blob: ee2efb003f59668f56c4200c27f78fad5c1810f8 [file] [log] [blame]
/*
* Copyright (C) 2011, 2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "MarkedBlock.h"
#include "JSCell.h"
#include "JSDestructibleObject.h"
#include "JSCInlines.h"
#include "SuperSampler.h"
namespace JSC {
static const bool computeBalance = false;
static size_t balance;
MarkedBlock::Handle* MarkedBlock::tryCreate(Heap& heap, MarkedAllocator* allocator, size_t cellSize, const AllocatorAttributes& attributes)
{
if (computeBalance) {
balance++;
if (!(balance % 10))
dataLog("MarkedBlock Balance: ", balance, "\n");
}
void* blockSpace = tryFastAlignedMalloc(blockSize, blockSize);
if (!blockSpace)
return nullptr;
if (scribbleFreeCells())
scribble(blockSpace, blockSize);
return new Handle(heap, allocator, cellSize, attributes, blockSpace);
}
MarkedBlock::Handle::Handle(Heap& heap, MarkedAllocator* allocator, size_t cellSize, const AllocatorAttributes& attributes, void* blockSpace)
: m_atomsPerCell((cellSize + atomSize - 1) / atomSize)
, m_endAtom(atomsPerBlock - m_atomsPerCell + 1)
, m_attributes(attributes)
, m_state(New) // All cells start out unmarked.
, m_allocator(allocator)
, m_weakSet(allocator->heap()->vm(), CellContainer())
{
m_block = new (NotNull, blockSpace) MarkedBlock(*heap.vm(), *this);
m_weakSet.setContainer(*m_block);
heap.didAllocateBlock(blockSize);
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
ASSERT(allocator);
if (m_attributes.cellKind != HeapCell::JSCell)
RELEASE_ASSERT(m_attributes.destruction == DoesNotNeedDestruction);
}
MarkedBlock::Handle::~Handle()
{
Heap& heap = *this->heap();
if (computeBalance) {
balance--;
if (!(balance % 10))
dataLog("MarkedBlock Balance: ", balance, "\n");
}
m_block->~MarkedBlock();
fastAlignedFree(m_block);
heap.didFreeBlock(blockSize);
}
MarkedBlock::MarkedBlock(VM& vm, Handle& handle)
: m_needsDestruction(handle.needsDestruction())
, m_version(vm.heap.objectSpace().version())
, m_handle(handle)
, m_vm(&vm)
{
unsigned cellsPerBlock = MarkedSpace::blockPayload / handle.cellSize();
double markCountBias = -(Options::minMarkedBlockUtilization() * cellsPerBlock);
// The mark count bias should be comfortably within this range.
RELEASE_ASSERT(markCountBias > static_cast<double>(std::numeric_limits<int16_t>::min()));
RELEASE_ASSERT(markCountBias < 0);
m_markCountBias = static_cast<int16_t>(markCountBias);
m_biasedMarkCount = m_markCountBias; // This means we haven't marked anything yet.
}
template<MarkedBlock::BlockState blockState, MarkedBlock::Handle::SweepMode sweepMode, DestructionMode destructionMode, MarkedBlock::Handle::ScribbleMode scribbleMode, MarkedBlock::Handle::NewlyAllocatedMode newlyAllocatedMode>
FreeList MarkedBlock::Handle::specializedSweep()
{
SuperSamplerScope superSamplerScope(false);
ASSERT(blockState == New || blockState == Marked);
ASSERT(!(destructionMode == DoesNotNeedDestruction && sweepMode == SweepOnly));
assertFlipped();
MarkedBlock& block = this->block();
bool isNewBlock = blockState == New;
bool isEmptyBlock = !block.hasAnyMarked()
&& newlyAllocatedMode == DoesNotHaveNewlyAllocated
&& destructionMode == DoesNotNeedDestruction;
if (Options::useBumpAllocator() && (isNewBlock || isEmptyBlock)) {
ASSERT(block.m_marks.isEmpty());
char* startOfLastCell = static_cast<char*>(cellAlign(block.atoms() + m_endAtom - 1));
char* payloadEnd = startOfLastCell + cellSize();
RELEASE_ASSERT(payloadEnd - MarkedBlock::blockSize <= bitwise_cast<char*>(&block));
char* payloadBegin = bitwise_cast<char*>(block.atoms() + firstAtom());
if (scribbleMode == Scribble)
scribble(payloadBegin, payloadEnd - payloadBegin);
m_state = ((sweepMode == SweepToFreeList) ? FreeListed : Marked);
FreeList result = FreeList::bump(payloadEnd, payloadEnd - payloadBegin);
if (false)
dataLog("Quickly swept block ", RawPointer(this), " with cell size ", cellSize(), " and attributes ", m_attributes, ": ", result, "\n");
return result;
}
// This produces a free list that is ordered in reverse through the block.
