| /* |
| * Copyright (C) 2008, 2009, 2012-2015 Apple Inc. All rights reserved. |
| * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca> |
| * Copyright (C) 2012 Igalia, S.L. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| * its contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "BytecodeGenerator.h" |
| |
| #include "BuiltinExecutables.h" |
| #include "Interpreter.h" |
| #include "JSFunction.h" |
| #include "JSLexicalEnvironment.h" |
| #include "JSTemplateRegistryKey.h" |
| #include "LowLevelInterpreter.h" |
| #include "JSCInlines.h" |
| #include "Options.h" |
| #include "StackAlignment.h" |
| #include "StrongInlines.h" |
| #include "UnlinkedCodeBlock.h" |
| #include "UnlinkedInstructionStream.h" |
| #include <wtf/StdLibExtras.h> |
| #include <wtf/text/WTFString.h> |
| |
| using namespace std; |
| |
| namespace JSC { |
| |
| void Label::setLocation(unsigned location) |
| { |
| m_location = location; |
| |
| unsigned size = m_unresolvedJumps.size(); |
| for (unsigned i = 0; i < size; ++i) |
| m_generator.instructions()[m_unresolvedJumps[i].second].u.operand = m_location - m_unresolvedJumps[i].first; |
| } |
| |
| ParserError BytecodeGenerator::generate() |
| { |
| SamplingRegion samplingRegion("Bytecode Generation"); |
| |
| m_codeBlock->setThisRegister(m_thisRegister.virtualRegister()); |
| |
| // If we have declared a variable named "arguments" and we are using arguments then we should |
| // perform that assignment now. |
| if (m_needToInitializeArguments) |
| initializeVariable(variable(propertyNames().arguments), m_argumentsRegister); |
| |
| if (m_restParameter) |
| m_restParameter->emit(*this); |
| |
| { |
| RefPtr<RegisterID> temp = newTemporary(); |
| RefPtr<RegisterID> globalScope; |
| for (auto functionPair : m_functionsToInitialize) { |
| FunctionMetadataNode* metadata = functionPair.first; |
| FunctionVariableType functionType = functionPair.second; |
| emitNewFunction(temp.get(), metadata); |
| if (functionType == NormalFunctionVariable) |
| initializeVariable(variable(metadata->ident()), temp.get()); |
| else if (functionType == GlobalFunctionVariable) { |
| if (!globalScope) { |
| // We know this will resolve to the global object because our parser/global initialization code |
| // doesn't allow let/const/class variables to have the same names as functions. |
| RefPtr<RegisterID> globalObjectScope = emitResolveScope(nullptr, Variable(metadata->ident())); |
| globalScope = newBlockScopeVariable(); |
| emitMove(globalScope.get(), globalObjectScope.get()); |
| } |
| emitPutToScope(globalScope.get(), Variable(metadata->ident()), temp.get(), ThrowIfNotFound, NotInitialization); |
| } else |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| } |
| |
| bool callingClassConstructor = constructorKind() != ConstructorKind::None && !isConstructor(); |
| if (!callingClassConstructor) |
| m_scopeNode->emitBytecode(*this); |
| |
| m_staticPropertyAnalyzer.kill(); |
| |
| for (unsigned i = 0; i < m_tryRanges.size(); ++i) { |
| TryRange& range = m_tryRanges[i]; |
| int start = range.start->bind(); |
| int end = range.end->bind(); |
| |
| // This will happen for empty try blocks and for some cases of finally blocks: |
| // |
| // try { |
| // try { |
| // } finally { |
| // return 42; |
| // // *HERE* |
| // } |
| // } finally { |
| // print("things"); |
| // } |
| // |
| // The return will pop scopes to execute the outer finally block. But this includes |
| // popping the try context for the inner try. The try context is live in the fall-through |
| // part of the finally block not because we will emit a handler that overlaps the finally, |
| // but because we haven't yet had a chance to plant the catch target. Then when we finish |
| // emitting code for the outer finally block, we repush the try contex, this time with a |
| // new start index. But that means that the start index for the try range corresponding |
| // to the inner-finally-following-the-return (marked as "*HERE*" above) will be greater |
| // than the end index of the try block. This is harmless since end < start handlers will |
| // never get matched in our logic, but we do the runtime a favor and choose to not emit |
| // such handlers at all. |
| if (end <= start) |
| continue; |
| |
| ASSERT(range.tryData->handlerType != HandlerType::Illegal); |
| UnlinkedHandlerInfo info(static_cast<uint32_t>(start), static_cast<uint32_t>(end), |
| static_cast<uint32_t>(range.tryData->target->bind()), range.tryData->handlerType); |
| m_codeBlock->addExceptionHandler(info); |
| } |
| |
| m_codeBlock->setInstructions(std::make_unique<UnlinkedInstructionStream>(m_instructions)); |
| |
| m_codeBlock->shrinkToFit(); |
| |
| if (m_expressionTooDeep) |
| return ParserError(ParserError::OutOfMemory); |
| return ParserError(ParserError::ErrorNone); |
| } |
| |
| BytecodeGenerator::BytecodeGenerator(VM& vm, ProgramNode* programNode, UnlinkedProgramCodeBlock* codeBlock, DebuggerMode debuggerMode, ProfilerMode profilerMode, const VariableEnvironment* parentScopeTDZVariables) |
| : m_shouldEmitDebugHooks(Options::forceDebuggerBytecodeGeneration() || debuggerMode == DebuggerOn) |
| , m_shouldEmitProfileHooks(Options::forceProfilerBytecodeGeneration() || profilerMode == ProfilerOn) |
| , m_scopeNode(programNode) |
| , m_codeBlock(vm, codeBlock) |
| , m_thisRegister(CallFrame::thisArgumentOffset()) |
| , m_codeType(GlobalCode) |
| , m_vm(&vm) |
| , m_isDerivedConstructorContext(false) |
| , m_needsToUpdateArrowFunctionContext(programNode->usesArrowFunction() || programNode->usesEval()) |
| { |
| ASSERT_UNUSED(parentScopeTDZVariables, !parentScopeTDZVariables->size()); |
| |
| for (auto& constantRegister : m_linkTimeConstantRegisters) |
| constantRegister = nullptr; |
| |
| allocateCalleeSaveSpace(); |
| |
| m_codeBlock->setNumParameters(1); // Allocate space for "this" |
| |
| emitOpcode(op_enter); |
| |
| allocateAndEmitScope(); |
| |
| const FunctionStack& functionStack = programNode->functionStack(); |
| |
| for (size_t i = 0; i < functionStack.size(); ++i) { |
| FunctionMetadataNode* function = functionStack[i]; |
| m_functionsToInitialize.append(std::make_pair(function, GlobalFunctionVariable)); |
| } |
| if (Options::validateBytecode()) { |
| for (auto& entry : programNode->varDeclarations()) |
| RELEASE_ASSERT(entry.value.isVar()); |
| } |
| codeBlock->setVariableDeclarations(programNode->varDeclarations()); |
| codeBlock->setLexicalDeclarations(programNode->lexicalVariables()); |
| // Even though this program may have lexical variables that go under TDZ, when linking the get_from_scope/put_to_scope |
| // operations we emit we will have ResolveTypes that implictly do TDZ checks. Therefore, we don't need |
| // additional TDZ checks on top of those. This is why we can omit pushing programNode->lexicalVariables() |
| // to the TDZ stack. |
| |
| if (needsToUpdateArrowFunctionContext()) { |
| initializeArrowFunctionContextScopeIfNeeded(); |
| emitPutThisToArrowFunctionContextScope(); |
| } |
| } |
| |
| BytecodeGenerator::BytecodeGenerator(VM& vm, FunctionNode* functionNode, UnlinkedFunctionCodeBlock* codeBlock, DebuggerMode debuggerMode, ProfilerMode profilerMode, const VariableEnvironment* parentScopeTDZVariables) |
| : m_shouldEmitDebugHooks(Options::forceDebuggerBytecodeGeneration() || debuggerMode == DebuggerOn) |
| , m_shouldEmitProfileHooks(Options::forceProfilerBytecodeGeneration() || profilerMode == ProfilerOn) |
| , m_scopeNode(functionNode) |
| , m_codeBlock(vm, codeBlock) |
| , m_codeType(FunctionCode) |
| , m_vm(&vm) |
| , m_isBuiltinFunction(codeBlock->isBuiltinFunction()) |
| , m_usesNonStrictEval(codeBlock->usesEval() && !codeBlock->isStrictMode()) |
| // FIXME: We should be able to have tail call elimination with the profiler |
| // enabled. This is currently not possible because the profiler expects |
| // op_will_call / op_did_call pairs before and after a call, which are not |
| // compatible with tail calls (we have no way of emitting op_did_call). |
| // https://bugs.webkit.org/show_bug.cgi?id=148819 |
| , m_inTailPosition(Options::useTailCalls() && !isConstructor() && constructorKind() == ConstructorKind::None && isStrictMode() && !m_shouldEmitProfileHooks) |
| , m_isDerivedConstructorContext(codeBlock->isDerivedConstructorContext()) |
| , m_needsToUpdateArrowFunctionContext(functionNode->usesArrowFunction() || functionNode->usesEval()) |
| { |
| for (auto& constantRegister : m_linkTimeConstantRegisters) |
| constantRegister = nullptr; |
| |
| if (m_isBuiltinFunction) |
| m_shouldEmitDebugHooks = false; |
| |
| allocateCalleeSaveSpace(); |
| |
| SymbolTable* functionSymbolTable = SymbolTable::create(*m_vm); |
| functionSymbolTable->setUsesNonStrictEval(m_usesNonStrictEval); |
| int symbolTableConstantIndex = addConstantValue(functionSymbolTable)->index(); |
| |
| Vector<Identifier> boundParameterProperties; |
| FunctionParameters& parameters = *functionNode->parameters(); |
| if (!parameters.hasDefaultParameterValues()) { |
| // If we do have default parameters, they will be allocated in a separate scope. |
| for (size_t i = 0; i < parameters.size(); i++) { |
| auto pattern = parameters.at(i).first; |
| if (pattern->isBindingNode()) |
| continue; |
| pattern->collectBoundIdentifiers(boundParameterProperties); |
| } |
| } |
| |
| bool containsArrowOrEvalButNotInArrowBlock = needsToUpdateArrowFunctionContext() && !m_codeBlock->isArrowFunction(); |
| bool shouldCaptureSomeOfTheThings = m_shouldEmitDebugHooks || m_codeBlock->needsFullScopeChain() || containsArrowOrEvalButNotInArrowBlock; |
| bool shouldCaptureAllOfTheThings = m_shouldEmitDebugHooks || codeBlock->usesEval(); |
| bool needsArguments = functionNode->usesArguments() || codeBlock->usesEval(); |
| if (shouldCaptureAllOfTheThings) |
| functionNode->varDeclarations().markAllVariablesAsCaptured(); |
| |
| auto captures = [&] (UniquedStringImpl* uid) -> bool { |
| if (!shouldCaptureSomeOfTheThings) |
| return false; |
| if (needsArguments && uid == propertyNames().arguments.impl()) { |
| // Actually, we only need to capture the arguments object when we "need full activation" |
| // because of name scopes. But historically we did it this way, so for now we just preserve |
| // the old behavior. |
| // FIXME: https://bugs.webkit.org/show_bug.cgi?id=143072 |
| return true; |
| } |
| return functionNode->captures(uid); |
| }; |
| auto varKind = [&] (UniquedStringImpl* uid) -> VarKind { |
| return captures(uid) ? VarKind::Scope : VarKind::Stack; |
| }; |
| |
| emitOpcode(op_enter); |
| |
| allocateAndEmitScope(); |
| |
| m_calleeRegister.setIndex(JSStack::Callee); |
| |
| if (functionNameIsInScope(functionNode->ident(), functionNode->functionMode())) { |
| bool isDynamicScope = functionNameScopeIsDynamic(codeBlock->usesEval(), codeBlock->isStrictMode()); |
| bool isFunctionNameCaptured = captures(functionNode->ident().impl()); |
| bool markAsCaptured = isDynamicScope || isFunctionNameCaptured; |
| emitPushFunctionNameScope(functionNode->ident(), &m_calleeRegister, markAsCaptured); |
| } |
| |
| if (shouldCaptureSomeOfTheThings) { |
| m_lexicalEnvironmentRegister = addVar(); |
| // We can allocate the "var" environment if we don't have default parameter expressions. If we have |
| // default parameter expressions, we have to hold off on allocating the "var" environment because |
| // the parent scope of the "var" environment is the parameter environment. |
| if (!parameters.hasDefaultParameterValues()) |
| initializeVarLexicalEnvironment(symbolTableConstantIndex); |
| } |
| |
| // Make sure the code block knows about all of our parameters, and make sure that parameters |
| // needing destructuring are noted. |
| m_parameters.grow(parameters.size() + 1); // reserve space for "this" |
| m_thisRegister.setIndex(initializeNextParameter()->index()); // this |
| for (unsigned i = 0; i < parameters.size(); ++i) { |
| auto pattern = parameters.at(i).first; |
| if (pattern->isRestParameter()) { |
| RELEASE_ASSERT(!m_restParameter); |
| m_restParameter = static_cast<RestParameterNode*>(pattern); |
| } else |
| initializeNextParameter(); |
| } |
| |
| // Figure out some interesting facts about our arguments. |
| bool capturesAnyArgumentByName = false; |
| if (functionNode->hasCapturedVariables()) { |
| FunctionParameters& parameters = *functionNode->parameters(); |
| for (size_t i = 0; i < parameters.size(); ++i) { |
| auto pattern = parameters.at(i).first; |
| if (!pattern->isBindingNode()) |
| continue; |
| const Identifier& ident = static_cast<const BindingNode*>(pattern)->boundProperty(); |
| capturesAnyArgumentByName |= captures(ident.impl()); |
| } |
| } |
| |
| if (capturesAnyArgumentByName) |
| ASSERT(m_lexicalEnvironmentRegister); |
| |
| // Need to know what our functions are called. Parameters have some goofy behaviors when it |
| // comes to functions of the same name. |
| for (FunctionMetadataNode* function : functionNode->functionStack()) |
| m_functions.add(function->ident().impl()); |
| |
| if (needsArguments) { |
| // Create the arguments object now. We may put the arguments object into the activation if |
| // it is captured. Either way, we create two arguments object variables: one is our |
| // private variable that is immutable, and another that is the user-visible variable. The |
| // immutable one is only used here, or during formal parameter resolutions if we opt for |
| // DirectArguments. |
| |
| m_argumentsRegister = addVar(); |
| m_argumentsRegister->ref(); |
| } |
| |
| // http://www.ecma-international.org/ecma-262/6.0/index.html#sec-functiondeclarationinstantiation |
| // This implements IsSimpleParameterList in the Ecma 2015 spec. |
| // If IsSimpleParameterList is false, we will create a strict-mode like arguments object. |
| // IsSimpleParameterList is false if the argument list contains any default parameter values, |
| // a rest parameter, or any destructuring patterns. |
| // FIXME: Take into account destructuring to make isSimpleParameterList false. https://bugs.webkit.org/show_bug.cgi?id=151450 |
| bool isSimpleParameterList = !parameters.hasDefaultParameterValues() && !m_restParameter; |
| if (needsArguments && !codeBlock->isStrictMode() && isSimpleParameterList) { |
| // If we captured any formal parameter by name, then we use ScopedArguments. Otherwise we |
| // use DirectArguments. With ScopedArguments, we lift all of our arguments into the |
| // activation. |
| |
| if (capturesAnyArgumentByName) { |
| functionSymbolTable->setArgumentsLength(vm, parameters.size()); |
| |
| // For each parameter, we have two possibilities: |
| // Either it's a binding node with no function overlap, in which case it gets a name |
| // in the symbol table - or it just gets space reserved in the symbol table. Either |
| // way we lift the value into the scope. |
| for (unsigned i = 0; i < parameters.size(); ++i) { |
| ScopeOffset offset = functionSymbolTable->takeNextScopeOffset(); |
| functionSymbolTable->setArgumentOffset(vm, i, offset); |
| if (UniquedStringImpl* name = visibleNameForParameter(parameters.at(i).first)) { |
| VarOffset varOffset(offset); |
| SymbolTableEntry entry(varOffset); |
| // Stores to these variables via the ScopedArguments object will not do |
| // notifyWrite(), since that would be cumbersome. Also, watching formal |
| // parameters when "arguments" is in play is unlikely to be super profitable. |
| // So, we just disable it. |
| entry.disableWatching(); |
| functionSymbolTable->set(name, entry); |
| } |
| emitOpcode(op_put_to_scope); |
| instructions().append(m_lexicalEnvironmentRegister->index()); |
