| /* |
| * Copyright (C) 2011, 2014 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "DFGDominators.h" |
| |
| #if ENABLE(DFG_JIT) |
| |
| #include "DFGBlockMapInlines.h" |
| #include "DFGBlockWorklist.h" |
| #include "DFGGraph.h" |
| #include "DFGNaiveDominators.h" |
| #include "JSCInlines.h" |
| |
| namespace JSC { namespace DFG { |
| |
| Dominators::Dominators() |
| { |
| } |
| |
| Dominators::~Dominators() |
| { |
| } |
| |
| namespace { |
| |
| // This implements Lengauer and Tarjan's "A Fast Algorithm for Finding Dominators in a Flowgraph" |
| // (TOPLAS 1979). It uses the "simple" implementation of LINK and EVAL, which yields an O(n log n) |
| // solution. The full paper is linked below; this code attempts to closely follow the algorithm as |
| // it is presented in the paper; in particular sections 3 and 4 as well as appendix B. |
| // https://www.cs.princeton.edu/courses/archive/fall03/cs528/handouts/a%20fast%20algorithm%20for%20finding.pdf |
| // |
| // This code is very subtle. The Lengauer-Tarjan algorithm is incredibly deep to begin with. The |
| // goal of this code is to follow the code in the paper, however our implementation must deviate |
| // from the paper when it comes to recursion. The authors had used recursion to implement DFS, and |
| // also to implement the "simple" EVAL. We convert both of those into worklist-based solutions. |
| // Finally, once the algorithm gives us immediate dominators, we implement dominance tests by |
| // walking the dominator tree and computing pre and post numbers. We then use the range inclusion |
| // check trick that was first discovered by Paul F. Dietz in 1982 in "Maintaining order in a linked |
| // list" (see http://dl.acm.org/citation.cfm?id=802184). |
| |
| class LengauerTarjan { |
| public: |
| LengauerTarjan(Graph& graph) |
| : m_graph(graph) |
| , m_data(graph) |
| { |
| for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { |
| BasicBlock* block = m_graph.block(blockIndex); |
| if (!block) |
| continue; |
| m_data[block].label = block; |
| } |
| } |
| |
| void compute() |
| { |
| computeDepthFirstPreNumbering(); // Step 1. |
| computeSemiDominatorsAndImplicitImmediateDominators(); // Steps 2 and 3. |
| computeExplicitImmediateDominators(); // Step 4. |
| } |
| |
| BasicBlock* immediateDominator(BasicBlock* block) |
| { |
| return m_data[block].dom; |
| } |
| |
| private: |
| void computeDepthFirstPreNumbering() |
| { |
| // Use a block worklist that also tracks the index inside the successor list. This is |
| // necessary for ensuring that we don't attempt to visit a successor until the previous |
| // successors that we had visited are fully processed. This ends up being revealed in the |
| // output of this method because the first time we see an edge to a block, we set the |
| // block's parent. So, if we have: |
| // |
| // A -> B |
| // A -> C |
| // B -> C |
| // |
| // And we're processing A, then we want to ensure that if we see A->B first (and hence set |
| // B's prenumber before we set C's) then we also end up setting C's parent to B by virtue |
| // of not noticing A->C until we're done processing B. |
| |
| ExtendedBlockWorklist<unsigned> worklist; |
| worklist.push(m_graph.block(0), 0); |
| |
| while (BlockWith<unsigned> item = worklist.pop()) { |
| BasicBlock* block = item.block; |
| unsigned successorIndex = item.data; |
| |
| // We initially push with successorIndex = 0 regardless of whether or not we have any |
| // successors. This is so that we can assign our prenumber. Subsequently we get pushed |
| // with higher successorIndex values, but only if they are in range. |
| ASSERT(!successorIndex || successorIndex < block->numSuccessors()); |
| |
| if (!successorIndex) { |
