| /* |
| * Copyright (C) 2012, Google Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| |
| #if ENABLE(WEB_AUDIO) |
| |
| #include "OscillatorNode.h" |
| |
| #include "AudioNodeOutput.h" |
| #include "AudioParam.h" |
| #include "PeriodicWave.h" |
| #include "VectorMath.h" |
| #include <wtf/IsoMallocInlines.h> |
| |
| namespace WebCore { |
| |
| using namespace VectorMath; |
| |
| WTF_MAKE_ISO_ALLOCATED_IMPL(OscillatorNode); |
| |
| PeriodicWave* OscillatorNode::s_periodicWaveSine = nullptr; |
| PeriodicWave* OscillatorNode::s_periodicWaveSquare = nullptr; |
| PeriodicWave* OscillatorNode::s_periodicWaveSawtooth = nullptr; |
| PeriodicWave* OscillatorNode::s_periodicWaveTriangle = nullptr; |
| |
| Ref<OscillatorNode> OscillatorNode::create(AudioContext& context, float sampleRate) |
| { |
| return adoptRef(*new OscillatorNode(context, sampleRate)); |
| } |
| |
| OscillatorNode::OscillatorNode(AudioContext& context, float sampleRate) |
| : AudioScheduledSourceNode(context, sampleRate) |
| , m_firstRender(true) |
| , m_virtualReadIndex(0) |
| , m_phaseIncrements(AudioNode::ProcessingSizeInFrames) |
| , m_detuneValues(AudioNode::ProcessingSizeInFrames) |
| { |
| setNodeType(NodeTypeOscillator); |
| |
| // Use musical pitch standard A440 as a default. |
| m_frequency = AudioParam::create(context, "frequency", 440, 0, 100000); |
| // Default to no detuning. |
| m_detune = AudioParam::create(context, "detune", 0, -4800, 4800); |
| |
| // Sets up default wave. |
| setType(m_type); |
| |
| // An oscillator is always mono. |
| addOutput(makeUnique<AudioNodeOutput>(this, 1)); |
| |
| initialize(); |
| } |
| |
| OscillatorNode::~OscillatorNode() |
| { |
| uninitialize(); |
| } |
| |
| ExceptionOr<void> OscillatorNode::setType(Type type) |
| { |
| PeriodicWave* periodicWave = nullptr; |
| |
| ALWAYS_LOG(LOGIDENTIFIER, type); |
| |
| switch (type) { |
| case Type::Sine: |
| if (!s_periodicWaveSine) |
| s_periodicWaveSine = &PeriodicWave::createSine(sampleRate()).leakRef(); |
| periodicWave = s_periodicWaveSine; |
| break; |
| case Type::Square: |
| if (!s_periodicWaveSquare) |
| s_periodicWaveSquare = &PeriodicWave::createSquare(sampleRate()).leakRef(); |
| periodicWave = s_periodicWaveSquare; |
| break; |
| case Type::Sawtooth: |
| if (!s_periodicWaveSawtooth) |
| s_periodicWaveSawtooth = &PeriodicWave::createSawtooth(sampleRate()).leakRef(); |
| periodicWave = s_periodicWaveSawtooth; |
| break; |
| case Type::Triangle: |
| if (!s_periodicWaveTriangle) |
| s_periodicWaveTriangle = &PeriodicWave::createTriangle(sampleRate()).leakRef(); |
| periodicWave = s_periodicWaveTriangle; |
| break; |
| case Type::Custom: |
| if (m_type != Type::Custom) |
| return Exception { InvalidStateError }; |
| return { }; |
| } |
| |
| setPeriodicWave(periodicWave); |
| m_type = type; |
| |
| return { }; |
| } |
| |
| bool OscillatorNode::calculateSampleAccuratePhaseIncrements(size_t framesToProcess) |
| { |
| bool isGood = framesToProcess <= m_phaseIncrements.size() && framesToProcess <= m_detuneValues.size(); |
| ASSERT(isGood); |
| if (!isGood) |
| return false; |
| |
| if (m_firstRender) { |
| m_firstRender = false; |
| m_frequency->resetSmoothedValue(); |
| m_detune->resetSmoothedValue(); |
| } |
| |
| bool hasSampleAccurateValues = false; |
| bool hasFrequencyChanges = false; |