// This is fine, since the allocation code makes no assumptions about the
// order of the free list.
FreeCell* head = 0;
size_t count = 0;
for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) {
if (blockState == Marked
&& (block.m_marks.get(i)
|| (newlyAllocatedMode == HasNewlyAllocated && m_newlyAllocated->get(i))))
continue;
HeapCell* cell = reinterpret_cast_ptr<HeapCell*>(&block.atoms()[i]);
if (destructionMode == NeedsDestruction && blockState != New)
static_cast<JSCell*>(cell)->callDestructor(*vm());
if (sweepMode == SweepToFreeList) {
FreeCell* freeCell = reinterpret_cast<FreeCell*>(cell);
if (scribbleMode == Scribble)
scribble(freeCell, cellSize());
freeCell->next = head;
head = freeCell;
++count;
}
}
// We only want to discard the newlyAllocated bits if we're creating a FreeList,
// otherwise we would lose information on what's currently alive.
if (sweepMode == SweepToFreeList && newlyAllocatedMode == HasNewlyAllocated)
m_newlyAllocated = nullptr;
FreeList result = FreeList::list(head, count * cellSize());
m_state = (sweepMode == SweepToFreeList ? FreeListed : Marked);
if (false)
dataLog("Slowly swept block ", RawPointer(&block), " with cell size ", cellSize(), " and attributes ", m_attributes, ": ", result, "\n");
return result;
}
FreeList MarkedBlock::Handle::sweep(SweepMode sweepMode)
{
flipIfNecessary();
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
m_weakSet.sweep();
if (sweepMode == SweepOnly && m_attributes.destruction == DoesNotNeedDestruction)
return FreeList();
if (m_attributes.destruction == NeedsDestruction)
return sweepHelperSelectScribbleMode<NeedsDestruction>(sweepMode);
return sweepHelperSelectScribbleMode<DoesNotNeedDestruction>(sweepMode);
}
template<DestructionMode destructionMode>
FreeList MarkedBlock::Handle::sweepHelperSelectScribbleMode(SweepMode sweepMode)
{
if (scribbleFreeCells())
return sweepHelperSelectStateAndSweepMode<destructionMode, Scribble>(sweepMode);
return sweepHelperSelectStateAndSweepMode<destructionMode, DontScribble>(sweepMode);
}
template<DestructionMode destructionMode, MarkedBlock::Handle::ScribbleMode scribbleMode>
FreeList MarkedBlock::Handle::sweepHelperSelectStateAndSweepMode(SweepMode sweepMode)
{
switch (m_state) {
case New:
ASSERT(sweepMode == SweepToFreeList);
return specializedSweep<New, SweepToFreeList, destructionMode, scribbleMode, DoesNotHaveNewlyAllocated>();
case FreeListed:
// Happens when a block transitions to fully allocated.
ASSERT(sweepMode == SweepToFreeList);
return FreeList();
case Allocated:
RELEASE_ASSERT_NOT_REACHED();
return FreeList();
case Marked:
if (m_newlyAllocated) {
return sweepMode == SweepToFreeList
? specializedSweep<Marked, SweepToFreeList, destructionMode, scribbleMode, HasNewlyAllocated>()
: specializedSweep<Marked, SweepOnly, destructionMode, scribbleMode, HasNewlyAllocated>();
} else {
return sweepMode == SweepToFreeList
? specializedSweep<Marked, SweepToFreeList, destructionMode, scribbleMode, DoesNotHaveNewlyAllocated>()
: specializedSweep<Marked, SweepOnly, destructionMode, scribbleMode, DoesNotHaveNewlyAllocated>();
}
}
RELEASE_ASSERT_NOT_REACHED();
return FreeList();
}
void MarkedBlock::Handle::unsweepWithNoNewlyAllocated()
{
flipIfNecessary();
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
RELEASE_ASSERT(m_state == FreeListed);
m_state = Marked;
}
class SetNewlyAllocatedFunctor : public MarkedBlock::VoidFunctor {
public:
SetNewlyAllocatedFunctor(MarkedBlock::Handle* block)
: m_block(block)
{
}
IterationStatus operator()(HeapCell* cell, HeapCell::Kind) const
{
ASSERT(MarkedBlock::blockFor(cell) == &m_block->block());
m_block->setNewlyAllocated(cell);
return IterationStatus::Continue;
}
private:
MarkedBlock::Handle* m_block;
};
void MarkedBlock::Handle::stopAllocating(const FreeList& freeList)
{
flipIfNecessary();
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
if (m_state == Marked) {
// If the block is in the Marked state then we know that one of these
// conditions holds:
//
// - It was not used for allocation during the previous allocation cycle.
// It may have dead objects, and we only know them to be dead by the
// fact that their mark bits are unset.