| m_data[block].semiNumber = m_blockByPreNumber.size(); |
| m_blockByPreNumber.append(block); |
| } |
| |
| if (successorIndex < block->numSuccessors()) { |
| unsigned nextSuccessorIndex = successorIndex + 1; |
| if (nextSuccessorIndex < block->numSuccessors()) |
| worklist.forcePush(block, nextSuccessorIndex); |
| |
| BasicBlock* successorBlock = block->successor(successorIndex); |
| if (worklist.push(successorBlock, 0)) |
| m_data[successorBlock].parent = block; |
| } |
| } |
| } |
| |
| void computeSemiDominatorsAndImplicitImmediateDominators() |
| { |
| for (unsigned currentPreNumber = m_blockByPreNumber.size(); currentPreNumber-- > 1;) { |
| BasicBlock* block = m_blockByPreNumber[currentPreNumber]; |
| BlockData& blockData = m_data[block]; |
| |
| // Step 2: |
| for (BasicBlock* predecessorBlock : block->predecessors) { |
| BasicBlock* intermediateBlock = eval(predecessorBlock); |
| blockData.semiNumber = std::min( |
| m_data[intermediateBlock].semiNumber, blockData.semiNumber); |
| } |
| unsigned bucketPreNumber = blockData.semiNumber; |
| ASSERT(bucketPreNumber <= currentPreNumber); |
| m_data[m_blockByPreNumber[bucketPreNumber]].bucket.append(block); |
| link(blockData.parent, block); |
| |
| // Step 3: |
| for (BasicBlock* semiDominee : m_data[blockData.parent].bucket) { |
| BasicBlock* possibleDominator = eval(semiDominee); |
| BlockData& semiDomineeData = m_data[semiDominee]; |
| ASSERT(m_blockByPreNumber[semiDomineeData.semiNumber] == blockData.parent); |
| BlockData& possibleDominatorData = m_data[possibleDominator]; |
| if (possibleDominatorData.semiNumber < semiDomineeData.semiNumber) |
| semiDomineeData.dom = possibleDominator; |
| else |
| semiDomineeData.dom = blockData.parent; |
| } |
| m_data[blockData.parent].bucket.clear(); |
| } |
| } |
| |
| void computeExplicitImmediateDominators() |
| { |
| for (unsigned currentPreNumber = 1; currentPreNumber < m_blockByPreNumber.size(); ++currentPreNumber) { |
| BasicBlock* block = m_blockByPreNumber[currentPreNumber]; |
| BlockData& blockData = m_data[block]; |
| |
| if (blockData.dom != m_blockByPreNumber[blockData.semiNumber]) |
| blockData.dom = m_data[blockData.dom].dom; |
| } |
| } |
| |
| void link(BasicBlock* from, BasicBlock* to) |
| { |
| m_data[to].ancestor = from; |
| } |
| |
| BasicBlock* eval(BasicBlock* block) |
| { |
| if (!m_data[block].ancestor) |
| return block; |
| |
| compress(block); |
| return m_data[block].label; |
| } |
| |
| void compress(BasicBlock* initialBlock) |
| { |
| // This was meant to be a recursive function, but we don't like recursion because we don't |
| // want to blow the stack. The original function will call compress() recursively on the |
| // ancestor of anything that has an ancestor. So, we populate our worklist with the |
| // recursive ancestors of initialBlock. Then we process the list starting from the block |
| // that is furthest up the ancestor chain. |
| |
| BasicBlock* ancestor = m_data[initialBlock].ancestor; |
| ASSERT(ancestor); |
| if (!m_data[ancestor].ancestor) |
| return; |
| |
| Vector<BasicBlock*, 16> stack; |
| for (BasicBlock* block = initialBlock; block; block = m_data[block].ancestor) |
| stack.append(block); |
| |
| // We only care about blocks that have an ancestor that has an ancestor. The last two |
| // elements in the stack won't satisfy this property. |
| ASSERT(stack.size() >= 2); |
| ASSERT(!m_data[stack[stack.size() - 1]].ancestor); |
| ASSERT(!m_data[m_data[stack[stack.size() - 2]].ancestor].ancestor); |
| |
| for (unsigned i = stack.size() - 2; i--;) { |
| BasicBlock* block = stack[i]; |
| BasicBlock*& labelOfBlock = m_data[block].label; |
| BasicBlock*& ancestorOfBlock = m_data[block].ancestor; |
| ASSERT(ancestorOfBlock); |
| ASSERT(m_data[ancestorOfBlock].ancestor); |
