blob: 19370f741771489cfc2a87b24035501db1b9f22b [file] [log] [blame]
/*
* Copyright (C) 2011-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "CommonSlowPaths.h"
#include "ArithProfile.h"
#include "ArrayConstructor.h"
#include "BuiltinNames.h"
#include "BytecodeStructs.h"
#include "CallFrame.h"
#include "ClonedArguments.h"
#include "CodeProfiling.h"
#include "DefinePropertyAttributes.h"
#include "DirectArguments.h"
#include "Error.h"
#include "ErrorHandlingScope.h"
#include "ExceptionFuzz.h"
#include "FrameTracers.h"
#include "GetterSetter.h"
#include "HostCallReturnValue.h"
#include "ICStats.h"
#include "Interpreter.h"
#include "IteratorOperations.h"
#include "JIT.h"
#include "JSArrayInlines.h"
#include "JSCInlines.h"
#include "JSCJSValue.h"
#include "JSFixedArray.h"
#include "JSGlobalObjectFunctions.h"
#include "JSImmutableButterfly.h"
#include "JSLexicalEnvironment.h"
#include "JSPropertyNameEnumerator.h"
#include "JSString.h"
#include "JSWithScope.h"
#include "LLIntCommon.h"
#include "LLIntExceptions.h"
#include "LowLevelInterpreter.h"
#include "MathCommon.h"
#include "ObjectConstructor.h"
#include "OpcodeInlines.h"
#include "ScopedArguments.h"
#include "StructureRareDataInlines.h"
#include "ThunkGenerators.h"
#include "TypeProfilerLog.h"
#include <wtf/StringPrintStream.h>
#include <wtf/Variant.h>
namespace JSC {
#define BEGIN_NO_SET_PC() \
VM& vm = exec->vm(); \
NativeCallFrameTracer tracer(&vm, exec); \
auto throwScope = DECLARE_THROW_SCOPE(vm); \
UNUSED_PARAM(throwScope)
#ifndef NDEBUG
#define SET_PC_FOR_STUBS() do { \
exec->codeBlock()->bytecodeOffset(pc); \
exec->setCurrentVPC(pc); \
} while (false)
#else
#define SET_PC_FOR_STUBS() do { \
exec->setCurrentVPC(pc); \
} while (false)
#endif
#define RETURN_TO_THROW(exec, pc) pc = LLInt::returnToThrow(exec)
#define BEGIN() \
BEGIN_NO_SET_PC(); \
SET_PC_FOR_STUBS()
#define GET(operand) (exec->uncheckedR(operand.offset()))
#define GET_C(operand) (exec->r(operand.offset()))
#define RETURN_TWO(first, second) do { \
return encodeResult(first, second); \
} while (false)
#define END_IMPL() RETURN_TWO(pc, exec)
#define THROW(exceptionToThrow) do { \
throwException(exec, throwScope, exceptionToThrow); \
RETURN_TO_THROW(exec, pc); \
END_IMPL(); \
} while (false)
#define CHECK_EXCEPTION() do { \
doExceptionFuzzingIfEnabled(exec, throwScope, "CommonSlowPaths", pc); \
if (UNLIKELY(throwScope.exception())) { \
RETURN_TO_THROW(exec, pc); \
END_IMPL(); \
} \
} while (false)
#define END() do { \
CHECK_EXCEPTION(); \
END_IMPL(); \
} while (false)
#define BRANCH(condition) do { \
bool bCondition = (condition); \
CHECK_EXCEPTION(); \
if (bCondition) \
pc = bytecode.m_targetLabel \
? reinterpret_cast<const Instruction*>(reinterpret_cast<const uint8_t*>(pc) + bytecode.m_targetLabel) \
: exec->codeBlock()->outOfLineJumpTarget(pc); \
else \
pc = reinterpret_cast<const Instruction*>(reinterpret_cast<const uint8_t*>(pc) + pc->size()); \
END_IMPL(); \
} while (false)
#define RETURN_WITH_PROFILING_CUSTOM(result__, value__, profilingAction__) do { \
JSValue returnValue__ = (value__); \
CHECK_EXCEPTION(); \
GET(result__) = returnValue__; \
profilingAction__; \
END_IMPL(); \
} while (false)
#define RETURN_WITH_PROFILING(value__, profilingAction__) RETURN_WITH_PROFILING_CUSTOM(bytecode.m_dst, value__, profilingAction__)
#define RETURN(value) \
RETURN_WITH_PROFILING(value, { })
#define RETURN_PROFILED(value__) \
RETURN_WITH_PROFILING(value__, PROFILE_VALUE(returnValue__))
#define PROFILE_VALUE(value) do { \
bytecode.metadata(exec).m_profile.m_buckets[0] = JSValue::encode(value); \
} while (false)
#define CALL_END_IMPL(exec, callTarget, callTargetTag) \
RETURN_TWO(retagCodePtr((callTarget), callTargetTag, SlowPathPtrTag), (exec))
#define CALL_CHECK_EXCEPTION(exec, pc) do { \
ExecState* cceExec = (exec); \
Instruction* ccePC = (pc); \
if (UNLIKELY(throwScope.exception())) \
CALL_END_IMPL(cceExec, LLInt::callToThrow(cceExec), ExceptionHandlerPtrTag); \
} while (false)
static void throwArityCheckStackOverflowError(ExecState* exec, ThrowScope& scope)
{
JSObject* error = createStackOverflowError(exec);
throwException(exec, scope, error);
#if LLINT_TRACING
if (UNLIKELY(Options::traceLLIntSlowPath()))
dataLog("Throwing exception ", JSValue(scope.exception()), ".\n");
#endif
}
SLOW_PATH_DECL(slow_path_call_arityCheck)
{
BEGIN();
int slotsToAdd = CommonSlowPaths::arityCheckFor(exec, vm, CodeForCall);
if (UNLIKELY(slotsToAdd < 0)) {
CodeBlock* codeBlock = CommonSlowPaths::codeBlockFromCallFrameCallee(exec, CodeForCall);
exec->convertToStackOverflowFrame(vm, codeBlock);
NativeCallFrameTracer tracer(&vm, exec);
ErrorHandlingScope errorScope(vm);
throwScope.release();
throwArityCheckStackOverflowError(exec, throwScope);
RETURN_TWO(bitwise_cast<void*>(static_cast<uintptr_t>(1)), exec);
}
RETURN_TWO(0, bitwise_cast<void*>(static_cast<uintptr_t>(slotsToAdd)));
}
SLOW_PATH_DECL(slow_path_construct_arityCheck)
{
BEGIN();
int slotsToAdd = CommonSlowPaths::arityCheckFor(exec, vm, CodeForConstruct);
if (UNLIKELY(slotsToAdd < 0)) {
CodeBlock* codeBlock = CommonSlowPaths::codeBlockFromCallFrameCallee(exec, CodeForConstruct);
exec->convertToStackOverflowFrame(vm, codeBlock);
NativeCallFrameTracer tracer(&vm, exec);
ErrorHandlingScope errorScope(vm);
throwArityCheckStackOverflowError(exec, throwScope);