| float* phaseIncrements = m_phaseIncrements.data(); |
| |
| float finalScale = m_periodicWave->rateScale(); |
| |
| if (m_frequency->hasSampleAccurateValues()) { |
| hasSampleAccurateValues = true; |
| hasFrequencyChanges = true; |
| |
| // Get the sample-accurate frequency values and convert to phase increments. |
| // They will be converted to phase increments below. |
| m_frequency->calculateSampleAccurateValues(phaseIncrements, framesToProcess); |
| } else { |
| // Handle ordinary parameter smoothing/de-zippering if there are no scheduled changes. |
| m_frequency->smooth(); |
| float frequency = m_frequency->smoothedValue(); |
| finalScale *= frequency; |
| } |
| |
| if (m_detune->hasSampleAccurateValues()) { |
| hasSampleAccurateValues = true; |
| |
| // Get the sample-accurate detune values. |
| float* detuneValues = hasFrequencyChanges ? m_detuneValues.data() : phaseIncrements; |
| m_detune->calculateSampleAccurateValues(detuneValues, framesToProcess); |
| |
| // Convert from cents to rate scalar. |
| float k = 1.0 / 1200; |
| vsmul(detuneValues, 1, &k, detuneValues, 1, framesToProcess); |
| for (unsigned i = 0; i < framesToProcess; ++i) |
| detuneValues[i] = powf(2, detuneValues[i]); // FIXME: converting to expf() will be faster. |
| |
| if (hasFrequencyChanges) { |
| // Multiply frequencies by detune scalings. |
| vmul(detuneValues, 1, phaseIncrements, 1, phaseIncrements, 1, framesToProcess); |
| } |
| } else { |
| // Handle ordinary parameter smoothing/de-zippering if there are no scheduled changes. |
| m_detune->smooth(); |
| float detune = m_detune->smoothedValue(); |
| float detuneScale = powf(2, detune / 1200); |
| finalScale *= detuneScale; |
| } |
| |
| if (hasSampleAccurateValues) { |
| // Convert from frequency to wave increment. |
| vsmul(phaseIncrements, 1, &finalScale, phaseIncrements, 1, framesToProcess); |
| } |
| |
| return hasSampleAccurateValues; |
| } |
| |
| void OscillatorNode::process(size_t framesToProcess) |
| { |
| auto& outputBus = *output(0)->bus(); |
| |
| if (!isInitialized() || !outputBus.numberOfChannels()) { |
| outputBus.zero(); |
| return; |
| } |
| |
| ASSERT(framesToProcess <= m_phaseIncrements.size()); |
| if (framesToProcess > m_phaseIncrements.size()) |
| return; |
| |
| // The audio thread can't block on this lock, so we use std::try_to_lock instead. |
| std::unique_lock<Lock> lock(m_processMutex, std::try_to_lock); |
| if (!lock.owns_lock()) { |
| // Too bad - the try_lock() failed. We must be in the middle of changing wave-tables. |
| outputBus.zero(); |
| return; |
| } |
| |
| // We must access m_periodicWave only inside the lock. |
| if (!m_periodicWave.get()) { |
| outputBus.zero(); |
| return; |
| } |
| |
| size_t quantumFrameOffset = 0; |
| size_t nonSilentFramesToProcess = 0; |
| updateSchedulingInfo(framesToProcess, outputBus, quantumFrameOffset, nonSilentFramesToProcess); |
| |
| if (!nonSilentFramesToProcess) { |
| outputBus.zero(); |
| return; |
| } |
| |
| unsigned periodicWaveSize = m_periodicWave->periodicWaveSize(); |
| double invPeriodicWaveSize = 1.0 / periodicWaveSize; |
| |
| float* destP = outputBus.channel(0)->mutableData(); |
| |
| ASSERT(quantumFrameOffset <= framesToProcess); |
| |
| // We keep virtualReadIndex double-precision since we're accumulating values. |
| double virtualReadIndex = m_virtualReadIndex; |