| instructions().append(UINT_MAX); |
| instructions().append(virtualRegisterForArgument(1 + i).offset()); |
| instructions().append(GetPutInfo(ThrowIfNotFound, LocalClosureVar, NotInitialization).operand()); |
| instructions().append(symbolTableConstantIndex); |
| instructions().append(offset.offset()); |
| } |
| |
| // This creates a scoped arguments object and copies the overflow arguments into the |
| // scope. It's the equivalent of calling ScopedArguments::createByCopying(). |
| emitOpcode(op_create_scoped_arguments); |
| instructions().append(m_argumentsRegister->index()); |
| instructions().append(m_lexicalEnvironmentRegister->index()); |
| } else { |
| // We're going to put all parameters into the DirectArguments object. First ensure |
| // that the symbol table knows that this is happening. |
| for (unsigned i = 0; i < parameters.size(); ++i) { |
| if (UniquedStringImpl* name = visibleNameForParameter(parameters.at(i).first)) |
| functionSymbolTable->set(name, SymbolTableEntry(VarOffset(DirectArgumentsOffset(i)))); |
| } |
| |
| emitOpcode(op_create_direct_arguments); |
| instructions().append(m_argumentsRegister->index()); |
| } |
| } else if (!parameters.hasDefaultParameterValues()) { |
| // Create the formal parameters the normal way. Any of them could be captured, or not. If |
| // captured, lift them into the scope. We can not do this if we have default parameter expressions |
| // because when default parameter expressions exist, they belong in their own lexical environment |
| // separate from the "var" lexical environment. |
| for (unsigned i = 0; i < parameters.size(); ++i) { |
| UniquedStringImpl* name = visibleNameForParameter(parameters.at(i).first); |
| if (!name) |
| continue; |
| |
| if (!captures(name)) { |
| // This is the easy case - just tell the symbol table about the argument. It will |
| // be accessed directly. |
| functionSymbolTable->set(name, SymbolTableEntry(VarOffset(virtualRegisterForArgument(1 + i)))); |
| continue; |
| } |
| |
| ScopeOffset offset = functionSymbolTable->takeNextScopeOffset(); |
| const Identifier& ident = |
| static_cast<const BindingNode*>(parameters.at(i).first)->boundProperty(); |
| functionSymbolTable->set(name, SymbolTableEntry(VarOffset(offset))); |
| |
| emitOpcode(op_put_to_scope); |
| instructions().append(m_lexicalEnvironmentRegister->index()); |
| instructions().append(addConstant(ident)); |
| instructions().append(virtualRegisterForArgument(1 + i).offset()); |
| instructions().append(GetPutInfo(ThrowIfNotFound, LocalClosureVar, NotInitialization).operand()); |
| instructions().append(symbolTableConstantIndex); |
| instructions().append(offset.offset()); |
| } |
| } |
| |
| if (needsArguments && (codeBlock->isStrictMode() || !isSimpleParameterList)) { |
| // Allocate an out-of-bands arguments object. |
| emitOpcode(op_create_out_of_band_arguments); |
| instructions().append(m_argumentsRegister->index()); |
| } |
| |
| // Now declare all variables. |
| for (const Identifier& ident : boundParameterProperties) { |
| ASSERT(!parameters.hasDefaultParameterValues()); |
| createVariable(ident, varKind(ident.impl()), functionSymbolTable); |
| } |
| for (FunctionMetadataNode* function : functionNode->functionStack()) { |
| const Identifier& ident = function->ident(); |
| createVariable(ident, varKind(ident.impl()), functionSymbolTable); |
| m_functionsToInitialize.append(std::make_pair(function, NormalFunctionVariable)); |
| } |
| for (auto& entry : functionNode->varDeclarations()) { |
| ASSERT(!entry.value.isLet() && !entry.value.isConst()); |
| if (!entry.value.isVar()) // This is either a parameter or callee. |
| continue; |
| // Variables named "arguments" are never const. |
| createVariable(Identifier::fromUid(m_vm, entry.key.get()), varKind(entry.key.get()), functionSymbolTable, IgnoreExisting); |
| } |
| |
| // There are some variables that need to be preinitialized to something other than Undefined: |
| // |
| // - "arguments": unless it's used as a function or parameter, this should refer to the |
| // arguments object. |
| // |
| // - functions: these always override everything else. |
| // |
| // The most logical way to do all of this is to initialize none of the variables until now, |
| // and then initialize them in BytecodeGenerator::generate() in such an order that the rules |
| // for how these things override each other end up holding. We would initialize "arguments" first, |
| // then all arguments, then the functions. |
| // |
| // But some arguments are already initialized by default, since if they aren't captured and we |
| // don't have "arguments" then we just point the symbol table at the stack slot of those |
| // arguments. We end up initializing the rest of the arguments that have an uncomplicated |
| // binding (i.e. don't involve destructuring) above when figuring out how to lay them out, |
| // because that's just the simplest thing. This means that when we initialize them, we have to |
| // watch out for the things that override arguments (namely, functions). |
| |
| // This is our final act of weirdness. "arguments" is overridden by everything except the |
| // callee. We add it to the symbol table if it's not already there and it's not an argument. |
| if (needsArguments) { |
| // If "arguments" is overridden by a function or destructuring parameter name, then it's |
| // OK for us to call createVariable() because it won't change anything. It's also OK for |
| // us to them tell BytecodeGenerator::generate() to write to it because it will do so |
| // before it initializes functions and destructuring parameters. But if "arguments" is |
| // overridden by a "simple" function parameter, then we have to bail: createVariable() |
| // would assert and BytecodeGenerator::generate() would write the "arguments" after the |
| // argument value had already been properly initialized. |
| |
| bool haveParameterNamedArguments = false; |
| for (unsigned i = 0; i < parameters.size(); ++i) { |
| UniquedStringImpl* name = visibleNameForParameter(parameters.at(i).first); |
| if (name == propertyNames().arguments.impl()) { |
| haveParameterNamedArguments = true; |
| break; |
| } |
| } |
| |
| if (!haveParameterNamedArguments) { |
| createVariable( |
| propertyNames().arguments, varKind(propertyNames().arguments.impl()), functionSymbolTable); |
| m_needToInitializeArguments = true; |
| } |
| } |
| |
| m_newTargetRegister = addVar(); |
| if (!codeBlock->isArrowFunction()) { |
| if (isConstructor()) { |
| emitMove(m_newTargetRegister, &m_thisRegister); |
| if (constructorKind() == ConstructorKind::Derived) |
| emitMoveEmptyValue(&m_thisRegister); |
| else |
| emitCreateThis(&m_thisRegister); |
| } else if (constructorKind() != ConstructorKind::None) { |
| emitThrowTypeError("Cannot call a class constructor"); |
| } else if (functionNode->usesThis() || codeBlock->usesEval()) { |
| m_codeBlock->addPropertyAccessInstruction(instructions().size()); |
| emitOpcode(op_to_this); |
| instructions().append(kill(&m_thisRegister)); |
| instructions().append(0); |
| instructions().append(0); |
| } |
| } else if (functionNode->usesThis()) |
| emitLoadThisFromArrowFunctionLexicalEnvironment(); |
| |
| // All "addVar()"s needs to happen before "initializeDefaultParameterValuesAndSetupFunctionScopeStack()" is called |
| // because a function's default parameter ExpressionNodes will use temporary registers. |
| m_TDZStack.append(std::make_pair(*parentScopeTDZVariables, false)); |
| initializeDefaultParameterValuesAndSetupFunctionScopeStack(parameters, functionNode, functionSymbolTable, symbolTableConstantIndex, captures); |
| |
| if (needsToUpdateArrowFunctionContext() && !codeBlock->isArrowFunction()) { |
| initializeArrowFunctionContextScopeIfNeeded(functionSymbolTable); |
| emitPutThisToArrowFunctionContextScope(); |
| emitPutNewTargetToArrowFunctionContextScope(); |
| emitPutDerivedConstructorToArrowFunctionContextScope(); |
| } |
| |
| pushLexicalScope(m_scopeNode, true); |
| } |
| |
| BytecodeGenerator::BytecodeGenerator(VM& vm, EvalNode* evalNode, UnlinkedEvalCodeBlock* codeBlock, DebuggerMode debuggerMode, ProfilerMode profilerMode, const VariableEnvironment* parentScopeTDZVariables) |
| : m_shouldEmitDebugHooks(Options::forceDebuggerBytecodeGeneration() || debuggerMode == DebuggerOn) |
| , m_shouldEmitProfileHooks(Options::forceProfilerBytecodeGeneration() || profilerMode == ProfilerOn) |
| , m_scopeNode(evalNode) |
| , m_codeBlock(vm, codeBlock) |
| , m_thisRegister(CallFrame::thisArgumentOffset()) |
| , m_codeType(EvalCode) |
| , m_vm(&vm) |
| , m_usesNonStrictEval(codeBlock->usesEval() && !codeBlock->isStrictMode()) |
| , m_isDerivedConstructorContext(codeBlock->isDerivedConstructorContext()) |
| , m_needsToUpdateArrowFunctionContext(evalNode->usesArrowFunction() || evalNode->usesEval()) |
| { |
| for (auto& constantRegister : m_linkTimeConstantRegisters) |
| constantRegister = nullptr; |
| |
| allocateCalleeSaveSpace(); |
| |
| m_codeBlock->setNumParameters(1); |
| |
| emitOpcode(op_enter); |
| |
| allocateAndEmitScope(); |
| |
| const DeclarationStacks::FunctionStack& functionStack = evalNode->functionStack(); |
| for (size_t i = 0; i < functionStack.size(); ++i) |
| m_codeBlock->addFunctionDecl(makeFunction(functionStack[i])); |
| |
| const VariableEnvironment& varDeclarations = evalNode->varDeclarations(); |
| unsigned numVariables = varDeclarations.size(); |
| Vector<Identifier, 0, UnsafeVectorOverflow> variables; |
| variables.reserveCapacity(numVariables); |
| for (auto& entry : varDeclarations) { |
| ASSERT(entry.value.isVar()); |
| ASSERT(entry.key->isAtomic() || entry.key->isSymbol()); |
| variables.append(Identifier::fromUid(m_vm, entry.key.get())); |
| } |
| codeBlock->adoptVariables(variables); |
| |
| m_TDZStack.append(std::make_pair(*parentScopeTDZVariables, false)); |
| |
| if (codeBlock->isArrowFunctionContext() && evalNode->usesThis()) |
| emitLoadThisFromArrowFunctionLexicalEnvironment(); |
| |
| if (needsToUpdateArrowFunctionContext() && !codeBlock->isArrowFunctionContext()) { |
| initializeArrowFunctionContextScopeIfNeeded(); |
| emitPutThisToArrowFunctionContextScope(); |
| } |
| |
| pushLexicalScope(m_scopeNode, true); |
| } |
| |
| BytecodeGenerator::BytecodeGenerator(VM& vm, ModuleProgramNode* moduleProgramNode, UnlinkedModuleProgramCodeBlock* codeBlock, DebuggerMode debuggerMode, ProfilerMode profilerMode, const VariableEnvironment* parentScopeTDZVariables) |
| : m_shouldEmitDebugHooks(Options::forceDebuggerBytecodeGeneration() || debuggerMode == DebuggerOn) |
| , m_shouldEmitProfileHooks(Options::forceProfilerBytecodeGeneration() || profilerMode == ProfilerOn) |
| , m_scopeNode(moduleProgramNode) |
| , m_codeBlock(vm, codeBlock) |
| , m_thisRegister(CallFrame::thisArgumentOffset()) |
| , m_codeType(ModuleCode) |
| , m_vm(&vm) |
| , m_usesNonStrictEval(false) |
| , m_isDerivedConstructorContext(false) |
| , m_needsToUpdateArrowFunctionContext(moduleProgramNode->usesArrowFunction() || moduleProgramNode->usesEval()) |
| { |
| ASSERT_UNUSED(parentScopeTDZVariables, !parentScopeTDZVariables->size()); |
| |
| for (auto& constantRegister : m_linkTimeConstantRegisters) |
| constantRegister = nullptr; |
| |
| if (m_isBuiltinFunction) |
| m_shouldEmitDebugHooks = false; |
| |
| allocateCalleeSaveSpace(); |
| |
| SymbolTable* moduleEnvironmentSymbolTable = SymbolTable::create(*m_vm); |
| moduleEnvironmentSymbolTable->setUsesNonStrictEval(m_usesNonStrictEval); |
| moduleEnvironmentSymbolTable->setScopeType(SymbolTable::ScopeType::LexicalScope); |
| |
| bool shouldCaptureSomeOfTheThings = m_shouldEmitDebugHooks || m_codeBlock->needsFullScopeChain(); |
| bool shouldCaptureAllOfTheThings = m_shouldEmitDebugHooks || codeBlock->usesEval(); |
| if (shouldCaptureAllOfTheThings) |
| moduleProgramNode->varDeclarations().markAllVariablesAsCaptured(); |
| |
| auto captures = [&] (UniquedStringImpl* uid) -> bool { |
| if (!shouldCaptureSomeOfTheThings) |
| return false; |
| return moduleProgramNode->captures(uid); |
| }; |
| auto lookUpVarKind = [&] (UniquedStringImpl* uid, const VariableEnvironmentEntry& entry) -> VarKind { |
| // Allocate the exported variables in the module environment. |
| if (entry.isExported()) |
| return VarKind::Scope; |
| |
| // Allocate the namespace variables in the module environment to instantiate |
| // it from the outside of the module code. |
| if (entry.isImportedNamespace()) |
| return VarKind::Scope; |
| |
| if (entry.isCaptured()) |
| return VarKind::Scope; |
| return captures(uid) ? VarKind::Scope : VarKind::Stack; |
| }; |
| |
| emitOpcode(op_enter); |
| |
| allocateAndEmitScope(); |
| |
| m_calleeRegister.setIndex(JSStack::Callee); |
| |
| m_codeBlock->setNumParameters(1); // Allocate space for "this" |
| |
| // Now declare all variables. |
| |
| for (auto& entry : moduleProgramNode->varDeclarations()) { |
| ASSERT(!entry.value.isLet() && !entry.value.isConst()); |
| if (!entry.value.isVar()) // This is either a parameter or callee. |
| continue; |
| // Imported bindings are not allocated in the module environment as usual variables' way. |
| // These references remain the "Dynamic" in the unlinked code block. Later, when linking |
| // the code block, we resolve the reference to the "ModuleVar". |
| if (entry.value.isImported() && !entry.value.isImportedNamespace()) |
| continue; |
| createVariable(Identifier::fromUid(m_vm, entry.key.get()), lookUpVarKind(entry.key.get(), entry.value), moduleEnvironmentSymbolTable, IgnoreExisting); |
| } |
| |
| VariableEnvironment& lexicalVariables = moduleProgramNode->lexicalVariables(); |
| instantiateLexicalVariables(lexicalVariables, moduleEnvironmentSymbolTable, ScopeRegisterType::Block, lookUpVarKind); |
| |
| // We keep the symbol table in the constant pool. |
| RegisterID* constantSymbolTable = nullptr; |
| if (vm.typeProfiler()) |
| constantSymbolTable = addConstantValue(moduleEnvironmentSymbolTable); |
| else |
| constantSymbolTable = addConstantValue(moduleEnvironmentSymbolTable->cloneScopePart(*m_vm)); |
| |
| m_TDZStack.append(std::make_pair(lexicalVariables, true)); |
| m_symbolTableStack.append(SymbolTableStackEntry { Strong<SymbolTable>(*m_vm, moduleEnvironmentSymbolTable), m_topMostScope, false, constantSymbolTable->index() }); |
| emitPrefillStackTDZVariables(lexicalVariables, moduleEnvironmentSymbolTable); |
| |
| // makeFunction assumes that there's correct TDZ stack entries. |
| // So it should be called after putting our lexical environment to the TDZ stack correctly. |
| |
| for (FunctionMetadataNode* function : moduleProgramNode->functionStack()) { |
| const auto& iterator = moduleProgramNode->varDeclarations().find(function->ident().impl()); |
| RELEASE_ASSERT(iterator != moduleProgramNode->varDeclarations().end()); |
| RELEASE_ASSERT(!iterator->value.isImported()); |
| |
| VarKind varKind = lookUpVarKind(iterator->key.get(), iterator->value); |
| if (varKind == VarKind::Scope) { |
| // http://www.ecma-international.org/ecma-262/6.0/#sec-moduledeclarationinstantiation |
| // Section 15.2.1.16.4, step 16-a-iv-1. |
| // All heap allocated function declarations should be instantiated when the module environment |
| // is created. They include the exported function declarations and not-exported-but-heap-allocated |
| // function declarations. This is required because exported function should be instantiated before |
| // executing the any module in the dependency graph. This enables the modules to link the imported |
| // bindings before executing the any module code. |
| // |
| // And since function declarations are instantiated before executing the module body code, the spec |