RETURN_TWO(bitwise_cast<void*>(static_cast<uintptr_t>(1)), exec);
}
RETURN_TWO(0, bitwise_cast<void*>(static_cast<uintptr_t>(slotsToAdd)));
}
SLOW_PATH_DECL(slow_path_create_direct_arguments)
{
BEGIN();
auto bytecode = pc->as<OpCreateDirectArguments>();
RETURN(DirectArguments::createByCopying(exec));
}
SLOW_PATH_DECL(slow_path_create_scoped_arguments)
{
BEGIN();
auto bytecode = pc->as<OpCreateScopedArguments>();
JSLexicalEnvironment* scope = jsCast<JSLexicalEnvironment*>(GET(bytecode.m_scope).jsValue());
ScopedArgumentsTable* table = scope->symbolTable()->arguments();
RETURN(ScopedArguments::createByCopying(exec, table, scope));
}
SLOW_PATH_DECL(slow_path_create_cloned_arguments)
{
BEGIN();
auto bytecode = pc->as<OpCreateClonedArguments>();
RETURN(ClonedArguments::createWithMachineFrame(exec, exec, ArgumentsMode::Cloned));
}
SLOW_PATH_DECL(slow_path_create_this)
{
BEGIN();
auto bytecode = pc->as<OpCreateThis>();
JSObject* result;
JSObject* constructorAsObject = asObject(GET(bytecode.m_callee).jsValue());
if (constructorAsObject->type() == JSFunctionType && jsCast<JSFunction*>(constructorAsObject)->canUseAllocationProfile()) {
JSFunction* constructor = jsCast<JSFunction*>(constructorAsObject);
WriteBarrier<JSCell>& cachedCallee = bytecode.metadata(exec).m_cachedCallee;
if (!cachedCallee)
cachedCallee.set(vm, exec->codeBlock(), constructor);
else if (cachedCallee.unvalidatedGet() != JSCell::seenMultipleCalleeObjects() && cachedCallee.get() != constructor)
cachedCallee.setWithoutWriteBarrier(JSCell::seenMultipleCalleeObjects());
size_t inlineCapacity = bytecode.m_inlineCapacity;
ObjectAllocationProfileWithPrototype* allocationProfile = constructor->ensureRareDataAndAllocationProfile(exec, inlineCapacity)->objectAllocationProfile();
throwScope.releaseAssertNoException();
Structure* structure = allocationProfile->structure();
result = constructEmptyObject(exec, structure);
if (structure->hasPolyProto()) {
JSObject* prototype = allocationProfile->prototype();
ASSERT(prototype == constructor->prototypeForConstruction(vm, exec));
result->putDirect(vm, knownPolyProtoOffset, prototype);
prototype->didBecomePrototype();
ASSERT_WITH_MESSAGE(!hasIndexedProperties(result->indexingType()), "We rely on JSFinalObject not starting out with an indexing type otherwise we would potentially need to convert to slow put storage");
}
} else {
// http://ecma-international.org/ecma-262/6.0/#sec-ordinarycreatefromconstructor
JSValue proto = constructorAsObject->get(exec, vm.propertyNames->prototype);
CHECK_EXCEPTION();
if (proto.isObject())
result = constructEmptyObject(exec, asObject(proto));
else
result = constructEmptyObject(exec);
}
RETURN(result);
}
SLOW_PATH_DECL(slow_path_to_this)
{
BEGIN();
auto bytecode = pc->as<OpToThis>();
auto& metadata = bytecode.metadata(exec);
JSValue v1 = GET(bytecode.m_srcDst).jsValue();
if (v1.isCell()) {
StructureID myStructureID = v1.asCell()->structureID();
StructureID otherStructureID = metadata.m_cachedStructureID;
if (myStructureID != otherStructureID) {
if (otherStructureID)
metadata.m_toThisStatus = ToThisConflicted;
metadata.m_cachedStructureID = myStructureID;
vm.heap.writeBarrier(exec->codeBlock(), vm.getStructure(myStructureID));
}
} else {
metadata.m_toThisStatus = ToThisConflicted;
metadata.m_cachedStructureID = 0;
}
// Note: We only need to do this value profiling here on the slow path. The fast path
// just returns the input to to_this if the structure check succeeds. If the structure
// check succeeds, doing value profiling here is equivalent to doing it with a potentially
// different object that still has the same structure on the fast path since it'll produce
// the same SpeculatedType. Therefore, we don't need to worry about value profiling on the
// fast path.
auto value = v1.toThis(exec, exec->codeBlock()->isStrictMode() ? StrictMode : NotStrictMode);
RETURN_WITH_PROFILING_CUSTOM(bytecode.m_srcDst, value, PROFILE_VALUE(value));
}
SLOW_PATH_DECL(slow_path_throw_tdz_error)
{
BEGIN();
THROW(createTDZError(exec));
}
SLOW_PATH_DECL(slow_path_check_tdz)
{
BEGIN();
THROW(createTDZError(exec));
}
SLOW_PATH_DECL(slow_path_throw_strict_mode_readonly_property_write_error)
{
BEGIN();
THROW(createTypeError(exec, ReadonlyPropertyWriteError));
}
SLOW_PATH_DECL(slow_path_not)
{
BEGIN();
auto bytecode = pc->as<OpNot>();
RETURN(jsBoolean(!GET_C(bytecode.m_operand).jsValue().toBoolean(exec)));
}
SLOW_PATH_DECL(slow_path_eq)
{
BEGIN();
auto bytecode = pc->as<OpEq>();
RETURN(jsBoolean(JSValue::equal(exec, GET_C(bytecode.m_lhs).jsValue(), GET_C(bytecode.m_rhs).jsValue())));
}
SLOW_PATH_DECL(slow_path_neq)
{
BEGIN();
auto bytecode = pc->as<OpNeq>();
RETURN(jsBoolean(!JSValue::equal(exec, GET_C(bytecode.m_lhs).jsValue(), GET_C(bytecode.m_rhs).jsValue())));
}
SLOW_PATH_DECL(slow_path_stricteq)
{
BEGIN();
auto bytecode = pc->as<OpStricteq>();
RETURN(jsBoolean(JSValue::strictEqual(exec, GET_C(bytecode.m_lhs).jsValue(), GET_C(bytecode.m_rhs).jsValue())));
}
SLOW_PATH_DECL(slow_path_nstricteq)
{
BEGIN();
auto bytecode = pc->as<OpNstricteq>();
RETURN(jsBoolean(!JSValue::strictEqual(exec, GET_C(bytecode.m_lhs).jsValue(), GET_C(bytecode.m_rhs).jsValue())));
}
SLOW_PATH_DECL(slow_path_less)
{
BEGIN();
auto bytecode = pc->as<OpLess>();
RETURN(jsBoolean(jsLess<true>(exec, GET_C(bytecode.m_lhs).jsValue(), GET_C(bytecode.m_rhs).jsValue())));
}