| |
| BasicBlock* labelOfAncestorOfBlock = m_data[ancestorOfBlock].label; |
| |
| if (m_data[labelOfAncestorOfBlock].semiNumber < m_data[labelOfBlock].semiNumber) |
| labelOfBlock = labelOfAncestorOfBlock; |
| ancestorOfBlock = m_data[ancestorOfBlock].ancestor; |
| } |
| } |
| |
| struct BlockData { |
| BlockData() |
| : parent(nullptr) |
| , preNumber(UINT_MAX) |
| , semiNumber(UINT_MAX) |
| , ancestor(nullptr) |
| , label(nullptr) |
| , dom(nullptr) |
| { |
| } |
| |
| BasicBlock* parent; |
| unsigned preNumber; |
| unsigned semiNumber; |
| BasicBlock* ancestor; |
| BasicBlock* label; |
| Vector<BasicBlock*> bucket; |
| BasicBlock* dom; |
| }; |
| |
| Graph& m_graph; |
| BlockMap<BlockData> m_data; |
| Vector<BasicBlock*> m_blockByPreNumber; |
| }; |
| |
| struct ValidationContext { |
| ValidationContext(Graph& graph, Dominators& dominators) |
| : graph(graph) |
| , dominators(dominators) |
| { |
| } |
| |
| void reportError(BasicBlock* from, BasicBlock* to, const char* message) |
| { |
| Error error; |
| error.from = from; |
| error.to = to; |
| error.message = message; |
| errors.append(error); |
| } |
| |
| void handleErrors() |
| { |
| if (errors.isEmpty()) |
| return; |
| |
| startCrashing(); |
| dataLog("DFG DOMINATOR VALIDATION FAILED:\n"); |
| dataLog("\n"); |
| dataLog("For block domination relationships:\n"); |
| for (unsigned i = 0; i < errors.size(); ++i) { |
| dataLog( |
| " ", pointerDump(errors[i].from), " -> ", pointerDump(errors[i].to), |
| " (", errors[i].message, ")\n"); |
| } |
| dataLog("\n"); |
| dataLog("Control flow graph:\n"); |
| for (BlockIndex blockIndex = 0; blockIndex < graph.numBlocks(); ++blockIndex) { |
| BasicBlock* block = graph.block(blockIndex); |
| if (!block) |
| continue; |
| dataLog(" Block #", blockIndex, ": successors = ["); |
| CommaPrinter comma; |
| for (unsigned i = 0; i < block->numSuccessors(); ++i) |
| dataLog(comma, *block->successor(i)); |
| dataLog("], predecessors = ["); |
| comma = CommaPrinter(); |
| for (unsigned i = 0; i < block->predecessors.size(); ++i) |
| dataLog(comma, *block->predecessors[i]); |
| dataLog("]\n"); |
| } |
| dataLog("\n"); |
| dataLog("Lengauer-Tarjan Dominators:\n"); |
| dataLog(dominators); |
| dataLog("\n"); |
| dataLog("Naive Dominators:\n"); |
| naiveDominators.dump(graph, WTF::dataFile()); |
| dataLog("\n"); |
| dataLog("Graph at time of failure:\n"); |
| graph.dump(); |
| dataLog("\n"); |
| dataLog("DFG DOMINATOR VALIDATION FAILIED!\n"); |
| CRASH(); |
| } |
| |
| Graph& graph; |
| Dominators& dominators; |
| NaiveDominators naiveDominators; |
| |
| struct Error { |
| BasicBlock* from; |
| BasicBlock* to; |
| const char* message; |
| }; |
| |
| Vector<Error> errors; |
| }; |
| |
| } // anonymous namespace |
| |
| void Dominators::compute(Graph& graph) |
| { |
| LengauerTarjan lengauerTarjan(graph); |
| lengauerTarjan.compute(); |
| |
| m_data = BlockMap<BlockData>(graph); |
| |
| // From here we want to build a spanning tree with both upward and downward links and we want |
| // to do a search over this tree to compute pre and post numbers that can be used for dominance |
| // tests. |
| |
| for (BlockIndex blockIndex = graph.numBlocks(); blockIndex--;) { |
| BasicBlock* block = graph.block(blockIndex); |
| if (!block) |
| continue; |
| |
| BasicBlock* idomBlock = lengauerTarjan.immediateDominator(block); |
| m_data[block].idomParent = idomBlock; |
| if (idomBlock) |
| m_data[idomBlock].idomKids.append(block); |
| } |
| |
| unsigned nextPreNumber = 0; |
| unsigned nextPostNumber = 0; |
| |
| // Plain stack-based worklist because we are guaranteed to see each block exactly once anyway. |
| Vector<BlockWithOrder> worklist; |
| worklist.append(BlockWithOrder(graph.block(0), PreOrder)); |