| // allows the functions inside the module to be executed before its module body is executed under |
| // the circular dependencies. The following is the example. |
| // |
| // Module A (executed first): |
| // import { b } from "B"; |
| // // Here, the module "B" is not executed yet, but the function declaration is already instantiated. |
| // // So we can call the function exported from "B". |
| // b(); |
| // |
| // export function a() { |
| // } |
| // |
| // Module B (executed second): |
| // import { a } from "A"; |
| // |
| // export function b() { |
| // c(); |
| // } |
| // |
| // // c is not exported, but since it is referenced from the b, we should instantiate it before |
| // // executing the "B" module code. |
| // function c() { |
| // a(); |
| // } |
| // |
| // Module EntryPoint (executed last): |
| // import "B"; |
| // import "A"; |
| // |
| m_codeBlock->addFunctionDecl(makeFunction(function)); |
| } else { |
| // Stack allocated functions can be allocated when executing the module's body. |
| m_functionsToInitialize.append(std::make_pair(function, NormalFunctionVariable)); |
| } |
| } |
| |
| // Remember the constant register offset to the top-most symbol table. This symbol table will be |
| // cloned in the code block linking. After that, to create the module environment, we retrieve |
| // the cloned symbol table from the linked code block by using this offset. |
| codeBlock->setModuleEnvironmentSymbolTableConstantRegisterOffset(constantSymbolTable->index()); |
| } |
| |
| BytecodeGenerator::~BytecodeGenerator() |
| { |
| } |
| |
| void BytecodeGenerator::initializeDefaultParameterValuesAndSetupFunctionScopeStack( |
| FunctionParameters& parameters, FunctionNode* functionNode, SymbolTable* functionSymbolTable, |
| int symbolTableConstantIndex, const std::function<bool (UniquedStringImpl*)>& captures) |
| { |
| Vector<std::pair<Identifier, RefPtr<RegisterID>>> valuesToMoveIntoVars; |
| if (parameters.hasDefaultParameterValues()) { |
| // Refer to the ES6 spec section 9.2.12: http://www.ecma-international.org/ecma-262/6.0/index.html#sec-functiondeclarationinstantiation |
| // This implements step 21. |
| VariableEnvironment environment; |
| Vector<Identifier> allParameterNames; |
| for (unsigned i = 0; i < parameters.size(); i++) |
| parameters.at(i).first->collectBoundIdentifiers(allParameterNames); |
| IdentifierSet parameterSet; |
| for (auto& ident : allParameterNames) { |
| parameterSet.add(ident.impl()); |
| auto addResult = environment.add(ident); |
| addResult.iterator->value.setIsLet(); // When we have default parameter expressions, parameters act like "let" variables. |
| if (captures(ident.impl())) |
| addResult.iterator->value.setIsCaptured(); |
| } |
| |
| // This implements step 25 of section 9.2.12. |
| pushLexicalScopeInternal(environment, true, nullptr, TDZRequirement::UnderTDZ, ScopeType::LetConstScope, ScopeRegisterType::Block); |
| |
| RefPtr<RegisterID> temp = newTemporary(); |
| for (unsigned i = 0; i < parameters.size(); i++) { |
| std::pair<DestructuringPatternNode*, ExpressionNode*> parameter = parameters.at(i); |
| if (parameter.first->isRestParameter()) |
| continue; |
| RefPtr<RegisterID> parameterValue = ®isterFor(virtualRegisterForArgument(1 + i)); |
| emitMove(temp.get(), parameterValue.get()); |
| if (parameter.second) { |
| RefPtr<RegisterID> condition = emitIsUndefined(newTemporary(), parameterValue.get()); |
| RefPtr<Label> skipDefaultParameterBecauseNotUndefined = newLabel(); |
| emitJumpIfFalse(condition.get(), skipDefaultParameterBecauseNotUndefined.get()); |
| emitNode(temp.get(), parameter.second); |
| emitLabel(skipDefaultParameterBecauseNotUndefined.get()); |
| } |
| |
| parameter.first->bindValue(*this, temp.get()); |
| } |
| |
| // Final act of weirdness for default parameters. If a "var" also |
| // has the same name as a parameter, it should start out as the |
| // value of that parameter. Note, though, that they will be distinct |
| // bindings. |
| // This is step 28 of section 9.2.12. |
| for (auto& entry : functionNode->varDeclarations()) { |
| if (!entry.value.isVar()) // This is either a parameter or callee. |
| continue; |
| |
| if (parameterSet.contains(entry.key)) { |
| Identifier ident = Identifier::fromUid(m_vm, entry.key.get()); |
| Variable var = variable(ident); |
| RegisterID* scope = emitResolveScope(nullptr, var); |
| RefPtr<RegisterID> value = emitGetFromScope(newTemporary(), scope, var, DoNotThrowIfNotFound); |
| valuesToMoveIntoVars.append(std::make_pair(ident, value)); |
| } |
| } |
| |
| // Functions with default parameter expressions must have a separate environment |
| // record for parameters and "var"s. The "var" environment record must have the |
| // parameter environment record as its parent. |
| // See step 28 of section 9.2.12. |
| if (m_lexicalEnvironmentRegister) |
| initializeVarLexicalEnvironment(symbolTableConstantIndex); |
| } |
| |
| if (m_lexicalEnvironmentRegister) |
| pushScopedControlFlowContext(); |
| m_symbolTableStack.append(SymbolTableStackEntry{ Strong<SymbolTable>(*m_vm, functionSymbolTable), m_lexicalEnvironmentRegister, false, symbolTableConstantIndex }); |
| |
| // This completes step 28 of section 9.2.12. |
| for (unsigned i = 0; i < valuesToMoveIntoVars.size(); i++) { |
| ASSERT(parameters.hasDefaultParameterValues()); |
| Variable var = variable(valuesToMoveIntoVars[i].first); |
| RegisterID* scope = emitResolveScope(nullptr, var); |
| emitPutToScope(scope, var, valuesToMoveIntoVars[i].second.get(), DoNotThrowIfNotFound, NotInitialization); |
| } |
| |
| if (!parameters.hasDefaultParameterValues()) { |
| ASSERT(!valuesToMoveIntoVars.size()); |
| // Initialize destructuring parameters the old way as if we don't have any default parameter values. |
| // If we have default parameter values, we handle this case above. |
| for (unsigned i = 0; i < parameters.size(); i++) { |
| DestructuringPatternNode* pattern = parameters.at(i).first; |
| if (!pattern->isBindingNode() && !pattern->isRestParameter()) { |
| RefPtr<RegisterID> parameterValue = ®isterFor(virtualRegisterForArgument(1 + i)); |
| pattern->bindValue(*this, parameterValue.get()); |
| } |
| } |
| } |
| } |
| |
| void BytecodeGenerator::initializeArrowFunctionContextScopeIfNeeded(SymbolTable* symbolTable) |
| { |
| if (m_arrowFunctionContextLexicalEnvironmentRegister != nullptr) |
| return; |
| |
| if (m_lexicalEnvironmentRegister != nullptr) { |
| m_arrowFunctionContextLexicalEnvironmentRegister = m_lexicalEnvironmentRegister; |
| |
| if (!m_codeBlock->isArrowFunction()) { |
| ScopeOffset offset; |
| |
| offset = symbolTable->takeNextScopeOffset(); |
| symbolTable->set(propertyNames().thisIdentifier.impl(), SymbolTableEntry(VarOffset(offset))); |
| |
| if (m_codeType == FunctionCode) { |
| offset = symbolTable->takeNextScopeOffset(); |
| symbolTable->set(propertyNames().newTargetLocalPrivateName.impl(), SymbolTableEntry(VarOffset(offset))); |
| } |
| |
| if (isConstructor() && constructorKind() == ConstructorKind::Derived) { |
| offset = symbolTable->takeNextScopeOffset(); |
| symbolTable->set(propertyNames().derivedConstructorPrivateName.impl(), SymbolTableEntry(VarOffset(offset))); |
| } |
| } |
| |
| return; |
| } |
| |
| VariableEnvironment environment; |
| auto addResult = environment.add(propertyNames().thisIdentifier); |
| addResult.iterator->value.setIsCaptured(); |
| addResult.iterator->value.setIsConst(); |
| |
| if (m_codeType == FunctionCode) { |
| auto addTarget = environment.add(propertyNames().newTargetLocalPrivateName); |
| addTarget.iterator->value.setIsCaptured(); |
| addTarget.iterator->value.setIsLet(); |
| } |
| |
| if (isConstructor() && constructorKind() == ConstructorKind::Derived) { |
| auto derivedConstructor = environment.add(propertyNames().derivedConstructorPrivateName); |
| derivedConstructor.iterator->value.setIsCaptured(); |
| derivedConstructor.iterator->value.setIsLet(); |
| } |
| |
| size_t size = m_symbolTableStack.size(); |
| pushLexicalScopeInternal(environment, true, nullptr, TDZRequirement::UnderTDZ, ScopeType::LetConstScope, ScopeRegisterType::Block); |
| |
| ASSERT_UNUSED(size, m_symbolTableStack.size() == size + 1); |
| |
| m_arrowFunctionContextLexicalEnvironmentRegister = m_symbolTableStack.last().m_scope; |
| } |
| |
| RegisterID* BytecodeGenerator::initializeNextParameter() |
| { |
| VirtualRegister reg = virtualRegisterForArgument(m_codeBlock->numParameters()); |
| RegisterID& parameter = registerFor(reg); |
| parameter.setIndex(reg.offset()); |
| m_codeBlock->addParameter(); |
| return ¶meter; |
| } |
| |
| void BytecodeGenerator::initializeVarLexicalEnvironment(int symbolTableConstantIndex) |
| { |
| RELEASE_ASSERT(m_lexicalEnvironmentRegister); |
| m_codeBlock->setActivationRegister(m_lexicalEnvironmentRegister->virtualRegister()); |
| emitOpcode(op_create_lexical_environment); |
| instructions().append(m_lexicalEnvironmentRegister->index()); |
| instructions().append(scopeRegister()->index()); |
| instructions().append(symbolTableConstantIndex); |
| instructions().append(addConstantValue(jsUndefined())->index()); |
| |
| emitOpcode(op_mov); |
| instructions().append(scopeRegister()->index()); |
| instructions().append(m_lexicalEnvironmentRegister->index()); |
| } |
| |
| UniquedStringImpl* BytecodeGenerator::visibleNameForParameter(DestructuringPatternNode* pattern) |
| { |
| if (pattern->isBindingNode()) { |
| const Identifier& ident = static_cast<const BindingNode*>(pattern)->boundProperty(); |
| if (!m_functions.contains(ident.impl())) |
| return ident.impl(); |
| } |
| return nullptr; |
| } |
| |
| RegisterID* BytecodeGenerator::newRegister() |
| { |
| m_calleeRegisters.append(virtualRegisterForLocal(m_calleeRegisters.size())); |
| int numCalleeRegisters = max<int>(m_codeBlock->m_numCalleeRegisters, m_calleeRegisters.size()); |
| numCalleeRegisters = WTF::roundUpToMultipleOf(stackAlignmentRegisters(), numCalleeRegisters); |
| m_codeBlock->m_numCalleeRegisters = numCalleeRegisters; |
| return &m_calleeRegisters.last(); |
| } |
| |
| void BytecodeGenerator::reclaimFreeRegisters() |
| { |
| while (m_calleeRegisters.size() && !m_calleeRegisters.last().refCount()) |
| m_calleeRegisters.removeLast(); |
| } |
| |
| RegisterID* BytecodeGenerator::newBlockScopeVariable() |
| { |
| reclaimFreeRegisters(); |
| |
| return newRegister(); |
| } |
| |
| RegisterID* BytecodeGenerator::newTemporary() |
| { |
| reclaimFreeRegisters(); |
| |
| RegisterID* result = newRegister(); |
| result->setTemporary(); |
| return result; |
| } |
| |
| LabelScopePtr BytecodeGenerator::newLabelScope(LabelScope::Type type, const Identifier* name) |
| { |
| // Reclaim free label scopes. |
| while (m_labelScopes.size() && !m_labelScopes.last().refCount()) |
| m_labelScopes.removeLast(); |
| |
| // Allocate new label scope. |
| LabelScope scope(type, name, labelScopeDepth(), newLabel(), type == LabelScope::Loop ? newLabel() : PassRefPtr<Label>()); // Only loops have continue targets. |
| m_labelScopes.append(scope); |
| return LabelScopePtr(m_labelScopes, m_labelScopes.size() - 1); |
| } |
| |
| PassRefPtr<Label> BytecodeGenerator::newLabel() |
| { |
| // Reclaim free label IDs. |
| while (m_labels.size() && !m_labels.last().refCount()) |
| m_labels.removeLast(); |
| |
| // Allocate new label ID. |
| m_labels.append(*this); |
| return &m_labels.last(); |
| } |
| |
| PassRefPtr<Label> BytecodeGenerator::emitLabel(Label* l0) |
| { |
| unsigned newLabelIndex = instructions().size(); |
| l0->setLocation(newLabelIndex); |
| |
| if (m_codeBlock->numberOfJumpTargets()) { |
| unsigned lastLabelIndex = m_codeBlock->lastJumpTarget(); |
| ASSERT(lastLabelIndex <= newLabelIndex); |
| if (newLabelIndex == lastLabelIndex) { |
| // Peephole optimizations have already been disabled by emitting the last label |
| return l0; |
| } |
| } |
| |
| m_codeBlock->addJumpTarget(newLabelIndex); |
| |
| // This disables peephole optimizations when an instruction is a jump target |
| m_lastOpcodeID = op_end; |
| return l0; |
| } |
| |
| void BytecodeGenerator::emitOpcode(OpcodeID opcodeID) |
| { |
| #ifndef NDEBUG |
| size_t opcodePosition = instructions().size(); |
| ASSERT(opcodePosition - m_lastOpcodePosition == opcodeLength(m_lastOpcodeID) || m_lastOpcodeID == op_end); |
| m_lastOpcodePosition = opcodePosition; |
| #endif |
| instructions().append(opcodeID); |
| m_lastOpcodeID = opcodeID; |
| } |
| |
| UnlinkedArrayProfile BytecodeGenerator::newArrayProfile() |
| { |
| return m_codeBlock->addArrayProfile(); |
| } |
| |
| UnlinkedArrayAllocationProfile BytecodeGenerator::newArrayAllocationProfile() |
| { |
| return m_codeBlock->addArrayAllocationProfile(); |
| } |
| |
| UnlinkedObjectAllocationProfile BytecodeGenerator::newObjectAllocationProfile() |
| { |
| return m_codeBlock->addObjectAllocationProfile(); |
| } |
| |
| UnlinkedValueProfile BytecodeGenerator::emitProfiledOpcode(OpcodeID opcodeID) |
| { |
| UnlinkedValueProfile result = m_codeBlock->addValueProfile(); |
| emitOpcode(opcodeID); |
| return result; |
| } |
| |
| void BytecodeGenerator::emitLoopHint() |
| { |
| emitOpcode(op_loop_hint); |
| } |
| |
| void BytecodeGenerator::retrieveLastBinaryOp(int& dstIndex, int& src1Index, int& src2Index) |
| { |
| ASSERT(instructions().size() >= 4); |
| size_t size = instructions().size(); |
| dstIndex = instructions().at(size - 3).u.operand; |
| src1Index = instructions().at(size - 2).u.operand; |
| src2Index = instructions().at(size - 1).u.operand; |
| } |
| |
| void BytecodeGenerator::retrieveLastUnaryOp(int& dstIndex, int& srcIndex) |
| { |
| ASSERT(instructions().size() >= 3); |
| size_t size = instructions().size(); |
| dstIndex = instructions().at(size - 2).u.operand; |
| srcIndex = instructions().at(size - 1).u.operand; |
| } |
| |
| void ALWAYS_INLINE BytecodeGenerator::rewindBinaryOp() |
| { |
| ASSERT(instructions().size() >= 4); |
| instructions().shrink(instructions().size() - 4); |
| m_lastOpcodeID = op_end; |
| } |
| |
| void ALWAYS_INLINE BytecodeGenerator::rewindUnaryOp() |
| { |
| ASSERT(instructions().size() >= 3); |
| instructions().shrink(instructions().size() - 3); |
| m_lastOpcodeID = op_end; |
| } |
| |
| PassRefPtr<Label> BytecodeGenerator::emitJump(Label* target) |
| { |
| size_t begin = instructions().size(); |
| emitOpcode(op_jmp); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| |
| PassRefPtr<Label> BytecodeGenerator::emitJumpIfTrue(RegisterID* cond, Label* target) |
| { |
| if (m_lastOpcodeID == op_less) { |
| int dstIndex; |
| int src1Index; |
| int src2Index; |
| |
| retrieveLastBinaryOp(dstIndex, src1Index, src2Index); |
| |
| if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) { |
| rewindBinaryOp(); |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jless); |
| instructions().append(src1Index); |
| instructions().append(src2Index); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| } else if (m_lastOpcodeID == op_lesseq) { |
| int dstIndex; |
| int src1Index; |
| int src2Index; |
| |
| retrieveLastBinaryOp(dstIndex, src1Index, src2Index); |
| |
| if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) { |
| rewindBinaryOp(); |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jlesseq); |
| instructions().append(src1Index); |
| instructions().append(src2Index); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| } else if (m_lastOpcodeID == op_greater) { |
| int dstIndex; |
| int src1Index; |
| int src2Index; |
| |
| retrieveLastBinaryOp(dstIndex, src1Index, src2Index); |
| |
| if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) { |