SLOW_PATH_DECL(slow_path_lesseq)
{
BEGIN();
auto bytecode = pc->as<OpLesseq>();
RETURN(jsBoolean(jsLessEq<true>(exec, GET_C(bytecode.m_lhs).jsValue(), GET_C(bytecode.m_rhs).jsValue())));
}
SLOW_PATH_DECL(slow_path_greater)
{
BEGIN();
auto bytecode = pc->as<OpGreater>();
RETURN(jsBoolean(jsLess<false>(exec, GET_C(bytecode.m_rhs).jsValue(), GET_C(bytecode.m_lhs).jsValue())));
}
SLOW_PATH_DECL(slow_path_greatereq)
{
BEGIN();
auto bytecode = pc->as<OpGreatereq>();
RETURN(jsBoolean(jsLessEq<false>(exec, GET_C(bytecode.m_rhs).jsValue(), GET_C(bytecode.m_lhs).jsValue())));
}
SLOW_PATH_DECL(slow_path_inc)
{
BEGIN();
auto bytecode = pc->as<OpInc>();
RETURN_WITH_PROFILING_CUSTOM(bytecode.m_srcDst, jsNumber(GET(bytecode.m_srcDst).jsValue().toNumber(exec) + 1), { });
}
SLOW_PATH_DECL(slow_path_dec)
{
BEGIN();
auto bytecode = pc->as<OpDec>();
RETURN_WITH_PROFILING_CUSTOM(bytecode.m_srcDst, jsNumber(GET(bytecode.m_srcDst).jsValue().toNumber(exec) - 1), { });
}
SLOW_PATH_DECL(slow_path_to_string)
{
BEGIN();
auto bytecode = pc->as<OpToString>();
RETURN(GET_C(bytecode.m_operand).jsValue().toString(exec));
}
#if ENABLE(JIT)
static void updateArithProfileForUnaryArithOp(OpNegate::Metadata& metadata, JSValue result, JSValue operand)
{
ArithProfile& profile = metadata.m_arithProfile;
profile.observeLHS(operand);
ASSERT(result.isNumber() || result.isBigInt());
if (result.isNumber()) {
if (!result.isInt32()) {
if (operand.isInt32())
profile.setObservedInt32Overflow();
double doubleVal = result.asNumber();
if (!doubleVal && std::signbit(doubleVal))
profile.setObservedNegZeroDouble();
else {
profile.setObservedNonNegZeroDouble();
// The Int52 overflow check here intentionally omits 1ll << 51 as a valid negative Int52 value.
// Therefore, we will get a false positive if the result is that value. This is intentionally
// done to simplify the checking algorithm.
static const int64_t int52OverflowPoint = (1ll << 51);
int64_t int64Val = static_cast<int64_t>(std::abs(doubleVal));
if (int64Val >= int52OverflowPoint)
profile.setObservedInt52Overflow();
}
}
} else if (result.isBigInt())
profile.setObservedBigInt();
else
profile.setObservedNonNumeric();
}
#else
static void updateArithProfileForUnaryArithOp(OpNegate::Metadata&, JSValue, JSValue) { }
#endif
SLOW_PATH_DECL(slow_path_negate)
{
BEGIN();
auto bytecode = pc->as<OpNegate>();
auto& metadata = bytecode.metadata(exec);
JSValue operand = GET_C(bytecode.m_operand).jsValue();
JSValue primValue = operand.toPrimitive(exec, PreferNumber);
CHECK_EXCEPTION();
if (primValue.isBigInt()) {
JSBigInt* result = JSBigInt::unaryMinus(vm, asBigInt(primValue));
RETURN_WITH_PROFILING(result, {
updateArithProfileForUnaryArithOp(metadata, result, operand);
});
}
JSValue result = jsNumber(-primValue.toNumber(exec));
CHECK_EXCEPTION();
RETURN_WITH_PROFILING(result, {
updateArithProfileForUnaryArithOp(metadata, result, operand);
});
}
#if ENABLE(DFG_JIT)
static void updateArithProfileForBinaryArithOp(ExecState* exec, const Instruction* pc, JSValue result, JSValue left, JSValue right)
{
CodeBlock* codeBlock = exec->codeBlock();
ArithProfile& profile = *codeBlock->arithProfileForPC(pc);
if (result.isNumber()) {
if (!result.isInt32()) {
if (left.isInt32() && right.isInt32())
profile.setObservedInt32Overflow();
double doubleVal = result.asNumber();
if (!doubleVal && std::signbit(doubleVal))
profile.setObservedNegZeroDouble();
else {
profile.setObservedNonNegZeroDouble();
// The Int52 overflow check here intentionally omits 1ll << 51 as a valid negative Int52 value.
// Therefore, we will get a false positive if the result is that value. This is intentionally
// done to simplify the checking algorithm.
static const int64_t int52OverflowPoint = (1ll << 51);
int64_t int64Val = static_cast<int64_t>(std::abs(doubleVal));
if (int64Val >= int52OverflowPoint)
profile.setObservedInt52Overflow();
}
}
} else if (result.isBigInt())
profile.setObservedBigInt();
else
profile.setObservedNonNumeric();
}
#else
static void updateArithProfileForBinaryArithOp(ExecState*, const Instruction*, JSValue, JSValue, JSValue) { }
#endif
SLOW_PATH_DECL(slow_path_to_number)
{
BEGIN();
auto bytecode = pc->as<OpToNumber>();
JSValue argument = GET_C(bytecode.m_operand).jsValue();
JSValue result = jsNumber(argument.toNumber(exec));
RETURN_PROFILED(result);
}
SLOW_PATH_DECL(slow_path_to_object)
{
BEGIN();
auto bytecode = pc->as<OpToObject>();
JSValue argument = GET_C(bytecode.m_operand).jsValue();
if (UNLIKELY(argument.isUndefinedOrNull())) {
const Identifier& ident = exec->codeBlock()->identifier(bytecode.m_message);
if (!ident.isEmpty())
THROW(createTypeError(exec, ident.impl()));
}
JSObject* result = argument.toObject(exec);
RETURN_PROFILED(result);
}
SLOW_PATH_DECL(slow_path_add)
{
BEGIN();
auto bytecode = pc->as<OpAdd>();
JSValue v1 = GET_C(bytecode.m_lhs).jsValue();
JSValue v2 = GET_C(bytecode.m_rhs).jsValue();
ArithProfile& arithProfile = *exec->codeBlock()->arithProfileForPC(pc);
arithProfile.observeLHSAndRHS(v1, v2);
JSValue result = jsAdd(exec, v1, v2);
RETURN_WITH_PROFILING(result, {
updateArithProfileForBinaryArithOp(exec, pc, result, v1, v2);
});
}
// The following arithmetic and bitwise operations need to be sure to run
// toNumber() on their operands in order. (A call to toNumber() is idempotent
// if an exception is already set on the ExecState.)