| |
| float rateScale = m_periodicWave->rateScale(); |
| float invRateScale = 1 / rateScale; |
| bool hasSampleAccurateValues = calculateSampleAccuratePhaseIncrements(framesToProcess); |
| |
| float frequency = 0; |
| float* higherWaveData = nullptr; |
| float* lowerWaveData = nullptr; |
| float tableInterpolationFactor = 0; |
| |
| if (!hasSampleAccurateValues) { |
| frequency = m_frequency->smoothedValue(); |
| float detune = m_detune->smoothedValue(); |
| float detuneScale = powf(2, detune / 1200); |
| frequency *= detuneScale; |
| m_periodicWave->waveDataForFundamentalFrequency(frequency, lowerWaveData, higherWaveData, tableInterpolationFactor); |
| } |
| |
| float incr = frequency * rateScale; |
| float* phaseIncrements = m_phaseIncrements.data(); |
| |
| unsigned readIndexMask = periodicWaveSize - 1; |
| |
| // Start rendering at the correct offset. |
| destP += quantumFrameOffset; |
| int n = nonSilentFramesToProcess; |
| |
| while (n--) { |
| unsigned readIndex = static_cast<unsigned>(virtualReadIndex); |
| unsigned readIndex2 = readIndex + 1; |
| |
| // Contain within valid range. |
| readIndex = readIndex & readIndexMask; |
| readIndex2 = readIndex2 & readIndexMask; |
| |
| if (hasSampleAccurateValues) { |
| incr = *phaseIncrements++; |
| |
| frequency = invRateScale * incr; |
| m_periodicWave->waveDataForFundamentalFrequency(frequency, lowerWaveData, higherWaveData, tableInterpolationFactor); |
| } |
| |
| float sample1Lower = lowerWaveData[readIndex]; |
| float sample2Lower = lowerWaveData[readIndex2]; |
| float sample1Higher = higherWaveData[readIndex]; |
| float sample2Higher = higherWaveData[readIndex2]; |
| |
| // Linearly interpolate within each table (lower and higher). |
| float interpolationFactor = static_cast<float>(virtualReadIndex) - readIndex; |
| float sampleHigher = (1 - interpolationFactor) * sample1Higher + interpolationFactor * sample2Higher; |
| float sampleLower = (1 - interpolationFactor) * sample1Lower + interpolationFactor * sample2Lower; |
| |
| // Then interpolate between the two tables. |
| float sample = (1 - tableInterpolationFactor) * sampleHigher + tableInterpolationFactor * sampleLower; |
| |
| *destP++ = sample; |
| |
| // Increment virtual read index and wrap virtualReadIndex into the range 0 -> periodicWaveSize. |
| virtualReadIndex += incr; |
| virtualReadIndex -= floor(virtualReadIndex * invPeriodicWaveSize) * periodicWaveSize; |
| } |
| |
| m_virtualReadIndex = virtualReadIndex; |
| |
| outputBus.clearSilentFlag(); |
| } |
| |
| void OscillatorNode::reset() |
| { |
| m_virtualReadIndex = 0; |
| } |
| |
| void OscillatorNode::setPeriodicWave(PeriodicWave* periodicWave) |
| { |
| ALWAYS_LOG(LOGIDENTIFIER, "sample rate = ", periodicWave ? periodicWave->sampleRate() : 0, ", wave size = ", periodicWave ? periodicWave->periodicWaveSize() : 0, ", rate scale = ", periodicWave ? periodicWave->rateScale() : 0); |
| ASSERT(isMainThread()); |
| |
| // This synchronizes with process(). |
| std::lock_guard<Lock> lock(m_processMutex); |
| m_periodicWave = periodicWave; |
| m_type = Type::Custom; |
| } |
| |
| bool OscillatorNode::propagatesSilence() const |
| { |
| return !isPlayingOrScheduled() || hasFinished() || !m_periodicWave.get(); |
| } |
| |
| } // namespace WebCore |
| |
| #endif // ENABLE(WEB_AUDIO) |