| rewindBinaryOp(); |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jgreater); |
| instructions().append(src1Index); |
| instructions().append(src2Index); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| } else if (m_lastOpcodeID == op_greatereq) { |
| int dstIndex; |
| int src1Index; |
| int src2Index; |
| |
| retrieveLastBinaryOp(dstIndex, src1Index, src2Index); |
| |
| if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) { |
| rewindBinaryOp(); |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jgreatereq); |
| instructions().append(src1Index); |
| instructions().append(src2Index); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| } else if (m_lastOpcodeID == op_eq_null && target->isForward()) { |
| int dstIndex; |
| int srcIndex; |
| |
| retrieveLastUnaryOp(dstIndex, srcIndex); |
| |
| if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) { |
| rewindUnaryOp(); |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jeq_null); |
| instructions().append(srcIndex); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| } else if (m_lastOpcodeID == op_neq_null && target->isForward()) { |
| int dstIndex; |
| int srcIndex; |
| |
| retrieveLastUnaryOp(dstIndex, srcIndex); |
| |
| if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) { |
| rewindUnaryOp(); |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jneq_null); |
| instructions().append(srcIndex); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| } |
| |
| size_t begin = instructions().size(); |
| |
| emitOpcode(op_jtrue); |
| instructions().append(cond->index()); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| |
| PassRefPtr<Label> BytecodeGenerator::emitJumpIfFalse(RegisterID* cond, Label* target) |
| { |
| if (m_lastOpcodeID == op_less && target->isForward()) { |
| int dstIndex; |
| int src1Index; |
| int src2Index; |
| |
| retrieveLastBinaryOp(dstIndex, src1Index, src2Index); |
| |
| if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) { |
| rewindBinaryOp(); |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jnless); |
| instructions().append(src1Index); |
| instructions().append(src2Index); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| } else if (m_lastOpcodeID == op_lesseq && target->isForward()) { |
| int dstIndex; |
| int src1Index; |
| int src2Index; |
| |
| retrieveLastBinaryOp(dstIndex, src1Index, src2Index); |
| |
| if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) { |
| rewindBinaryOp(); |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jnlesseq); |
| instructions().append(src1Index); |
| instructions().append(src2Index); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| } else if (m_lastOpcodeID == op_greater && target->isForward()) { |
| int dstIndex; |
| int src1Index; |
| int src2Index; |
| |
| retrieveLastBinaryOp(dstIndex, src1Index, src2Index); |
| |
| if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) { |
| rewindBinaryOp(); |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jngreater); |
| instructions().append(src1Index); |
| instructions().append(src2Index); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| } else if (m_lastOpcodeID == op_greatereq && target->isForward()) { |
| int dstIndex; |
| int src1Index; |
| int src2Index; |
| |
| retrieveLastBinaryOp(dstIndex, src1Index, src2Index); |
| |
| if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) { |
| rewindBinaryOp(); |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jngreatereq); |
| instructions().append(src1Index); |
| instructions().append(src2Index); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| } else if (m_lastOpcodeID == op_not) { |
| int dstIndex; |
| int srcIndex; |
| |
| retrieveLastUnaryOp(dstIndex, srcIndex); |
| |
| if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) { |
| rewindUnaryOp(); |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jtrue); |
| instructions().append(srcIndex); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| } else if (m_lastOpcodeID == op_eq_null && target->isForward()) { |
| int dstIndex; |
| int srcIndex; |
| |
| retrieveLastUnaryOp(dstIndex, srcIndex); |
| |
| if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) { |
| rewindUnaryOp(); |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jneq_null); |
| instructions().append(srcIndex); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| } else if (m_lastOpcodeID == op_neq_null && target->isForward()) { |
| int dstIndex; |
| int srcIndex; |
| |
| retrieveLastUnaryOp(dstIndex, srcIndex); |
| |
| if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) { |
| rewindUnaryOp(); |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jeq_null); |
| instructions().append(srcIndex); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| } |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jfalse); |
| instructions().append(cond->index()); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| |
| PassRefPtr<Label> BytecodeGenerator::emitJumpIfNotFunctionCall(RegisterID* cond, Label* target) |
| { |
| size_t begin = instructions().size(); |
| |
| emitOpcode(op_jneq_ptr); |
| instructions().append(cond->index()); |
| instructions().append(Special::CallFunction); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| |
| PassRefPtr<Label> BytecodeGenerator::emitJumpIfNotFunctionApply(RegisterID* cond, Label* target) |
| { |
| size_t begin = instructions().size(); |
| |
| emitOpcode(op_jneq_ptr); |
| instructions().append(cond->index()); |
| instructions().append(Special::ApplyFunction); |
| instructions().append(target->bind(begin, instructions().size())); |
| return target; |
| } |
| |
| bool BytecodeGenerator::hasConstant(const Identifier& ident) const |
| { |
| UniquedStringImpl* rep = ident.impl(); |
| return m_identifierMap.contains(rep); |
| } |
| |
| unsigned BytecodeGenerator::addConstant(const Identifier& ident) |
| { |
| UniquedStringImpl* rep = ident.impl(); |
| IdentifierMap::AddResult result = m_identifierMap.add(rep, m_codeBlock->numberOfIdentifiers()); |
| if (result.isNewEntry) |
| m_codeBlock->addIdentifier(ident); |
| |
| return result.iterator->value; |
| } |
| |
| // We can't hash JSValue(), so we use a dedicated data member to cache it. |
| RegisterID* BytecodeGenerator::addConstantEmptyValue() |
| { |
| if (!m_emptyValueRegister) { |
| int index = m_nextConstantOffset; |
| m_constantPoolRegisters.append(FirstConstantRegisterIndex + m_nextConstantOffset); |
| ++m_nextConstantOffset; |
| m_codeBlock->addConstant(JSValue()); |
| m_emptyValueRegister = &m_constantPoolRegisters[index]; |
| } |
| |
| return m_emptyValueRegister; |
| } |
| |
| RegisterID* BytecodeGenerator::addConstantValue(JSValue v, SourceCodeRepresentation sourceCodeRepresentation) |
| { |
| if (!v) |
| return addConstantEmptyValue(); |
| |
| int index = m_nextConstantOffset; |
| |
| if (sourceCodeRepresentation == SourceCodeRepresentation::Double && v.isInt32()) |
| v = jsDoubleNumber(v.asNumber()); |
| EncodedJSValueWithRepresentation valueMapKey { JSValue::encode(v), sourceCodeRepresentation }; |
| JSValueMap::AddResult result = m_jsValueMap.add(valueMapKey, m_nextConstantOffset); |
| if (result.isNewEntry) { |
| m_constantPoolRegisters.append(FirstConstantRegisterIndex + m_nextConstantOffset); |
| ++m_nextConstantOffset; |
| m_codeBlock->addConstant(v, sourceCodeRepresentation); |
| } else |
| index = result.iterator->value; |
| return &m_constantPoolRegisters[index]; |
| } |
| |
| RegisterID* BytecodeGenerator::emitMoveLinkTimeConstant(RegisterID* dst, LinkTimeConstant type) |
| { |
| unsigned constantIndex = static_cast<unsigned>(type); |
| if (!m_linkTimeConstantRegisters[constantIndex]) { |
| int index = m_nextConstantOffset; |
| m_constantPoolRegisters.append(FirstConstantRegisterIndex + m_nextConstantOffset); |
| ++m_nextConstantOffset; |
| m_codeBlock->addConstant(type); |
| m_linkTimeConstantRegisters[constantIndex] = &m_constantPoolRegisters[index]; |
| } |
| |
| emitOpcode(op_mov); |
| instructions().append(dst->index()); |
| instructions().append(m_linkTimeConstantRegisters[constantIndex]->index()); |
| |
| return dst; |
| } |
| |
| unsigned BytecodeGenerator::addRegExp(RegExp* r) |
| { |
| return m_codeBlock->addRegExp(r); |
| } |
| |
| RegisterID* BytecodeGenerator::emitMoveEmptyValue(RegisterID* dst) |
| { |
| RefPtr<RegisterID> emptyValue = addConstantEmptyValue(); |
| |
| emitOpcode(op_mov); |
| instructions().append(dst->index()); |
| instructions().append(emptyValue->index()); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitMove(RegisterID* dst, RegisterID* src) |
| { |
| ASSERT(src != m_emptyValueRegister); |
| |
| m_staticPropertyAnalyzer.mov(dst->index(), src->index()); |
| emitOpcode(op_mov); |
| instructions().append(dst->index()); |
| instructions().append(src->index()); |
| |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitUnaryOp(OpcodeID opcodeID, RegisterID* dst, RegisterID* src) |
| { |
| emitOpcode(opcodeID); |
| instructions().append(dst->index()); |
| instructions().append(src->index()); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitInc(RegisterID* srcDst) |
| { |
| emitOpcode(op_inc); |
| instructions().append(srcDst->index()); |
| return srcDst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitDec(RegisterID* srcDst) |
| { |
| emitOpcode(op_dec); |
| instructions().append(srcDst->index()); |
| return srcDst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitBinaryOp(OpcodeID opcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2, OperandTypes types) |
| { |
| emitOpcode(opcodeID); |
| instructions().append(dst->index()); |
| instructions().append(src1->index()); |
| instructions().append(src2->index()); |
| |
| if (opcodeID == op_bitor || opcodeID == op_bitand || opcodeID == op_bitxor || |
| opcodeID == op_add || opcodeID == op_mul || opcodeID == op_sub || opcodeID == op_div) |
| instructions().append(types.toInt()); |
| |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitEqualityOp(OpcodeID opcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2) |
| { |
| if (m_lastOpcodeID == op_typeof) { |
| int dstIndex; |
| int srcIndex; |
| |
| retrieveLastUnaryOp(dstIndex, srcIndex); |
| |
| if (src1->index() == dstIndex |
| && src1->isTemporary() |
| && m_codeBlock->isConstantRegisterIndex(src2->index()) |
| && m_codeBlock->constantRegister(src2->index()).get().isString()) { |
| const String& value = asString(m_codeBlock->constantRegister(src2->index()).get())->tryGetValue(); |
| if (value == "undefined") { |
| rewindUnaryOp(); |
| emitOpcode(op_is_undefined); |
| instructions().append(dst->index()); |
| instructions().append(srcIndex); |
| return dst; |
| } |
| if (value == "boolean") { |
| rewindUnaryOp(); |
| emitOpcode(op_is_boolean); |
| instructions().append(dst->index()); |
| instructions().append(srcIndex); |
| return dst; |
| } |
| if (value == "number") { |
| rewindUnaryOp(); |
| emitOpcode(op_is_number); |
| instructions().append(dst->index()); |
| instructions().append(srcIndex); |
| return dst; |
| } |
| if (value == "string") { |
| rewindUnaryOp(); |
| emitOpcode(op_is_string); |
| instructions().append(dst->index()); |
| instructions().append(srcIndex); |
| return dst; |
| } |
| if (value == "object") { |
| rewindUnaryOp(); |
| emitOpcode(op_is_object_or_null); |
| instructions().append(dst->index()); |
| instructions().append(srcIndex); |
| return dst; |
| } |
| if (value == "function") { |
| rewindUnaryOp(); |
| emitOpcode(op_is_function); |
| instructions().append(dst->index()); |
| instructions().append(srcIndex); |
| return dst; |
| } |
| } |
| } |
| |
| emitOpcode(opcodeID); |
| instructions().append(dst->index()); |
| instructions().append(src1->index()); |
| instructions().append(src2->index()); |
| return dst; |
| } |
| |
| void BytecodeGenerator::emitTypeProfilerExpressionInfo(const JSTextPosition& startDivot, const JSTextPosition& endDivot) |
| { |
| ASSERT(vm()->typeProfiler()); |
| |
| unsigned start = startDivot.offset; // Ranges are inclusive of their endpoints, AND 0 indexed. |
| unsigned end = endDivot.offset - 1; // End Ranges already go one past the inclusive range, so subtract 1. |
| unsigned instructionOffset = instructions().size() - 1; |
| m_codeBlock->addTypeProfilerExpressionInfo(instructionOffset, start, end); |
| } |
| |
| void BytecodeGenerator::emitProfileType(RegisterID* registerToProfile, ProfileTypeBytecodeFlag flag) |
| { |
| if (!vm()->typeProfiler()) |
| return; |
| |
| if (!registerToProfile) |
| return; |
| |
| emitOpcode(op_profile_type); |
| instructions().append(registerToProfile->index()); |
| instructions().append(0); |
| instructions().append(flag); |
| instructions().append(0); |
| instructions().append(resolveType()); |
| |
| // Don't emit expression info for this version of profile type. This generally means |
| // we're profiling information for something that isn't in the actual text of a JavaScript |
| // program. For example, implicit return undefined from a function call. |
| } |
| |
| void BytecodeGenerator::emitProfileType(RegisterID* registerToProfile, const JSTextPosition& startDivot, const JSTextPosition& endDivot) |
| { |
| emitProfileType(registerToProfile, ProfileTypeBytecodeDoesNotHaveGlobalID, startDivot, endDivot); |
| } |
| |
| void BytecodeGenerator::emitProfileType(RegisterID* registerToProfile, ProfileTypeBytecodeFlag flag, const JSTextPosition& startDivot, const JSTextPosition& endDivot) |
| { |
| if (!vm()->typeProfiler()) |
| return; |
| |
| if (!registerToProfile) |
| return; |
| |
| // The format of this instruction is: op_profile_type regToProfile, TypeLocation*, flag, identifier?, resolveType? |
| emitOpcode(op_profile_type); |
| instructions().append(registerToProfile->index()); |
| instructions().append(0); |
| instructions().append(flag); |
| instructions().append(0); |
| instructions().append(resolveType()); |
| |
| emitTypeProfilerExpressionInfo(startDivot, endDivot); |
| } |
| |
| void BytecodeGenerator::emitProfileType(RegisterID* registerToProfile, const Variable& var, const JSTextPosition& startDivot, const JSTextPosition& endDivot) |
| { |
| if (!vm()->typeProfiler()) |
| return; |
| |
| if (!registerToProfile) |
| return; |
| |
| ProfileTypeBytecodeFlag flag; |
| int symbolTableOrScopeDepth; |
| if (var.local() || var.offset().isScope()) { |
| flag = ProfileTypeBytecodeLocallyResolved; |
| symbolTableOrScopeDepth = var.symbolTableConstantIndex(); |
| } else { |
| flag = ProfileTypeBytecodeClosureVar; |
| symbolTableOrScopeDepth = localScopeDepth(); |
| } |
| |
| // The format of this instruction is: op_profile_type regToProfile, TypeLocation*, flag, identifier?, resolveType? |
| emitOpcode(op_profile_type); |
| instructions().append(registerToProfile->index()); |
| instructions().append(symbolTableOrScopeDepth); |
| instructions().append(flag); |
| instructions().append(addConstant(var.ident())); |
| instructions().append(resolveType()); |
| |
| emitTypeProfilerExpressionInfo(startDivot, endDivot); |
| } |
| |
| void BytecodeGenerator::emitProfileControlFlow(int textOffset) |
| { |
| if (vm()->controlFlowProfiler()) { |
| RELEASE_ASSERT(textOffset >= 0); |
| size_t bytecodeOffset = instructions().size(); |
| m_codeBlock->addOpProfileControlFlowBytecodeOffset(bytecodeOffset); |
| |
| emitOpcode(op_profile_control_flow); |
| instructions().append(textOffset); |
| } |
| } |
| |
| RegisterID* BytecodeGenerator::emitLoad(RegisterID* dst, bool b) |
| { |
| return emitLoad(dst, jsBoolean(b)); |
| } |
| |
| RegisterID* BytecodeGenerator::emitLoad(RegisterID* dst, const Identifier& identifier) |
| { |