SLOW_PATH_DECL(slow_path_mul)
{
BEGIN();
auto bytecode = pc->as<OpMul>();
JSValue left = GET_C(bytecode.m_lhs).jsValue();
JSValue right = GET_C(bytecode.m_rhs).jsValue();
JSValue result = jsMul(exec, left, right);
CHECK_EXCEPTION();
RETURN_WITH_PROFILING(result, {
updateArithProfileForBinaryArithOp(exec, pc, result, left, right);
});
}
SLOW_PATH_DECL(slow_path_sub)
{
BEGIN();
auto bytecode = pc->as<OpSub>();
JSValue left = GET_C(bytecode.m_lhs).jsValue();
JSValue right = GET_C(bytecode.m_rhs).jsValue();
auto leftNumeric = left.toNumeric(exec);
CHECK_EXCEPTION();
auto rightNumeric = right.toNumeric(exec);
CHECK_EXCEPTION();
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) || WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) && WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
JSBigInt* result = JSBigInt::sub(exec, WTF::get<JSBigInt*>(leftNumeric), WTF::get<JSBigInt*>(rightNumeric));
CHECK_EXCEPTION();
RETURN_WITH_PROFILING(result, {
updateArithProfileForBinaryArithOp(exec, pc, result, left, right);
});
}
THROW(createTypeError(exec, "Invalid mix of BigInt and other type in subtraction."));
}
JSValue result = jsNumber(WTF::get<double>(leftNumeric) - WTF::get<double>(rightNumeric));
RETURN_WITH_PROFILING(result, {
updateArithProfileForBinaryArithOp(exec, pc, result, left, right);
});
}
SLOW_PATH_DECL(slow_path_div)
{
BEGIN();
auto bytecode = pc->as<OpDiv>();
JSValue left = GET_C(bytecode.m_lhs).jsValue();
JSValue right = GET_C(bytecode.m_rhs).jsValue();
auto leftNumeric = left.toNumeric(exec);
CHECK_EXCEPTION();
auto rightNumeric = right.toNumeric(exec);
CHECK_EXCEPTION();
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) || WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) && WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
JSBigInt* result = JSBigInt::divide(exec, WTF::get<JSBigInt*>(leftNumeric), WTF::get<JSBigInt*>(rightNumeric));
CHECK_EXCEPTION();
RETURN_WITH_PROFILING(result, {
updateArithProfileForBinaryArithOp(exec, pc, result, left, right);
});
}
THROW(createTypeError(exec, "Invalid mix of BigInt and other type in division."));
}
double a = WTF::get<double>(leftNumeric);
double b = WTF::get<double>(rightNumeric);
JSValue result = jsNumber(a / b);
RETURN_WITH_PROFILING(result, {
updateArithProfileForBinaryArithOp(exec, pc, result, left, right);
});
}
SLOW_PATH_DECL(slow_path_mod)
{
BEGIN();
auto bytecode = pc->as<OpMod>();
JSValue left = GET_C(bytecode.m_lhs).jsValue();
JSValue right = GET_C(bytecode.m_rhs).jsValue();
auto leftNumeric = left.toNumeric(exec);
CHECK_EXCEPTION();
auto rightNumeric = right.toNumeric(exec);
CHECK_EXCEPTION();
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) || WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) && WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
JSBigInt* result = JSBigInt::remainder(exec, WTF::get<JSBigInt*>(leftNumeric), WTF::get<JSBigInt*>(rightNumeric));
CHECK_EXCEPTION();
RETURN(result);
}
THROW(createTypeError(exec, "Invalid mix of BigInt and other type in remainder operation."));
}
double a = WTF::get<double>(leftNumeric);
double b = WTF::get<double>(rightNumeric);
RETURN(jsNumber(jsMod(a, b)));
}
SLOW_PATH_DECL(slow_path_pow)
{
BEGIN();
auto bytecode = pc->as<OpPow>();
JSValue left = GET_C(bytecode.m_lhs).jsValue();
JSValue right = GET_C(bytecode.m_rhs).jsValue();
auto leftNumeric = left.toNumeric(exec);
CHECK_EXCEPTION();
auto rightNumeric = right.toNumeric(exec);
CHECK_EXCEPTION();
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) || WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) && WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
JSBigInt* result = JSBigInt::exponentiate(exec, WTF::get<JSBigInt*>(leftNumeric), WTF::get<JSBigInt*>(rightNumeric));
CHECK_EXCEPTION();
RETURN(result);
}
THROW(createTypeError(exec, "Invalid mix of BigInt and other type in exponentiation operation."));
}
double a = WTF::get<double>(leftNumeric);
double b = WTF::get<double>(rightNumeric);
RETURN(jsNumber(operationMathPow(a, b)));
}
SLOW_PATH_DECL(slow_path_lshift)
{
BEGIN();
auto bytecode = pc->as<OpLshift>();
JSValue left = GET_C(bytecode.m_lhs).jsValue();
JSValue right = GET_C(bytecode.m_rhs).jsValue();
auto leftNumeric = left.toBigIntOrInt32(exec);
CHECK_EXCEPTION();
auto rightNumeric = right.toBigIntOrInt32(exec);
CHECK_EXCEPTION();
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) || WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) && WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
JSBigInt* result = JSBigInt::leftShift(exec, WTF::get<JSBigInt*>(leftNumeric), WTF::get<JSBigInt*>(rightNumeric));
CHECK_EXCEPTION();
RETURN_PROFILED(result);
}
THROW(createTypeError(exec, "Invalid mix of BigInt and other type in left shift operation."));
}
RETURN_PROFILED(jsNumber(WTF::get<int32_t>(leftNumeric) << (WTF::get<int32_t>(rightNumeric) & 31)));
}
SLOW_PATH_DECL(slow_path_rshift)
{
BEGIN();
auto bytecode = pc->as<OpRshift>();
JSValue left = GET_C(bytecode.m_lhs).jsValue();
JSValue right = GET_C(bytecode.m_rhs).jsValue();
auto leftNumeric = left.toBigIntOrInt32(exec);
CHECK_EXCEPTION();
auto rightNumeric = right.toBigIntOrInt32(exec);
CHECK_EXCEPTION();
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) || WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) && WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
JSBigInt* result = JSBigInt::signedRightShift(exec, WTF::get<JSBigInt*>(leftNumeric), WTF::get<JSBigInt*>(rightNumeric));
CHECK_EXCEPTION();
RETURN(result);
}
THROW(createTypeError(exec, "Invalid mix of BigInt and other type in signed right shift operation."));
}
RETURN(jsNumber(WTF::get<int32_t>(leftNumeric) >> (WTF::get<int32_t>(rightNumeric) & 31)));
}
SLOW_PATH_DECL(slow_path_urshift)
{
BEGIN();
auto bytecode = pc->as<OpUrshift>();
uint32_t a = GET_C(bytecode.m_lhs).jsValue().toUInt32(exec);
if (UNLIKELY(throwScope.exception()))