| while (!worklist.isEmpty()) { |
| BlockWithOrder item = worklist.takeLast(); |
| switch (item.order) { |
| case PreOrder: |
| m_data[item.block].preNumber = nextPreNumber++; |
| worklist.append(BlockWithOrder(item.block, PostOrder)); |
| for (BasicBlock* kid : m_data[item.block].idomKids) |
| worklist.append(BlockWithOrder(kid, PreOrder)); |
| break; |
| case PostOrder: |
| m_data[item.block].postNumber = nextPostNumber++; |
| break; |
| } |
| } |
| |
| if (validationEnabled()) { |
| // Check our dominator calculation: |
| // 1) Check that our range-based ancestry test is the same as a naive ancestry test. |
| // 2) Check that our notion of who dominates whom is identical to a naive (not |
| // Lengauer-Tarjan) dominator calculation. |
| |
| ValidationContext context(graph, *this); |
| context.naiveDominators.compute(graph); |
| |
| for (BlockIndex fromBlockIndex = graph.numBlocks(); fromBlockIndex--;) { |
| BasicBlock* fromBlock = graph.block(fromBlockIndex); |
| if (!fromBlock || m_data[fromBlock].preNumber == UINT_MAX) |
| continue; |
| for (BlockIndex toBlockIndex = graph.numBlocks(); toBlockIndex--;) { |
| BasicBlock* toBlock = graph.block(toBlockIndex); |
| if (!toBlock || m_data[toBlock].preNumber == UINT_MAX) |
| continue; |
| |
| if (dominates(fromBlock, toBlock) != naiveDominates(fromBlock, toBlock)) |
| context.reportError(fromBlock, toBlock, "Range-based domination check is broken"); |
| if (dominates(fromBlock, toBlock) != context.naiveDominators.dominates(fromBlock, toBlock)) |
| context.reportError(fromBlock, toBlock, "Lengauer-Tarjan domination is broken"); |
| } |
| } |
| |
| context.handleErrors(); |
| } |
| } |
| |
| BlockSet Dominators::strictDominatorsOf(BasicBlock* to) const |
| { |
| BlockSet result; |
| forAllStrictDominatorsOf(to, BlockAdder(result)); |
| return result; |
| } |
| |
| BlockSet Dominators::dominatorsOf(BasicBlock* to) const |
| { |
| BlockSet result; |
| forAllDominatorsOf(to, BlockAdder(result)); |
| return result; |
| } |
| |
| BlockSet Dominators::blocksStrictlyDominatedBy(BasicBlock* from) const |
| { |
| BlockSet result; |
| forAllBlocksStrictlyDominatedBy(from, BlockAdder(result)); |
| return result; |
| } |
| |
| BlockSet Dominators::blocksDominatedBy(BasicBlock* from) const |
| { |
| BlockSet result; |
| forAllBlocksDominatedBy(from, BlockAdder(result)); |
| return result; |
| } |
| |
| BlockSet Dominators::dominanceFrontierOf(BasicBlock* from) const |
| { |
| BlockSet result; |
| forAllBlocksInDominanceFrontierOfImpl(from, BlockAdder(result)); |
| return result; |
| } |
| |
| BlockSet Dominators::iteratedDominanceFrontierOf(const BlockList& from) const |
| { |
| BlockSet result; |
| forAllBlocksInIteratedDominanceFrontierOfImpl(from, BlockAdder(result)); |
| return result; |
| } |
| |
| bool Dominators::naiveDominates(BasicBlock* from, BasicBlock* to) const |
| { |
| for (BasicBlock* block = to; block; block = m_data[block].idomParent) { |
| if (block == from) |
| return true; |
| } |
| return false; |
| } |
| |
| void Dominators::dump(PrintStream& out) const |
| { |
| if (!isValid()) { |
| out.print(" Not Valid.\n"); |
| return; |
| } |
| |
| for (BlockIndex blockIndex = 0; blockIndex < m_data.size(); ++blockIndex) { |
| if (m_data[blockIndex].preNumber == UINT_MAX) |
| continue; |
| |
| out.print(" Block #", blockIndex, ": idom = ", pointerDump(m_data[blockIndex].idomParent), ", idomKids = ["); |
| CommaPrinter comma; |
| for (unsigned i = 0; i < m_data[blockIndex].idomKids.size(); ++i) |
| out.print(comma, *m_data[blockIndex].idomKids[i]); |
| out.print("], pre/post = ", m_data[blockIndex].preNumber, "/", m_data[blockIndex].postNumber, "\n"); |
| } |
| } |
| |
| } } // namespace JSC::DFG |
| |
| #endif // ENABLE(DFG_JIT) |
| |