| JSString*& stringInMap = m_stringMap.add(identifier.impl(), nullptr).iterator->value; |
| if (!stringInMap) |
| stringInMap = jsOwnedString(vm(), identifier.string()); |
| return emitLoad(dst, JSValue(stringInMap)); |
| } |
| |
| RegisterID* BytecodeGenerator::emitLoad(RegisterID* dst, JSValue v, SourceCodeRepresentation sourceCodeRepresentation) |
| { |
| RegisterID* constantID = addConstantValue(v, sourceCodeRepresentation); |
| if (dst) |
| return emitMove(dst, constantID); |
| return constantID; |
| } |
| |
| RegisterID* BytecodeGenerator::emitLoadGlobalObject(RegisterID* dst) |
| { |
| if (!m_globalObjectRegister) { |
| int index = m_nextConstantOffset; |
| m_constantPoolRegisters.append(FirstConstantRegisterIndex + m_nextConstantOffset); |
| ++m_nextConstantOffset; |
| m_codeBlock->addConstant(JSValue()); |
| m_globalObjectRegister = &m_constantPoolRegisters[index]; |
| m_codeBlock->setGlobalObjectRegister(VirtualRegister(index)); |
| } |
| if (dst) |
| emitMove(dst, m_globalObjectRegister); |
| return m_globalObjectRegister; |
| } |
| |
| template<typename LookUpVarKindFunctor> |
| bool BytecodeGenerator::instantiateLexicalVariables(const VariableEnvironment& lexicalVariables, SymbolTable* symbolTable, ScopeRegisterType scopeRegisterType, LookUpVarKindFunctor lookUpVarKind) |
| { |
| bool hasCapturedVariables = false; |
| { |
| ConcurrentJITLocker locker(symbolTable->m_lock); |
| for (auto& entry : lexicalVariables) { |
| ASSERT(entry.value.isLet() || entry.value.isConst()); |
| ASSERT(!entry.value.isVar()); |
| SymbolTableEntry symbolTableEntry = symbolTable->get(locker, entry.key.get()); |
| ASSERT(symbolTableEntry.isNull()); |
| |
| // Imported bindings which are not the namespace bindings are not allocated |
| // in the module environment as usual variables' way. |
| // And since these types of the variables only seen in the module environment, |
| // other lexical environment need not to take care this. |
| if (entry.value.isImported() && !entry.value.isImportedNamespace()) |
| continue; |
| |
| VarKind varKind = lookUpVarKind(entry.key.get(), entry.value); |
| VarOffset varOffset; |
| if (varKind == VarKind::Scope) { |
| varOffset = VarOffset(symbolTable->takeNextScopeOffset(locker)); |
| hasCapturedVariables = true; |
| } else { |
| ASSERT(varKind == VarKind::Stack); |
| RegisterID* local; |
| if (scopeRegisterType == ScopeRegisterType::Block) { |
| local = newBlockScopeVariable(); |
| local->ref(); |
| } else |
| local = addVar(); |
| varOffset = VarOffset(local->virtualRegister()); |
| } |
| |
| SymbolTableEntry newEntry(varOffset, entry.value.isConst() ? ReadOnly : 0); |
| symbolTable->add(locker, entry.key.get(), newEntry); |
| } |
| } |
| return hasCapturedVariables; |
| } |
| |
| void BytecodeGenerator::emitPrefillStackTDZVariables(const VariableEnvironment& lexicalVariables, SymbolTable* symbolTable) |
| { |
| // Prefill stack variables with the TDZ empty value. |
| // Scope variables will be initialized to the TDZ empty value when JSLexicalEnvironment is allocated. |
| for (auto& entry : lexicalVariables) { |
| // Imported bindings which are not the namespace bindings are not allocated |
| // in the module environment as usual variables' way. |
| // And since these types of the variables only seen in the module environment, |
| // other lexical environment need not to take care this. |
| if (entry.value.isImported() && !entry.value.isImportedNamespace()) |
| continue; |
| |
| SymbolTableEntry symbolTableEntry = symbolTable->get(entry.key.get()); |
| ASSERT(!symbolTableEntry.isNull()); |
| VarOffset offset = symbolTableEntry.varOffset(); |
| if (offset.isScope()) |
| continue; |
| |
| ASSERT(offset.isStack()); |
| emitMoveEmptyValue(®isterFor(offset.stackOffset())); |
| } |
| } |
| |
| void BytecodeGenerator::pushLexicalScope(VariableEnvironmentNode* node, bool canOptimizeTDZChecks, RegisterID** constantSymbolTableResult) |
| { |
| VariableEnvironment& environment = node->lexicalVariables(); |
| pushLexicalScopeInternal(environment, canOptimizeTDZChecks, constantSymbolTableResult, TDZRequirement::UnderTDZ, ScopeType::LetConstScope, ScopeRegisterType::Block); |
| } |
| |
| void BytecodeGenerator::pushLexicalScopeInternal(VariableEnvironment& environment, bool canOptimizeTDZChecks, |
| RegisterID** constantSymbolTableResult, TDZRequirement tdzRequirement, ScopeType scopeType, ScopeRegisterType scopeRegisterType) |
| { |
| if (!environment.size()) |
| return; |
| |
| if (m_shouldEmitDebugHooks) |
| environment.markAllVariablesAsCaptured(); |
| |
| Strong<SymbolTable> symbolTable(*m_vm, SymbolTable::create(*m_vm)); |
| switch (scopeType) { |
| case ScopeType::CatchScope: |
| symbolTable->setScopeType(SymbolTable::ScopeType::CatchScope); |
| break; |
| case ScopeType::LetConstScope: |
| symbolTable->setScopeType(SymbolTable::ScopeType::LexicalScope); |
| break; |
| case ScopeType::FunctionNameScope: |
| symbolTable->setScopeType(SymbolTable::ScopeType::FunctionNameScope); |
| break; |
| } |
| |
| auto lookUpVarKind = [] (UniquedStringImpl*, const VariableEnvironmentEntry& entry) -> VarKind { |
| return entry.isCaptured() ? VarKind::Scope : VarKind::Stack; |
| }; |
| |
| bool hasCapturedVariables = instantiateLexicalVariables(environment, symbolTable.get(), scopeRegisterType, lookUpVarKind); |
| |
| RegisterID* newScope = nullptr; |
| RegisterID* constantSymbolTable = nullptr; |
| int symbolTableConstantIndex = 0; |
| if (vm()->typeProfiler()) { |
| constantSymbolTable = addConstantValue(symbolTable.get()); |
| symbolTableConstantIndex = constantSymbolTable->index(); |
| } |
| if (hasCapturedVariables) { |
| if (scopeRegisterType == ScopeRegisterType::Block) { |
| newScope = newBlockScopeVariable(); |
| newScope->ref(); |
| } else |
| newScope = addVar(); |
| if (!constantSymbolTable) { |
| ASSERT(!vm()->typeProfiler()); |
| constantSymbolTable = addConstantValue(symbolTable->cloneScopePart(*m_vm)); |
| symbolTableConstantIndex = constantSymbolTable->index(); |
| } |
| if (constantSymbolTableResult) |
| *constantSymbolTableResult = constantSymbolTable; |
| |
| emitOpcode(op_create_lexical_environment); |
| instructions().append(newScope->index()); |
| instructions().append(scopeRegister()->index()); |
| instructions().append(constantSymbolTable->index()); |
| instructions().append(addConstantValue(tdzRequirement == TDZRequirement::UnderTDZ ? jsTDZValue() : jsUndefined())->index()); |
| |
| emitMove(scopeRegister(), newScope); |
| |
| pushScopedControlFlowContext(); |
| } |
| |
| m_symbolTableStack.append(SymbolTableStackEntry{ symbolTable, newScope, false, symbolTableConstantIndex }); |
| if (tdzRequirement == TDZRequirement::UnderTDZ) |
| m_TDZStack.append(std::make_pair(environment, canOptimizeTDZChecks)); |
| |
| if (tdzRequirement == TDZRequirement::UnderTDZ) |
| emitPrefillStackTDZVariables(environment, symbolTable.get()); |
| } |
| |
| void BytecodeGenerator::popLexicalScope(VariableEnvironmentNode* node) |
| { |
| VariableEnvironment& environment = node->lexicalVariables(); |
| popLexicalScopeInternal(environment, TDZRequirement::UnderTDZ); |
| } |
| |
| void BytecodeGenerator::popLexicalScopeInternal(VariableEnvironment& environment, TDZRequirement tdzRequirement) |
| { |
| // NOTE: This function only makes sense for scopes that aren't ScopeRegisterType::Var (only function name scope right now is ScopeRegisterType::Var). |
| // This doesn't make sense for ScopeRegisterType::Var because we deref RegisterIDs here. |
| if (!environment.size()) |
| return; |
| |
| if (m_shouldEmitDebugHooks) |
| environment.markAllVariablesAsCaptured(); |
| |
| SymbolTableStackEntry stackEntry = m_symbolTableStack.takeLast(); |
| Strong<SymbolTable> symbolTable = stackEntry.m_symbolTable; |
| ConcurrentJITLocker locker(symbolTable->m_lock); |
| bool hasCapturedVariables = false; |
| for (auto& entry : environment) { |
| if (entry.value.isCaptured()) { |
| hasCapturedVariables = true; |
| continue; |
| } |
| SymbolTableEntry symbolTableEntry = symbolTable->get(locker, entry.key.get()); |
| ASSERT(!symbolTableEntry.isNull()); |
| VarOffset offset = symbolTableEntry.varOffset(); |
| ASSERT(offset.isStack()); |
| RegisterID* local = ®isterFor(offset.stackOffset()); |
| local->deref(); |
| } |
| |
| if (hasCapturedVariables) { |
| RELEASE_ASSERT(stackEntry.m_scope); |
| emitPopScope(scopeRegister(), stackEntry.m_scope); |
| popScopedControlFlowContext(); |
| stackEntry.m_scope->deref(); |
| } |
| |
| if (tdzRequirement == TDZRequirement::UnderTDZ) |
| m_TDZStack.removeLast(); |
| } |
| |
| void BytecodeGenerator::prepareLexicalScopeForNextForLoopIteration(VariableEnvironmentNode* node, RegisterID* loopSymbolTable) |
| { |
| VariableEnvironment& environment = node->lexicalVariables(); |
| if (!environment.size()) |
| return; |
| if (m_shouldEmitDebugHooks) |
| environment.markAllVariablesAsCaptured(); |
| if (!environment.hasCapturedVariables()) |
| return; |
| |
| RELEASE_ASSERT(loopSymbolTable); |
| |
| // This function needs to do setup for a for loop's activation if any of |
| // the for loop's lexically declared variables are captured (that is, variables |
| // declared in the loop header, not the loop body). This function needs to |
| // make a copy of the current activation and copy the values from the previous |
| // activation into the new activation because each iteration of a for loop |
| // gets a new activation. |
| |
| SymbolTableStackEntry stackEntry = m_symbolTableStack.last(); |
| Strong<SymbolTable> symbolTable = stackEntry.m_symbolTable; |
| RegisterID* loopScope = stackEntry.m_scope; |
| ASSERT(symbolTable->scopeSize()); |
| ASSERT(loopScope); |
| Vector<std::pair<RegisterID*, Identifier>> activationValuesToCopyOver; |
| |
| { |
| ConcurrentJITLocker locker(symbolTable->m_lock); |
| activationValuesToCopyOver.reserveInitialCapacity(symbolTable->scopeSize()); |
| |
| for (auto end = symbolTable->end(locker), ptr = symbolTable->begin(locker); ptr != end; ++ptr) { |
| if (!ptr->value.varOffset().isScope()) |
| continue; |
| |
| RefPtr<UniquedStringImpl> ident = ptr->key; |
| Identifier identifier = Identifier::fromUid(m_vm, ident.get()); |
| |
| RegisterID* transitionValue = newBlockScopeVariable(); |
| transitionValue->ref(); |
| emitGetFromScope(transitionValue, loopScope, variableForLocalEntry(identifier, ptr->value, loopSymbolTable->index(), true), DoNotThrowIfNotFound); |
| activationValuesToCopyOver.uncheckedAppend(std::make_pair(transitionValue, identifier)); |
| } |
| } |
| |
| // We need this dynamic behavior of the executing code to ensure |
| // each loop iteration has a new activation object. (It's pretty ugly). |
| // Also, this new activation needs to be assigned to the same register |
| // as the previous scope because the loop body is compiled under |
| // the assumption that the scope's register index is constant even |
| // though the value in that register will change on each loop iteration. |
| RefPtr<RegisterID> parentScope = emitGetParentScope(newTemporary(), loopScope); |
| emitMove(scopeRegister(), parentScope.get()); |
| |
| emitOpcode(op_create_lexical_environment); |
| instructions().append(loopScope->index()); |
| instructions().append(scopeRegister()->index()); |
| instructions().append(loopSymbolTable->index()); |
| instructions().append(addConstantValue(jsTDZValue())->index()); |
| |
| emitMove(scopeRegister(), loopScope); |
| |
| { |
| ConcurrentJITLocker locker(symbolTable->m_lock); |
| for (auto pair : activationValuesToCopyOver) { |
| const Identifier& identifier = pair.second; |
| SymbolTableEntry entry = symbolTable->get(locker, identifier.impl()); |
| RELEASE_ASSERT(!entry.isNull()); |
| RegisterID* transitionValue = pair.first; |
| emitPutToScope(loopScope, variableForLocalEntry(identifier, entry, loopSymbolTable->index(), true), transitionValue, DoNotThrowIfNotFound, NotInitialization); |
| transitionValue->deref(); |
| } |
| } |
| } |
| |
| Variable BytecodeGenerator::variable(const Identifier& property, ThisResolutionType thisResolutionType) |
| { |
| if (property == propertyNames().thisIdentifier && thisResolutionType == ThisResolutionType::Local) { |
| return Variable(property, VarOffset(thisRegister()->virtualRegister()), thisRegister(), |
| ReadOnly, Variable::SpecialVariable, 0, false); |
| } |
| |
| // We can optimize lookups if the lexical variable is found before a "with" or "catch" |
| // scope because we're guaranteed static resolution. If we have to pass through |
| // a "with" or "catch" scope we loose this guarantee. |
| // We can't optimize cases like this: |
| // { |
| // let x = ...; |
| // with (o) { |
| // doSomethingWith(x); |
| // } |
| // } |
| // Because we can't gaurantee static resolution on x. |
| // But, in this case, we are guaranteed static resolution: |
| // { |
| // let x = ...; |
| // with (o) { |
| // let x = ...; |
| // doSomethingWith(x); |
| // } |
| // } |
| for (unsigned i = m_symbolTableStack.size(); i--; ) { |
| SymbolTableStackEntry& stackEntry = m_symbolTableStack[i]; |
| if (stackEntry.m_isWithScope) |
| return Variable(property); |
| Strong<SymbolTable>& symbolTable = stackEntry.m_symbolTable; |
| SymbolTableEntry symbolTableEntry = symbolTable->get(property.impl()); |
| if (symbolTableEntry.isNull()) |
| continue; |
| bool resultIsCallee = false; |
| if (symbolTable->scopeType() == SymbolTable::ScopeType::FunctionNameScope) { |
| if (m_usesNonStrictEval) { |
| // We don't know if an eval has introduced a "var" named the same thing as the function name scope variable name. |
| // We resort to dynamic lookup to answer this question. |
| Variable result = Variable(property); |
| return result; |
| } |
| resultIsCallee = true; |
| } |
| Variable result = variableForLocalEntry(property, symbolTableEntry, stackEntry.m_symbolTableConstantIndex, symbolTable->scopeType() == SymbolTable::ScopeType::LexicalScope); |
| if (resultIsCallee) |
| result.setIsReadOnly(); |
| return result; |
| } |
| |
| return Variable(property); |
| } |
| |
| Variable BytecodeGenerator::variableForLocalEntry( |
| const Identifier& property, const SymbolTableEntry& entry, int symbolTableConstantIndex, bool isLexicallyScoped) |
| { |
| VarOffset offset = entry.varOffset(); |
| |
| RegisterID* local; |
| if (offset.isStack()) |
| local = ®isterFor(offset.stackOffset()); |
| else |
| local = nullptr; |
| |
| return Variable(property, offset, local, entry.getAttributes(), Variable::NormalVariable, symbolTableConstantIndex, isLexicallyScoped); |
| } |
| |
| void BytecodeGenerator::createVariable( |
| const Identifier& property, VarKind varKind, SymbolTable* symbolTable, ExistingVariableMode existingVariableMode) |
| { |
| ASSERT(property != propertyNames().thisIdentifier); |
| ConcurrentJITLocker locker(symbolTable->m_lock); |
| SymbolTableEntry entry = symbolTable->get(locker, property.impl()); |
| |
| if (!entry.isNull()) { |
| if (existingVariableMode == IgnoreExisting) |
| return; |
| |
| // Do some checks to ensure that the variable we're being asked to create is sufficiently |
| // compatible with the one we have already created. |
| |
| VarOffset offset = entry.varOffset(); |
| |
| // We can't change our minds about whether it's captured. |
| if (offset.kind() != varKind) { |
| dataLog( |
| "Trying to add variable called ", property, " as ", varKind, |
| " but it was already added as ", offset, ".\n"); |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| return; |
| } |
| |
| VarOffset varOffset; |
| if (varKind == VarKind::Scope) |
| varOffset = VarOffset(symbolTable->takeNextScopeOffset(locker)); |
| else { |
| ASSERT(varKind == VarKind::Stack); |