RETURN(JSValue());
uint32_t b = GET_C(bytecode.m_rhs).jsValue().toUInt32(exec);
RETURN(jsNumber(static_cast<int32_t>(a >> (b & 31))));
}
SLOW_PATH_DECL(slow_path_unsigned)
{
BEGIN();
auto bytecode = pc->as<OpUnsigned>();
uint32_t a = GET_C(bytecode.m_operand).jsValue().toUInt32(exec);
RETURN(jsNumber(a));
}
SLOW_PATH_DECL(slow_path_bitnot)
{
BEGIN();
auto bytecode = pc->as<OpBitnot>();
auto operandNumeric = GET_C(bytecode.m_operand).jsValue().toBigIntOrInt32(exec);
CHECK_EXCEPTION();
if (WTF::holds_alternative<JSBigInt*>(operandNumeric)) {
JSBigInt* result = JSBigInt::bitwiseNot(exec, WTF::get<JSBigInt*>(operandNumeric));
CHECK_EXCEPTION();
RETURN_PROFILED(result);
}
RETURN_PROFILED(jsNumber(~WTF::get<int32_t>(operandNumeric)));
}
SLOW_PATH_DECL(slow_path_bitand)
{
BEGIN();
auto bytecode = pc->as<OpBitand>();
auto leftNumeric = GET_C(bytecode.m_lhs).jsValue().toBigIntOrInt32(exec);
CHECK_EXCEPTION();
auto rightNumeric = GET_C(bytecode.m_rhs).jsValue().toBigIntOrInt32(exec);
CHECK_EXCEPTION();
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) || WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) && WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
JSBigInt* result = JSBigInt::bitwiseAnd(exec, WTF::get<JSBigInt*>(leftNumeric), WTF::get<JSBigInt*>(rightNumeric));
CHECK_EXCEPTION();
RETURN_PROFILED(result);
}
THROW(createTypeError(exec, "Invalid mix of BigInt and other type in bitwise 'and' operation."));
}
RETURN_PROFILED(jsNumber(WTF::get<int32_t>(leftNumeric) & WTF::get<int32_t>(rightNumeric)));
}
SLOW_PATH_DECL(slow_path_bitor)
{
BEGIN();
auto bytecode = pc->as<OpBitor>();
auto leftNumeric = GET_C(bytecode.m_lhs).jsValue().toBigIntOrInt32(exec);
CHECK_EXCEPTION();
auto rightNumeric = GET_C(bytecode.m_rhs).jsValue().toBigIntOrInt32(exec);
CHECK_EXCEPTION();
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) || WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) && WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
JSBigInt* result = JSBigInt::bitwiseOr(exec, WTF::get<JSBigInt*>(leftNumeric), WTF::get<JSBigInt*>(rightNumeric));
CHECK_EXCEPTION();
RETURN_PROFILED(result);
}
THROW(createTypeError(exec, "Invalid mix of BigInt and other type in bitwise 'or' operation."));
}
RETURN_PROFILED(jsNumber(WTF::get<int32_t>(leftNumeric) | WTF::get<int32_t>(rightNumeric)));
}
SLOW_PATH_DECL(slow_path_bitxor)
{
BEGIN();
auto bytecode = pc->as<OpBitxor>();
auto leftNumeric = GET_C(bytecode.m_lhs).jsValue().toBigIntOrInt32(exec);
CHECK_EXCEPTION();
auto rightNumeric = GET_C(bytecode.m_rhs).jsValue().toBigIntOrInt32(exec);
CHECK_EXCEPTION();
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) || WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
if (WTF::holds_alternative<JSBigInt*>(leftNumeric) && WTF::holds_alternative<JSBigInt*>(rightNumeric)) {
JSBigInt* result = JSBigInt::bitwiseXor(exec, WTF::get<JSBigInt*>(leftNumeric), WTF::get<JSBigInt*>(rightNumeric));
CHECK_EXCEPTION();
RETURN_PROFILED(result);
}
THROW(createTypeError(exec, "Invalid mix of BigInt and other type in bitwise 'xor' operation."));
}
RETURN_PROFILED(jsNumber(WTF::get<int32_t>(leftNumeric) ^ WTF::get<int32_t>(rightNumeric)));
}
SLOW_PATH_DECL(slow_path_typeof)
{
BEGIN();
auto bytecode = pc->as<OpTypeof>();
RETURN(jsTypeStringForValue(exec, GET_C(bytecode.m_value).jsValue()));
}
SLOW_PATH_DECL(slow_path_is_object_or_null)
{
BEGIN();
auto bytecode = pc->as<OpIsObjectOrNull>();
RETURN(jsBoolean(jsIsObjectTypeOrNull(exec, GET_C(bytecode.m_operand).jsValue())));
}
SLOW_PATH_DECL(slow_path_is_function)
{
BEGIN();
auto bytecode = pc->as<OpIsFunction>();
RETURN(jsBoolean(GET_C(bytecode.m_operand).jsValue().isFunction(vm)));
}
SLOW_PATH_DECL(slow_path_in_by_val)
{
BEGIN();
auto bytecode = pc->as<OpInByVal>();
auto& metadata = bytecode.metadata(exec);
RETURN(jsBoolean(CommonSlowPaths::opInByVal(exec, GET_C(bytecode.m_base).jsValue(), GET_C(bytecode.m_property).jsValue(), &metadata.m_arrayProfile)));
}
SLOW_PATH_DECL(slow_path_in_by_id)
{
BEGIN();
auto bytecode = pc->as<OpInById>();
JSValue baseValue = GET_C(bytecode.m_base).jsValue();
if (!baseValue.isObject())
THROW(createInvalidInParameterError(exec, baseValue));
RETURN(jsBoolean(asObject(baseValue)->hasProperty(exec, exec->codeBlock()->identifier(bytecode.m_property))));
}
SLOW_PATH_DECL(slow_path_del_by_val)
{
BEGIN();
auto bytecode = pc->as<OpDelByVal>();
JSValue baseValue = GET_C(bytecode.m_base).jsValue();
JSObject* baseObject = baseValue.toObject(exec);
CHECK_EXCEPTION();
JSValue subscript = GET_C(bytecode.m_property).jsValue();
bool couldDelete;
uint32_t i;
if (subscript.getUInt32(i))
couldDelete = baseObject->methodTable(vm)->deletePropertyByIndex(baseObject, exec, i);
else {
CHECK_EXCEPTION();
auto property = subscript.toPropertyKey(exec);
CHECK_EXCEPTION();
couldDelete = baseObject->methodTable(vm)->deleteProperty(baseObject, exec, property);
}
if (!couldDelete && exec->codeBlock()->isStrictMode())
THROW(createTypeError(exec, UnableToDeletePropertyError));
RETURN(jsBoolean(couldDelete));
}
SLOW_PATH_DECL(slow_path_strcat)
{
BEGIN();
auto bytecode = pc->as<OpStrcat>();
RETURN(jsStringFromRegisterArray(exec, &GET(bytecode.m_src), bytecode.m_count));
}
SLOW_PATH_DECL(slow_path_to_primitive)
{
BEGIN();
auto bytecode = pc->as<OpToPrimitive>();
RETURN(GET_C(bytecode.m_src).jsValue().toPrimitive(exec));
}
SLOW_PATH_DECL(slow_path_enter)
{
BEGIN();
CodeBlock* codeBlock = exec->codeBlock();
Heap::heap(codeBlock)->writeBarrier(codeBlock);
END();
}
SLOW_PATH_DECL(slow_path_get_enumerable_length)
{
BEGIN();
auto bytecode = pc->as<OpGetEnumerableLength>();
JSValue enumeratorValue = GET(bytecode.m_base).jsValue();
if (enumeratorValue.isUndefinedOrNull())
RETURN(jsNumber(0));
JSPropertyNameEnumerator* enumerator = jsCast<JSPropertyNameEnumerator*>(enumeratorValue.asCell());
RETURN(jsNumber(enumerator->indexedLength()));
