue>(
m_proc, m_origin, intMinResult);
intMinCase->appendNew<Value>(m_proc, Jump, m_origin);
intMinCase->setSuccessors(FrequentedBlock(m_block));
Value* phi = m_insertionSet.insert<Value>(
m_index, Phi, m_value->type(), m_origin);
normalResult->setPhi(phi);
zeroResult->setPhi(phi);
intMinResultUpsilon->setPhi(phi);
m_value->replaceWithIdentity(phi);
before->updatePredecessorsAfter();
}
void recursivelyBuildSwitch(
const Vector<SwitchCase>& cases, FrequentedBlock fallThrough, unsigned start, bool hardStart,
unsigned end, BasicBlock* before)
{
Value* child = m_value->child(0);
Type type = child->type();
// It's a good idea to use a table-based switch in some cases: the number of cases has to be
// large enough and they have to be dense enough. This could probably be improved a lot. For
// example, we could still use a jump table in cases where the inputs are sparse so long as we
// shift off the uninteresting bits. On the other hand, it's not clear that this would
// actually be any better than what we have done here and it's not clear that it would be
// better than a binary switch.
const unsigned minCasesForTable = 7;
const unsigned densityLimit = 4;
if (end - start >= minCasesForTable) {
int64_t firstValue = cases[start].caseValue();
int64_t lastValue = cases[end - 1].caseValue();
if ((lastValue - firstValue + 1) / (end - start) < densityLimit) {
BasicBlock* switchBlock = m_blockInsertionSet.insertAfter(m_block);
Value* index = before->appendNew<Value>(
m_proc, Sub, m_origin, child,
before->appendIntConstant(m_proc, m_origin, type, firstValue));
before->appendNew<Value>(
m_proc, Branch, m_origin,
before->appendNew<Value>(
m_proc, Above, m_origin, index,
before->appendIntConstant(m_proc, m_origin, type, lastValue - firstValue)));
before->setSuccessors(fallThrough, FrequentedBlock(switchBlock));
size_t tableSize = lastValue - firstValue + 1;
if (index->type() != pointerType() && index->type() == Int32)
index = switchBlock->appendNew<Value>(m_proc, ZExt32, m_origin, index);
PatchpointValue* patchpoint =
switchBlock->appendNew<PatchpointValue>(m_proc, Void, m_origin);
// Even though this loads from the jump table, the jump table is immutable. For the
// purpose of alias analysis, reading something immutable is like reading nothing.
patchpoint->effects = Effects();
patchpoint->effects.terminal = true;
patchpoint->appendSomeRegister(index);
patchpoint->numGPScratchRegisters = 2;
// Technically, we don't have to clobber macro registers on X86_64. This is probably
// OK though.
patchpoint->clobber(RegisterSet::macroScratchRegisters());
BitVector handledIndices;
for (unsigned i = start; i < end; ++i) {
FrequentedBlock block = cases[i].target();
int64_t value = cases[i].caseValue();
switchBlock->appendSuccessor(block);
size_t index = value - firstValue;
ASSERT(!handledIndices.get(index));
handledIndices.set(index);
}
bool hasUnhandledIndex = false;
for (unsigned i = 0; i < tableSize; ++i) {
if (!handledIndices.get(i)) {
hasUnhandledIndex = true;
break;
}
}
if (hasUnhandledIndex)
switchBlock->appendSuccessor(fallThrough);
patchpoint->setGenerator(
[=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
AllowMacroScratchRegisterUsage allowScratch(jit);
using JumpTableCodePtr = MacroAssemblerCodePtr<JSSwitchPtrTag>;
JumpTableCodePtr* jumpTable = static_cast<JumpTableCodePtr*>(
params.proc().addDataSection(sizeof(JumpTableCodePtr) * tableSize));
GPRReg index = params[0].gpr();
GPRReg scratch = params.gpScratch(0);
jit.move(CCallHelpers::TrustedImmPtr(jumpTable), scratch);
jit.load64(CCallHelpers::BaseIndex(scratch, index, CCallHelpers::ScalePtr), scratch);
jit.farJump(scratch, JSSwitchPtrTag);
// These labels are guaranteed to be populated before either late paths or
// link tasks run.
Vector<Box<CCallHelpers::Label>> labels = params.successorLabels();
jit.addLinkTask(
[=] (LinkBuffer& linkBuffer) {
if (hasUnhandledIndex) {
JumpTableCodePtr fallThrough = linkBuffer.locationOf<JSSwitchPtrTag>(*labels.last());
for (unsigned i = tableSize; i--;)
jumpTable[i] = fallThrough;
}
unsigned labelIndex = 0;
for (unsigned tableIndex : handledIndices)
jumpTable[tableIndex] = linkBuffer.locationOf<JSSwitchPtrTag>(*labels[labelIndex++]);
});
});
return;
}
}
// See comments in jit/BinarySwitch.cpp for a justification of this algorithm. The only
// thing we do differently is that we don't use randomness.
const unsigned leafThreshold = 3;
unsigned size = end - start;
if (size <= leafThreshold) {
bool allConsecutive = false;
if ((hardStart || (start && cases[start - 1].caseValue() == cases[start].caseValue() - 1))
&& end < cases.size()
&& cases[end - 1].caseValue() == cases[end].caseValue() - 1) {
allConsecutive = true;
for (unsigned i = 0; i < size - 1; ++i) {
if (cases[start + i].caseValue() + 1 != cases[start + i + 1].caseValue()) {
allConsecutive = false;
break;
}
}
}
unsigned limit = allConsecutive ? size - 1 : size;
for (unsigned i = 0; i < limit; ++i) {
BasicBlock* nextCheck = m_blockInsertionSet.insertAfter(m_block);
before->appendNew<Value>(
m_proc, Branch, m_origin,
before->appendNew<Value>(
m_proc, Equal, m_origin, child,
before->appendIntConstant(
m_proc, m_origin, type,
cases[start + i].caseValue())));
before->setSuccessors(cases[start + i].target(), FrequentedBlock(nextCheck));
before = nextCheck;
}
before->appendNew<Value>(m_proc, Jump, m_origin);
if (allConsecutive)
before->setSuccessors(cases[end - 1].target());
else
before->setSuccessors(fallThrough);
return;
}
unsigned medianIndex = (start + end) / 2;
BasicBlock* left = m_blockInsertionSet.insertAfter(m_block);
BasicBlock* right = m_blockInsertionSet.insertAfter(m_block);
before->appendNew<Value>(
m_proc, Branch, m_origin,
before->appendNew<Value>(
m_proc, LessThan, m_origin, child,
before->appendIntConstant(
m_proc, m_origin, type,
cases[medianIndex].caseValue())));
before->setSuccessors(FrequentedBlock(left), FrequentedBlock(right));
recursivelyBuildSwitch(cases, fallThrough, start, hardStart, medianIndex, left);
recursivelyBuildSwitch(cases, fallThrough, medianIndex, true, end, right);
}
Procedure& m_proc;
BlockInsertionSet m_blockInsertionSet;
InsertionSet m_insertionSet;
UseCounts m_useCounts;
BasicBlock* m_block;
unsigned m_index;
Value* m_value;
Origin m_origin;
bool m_changed { false };
};
} // anonymous namespace
bool lowerMacros(Procedure& proc)
{
PhaseScope phaseScope(proc, "B3::lowerMacros");
LowerMacros lowerMacros(proc);
return lowerMacros.run();
}
} } // namespace JSC::B3
#endif // ENABLE(B3_JIT)