| varOffset = VarOffset(virtualRegisterForLocal(m_calleeRegisters.size())); |
| } |
| SymbolTableEntry newEntry(varOffset, 0); |
| symbolTable->add(locker, property.impl(), newEntry); |
| |
| if (varKind == VarKind::Stack) { |
| RegisterID* local = addVar(); |
| RELEASE_ASSERT(local->index() == varOffset.stackOffset().offset()); |
| } |
| } |
| |
| void BytecodeGenerator::emitCheckHasInstance(RegisterID* dst, RegisterID* value, RegisterID* base, Label* target) |
| { |
| size_t begin = instructions().size(); |
| emitOpcode(op_check_has_instance); |
| instructions().append(dst->index()); |
| instructions().append(value->index()); |
| instructions().append(base->index()); |
| instructions().append(target->bind(begin, instructions().size())); |
| } |
| |
| // Indicates the least upper bound of resolve type based on local scope. The bytecode linker |
| // will start with this ResolveType and compute the least upper bound including intercepting scopes. |
| ResolveType BytecodeGenerator::resolveType() |
| { |
| for (unsigned i = m_symbolTableStack.size(); i--; ) { |
| if (m_symbolTableStack[i].m_isWithScope) |
| return Dynamic; |
| if (m_usesNonStrictEval && m_symbolTableStack[i].m_symbolTable->scopeType() == SymbolTable::ScopeType::FunctionNameScope) { |
| // We never want to assign to a FunctionNameScope. Returning Dynamic here achieves this goal. |
| // If we aren't in non-strict eval mode, then NodesCodeGen needs to take care not to emit |
| // a put_to_scope with the destination being the function name scope variable. |
| return Dynamic; |
| } |
| } |
| |
| if (m_usesNonStrictEval) |
| return GlobalPropertyWithVarInjectionChecks; |
| return GlobalProperty; |
| } |
| |
| RegisterID* BytecodeGenerator::emitResolveScope(RegisterID* dst, const Variable& variable) |
| { |
| switch (variable.offset().kind()) { |
| case VarKind::Stack: |
| return nullptr; |
| |
| case VarKind::DirectArgument: |
| return argumentsRegister(); |
| |
| case VarKind::Scope: |
| // This always refers to the activation that *we* allocated, and not the current scope that code |
| // lives in. Note that this will change once we have proper support for block scoping. Once that |
| // changes, it will be correct for this code to return scopeRegister(). The only reason why we |
| // don't do that already is that m_lexicalEnvironment is required by ConstDeclNode. ConstDeclNode |
| // requires weird things because it is a shameful pile of nonsense, but block scoping would make |
| // that code sensible and obviate the need for us to do bad things. |
| for (unsigned i = m_symbolTableStack.size(); i--; ) { |
| SymbolTableStackEntry& stackEntry = m_symbolTableStack[i]; |
| // We should not resolve a variable to VarKind::Scope if a "with" scope lies in between the current |
| // scope and the resolved scope. |
| RELEASE_ASSERT(!stackEntry.m_isWithScope); |
| |
| if (stackEntry.m_symbolTable->get(variable.ident().impl()).isNull()) |
| continue; |
| |
| RegisterID* scope = stackEntry.m_scope; |
| RELEASE_ASSERT(scope); |
| return scope; |
| } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| return nullptr; |
| |
| case VarKind::Invalid: |
| // Indicates non-local resolution. |
| |
| m_codeBlock->addPropertyAccessInstruction(instructions().size()); |
| |
| // resolve_scope dst, id, ResolveType, depth |
| dst = tempDestination(dst); |
| emitOpcode(op_resolve_scope); |
| instructions().append(kill(dst)); |
| instructions().append(scopeRegister()->index()); |
| instructions().append(addConstant(variable.ident())); |
| instructions().append(resolveType()); |
| instructions().append(localScopeDepth()); |
| instructions().append(0); |
| return dst; |
| } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| return nullptr; |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetFromScope(RegisterID* dst, RegisterID* scope, const Variable& variable, ResolveMode resolveMode) |
| { |
| switch (variable.offset().kind()) { |
| case VarKind::Stack: |
| return emitMove(dst, variable.local()); |
| |
| case VarKind::DirectArgument: { |
| UnlinkedValueProfile profile = emitProfiledOpcode(op_get_from_arguments); |
| instructions().append(kill(dst)); |
| instructions().append(scope->index()); |
| instructions().append(variable.offset().capturedArgumentsOffset().offset()); |
| instructions().append(profile); |
| return dst; |
| } |
| |
| case VarKind::Scope: |
| case VarKind::Invalid: { |
| m_codeBlock->addPropertyAccessInstruction(instructions().size()); |
| |
| // get_from_scope dst, scope, id, GetPutInfo, Structure, Operand |
| UnlinkedValueProfile profile = emitProfiledOpcode(op_get_from_scope); |
| instructions().append(kill(dst)); |
| instructions().append(scope->index()); |
| instructions().append(addConstant(variable.ident())); |
| instructions().append(GetPutInfo(resolveMode, variable.offset().isScope() ? LocalClosureVar : resolveType(), NotInitialization).operand()); |
| instructions().append(localScopeDepth()); |
| instructions().append(variable.offset().isScope() ? variable.offset().scopeOffset().offset() : 0); |
| instructions().append(profile); |
| return dst; |
| } } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| RegisterID* BytecodeGenerator::emitPutToScope(RegisterID* scope, const Variable& variable, RegisterID* value, ResolveMode resolveMode, InitializationMode initializationMode) |
| { |
| switch (variable.offset().kind()) { |
| case VarKind::Stack: |
| emitMove(variable.local(), value); |
| return value; |
| |
| case VarKind::DirectArgument: |
| emitOpcode(op_put_to_arguments); |
| instructions().append(scope->index()); |
| instructions().append(variable.offset().capturedArgumentsOffset().offset()); |
| instructions().append(value->index()); |
| return value; |
| |
| case VarKind::Scope: |
| case VarKind::Invalid: { |
| m_codeBlock->addPropertyAccessInstruction(instructions().size()); |
| |
| // put_to_scope scope, id, value, GetPutInfo, Structure, Operand |
| emitOpcode(op_put_to_scope); |
| instructions().append(scope->index()); |
| instructions().append(addConstant(variable.ident())); |
| instructions().append(value->index()); |
| ScopeOffset offset; |
| if (variable.offset().isScope()) { |
| offset = variable.offset().scopeOffset(); |
| instructions().append(GetPutInfo(resolveMode, LocalClosureVar, initializationMode).operand()); |
| instructions().append(variable.symbolTableConstantIndex()); |
| } else { |
| ASSERT(resolveType() != LocalClosureVar); |
| instructions().append(GetPutInfo(resolveMode, resolveType(), initializationMode).operand()); |
| instructions().append(localScopeDepth()); |
| } |
| instructions().append(!!offset ? offset.offset() : 0); |
| return value; |
| } } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| RegisterID* BytecodeGenerator::initializeVariable(const Variable& variable, RegisterID* value) |
| { |
| RELEASE_ASSERT(variable.offset().kind() != VarKind::Invalid); |
| RegisterID* scope = emitResolveScope(nullptr, variable); |
| return emitPutToScope(scope, variable, value, ThrowIfNotFound, NotInitialization); |
| } |
| |
| RegisterID* BytecodeGenerator::emitInstanceOf(RegisterID* dst, RegisterID* value, RegisterID* basePrototype) |
| { |
| emitOpcode(op_instanceof); |
| instructions().append(dst->index()); |
| instructions().append(value->index()); |
| instructions().append(basePrototype->index()); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetById(RegisterID* dst, RegisterID* base, const Identifier& property) |
| { |
| m_codeBlock->addPropertyAccessInstruction(instructions().size()); |
| |
| UnlinkedValueProfile profile = emitProfiledOpcode(op_get_by_id); |
| instructions().append(kill(dst)); |
| instructions().append(base->index()); |
| instructions().append(addConstant(property)); |
| instructions().append(0); |
| instructions().append(0); |
| instructions().append(0); |
| instructions().append(0); |
| instructions().append(profile); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitPutById(RegisterID* base, const Identifier& property, RegisterID* value) |
| { |
| unsigned propertyIndex = addConstant(property); |
| |
| m_staticPropertyAnalyzer.putById(base->index(), propertyIndex); |
| |
| m_codeBlock->addPropertyAccessInstruction(instructions().size()); |
| |
| emitOpcode(op_put_by_id); |
| instructions().append(base->index()); |
| instructions().append(propertyIndex); |
| instructions().append(value->index()); |
| instructions().append(0); // old structure |
| instructions().append(0); // offset |
| instructions().append(0); // new structure |
| instructions().append(0); // structure chain |
| instructions().append(static_cast<int>(PutByIdNone)); // is not direct |
| |
| return value; |
| } |
| |
| RegisterID* BytecodeGenerator::emitDirectPutById(RegisterID* base, const Identifier& property, RegisterID* value, PropertyNode::PutType putType) |
| { |
| ASSERT(!parseIndex(property)); |
| unsigned propertyIndex = addConstant(property); |
| |
| m_staticPropertyAnalyzer.putById(base->index(), propertyIndex); |
| |
| m_codeBlock->addPropertyAccessInstruction(instructions().size()); |
| |
| emitOpcode(op_put_by_id); |
| instructions().append(base->index()); |
| instructions().append(propertyIndex); |
| instructions().append(value->index()); |
| instructions().append(0); // old structure |
| instructions().append(0); // offset |
| instructions().append(0); // new structure |
| instructions().append(0); // structure chain (unused if direct) |
| instructions().append(static_cast<int>((putType == PropertyNode::KnownDirect || property != m_vm->propertyNames->underscoreProto) ? PutByIdIsDirect : PutByIdNone)); |
| return value; |
| } |
| |
| void BytecodeGenerator::emitPutGetterById(RegisterID* base, const Identifier& property, unsigned attributes, RegisterID* getter) |
| { |
| unsigned propertyIndex = addConstant(property); |
| m_staticPropertyAnalyzer.putById(base->index(), propertyIndex); |
| |
| emitOpcode(op_put_getter_by_id); |
| instructions().append(base->index()); |
| instructions().append(propertyIndex); |
| instructions().append(attributes); |
| instructions().append(getter->index()); |
| } |
| |
| void BytecodeGenerator::emitPutSetterById(RegisterID* base, const Identifier& property, unsigned attributes, RegisterID* setter) |
| { |
| unsigned propertyIndex = addConstant(property); |
| m_staticPropertyAnalyzer.putById(base->index(), propertyIndex); |
| |
| emitOpcode(op_put_setter_by_id); |
| instructions().append(base->index()); |
| instructions().append(propertyIndex); |
| instructions().append(attributes); |
| instructions().append(setter->index()); |
| } |
| |
| void BytecodeGenerator::emitPutGetterSetter(RegisterID* base, const Identifier& property, unsigned attributes, RegisterID* getter, RegisterID* setter) |
| { |
| unsigned propertyIndex = addConstant(property); |
| |
| m_staticPropertyAnalyzer.putById(base->index(), propertyIndex); |
| |
| emitOpcode(op_put_getter_setter_by_id); |
| instructions().append(base->index()); |
| instructions().append(propertyIndex); |
| instructions().append(attributes); |
| instructions().append(getter->index()); |
| instructions().append(setter->index()); |
| } |
| |
| void BytecodeGenerator::emitPutGetterByVal(RegisterID* base, RegisterID* property, unsigned attributes, RegisterID* getter) |
| { |
| emitOpcode(op_put_getter_by_val); |
| instructions().append(base->index()); |
| instructions().append(property->index()); |
| instructions().append(attributes); |
| instructions().append(getter->index()); |
| } |
| |
| void BytecodeGenerator::emitPutSetterByVal(RegisterID* base, RegisterID* property, unsigned attributes, RegisterID* setter) |
| { |
| emitOpcode(op_put_setter_by_val); |
| instructions().append(base->index()); |
| instructions().append(property->index()); |
| instructions().append(attributes); |
| instructions().append(setter->index()); |
| } |
| |
| RegisterID* BytecodeGenerator::emitDeleteById(RegisterID* dst, RegisterID* base, const Identifier& property) |
| { |
| emitOpcode(op_del_by_id); |
| instructions().append(dst->index()); |
| instructions().append(base->index()); |
| instructions().append(addConstant(property)); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetByVal(RegisterID* dst, RegisterID* base, RegisterID* property) |
| { |
| for (size_t i = m_forInContextStack.size(); i > 0; i--) { |
| ForInContext* context = m_forInContextStack[i - 1].get(); |
| if (context->local() != property) |
| continue; |
| |
| if (!context->isValid()) |
| break; |
| |
| if (context->type() == ForInContext::IndexedForInContextType) { |
| property = static_cast<IndexedForInContext*>(context)->index(); |
| break; |
| } |
| |
| ASSERT(context->type() == ForInContext::StructureForInContextType); |
| StructureForInContext* structureContext = static_cast<StructureForInContext*>(context); |
| UnlinkedValueProfile profile = emitProfiledOpcode(op_get_direct_pname); |
| instructions().append(kill(dst)); |
| instructions().append(base->index()); |
| instructions().append(property->index()); |
| instructions().append(structureContext->index()->index()); |
| instructions().append(structureContext->enumerator()->index()); |
| instructions().append(profile); |
| return dst; |
| } |
| |
| UnlinkedArrayProfile arrayProfile = newArrayProfile(); |
| UnlinkedValueProfile profile = emitProfiledOpcode(op_get_by_val); |
| instructions().append(kill(dst)); |
| instructions().append(base->index()); |
| instructions().append(property->index()); |
| instructions().append(arrayProfile); |
| instructions().append(profile); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitPutByVal(RegisterID* base, RegisterID* property, RegisterID* value) |
| { |
| UnlinkedArrayProfile arrayProfile = newArrayProfile(); |
| emitOpcode(op_put_by_val); |
| instructions().append(base->index()); |
| instructions().append(property->index()); |
| instructions().append(value->index()); |
| instructions().append(arrayProfile); |
| |
| return value; |
| } |
| |
| RegisterID* BytecodeGenerator::emitDirectPutByVal(RegisterID* base, RegisterID* property, RegisterID* value) |
| { |
| UnlinkedArrayProfile arrayProfile = newArrayProfile(); |
| emitOpcode(op_put_by_val_direct); |
| instructions().append(base->index()); |
| instructions().append(property->index()); |
| instructions().append(value->index()); |
| instructions().append(arrayProfile); |
| return value; |
| } |
| |
| RegisterID* BytecodeGenerator::emitDeleteByVal(RegisterID* dst, RegisterID* base, RegisterID* property) |
| { |
| emitOpcode(op_del_by_val); |
| instructions().append(dst->index()); |
| instructions().append(base->index()); |
| instructions().append(property->index()); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitPutByIndex(RegisterID* base, unsigned index, RegisterID* value) |
| { |
| emitOpcode(op_put_by_index); |
| instructions().append(base->index()); |
| instructions().append(index); |
| instructions().append(value->index()); |
| return value; |
| } |
| |
| RegisterID* BytecodeGenerator::emitAssert(RegisterID* condition, int line) |
| { |
| emitOpcode(op_assert); |
| instructions().append(condition->index()); |
| instructions().append(line); |
| return condition; |
| } |
| |
| RegisterID* BytecodeGenerator::emitCreateThis(RegisterID* dst) |
| { |
| size_t begin = instructions().size(); |
| m_staticPropertyAnalyzer.createThis(m_thisRegister.index(), begin + 3); |
| |
| m_codeBlock->addPropertyAccessInstruction(instructions().size()); |
| emitOpcode(op_create_this); |
| instructions().append(m_thisRegister.index()); |
| instructions().append(m_thisRegister.index()); |
| instructions().append(0); |