//
// - Someone had already done stopAllocating(), for example because of
// heap iteration, and they had already
// Hence if the block is Marked we need to leave it Marked.
ASSERT(freeList.allocationWillFail());
return;
}
ASSERT(m_state == FreeListed);
// Roll back to a coherent state for Heap introspection. Cells newly
// allocated from our free list are not currently marked, so we need another
// way to tell what's live vs dead.
ASSERT(!m_newlyAllocated);
m_newlyAllocated = std::make_unique<WTF::Bitmap<atomsPerBlock>>();
SetNewlyAllocatedFunctor functor(this);
forEachCell(functor);
forEachFreeCell(
freeList,
[&] (HeapCell* cell) {
if (m_attributes.destruction == NeedsDestruction)
cell->zap();
clearNewlyAllocated(cell);
});
m_state = Marked;
}
void MarkedBlock::Handle::lastChanceToFinalize()
{
m_block->clearMarks();
m_weakSet.lastChanceToFinalize();
clearNewlyAllocated();
sweep();
}
FreeList MarkedBlock::Handle::resumeAllocating()
{
flipIfNecessary();
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
ASSERT(m_state == Marked);
if (!m_newlyAllocated) {
// We didn't have to create a "newly allocated" bitmap. That means we were already Marked
// when we last stopped allocation, so return an empty free list and stay in the Marked state.
return FreeList();
}
// Re-create our free list from before stopping allocation. Note that this may return an empty
// freelist, in which case the block will still be Marked!
return sweep(SweepToFreeList);
}
void MarkedBlock::Handle::zap(const FreeList& freeList)
{
forEachFreeCell(
freeList,
[&] (HeapCell* cell) {
if (m_attributes.destruction == NeedsDestruction)
cell->zap();
});
}
template<typename Func>
void MarkedBlock::Handle::forEachFreeCell(const FreeList& freeList, const Func& func)
{
if (freeList.remaining) {
for (unsigned remaining = freeList.remaining; remaining; remaining -= cellSize())
func(bitwise_cast<HeapCell*>(freeList.payloadEnd - remaining));
} else {
for (FreeCell* current = freeList.head; current;) {
FreeCell* next = current->next;
func(bitwise_cast<HeapCell*>(current));
current = next;
}
}
}
void MarkedBlock::flipIfNecessary()
{
flipIfNecessary(vm()->heap.objectSpace().version());
}
void MarkedBlock::Handle::flipIfNecessary()
{
block().flipIfNecessary();
}
void MarkedBlock::flipIfNecessarySlow()
{
ASSERT(needsFlip());
clearMarks();
}
void MarkedBlock::flipIfNecessaryConcurrentlySlow()
{
LockHolder locker(m_lock);
if (needsFlip())
clearMarks();
}
void MarkedBlock::clearMarks()
{
m_marks.clearAll();
clearHasAnyMarked();
// This will become true at the end of the mark phase. We set it now to
// avoid an extra pass to do so later.
handle().m_state = Marked;
WTF::storeStoreFence();
m_version = vm()->heap.objectSpace().version();
}
#if !ASSERT_DISABLED
void MarkedBlock::assertFlipped()
{
ASSERT(m_version == vm()->heap.objectSpace().version());
}
#endif // !ASSERT_DISABLED
bool MarkedBlock::needsFlip()
{
return needsFlip(vm()->heap.objectSpace().version());
}
bool MarkedBlock::Handle::needsFlip()
{
return m_block->needsFlip();
}
void MarkedBlock::Handle::willRemoveBlock()
{
flipIfNecessary();
}
void MarkedBlock::Handle::didConsumeFreeList()
{
flipIfNecessary();
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
ASSERT(m_state == FreeListed);
m_state = Allocated;
}
size_t MarkedBlock::markCount()
{
flipIfNecessary();
return m_marks.count();
}
bool MarkedBlock::Handle::isEmpty()
{
flipIfNecessary();
return m_state == Marked && !block().hasAnyMarked() && m_weakSet.isEmpty() && (!m_newlyAllocated || m_newlyAllocated->isEmpty());
}
void MarkedBlock::clearHasAnyMarked()
{
m_biasedMarkCount = m_markCountBias;
}
void MarkedBlock::noteMarkedSlow()
{
handle().m_allocator->retire(&handle());
}
} // namespace JSC
namespace WTF {
using namespace JSC;
void printInternal(PrintStream& out, MarkedBlock::BlockState blockState)
{
switch (blockState) {
case MarkedBlock::New:
out.print("New");
return;
case MarkedBlock::FreeListed:
out.print("FreeListed");
return;
case MarkedBlock::Allocated:
out.print("Allocated");
return;
case MarkedBlock::Marked:
out.print("Marked");
return;
}
RELEASE_ASSERT_NOT_REACHED();
}
} // namespace WTF