}
SLOW_PATH_DECL(slow_path_has_indexed_property)
{
BEGIN();
auto bytecode = pc->as<OpHasIndexedProperty>();
auto& metadata = bytecode.metadata(exec);
JSObject* base = GET(bytecode.m_base).jsValue().toObject(exec);
CHECK_EXCEPTION();
JSValue property = GET(bytecode.m_property).jsValue();
metadata.m_arrayProfile.observeStructure(base->structure(vm));
ASSERT(property.isUInt32AsAnyInt());
RETURN(jsBoolean(base->hasPropertyGeneric(exec, property.asUInt32AsAnyInt(), PropertySlot::InternalMethodType::GetOwnProperty)));
}
SLOW_PATH_DECL(slow_path_has_structure_property)
{
BEGIN();
auto bytecode = pc->as<OpHasStructureProperty>();
JSObject* base = GET(bytecode.m_base).jsValue().toObject(exec);
CHECK_EXCEPTION();
JSValue property = GET(bytecode.m_property).jsValue();
ASSERT(property.isString());
JSPropertyNameEnumerator* enumerator = jsCast<JSPropertyNameEnumerator*>(GET(bytecode.m_enumerator).jsValue().asCell());
if (base->structure(vm)->id() == enumerator->cachedStructureID())
RETURN(jsBoolean(true));
JSString* string = asString(property);
auto propertyName = string->toIdentifier(exec);
CHECK_EXCEPTION();
RETURN(jsBoolean(base->hasPropertyGeneric(exec, propertyName, PropertySlot::InternalMethodType::GetOwnProperty)));
}
SLOW_PATH_DECL(slow_path_has_generic_property)
{
BEGIN();
auto bytecode = pc->as<OpHasGenericProperty>();
JSObject* base = GET(bytecode.m_base).jsValue().toObject(exec);
CHECK_EXCEPTION();
JSValue property = GET(bytecode.m_property).jsValue();
ASSERT(property.isString());
JSString* string = asString(property);
auto propertyName = string->toIdentifier(exec);
CHECK_EXCEPTION();
RETURN(jsBoolean(base->hasPropertyGeneric(exec, propertyName, PropertySlot::InternalMethodType::GetOwnProperty)));
}
SLOW_PATH_DECL(slow_path_get_direct_pname)
{
BEGIN();
auto bytecode = pc->as<OpGetDirectPname>();
JSValue baseValue = GET_C(bytecode.m_base).jsValue();
JSValue property = GET(bytecode.m_property).jsValue();
ASSERT(property.isString());
JSString* string = asString(property);
auto propertyName = string->toIdentifier(exec);
CHECK_EXCEPTION();
RETURN(baseValue.get(exec, propertyName));
}
SLOW_PATH_DECL(slow_path_get_property_enumerator)
{
BEGIN();
auto bytecode = pc->as<OpGetPropertyEnumerator>();
JSValue baseValue = GET(bytecode.m_base).jsValue();
if (baseValue.isUndefinedOrNull())
RETURN(vm.emptyPropertyNameEnumerator());
JSObject* base = baseValue.toObject(exec);
CHECK_EXCEPTION();
RETURN(propertyNameEnumerator(exec, base));
}
SLOW_PATH_DECL(slow_path_enumerator_structure_pname)
{
BEGIN();
auto bytecode = pc->as<OpEnumeratorStructurePname>();
JSPropertyNameEnumerator* enumerator = jsCast<JSPropertyNameEnumerator*>(GET(bytecode.m_enumerator).jsValue().asCell());
uint32_t index = GET(bytecode.m_index).jsValue().asUInt32();
JSString* propertyName = nullptr;
if (index < enumerator->endStructurePropertyIndex())
propertyName = enumerator->propertyNameAtIndex(index);
RETURN(propertyName ? propertyName : jsNull());
}
SLOW_PATH_DECL(slow_path_enumerator_generic_pname)
{
BEGIN();
auto bytecode = pc->as<OpEnumeratorGenericPname>();
JSPropertyNameEnumerator* enumerator = jsCast<JSPropertyNameEnumerator*>(GET(bytecode.m_enumerator).jsValue().asCell());
uint32_t index = GET(bytecode.m_index).jsValue().asUInt32();
JSString* propertyName = nullptr;
if (enumerator->endStructurePropertyIndex() <= index && index < enumerator->endGenericPropertyIndex())
propertyName = enumerator->propertyNameAtIndex(index);
RETURN(propertyName ? propertyName : jsNull());
}
SLOW_PATH_DECL(slow_path_to_index_string)
{
BEGIN();
auto bytecode = pc->as<OpToIndexString>();
JSValue indexValue = GET(bytecode.m_index).jsValue();
ASSERT(indexValue.isUInt32AsAnyInt());
RETURN(jsString(exec, Identifier::from(exec, indexValue.asUInt32AsAnyInt()).string()));
}
SLOW_PATH_DECL(slow_path_profile_type_clear_log)
{
BEGIN();
vm.typeProfilerLog()->processLogEntries(vm, "LLInt log full."_s);
END();
}
SLOW_PATH_DECL(slow_path_unreachable)
{
BEGIN();
UNREACHABLE_FOR_PLATFORM();
END();
}
SLOW_PATH_DECL(slow_path_create_lexical_environment)
{
BEGIN();
auto bytecode = pc->as<OpCreateLexicalEnvironment>();
int scopeReg = bytecode.m_scope.offset();
JSScope* currentScope = exec->uncheckedR(scopeReg).Register::scope();
SymbolTable* symbolTable = jsCast<SymbolTable*>(GET_C(bytecode.m_symbolTable).jsValue());
JSValue initialValue = GET_C(bytecode.m_initialValue).jsValue();
ASSERT(initialValue == jsUndefined() || initialValue == jsTDZValue());
JSScope* newScope = JSLexicalEnvironment::create(vm, exec->lexicalGlobalObject(), currentScope, symbolTable, initialValue);
RETURN(newScope);
}
SLOW_PATH_DECL(slow_path_push_with_scope)
{
BEGIN();
auto bytecode = pc->as<OpPushWithScope>();
JSObject* newScope = GET_C(bytecode.m_newScope).jsValue().toObject(exec);
CHECK_EXCEPTION();
int scopeReg = bytecode.m_currentScope.offset();
JSScope* currentScope = exec->uncheckedR(scopeReg).Register::scope();
RETURN(JSWithScope::create(vm, exec->lexicalGlobalObject(), currentScope, newScope));
}
SLOW_PATH_DECL(slow_path_resolve_scope_for_hoisting_func_decl_in_eval)
{
BEGIN();
auto bytecode = pc->as<OpResolveScopeForHoistingFuncDeclInEval>();
const Identifier& ident = exec->codeBlock()->identifier(bytecode.m_property);
JSScope* scope = exec->uncheckedR(bytecode.m_scope.offset()).Register::scope();
JSValue resolvedScope = JSScope::resolveScopeForHoistingFuncDeclInEval(exec, scope, ident);
CHECK_EXCEPTION();
RETURN(resolvedScope);
}
SLOW_PATH_DECL(slow_path_resolve_scope)
{
BEGIN();
auto bytecode = pc->as<OpResolveScope>();
auto& metadata = bytecode.metadata(exec);
const Identifier& ident = exec->codeBlock()->identifier(bytecode.m_var);
JSScope* scope = exec->uncheckedR(bytecode.m_scope.offset()).Register::scope();
JSObject* resolvedScope = JSScope::resolve(exec, scope, ident);
// Proxy can throw an error here, e.g. Proxy in with statement's @unscopables.