| instructions().append(0); |
| return dst; |
| } |
| |
| void BytecodeGenerator::emitTDZCheck(RegisterID* target) |
| { |
| emitOpcode(op_check_tdz); |
| instructions().append(target->index()); |
| } |
| |
| bool BytecodeGenerator::needsTDZCheck(const Variable& variable) |
| { |
| for (unsigned i = m_TDZStack.size(); i--;) { |
| VariableEnvironment& identifiers = m_TDZStack[i].first; |
| if (identifiers.contains(variable.ident().impl())) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void BytecodeGenerator::emitTDZCheckIfNecessary(const Variable& variable, RegisterID* target, RegisterID* scope) |
| { |
| if (needsTDZCheck(variable)) { |
| if (target) |
| emitTDZCheck(target); |
| else { |
| RELEASE_ASSERT(!variable.isLocal() && scope); |
| RefPtr<RegisterID> result = emitGetFromScope(newTemporary(), scope, variable, DoNotThrowIfNotFound); |
| emitTDZCheck(result.get()); |
| } |
| } |
| } |
| |
| void BytecodeGenerator::liftTDZCheckIfPossible(const Variable& variable) |
| { |
| RefPtr<UniquedStringImpl> identifier(variable.ident().impl()); |
| for (unsigned i = m_TDZStack.size(); i--;) { |
| VariableEnvironment& environment = m_TDZStack[i].first; |
| if (environment.contains(identifier)) { |
| bool isSyntacticallyAbleToOptimizeTDZ = m_TDZStack[i].second; |
| if (isSyntacticallyAbleToOptimizeTDZ) { |
| bool wasRemoved = environment.remove(identifier); |
| RELEASE_ASSERT(wasRemoved); |
| } |
| break; |
| } |
| } |
| } |
| |
| void BytecodeGenerator::getVariablesUnderTDZ(VariableEnvironment& result) |
| { |
| for (auto& pair : m_TDZStack) { |
| VariableEnvironment& environment = pair.first; |
| for (auto entry : environment) |
| result.add(entry.key.get()); |
| } |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewObject(RegisterID* dst) |
| { |
| size_t begin = instructions().size(); |
| m_staticPropertyAnalyzer.newObject(dst->index(), begin + 2); |
| |
| emitOpcode(op_new_object); |
| instructions().append(dst->index()); |
| instructions().append(0); |
| instructions().append(newObjectAllocationProfile()); |
| return dst; |
| } |
| |
| unsigned BytecodeGenerator::addConstantBuffer(unsigned length) |
| { |
| return m_codeBlock->addConstantBuffer(length); |
| } |
| |
| JSString* BytecodeGenerator::addStringConstant(const Identifier& identifier) |
| { |
| JSString*& stringInMap = m_stringMap.add(identifier.impl(), nullptr).iterator->value; |
| if (!stringInMap) { |
| stringInMap = jsString(vm(), identifier.string()); |
| addConstantValue(stringInMap); |
| } |
| return stringInMap; |
| } |
| |
| JSTemplateRegistryKey* BytecodeGenerator::addTemplateRegistryKeyConstant(const TemplateRegistryKey& templateRegistryKey) |
| { |
| JSTemplateRegistryKey*& templateRegistryKeyInMap = m_templateRegistryKeyMap.add(templateRegistryKey, nullptr).iterator->value; |
| if (!templateRegistryKeyInMap) { |
| templateRegistryKeyInMap = JSTemplateRegistryKey::create(*vm(), templateRegistryKey); |
| addConstantValue(templateRegistryKeyInMap); |
| } |
| return templateRegistryKeyInMap; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewArray(RegisterID* dst, ElementNode* elements, unsigned length) |
| { |
| #if !ASSERT_DISABLED |
| unsigned checkLength = 0; |
| #endif |
| bool hadVariableExpression = false; |
| if (length) { |
| for (ElementNode* n = elements; n; n = n->next()) { |
| if (!n->value()->isConstant()) { |
| hadVariableExpression = true; |
| break; |
| } |
| if (n->elision()) |
| break; |
| #if !ASSERT_DISABLED |
| checkLength++; |
| #endif |
| } |
| if (!hadVariableExpression) { |
| ASSERT(length == checkLength); |
| unsigned constantBufferIndex = addConstantBuffer(length); |
| JSValue* constantBuffer = m_codeBlock->constantBuffer(constantBufferIndex).data(); |
| unsigned index = 0; |
| for (ElementNode* n = elements; index < length; n = n->next()) { |
| ASSERT(n->value()->isConstant()); |
| constantBuffer[index++] = static_cast<ConstantNode*>(n->value())->jsValue(*this); |
| } |
| emitOpcode(op_new_array_buffer); |
| instructions().append(dst->index()); |
| instructions().append(constantBufferIndex); |
| instructions().append(length); |
| instructions().append(newArrayAllocationProfile()); |
| return dst; |
| } |
| } |
| |
| Vector<RefPtr<RegisterID>, 16, UnsafeVectorOverflow> argv; |
| for (ElementNode* n = elements; n; n = n->next()) { |
| if (!length) |
| break; |
| length--; |
| ASSERT(!n->value()->isSpreadExpression()); |
| argv.append(newTemporary()); |
| // op_new_array requires the initial values to be a sequential range of registers |
| ASSERT(argv.size() == 1 || argv[argv.size() - 1]->index() == argv[argv.size() - 2]->index() - 1); |
| emitNode(argv.last().get(), n->value()); |
| } |
| ASSERT(!length); |
| emitOpcode(op_new_array); |
| instructions().append(dst->index()); |
| instructions().append(argv.size() ? argv[0]->index() : 0); // argv |
| instructions().append(argv.size()); // argc |
| instructions().append(newArrayAllocationProfile()); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewArrayWithSize(RegisterID* dst, RegisterID* length) |
| { |
| emitOpcode(op_new_array_with_size); |
| instructions().append(dst->index()); |
| instructions().append(length->index()); |
| instructions().append(newArrayAllocationProfile()); |
| |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewFunction(RegisterID* dst, FunctionMetadataNode* function) |
| { |
| return emitNewFunctionInternal(dst, m_codeBlock->addFunctionDecl(makeFunction(function))); |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewFunctionInternal(RegisterID* dst, unsigned index) |
| { |
| emitOpcode(op_new_func); |
| instructions().append(dst->index()); |
| instructions().append(scopeRegister()->index()); |
| instructions().append(index); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewRegExp(RegisterID* dst, RegExp* regExp) |
| { |
| emitOpcode(op_new_regexp); |
| instructions().append(dst->index()); |
| instructions().append(addRegExp(regExp)); |
| return dst; |
| } |
| |
| void BytecodeGenerator::emitNewFunctionCommon(RegisterID* dst, BaseFuncExprNode* func, OpcodeID opcodeID) |
| { |
| |
| ASSERT(opcodeID == op_new_func_exp || opcodeID == op_new_arrow_func_exp); |
| |
| FunctionMetadataNode* function = func->metadata(); |
| unsigned index = m_codeBlock->addFunctionExpr(makeFunction(function)); |
| |
| emitOpcode(opcodeID); |
| instructions().append(dst->index()); |
| instructions().append(scopeRegister()->index()); |
| instructions().append(index); |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewFunctionExpression(RegisterID* dst, FuncExprNode* func) |
| { |
| emitNewFunctionCommon(dst, func, op_new_func_exp); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewArrowFunctionExpression(RegisterID* dst, ArrowFuncExprNode* func) |
| { |
| emitNewFunctionCommon(dst, func, op_new_arrow_func_exp); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewDefaultConstructor(RegisterID* dst, ConstructorKind constructorKind, const Identifier& name) |
| { |
| UnlinkedFunctionExecutable* executable = m_vm->builtinExecutables()->createDefaultConstructor(constructorKind, name); |
| executable->setInvalidTypeProfilingOffsets(); |
| |
| unsigned index = m_codeBlock->addFunctionExpr(executable); |
| |
| emitOpcode(op_new_func_exp); |
| instructions().append(dst->index()); |
| instructions().append(scopeRegister()->index()); |
| instructions().append(index); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitCall(RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd) |
| { |
| return emitCall(op_call, dst, func, expectedFunction, callArguments, divot, divotStart, divotEnd); |
| } |
| |
| RegisterID* BytecodeGenerator::emitCallInTailPosition(RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd) |
| { |
| return emitCall(m_inTailPosition ? op_tail_call : op_call, dst, func, expectedFunction, callArguments, divot, divotStart, divotEnd); |
| } |
| |
| RegisterID* BytecodeGenerator::emitCallEval(RegisterID* dst, RegisterID* func, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd) |
| { |
| return emitCall(op_call_eval, dst, func, NoExpectedFunction, callArguments, divot, divotStart, divotEnd); |
| } |
| |
| ExpectedFunction BytecodeGenerator::expectedFunctionForIdentifier(const Identifier& identifier) |
| { |
| if (identifier == m_vm->propertyNames->Object || identifier == m_vm->propertyNames->ObjectPrivateName) |
| return ExpectObjectConstructor; |
| if (identifier == m_vm->propertyNames->Array || identifier == m_vm->propertyNames->ArrayPrivateName) |
| return ExpectArrayConstructor; |
| return NoExpectedFunction; |
| } |
| |
| ExpectedFunction BytecodeGenerator::emitExpectedFunctionSnippet(RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, Label* done) |
| { |
| RefPtr<Label> realCall = newLabel(); |
| switch (expectedFunction) { |
| case ExpectObjectConstructor: { |
| // If the number of arguments is non-zero, then we can't do anything interesting. |
| if (callArguments.argumentCountIncludingThis() >= 2) |
| return NoExpectedFunction; |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jneq_ptr); |
| instructions().append(func->index()); |
| instructions().append(Special::ObjectConstructor); |
| instructions().append(realCall->bind(begin, instructions().size())); |
| |
| if (dst != ignoredResult()) |
| emitNewObject(dst); |
| break; |
| } |
| |
| case ExpectArrayConstructor: { |
| // If you're doing anything other than "new Array()" or "new Array(foo)" then we |
| // don't do inline it, for now. The only reason is that call arguments are in |
| // the opposite order of what op_new_array expects, so we'd either need to change |
| // how op_new_array works or we'd need an op_new_array_reverse. Neither of these |
| // things sounds like it's worth it. |
| if (callArguments.argumentCountIncludingThis() > 2) |
| return NoExpectedFunction; |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jneq_ptr); |
| instructions().append(func->index()); |
| instructions().append(Special::ArrayConstructor); |
| instructions().append(realCall->bind(begin, instructions().size())); |
| |
| if (dst != ignoredResult()) { |
| if (callArguments.argumentCountIncludingThis() == 2) |
| emitNewArrayWithSize(dst, callArguments.argumentRegister(0)); |
| else { |
| ASSERT(callArguments.argumentCountIncludingThis() == 1); |
| emitOpcode(op_new_array); |
| instructions().append(dst->index()); |
| instructions().append(0); |
| instructions().append(0); |
| instructions().append(newArrayAllocationProfile()); |
| } |
| } |
| break; |
| } |
| |
| default: |
| ASSERT(expectedFunction == NoExpectedFunction); |
| return NoExpectedFunction; |
| } |
| |
| size_t begin = instructions().size(); |
| emitOpcode(op_jmp); |
| instructions().append(done->bind(begin, instructions().size())); |
| emitLabel(realCall.get()); |
| |
| return expectedFunction; |
| } |
| |
| RegisterID* BytecodeGenerator::emitCall(OpcodeID opcodeID, RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd) |
| { |
| ASSERT(opcodeID == op_call || opcodeID == op_call_eval || opcodeID == op_tail_call); |
| ASSERT(func->refCount()); |
| |
| if (m_shouldEmitProfileHooks) |
| emitMove(callArguments.profileHookRegister(), func); |
| |
| // Generate code for arguments. |
| unsigned argument = 0; |
| if (callArguments.argumentsNode()) { |
| ArgumentListNode* n = callArguments.argumentsNode()->m_listNode; |
| if (n && n->m_expr->isSpreadExpression()) { |
| RELEASE_ASSERT(!n->m_next); |
| auto expression = static_cast<SpreadExpressionNode*>(n->m_expr)->expression(); |
| RefPtr<RegisterID> argumentRegister; |
| argumentRegister = expression->emitBytecode(*this, callArguments.argumentRegister(0)); |
| RefPtr<RegisterID> thisRegister = emitMove(newTemporary(), callArguments.thisRegister()); |
| return emitCallVarargs(opcodeID == op_tail_call ? op_tail_call_varargs : op_call_varargs, dst, func, callArguments.thisRegister(), argumentRegister.get(), newTemporary(), 0, callArguments.profileHookRegister(), divot, divotStart, divotEnd); |
| } |
| for (; n; n = n->m_next) |
| emitNode(callArguments.argumentRegister(argument++), n); |
| } |
| |
| // Reserve space for call frame. |
| Vector<RefPtr<RegisterID>, JSStack::CallFrameHeaderSize, UnsafeVectorOverflow> callFrame; |
| for (int i = 0; i < JSStack::CallFrameHeaderSize; ++i) |
| callFrame.append(newTemporary()); |
| |
| if (m_shouldEmitProfileHooks) { |
| emitOpcode(op_profile_will_call); |
| instructions().append(callArguments.profileHookRegister()->index()); |
| } |
| |
| emitExpressionInfo(divot, divotStart, divotEnd); |
| |
| RefPtr<Label> done = newLabel(); |
| expectedFunction = emitExpectedFunctionSnippet(dst, func, expectedFunction, callArguments, done.get()); |
| |
| // Emit call. |
| UnlinkedArrayProfile arrayProfile = newArrayProfile(); |
| UnlinkedValueProfile profile = emitProfiledOpcode(opcodeID); |
| ASSERT(dst); |
| ASSERT(dst != ignoredResult()); |
| instructions().append(dst->index()); |
| instructions().append(func->index()); |
| instructions().append(callArguments.argumentCountIncludingThis()); |
| instructions().append(callArguments.stackOffset()); |
| instructions().append(m_codeBlock->addLLIntCallLinkInfo()); |
| instructions().append(0); |
| instructions().append(arrayProfile); |
| instructions().append(profile); |
| |
| if (expectedFunction != NoExpectedFunction) |
| emitLabel(done.get()); |
| |
| if (m_shouldEmitProfileHooks) { |
| emitOpcode(op_profile_did_call); |
| instructions().append(callArguments.profileHookRegister()->index()); |
| } |
| |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitCallVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, RegisterID* profileHookRegister, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd) |
| { |
| return emitCallVarargs(op_call_varargs, dst, func, thisRegister, arguments, firstFreeRegister, firstVarArgOffset, profileHookRegister, divot, divotStart, divotEnd); |
| } |
| |
| RegisterID* BytecodeGenerator::emitCallVarargsInTailPosition(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, RegisterID* profileHookRegister, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd) |
| { |
| return emitCallVarargs(m_inTailPosition ? op_tail_call_varargs : op_call_varargs, dst, func, thisRegister, arguments, firstFreeRegister, firstVarArgOffset, profileHookRegister, divot, divotStart, divotEnd); |
| } |
| |
| RegisterID* BytecodeGenerator::emitConstructVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, RegisterID* profileHookRegister, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd) |
| { |
| return emitCallVarargs(op_construct_varargs, dst, func, thisRegister, arguments, firstFreeRegister, firstVarArgOffset, profileHookRegister, divot, divotStart, divotEnd); |
| } |
| |
| RegisterID* BytecodeGenerator::emitCallVarargs(OpcodeID opcode, RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, RegisterID* profileHookRegister, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd) |
| { |
| if (m_shouldEmitProfileHooks) { |
| emitMove(profileHookRegister, func); |
| emitOpcode(op_profile_will_call); |
| instructions().append(profileHookRegister->index()); |
| } |
| |
| emitExpressionInfo(divot, divotStart, divotEnd); |
| |
| // Emit call. |
| UnlinkedArrayProfile arrayProfile = newArrayProfile(); |
| UnlinkedValueProfile profile = emitProfiledOpcode(opcode); |
| ASSERT(dst != ignoredResult()); |
| instructions().append(dst->index()); |
| instructions().append(func->index()); |
| instructions().append(thisRegister ? thisRegister->index() : 0); |
| instructions().append(arguments->index()); |
| instructions().append(firstFreeRegister->index()); |