CHECK_EXCEPTION();
ResolveType resolveType = metadata.m_resolveType;
// ModuleVar does not keep the scope register value alive in DFG.
ASSERT(resolveType != ModuleVar);
switch (resolveType) {
case GlobalProperty:
case GlobalPropertyWithVarInjectionChecks:
case UnresolvedProperty:
case UnresolvedPropertyWithVarInjectionChecks: {
if (resolvedScope->isGlobalObject()) {
JSGlobalObject* globalObject = jsCast<JSGlobalObject*>(resolvedScope);
bool hasProperty = globalObject->hasProperty(exec, ident);
CHECK_EXCEPTION();
if (hasProperty) {
ConcurrentJSLocker locker(exec->codeBlock()->m_lock);
metadata.m_resolveType = needsVarInjectionChecks(resolveType) ? GlobalPropertyWithVarInjectionChecks : GlobalProperty;
metadata.m_globalObject = globalObject;
metadata.m_globalLexicalBindingEpoch = globalObject->globalLexicalBindingEpoch();
}
} else if (resolvedScope->isGlobalLexicalEnvironment()) {
JSGlobalLexicalEnvironment* globalLexicalEnvironment = jsCast<JSGlobalLexicalEnvironment*>(resolvedScope);
ConcurrentJSLocker locker(exec->codeBlock()->m_lock);
metadata.m_resolveType = needsVarInjectionChecks(resolveType) ? GlobalLexicalVarWithVarInjectionChecks : GlobalLexicalVar;
metadata.m_globalLexicalEnvironment = globalLexicalEnvironment;
}
break;
}
default:
break;
}
RETURN(resolvedScope);
}
SLOW_PATH_DECL(slow_path_create_rest)
{
BEGIN();
auto bytecode = pc->as<OpCreateRest>();
unsigned arraySize = GET_C(bytecode.m_arraySize).jsValue().asUInt32();
JSGlobalObject* globalObject = exec->lexicalGlobalObject();
Structure* structure = globalObject->restParameterStructure();
unsigned numParamsToSkip = bytecode.m_numParametersToSkip;
JSValue* argumentsToCopyRegion = exec->addressOfArgumentsStart() + numParamsToSkip;
RETURN(constructArray(exec, structure, argumentsToCopyRegion, arraySize));
}
SLOW_PATH_DECL(slow_path_get_by_id_with_this)
{
BEGIN();
auto bytecode = pc->as<OpGetByIdWithThis>();
const Identifier& ident = exec->codeBlock()->identifier(bytecode.m_property);
JSValue baseValue = GET_C(bytecode.m_base).jsValue();
JSValue thisVal = GET_C(bytecode.m_thisValue).jsValue();
PropertySlot slot(thisVal, PropertySlot::PropertySlot::InternalMethodType::Get);
JSValue result = baseValue.get(exec, ident, slot);
RETURN_PROFILED(result);
}
SLOW_PATH_DECL(slow_path_get_by_val_with_this)
{
BEGIN();
auto bytecode = pc->as<OpGetByValWithThis>();
JSValue baseValue = GET_C(bytecode.m_base).jsValue();
JSValue thisValue = GET_C(bytecode.m_thisValue).jsValue();
JSValue subscript = GET_C(bytecode.m_property).jsValue();
if (LIKELY(baseValue.isCell() && subscript.isString())) {
Structure& structure = *baseValue.asCell()->structure(vm);
if (JSCell::canUseFastGetOwnProperty(structure)) {
RefPtr<AtomStringImpl> existingAtomString = asString(subscript)->toExistingAtomString(exec);
CHECK_EXCEPTION();
if (existingAtomString) {
if (JSValue result = baseValue.asCell()->fastGetOwnProperty(vm, structure, existingAtomString.get()))
RETURN_PROFILED(result);
}
}
}
PropertySlot slot(thisValue, PropertySlot::PropertySlot::InternalMethodType::Get);
if (subscript.isUInt32()) {
uint32_t i = subscript.asUInt32();
if (isJSString(baseValue) && asString(baseValue)->canGetIndex(i))
RETURN_PROFILED(asString(baseValue)->getIndex(exec, i));
RETURN_PROFILED(baseValue.get(exec, i, slot));
}
baseValue.requireObjectCoercible(exec);
CHECK_EXCEPTION();
auto property = subscript.toPropertyKey(exec);
CHECK_EXCEPTION();
RETURN_PROFILED(baseValue.get(exec, property, slot));
}
SLOW_PATH_DECL(slow_path_put_by_id_with_this)
{
BEGIN();
auto bytecode = pc->as<OpPutByIdWithThis>();
CodeBlock* codeBlock = exec->codeBlock();
const Identifier& ident = codeBlock->identifier(bytecode.m_property);
JSValue baseValue = GET_C(bytecode.m_base).jsValue();
JSValue thisVal = GET_C(bytecode.m_thisValue).jsValue();
JSValue putValue = GET_C(bytecode.m_value).jsValue();
PutPropertySlot slot(thisVal, codeBlock->isStrictMode(), codeBlock->putByIdContext());
baseValue.putInline(exec, ident, putValue, slot);
END();
}
SLOW_PATH_DECL(slow_path_put_by_val_with_this)
{
BEGIN();
auto bytecode = pc->as<OpPutByValWithThis>();
JSValue baseValue = GET_C(bytecode.m_base).jsValue();
JSValue thisValue = GET_C(bytecode.m_thisValue).jsValue();
JSValue subscript = GET_C(bytecode.m_property).jsValue();
JSValue value = GET_C(bytecode.m_value).jsValue();
auto property = subscript.toPropertyKey(exec);
CHECK_EXCEPTION();
PutPropertySlot slot(thisValue, exec->codeBlock()->isStrictMode());
baseValue.put(exec, property, value, slot);
END();
}
SLOW_PATH_DECL(slow_path_define_data_property)
{
BEGIN();
auto bytecode = pc->as<OpDefineDataProperty>();
JSObject* base = asObject(GET_C(bytecode.m_base).jsValue());
JSValue property = GET_C(bytecode.m_property).jsValue();
JSValue value = GET_C(bytecode.m_value).jsValue();
JSValue attributes = GET_C(bytecode.m_attributes).jsValue();
ASSERT(attributes.isInt32());
auto propertyName = property.toPropertyKey(exec);
CHECK_EXCEPTION();
PropertyDescriptor descriptor = toPropertyDescriptor(value, jsUndefined(), jsUndefined(), DefinePropertyAttributes(attributes.asInt32()));
ASSERT((descriptor.attributes() & PropertyAttribute::Accessor) || (!descriptor.isAccessorDescriptor()));
base->methodTable(vm)->defineOwnProperty(base, exec, propertyName, descriptor, true);
END();
}
SLOW_PATH_DECL(slow_path_define_accessor_property)
{
BEGIN();
auto bytecode = pc->as<OpDefineAccessorProperty>();
JSObject* base = asObject(GET_C(bytecode.m_base).jsValue());
JSValue property = GET_C(bytecode.m_property).jsValue();
JSValue getter = GET_C(bytecode.m_getter).jsValue();
JSValue setter = GET_C(bytecode.m_setter).jsValue();
JSValue attributes = GET_C(bytecode.m_attributes).jsValue();
ASSERT(attributes.isInt32());
auto propertyName = property.toPropertyKey(exec);
CHECK_EXCEPTION();
PropertyDescriptor descriptor = toPropertyDescriptor(jsUndefined(), getter, setter, DefinePropertyAttributes(attributes.asInt32()));
ASSERT((descriptor.attributes() & PropertyAttribute::Accessor) || (!descriptor.isAccessorDescriptor()));
base->methodTable(vm)->defineOwnProperty(base, exec, propertyName, descriptor, true);
END();
}
SLOW_PATH_DECL(slow_path_throw_static_error)
{
BEGIN();
auto bytecode = pc->as<OpThrowStaticError>();
JSValue errorMessageValue = GET_C(bytecode.m_message).jsValue();
RELEASE_ASSERT(errorMessageValue.isString());
String errorMessage = asString(errorMessageValue)->value(exec);
ErrorType errorType = bytecode.m_errorType;
THROW(createError(exec, errorType, errorMessage));
}
SLOW_PATH_DECL(slow_path_new_array_with_spread)
{
BEGIN();
auto bytecode = pc->as<OpNewArrayWithSpread>();
int numItems = bytecode.m_argc;
ASSERT(numItems >= 0);
const BitVector& bitVector = exec->codeBlock()->unlinkedCodeBlock()->bitVector(bytecode.m_bitVector);
JSValue* values = bitwise_cast<JSValue*>(&GET(bytecode.m_argv));
Checked<unsigned, RecordOverflow> checkedArraySize = 0;
for (int i = 0; i < numItems; i++) {
if (bitVector.get(i)) {
JSValue value = values[-i];
JSFixedArray* array = jsCast<JSFixedArray*>(value);
checkedArraySize += array->size();
} else
checkedArraySize += 1;
}
if (UNLIKELY(checkedArraySize.hasOverflowed()))
THROW(createOutOfMemoryError(exec));
unsigned arraySize = checkedArraySize.unsafeGet();
if (UNLIKELY(arraySize >= MIN_ARRAY_STORAGE_CONSTRUCTION_LENGTH))
THROW(createOutOfMemoryError(exec));
JSGlobalObject* globalObject = exec->lexicalGlobalObject();
Structure* structure = globalObject->arrayStructureForIndexingTypeDuringAllocation(ArrayWithContiguous);
JSArray* result = JSArray::tryCreate(vm, structure, arraySize);
if (UNLIKELY(!result))
THROW(createOutOfMemoryError(exec));
CHECK_EXCEPTION();
unsigned index = 0;
for (int i = 0; i < numItems; i++) {
JSValue value = values[-i];
if (bitVector.get(i)) {
// We are spreading.
JSFixedArray* array = jsCast<JSFixedArray*>(value);
for (unsigned i = 0; i < array->size(); i++) {
RELEASE_ASSERT(array->get(i));
result->putDirectIndex(exec, index, array->get(i));
CHECK_EXCEPTION();
++index;
}
} else {
// We are not spreading.
result->putDirectIndex(exec, index, value);
CHECK_EXCEPTION();
++index;
}
}
RETURN(result);
}
SLOW_PATH_DECL(slow_path_new_array_buffer)
{
BEGIN();
auto bytecode = pc->as<OpNewArrayBuffer>();
ASSERT(exec->codeBlock()->isConstantRegisterIndex(bytecode.m_immutableButterfly.offset()));
JSImmutableButterfly* immutableButterfly = bitwise_cast<JSImmutableButterfly*>(GET_C(bytecode.m_immutableButterfly).jsValue().asCell());
auto& profile = bytecode.metadata(exec).m_arrayAllocationProfile;
IndexingType indexingMode = profile.selectIndexingType();
Structure* structure = exec->lexicalGlobalObject()->arrayStructureForIndexingTypeDuringAllocation(indexingMode);
ASSERT(isCopyOnWrite(indexingMode));
ASSERT(!structure->outOfLineCapacity());
if (UNLIKELY(immutableButterfly->indexingMode() != indexingMode)) {
auto* newButterfly = JSImmutableButterfly::create(vm, indexingMode, immutableButterfly->length());
for (unsigned i = 0; i < immutableButterfly->length(); ++i)
newButterfly->setIndex(vm, i, immutableButterfly->get(i));
immutableButterfly = newButterfly;
CodeBlock* codeBlock = exec->codeBlock();
// FIXME: This is kinda gross and only works because we can't inline new_array_bufffer in the baseline.
// We also cannot allocate a new butterfly from compilation threads since it's invalid to allocate cells from
// a compilation thread.
WTF::storeStoreFence();
codeBlock->constantRegister(bytecode.m_immutableButterfly.offset()).set(vm, codeBlock, immutableButterfly);
WTF::storeStoreFence();
}
JSArray* result = CommonSlowPaths::allocateNewArrayBuffer(vm, structure, immutableButterfly);
ASSERT(isCopyOnWrite(result->indexingMode()) || exec->lexicalGlobalObject()->isHavingABadTime());
ArrayAllocationProfile::updateLastAllocationFor(&profile, result);
RETURN(result);
}
SLOW_PATH_DECL(slow_path_spread)
{
BEGIN();
auto bytecode = pc->as<OpSpread>();
JSValue iterable = GET_C(bytecode.m_argument).jsValue();
if (iterable.isCell() && isJSArray(iterable.asCell())) {
JSArray* array = jsCast<JSArray*>(iterable);
if (array->isIteratorProtocolFastAndNonObservable()) {
// JSFixedArray::createFromArray does not consult the prototype chain,
// so we must be sure that not consulting the prototype chain would
// produce the same value during iteration.
RETURN(JSFixedArray::createFromArray(exec, vm, array));
}
}
JSGlobalObject* globalObject = exec->lexicalGlobalObject();
JSArray* array;
{
JSFunction* iterationFunction = globalObject->iteratorProtocolFunction();
CallData callData;
CallType callType = JSC::getCallData(vm, iterationFunction, callData);
ASSERT(callType != CallType::None);
MarkedArgumentBuffer arguments;
arguments.append(iterable);
ASSERT(!arguments.hasOverflowed());
JSValue arrayResult = call(exec, iterationFunction, callType, callData, jsNull(), arguments);
CHECK_EXCEPTION();
array = jsCast<JSArray*>(arrayResult);
}
RETURN(JSFixedArray::createFromArray(exec, vm, array));
}
} // namespace JSC