| instructions().append(firstVarArgOffset); |
| instructions().append(arrayProfile); |
| instructions().append(profile); |
| if (m_shouldEmitProfileHooks) { |
| emitOpcode(op_profile_did_call); |
| instructions().append(profileHookRegister->index()); |
| } |
| return dst; |
| } |
| |
| void BytecodeGenerator::emitCallDefineProperty(RegisterID* newObj, RegisterID* propertyNameRegister, |
| RegisterID* valueRegister, RegisterID* getterRegister, RegisterID* setterRegister, unsigned options, const JSTextPosition& position) |
| { |
| RefPtr<RegisterID> descriptorRegister = emitNewObject(newTemporary()); |
| |
| RefPtr<RegisterID> trueRegister = emitLoad(newTemporary(), true); |
| if (options & PropertyConfigurable) |
| emitDirectPutById(descriptorRegister.get(), propertyNames().configurable, trueRegister.get(), PropertyNode::Unknown); |
| if (options & PropertyWritable) |
| emitDirectPutById(descriptorRegister.get(), propertyNames().writable, trueRegister.get(), PropertyNode::Unknown); |
| else if (valueRegister) { |
| RefPtr<RegisterID> falseRegister = emitLoad(newTemporary(), false); |
| emitDirectPutById(descriptorRegister.get(), propertyNames().writable, falseRegister.get(), PropertyNode::Unknown); |
| } |
| if (options & PropertyEnumerable) |
| emitDirectPutById(descriptorRegister.get(), propertyNames().enumerable, trueRegister.get(), PropertyNode::Unknown); |
| |
| if (valueRegister) |
| emitDirectPutById(descriptorRegister.get(), propertyNames().value, valueRegister, PropertyNode::Unknown); |
| if (getterRegister) |
| emitDirectPutById(descriptorRegister.get(), propertyNames().get, getterRegister, PropertyNode::Unknown); |
| if (setterRegister) |
| emitDirectPutById(descriptorRegister.get(), propertyNames().set, setterRegister, PropertyNode::Unknown); |
| |
| RefPtr<RegisterID> definePropertyRegister = emitMoveLinkTimeConstant(newTemporary(), LinkTimeConstant::DefinePropertyFunction); |
| |
| CallArguments callArguments(*this, nullptr, 3); |
| emitLoad(callArguments.thisRegister(), jsUndefined()); |
| emitMove(callArguments.argumentRegister(0), newObj); |
| emitMove(callArguments.argumentRegister(1), propertyNameRegister); |
| emitMove(callArguments.argumentRegister(2), descriptorRegister.get()); |
| |
| emitCall(newTemporary(), definePropertyRegister.get(), NoExpectedFunction, callArguments, position, position, position); |
| } |
| |
| RegisterID* BytecodeGenerator::emitReturn(RegisterID* src) |
| { |
| if (isConstructor()) { |
| bool derived = constructorKind() == ConstructorKind::Derived; |
| if (derived && src->index() == m_thisRegister.index()) |
| emitTDZCheck(src); |
| |
| RefPtr<Label> isObjectLabel = newLabel(); |
| emitJumpIfTrue(emitIsObject(newTemporary(), src), isObjectLabel.get()); |
| |
| if (derived) { |
| RefPtr<Label> isUndefinedLabel = newLabel(); |
| emitJumpIfTrue(emitIsUndefined(newTemporary(), src), isUndefinedLabel.get()); |
| emitThrowTypeError("Cannot return a non-object type in the constructor of a derived class."); |
| emitLabel(isUndefinedLabel.get()); |
| if (constructorKind() == ConstructorKind::Derived) |
| emitTDZCheck(&m_thisRegister); |
| } |
| |
| emitUnaryNoDstOp(op_ret, &m_thisRegister); |
| |
| emitLabel(isObjectLabel.get()); |
| } |
| |
| return emitUnaryNoDstOp(op_ret, src); |
| } |
| |
| RegisterID* BytecodeGenerator::emitUnaryNoDstOp(OpcodeID opcodeID, RegisterID* src) |
| { |
| emitOpcode(opcodeID); |
| instructions().append(src->index()); |
| return src; |
| } |
| |
| RegisterID* BytecodeGenerator::emitConstruct(RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd) |
| { |
| ASSERT(func->refCount()); |
| |
| if (m_shouldEmitProfileHooks) |
| emitMove(callArguments.profileHookRegister(), func); |
| |
| // Generate code for arguments. |
| unsigned argument = 0; |
| if (ArgumentsNode* argumentsNode = callArguments.argumentsNode()) { |
| |
| ArgumentListNode* n = callArguments.argumentsNode()->m_listNode; |
| if (n && n->m_expr->isSpreadExpression()) { |
| RELEASE_ASSERT(!n->m_next); |
| auto expression = static_cast<SpreadExpressionNode*>(n->m_expr)->expression(); |
| RefPtr<RegisterID> argumentRegister; |
| argumentRegister = expression->emitBytecode(*this, callArguments.argumentRegister(0)); |
| return emitConstructVarargs(dst, func, callArguments.thisRegister(), argumentRegister.get(), newTemporary(), 0, callArguments.profileHookRegister(), divot, divotStart, divotEnd); |
| } |
| |
| for (ArgumentListNode* n = argumentsNode->m_listNode; n; n = n->m_next) |
| emitNode(callArguments.argumentRegister(argument++), n); |
| } |
| |
| if (m_shouldEmitProfileHooks) { |
| emitOpcode(op_profile_will_call); |
| instructions().append(callArguments.profileHookRegister()->index()); |
| } |
| |
| // Reserve space for call frame. |
| Vector<RefPtr<RegisterID>, JSStack::CallFrameHeaderSize, UnsafeVectorOverflow> callFrame; |
| for (int i = 0; i < JSStack::CallFrameHeaderSize; ++i) |
| callFrame.append(newTemporary()); |
| |
| emitExpressionInfo(divot, divotStart, divotEnd); |
| |
| RefPtr<Label> done = newLabel(); |
| expectedFunction = emitExpectedFunctionSnippet(dst, func, expectedFunction, callArguments, done.get()); |
| |
| UnlinkedValueProfile profile = emitProfiledOpcode(op_construct); |
| ASSERT(dst != ignoredResult()); |
| instructions().append(dst->index()); |
| instructions().append(func->index()); |
| instructions().append(callArguments.argumentCountIncludingThis()); |
| instructions().append(callArguments.stackOffset()); |
| instructions().append(m_codeBlock->addLLIntCallLinkInfo()); |
| instructions().append(0); |
| instructions().append(0); |
| instructions().append(profile); |
| |
| if (expectedFunction != NoExpectedFunction) |
| emitLabel(done.get()); |
| |
| if (m_shouldEmitProfileHooks) { |
| emitOpcode(op_profile_did_call); |
| instructions().append(callArguments.profileHookRegister()->index()); |
| } |
| |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitStrcat(RegisterID* dst, RegisterID* src, int count) |
| { |
| emitOpcode(op_strcat); |
| instructions().append(dst->index()); |
| instructions().append(src->index()); |
| instructions().append(count); |
| |
| return dst; |
| } |
| |
| void BytecodeGenerator::emitToPrimitive(RegisterID* dst, RegisterID* src) |
| { |
| emitOpcode(op_to_primitive); |
| instructions().append(dst->index()); |
| instructions().append(src->index()); |
| } |
| |
| void BytecodeGenerator::emitGetScope() |
| { |
| emitOpcode(op_get_scope); |
| instructions().append(scopeRegister()->index()); |
| } |
| |
| RegisterID* BytecodeGenerator::emitPushWithScope(RegisterID* objectScope) |
| { |
| pushScopedControlFlowContext(); |
| RegisterID* newScope = newBlockScopeVariable(); |
| newScope->ref(); |
| |
| emitOpcode(op_push_with_scope); |
| instructions().append(newScope->index()); |
| instructions().append(objectScope->index()); |
| instructions().append(scopeRegister()->index()); |
| |
| emitMove(scopeRegister(), newScope); |
| m_symbolTableStack.append(SymbolTableStackEntry{ Strong<SymbolTable>(), newScope, true, 0 }); |
| |
| return newScope; |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetParentScope(RegisterID* dst, RegisterID* scope) |
| { |
| emitOpcode(op_get_parent_scope); |
| instructions().append(dst->index()); |
| instructions().append(scope->index()); |
| return dst; |
| } |
| |
| void BytecodeGenerator::emitPopScope(RegisterID* dst, RegisterID* scope) |
| { |
| RefPtr<RegisterID> parentScope = emitGetParentScope(newTemporary(), scope); |
| emitMove(dst, parentScope.get()); |
| } |
| |
| void BytecodeGenerator::emitPopWithScope() |
| { |
| emitPopScope(scopeRegister(), scopeRegister()); |
| popScopedControlFlowContext(); |
| SymbolTableStackEntry stackEntry = m_symbolTableStack.takeLast(); |
| stackEntry.m_scope->deref(); |
| RELEASE_ASSERT(stackEntry.m_isWithScope); |
| } |
| |
| void BytecodeGenerator::emitDebugHook(DebugHookID debugHookID, unsigned line, unsigned charOffset, unsigned lineStart) |
| { |
| #if ENABLE(DEBUG_WITH_BREAKPOINT) |
| if (debugHookID != DidReachBreakpoint) |
| return; |
| #else |
| if (!m_shouldEmitDebugHooks) |
| return; |
| #endif |
| JSTextPosition divot(line, charOffset, lineStart); |
| emitExpressionInfo(divot, divot, divot); |
| emitOpcode(op_debug); |
| instructions().append(debugHookID); |
| instructions().append(false); |
| } |
| |
| void BytecodeGenerator::pushFinallyContext(StatementNode* finallyBlock) |
| { |
| // Reclaim free label scopes. |
| while (m_labelScopes.size() && !m_labelScopes.last().refCount()) |
| m_labelScopes.removeLast(); |
| |
| ControlFlowContext scope; |
| scope.isFinallyBlock = true; |
| FinallyContext context = { |
| finallyBlock, |
| nullptr, |
| nullptr, |
| static_cast<unsigned>(m_scopeContextStack.size()), |
| static_cast<unsigned>(m_switchContextStack.size()), |
| static_cast<unsigned>(m_forInContextStack.size()), |
| static_cast<unsigned>(m_tryContextStack.size()), |
| static_cast<unsigned>(m_labelScopes.size()), |
| static_cast<unsigned>(m_symbolTableStack.size()), |
| m_finallyDepth, |
| m_localScopeDepth |
| }; |
| scope.finallyContext = context; |
| m_scopeContextStack.append(scope); |
| m_finallyDepth++; |
| } |
| |
| void BytecodeGenerator::pushIteratorCloseContext(RegisterID* iterator, ThrowableExpressionData* node) |
| { |
| // Reclaim free label scopes. |
| while (m_labelScopes.size() && !m_labelScopes.last().refCount()) |
| m_labelScopes.removeLast(); |
| |
| ControlFlowContext scope; |
| scope.isFinallyBlock = true; |
| FinallyContext context = { |
| nullptr, |
| iterator, |
| node, |
| static_cast<unsigned>(m_scopeContextStack.size()), |
| static_cast<unsigned>(m_switchContextStack.size()), |
| static_cast<unsigned>(m_forInContextStack.size()), |
| static_cast<unsigned>(m_tryContextStack.size()), |
| static_cast<unsigned>(m_labelScopes.size()), |
| static_cast<unsigned>(m_symbolTableStack.size()), |
| m_finallyDepth, |
| m_localScopeDepth |
| }; |
| scope.finallyContext = context; |
| m_scopeContextStack.append(scope); |
| m_finallyDepth++; |
| } |
| |
| void BytecodeGenerator::popFinallyContext() |
| { |
| ASSERT(m_scopeContextStack.size()); |
| ASSERT(m_scopeContextStack.last().isFinallyBlock); |
| ASSERT(m_scopeContextStack.last().finallyContext.finallyBlock); |
| ASSERT(!m_scopeContextStack.last().finallyContext.iterator); |
| ASSERT(!m_scopeContextStack.last().finallyContext.enumerationNode); |
| ASSERT(m_finallyDepth > 0); |
| m_scopeContextStack.removeLast(); |
| m_finallyDepth--; |
| } |
| |
| void BytecodeGenerator::popIteratorCloseContext() |
| { |
| ASSERT(m_scopeContextStack.size()); |
| ASSERT(m_scopeContextStack.last().isFinallyBlock); |
| ASSERT(!m_scopeContextStack.last().finallyContext.finallyBlock); |
| ASSERT(m_scopeContextStack.last().finallyContext.iterator); |
| ASSERT(m_scopeContextStack.last().finallyContext.enumerationNode); |
| ASSERT(m_finallyDepth > 0); |
| m_scopeContextStack.removeLast(); |
| m_finallyDepth--; |
| } |
| |
| LabelScopePtr BytecodeGenerator::breakTarget(const Identifier& name) |
| { |
| // Reclaim free label scopes. |
| // |
| // The condition was previously coded as 'm_labelScopes.size() && !m_labelScopes.last().refCount()', |
| // however sometimes this appears to lead to GCC going a little haywire and entering the loop with |
| // size 0, leading to segfaulty badness. We are yet to identify a valid cause within our code to |
| // cause the GCC codegen to misbehave in this fashion, and as such the following refactoring of the |
| // loop condition is a workaround. |
| while (m_labelScopes.size()) { |
| if (m_labelScopes.last().refCount()) |
| break; |
| m_labelScopes.removeLast(); |
| } |
| |
| if (!m_labelScopes.size()) |
| return LabelScopePtr::null(); |
| |
| // We special-case the following, which is a syntax error in Firefox: |
| // label: |
| // break; |
| if (name.isEmpty()) { |
| for (int i = m_labelScopes.size() - 1; i >= 0; --i) { |
| LabelScope* scope = &m_labelScopes[i]; |
| if (scope->type() != LabelScope::NamedLabel) { |
| ASSERT(scope->breakTarget()); |
| return LabelScopePtr(m_labelScopes, i); |
| } |
| } |
| return LabelScopePtr::null(); |
| } |
| |
| for (int i = m_labelScopes.size() - 1; i >= 0; --i) { |
| LabelScope* scope = &m_labelScopes[i]; |
| if (scope->name() && *scope->name() == name) { |
| ASSERT(scope->breakTarget()); |
| return LabelScopePtr(m_labelScopes, i); |
| } |
| } |
| return LabelScopePtr::null(); |
| } |
| |
| LabelScopePtr BytecodeGenerator::continueTarget(const Identifier& name) |
| { |
| // Reclaim free label scopes. |
| while (m_labelScopes.size() && !m_labelScopes.last().refCount()) |
| m_labelScopes.removeLast(); |
| |
| if (!m_labelScopes.size()) |
| return LabelScopePtr::null(); |
| |
| if (name.isEmpty()) { |
| for (int i = m_labelScopes.size() - 1; i >= 0; --i) { |
| LabelScope* scope = &m_labelScopes[i]; |
| if (scope->type() == LabelScope::Loop) { |
| ASSERT(scope->continueTarget()); |
| return LabelScopePtr(m_labelScopes, i); |
| } |
| } |
| return LabelScopePtr::null(); |
| } |
| |
| // Continue to the loop nested nearest to the label scope that matches |
| // 'name'. |
| LabelScopePtr result = LabelScopePtr::null(); |
| for (int i = m_labelScopes.size() - 1; i >= 0; --i) { |
| LabelScope* scope = &m_labelScopes[i]; |
| if (scope->type() == LabelScope::Loop) { |
| ASSERT(scope->continueTarget()); |
| result = LabelScopePtr(m_labelScopes, i); |
| } |
| if (scope->name() && *scope->name() == name) |
| return result; // may be null. |
| } |
| return LabelScopePtr::null(); |
| } |
| |
| void BytecodeGenerator::allocateCalleeSaveSpace() |
| { |
| size_t virtualRegisterCountForCalleeSaves = CodeBlock::llintBaselineCalleeSaveSpaceAsVirtualRegisters(); |
| |
| for (size_t i = 0; i < virtualRegisterCountForCalleeSaves; i++) { |
| RegisterID* localRegister = addVar(); |
| localRegister->ref(); |
| m_localRegistersForCalleeSaveRegisters.append(localRegister); |
| } |
| } |
| |
| void BytecodeGenerator::allocateAndEmitScope() |
| { |
| m_scopeRegister = addVar(); |
| m_scopeRegister->ref(); |
| m_codeBlock->setScopeRegister(scopeRegister()->virtualRegister()); |
| emitGetScope(); |
| m_topMostScope = addVar(); |
| emitMove(m_topMostScope, scopeRegister()); |
| } |
| |
| void BytecodeGenerator::emitComplexPopScopes(RegisterID* scope, ControlFlowContext* topScope, ControlFlowContext* bottomScope) |
| { |
| while (topScope > bottomScope) { |
| // First we count the number of dynamic scopes we need to remove to get |
| // to a finally block. |
| int nNormalScopes = 0; |
| while (topScope > bottomScope) { |
| if (topScope->isFinallyBlock) |
| break; |
| ++nNormalScopes; |
| --topScope; |
| } |
| |
| if (nNormalScopes) { |
| // We need to remove a number of dynamic scopes to get to the next |
| // finally block |
| RefPtr<RegisterID> parentScope = newTemporary(); |
| while (nNormalScopes--) { |
| parentScope = emitGetParentScope(parentScope.get(), scope); |
| emitMove(scope, parentScope.get()); |
| } |
| |
| // If topScope == bottomScope then there isn't a finally block left to emit. |
| if (topScope == bottomScope) |
| return; |
| } |
| |
| Vector<ControlFlowContext> savedScopeContextStack; |
| Vector<SwitchInfo> savedSwitchContextStack; |
| Vector<std::unique_ptr<ForInContext>> savedForInContextStack; |
| Vector<TryContext> poppedTryContexts; |
| Vector<SymbolTableStackEntry> savedSymbolTableStack; |
| LabelScopeStore savedLabelScopes; |
| while (topScope > bottomScope && topScope->isFinallyBlock) { |
| RefPtr<Label> beforeFinally = emitLabel(newLabel().get()); |
| |
| // Save the current state of the world while instating the state of the world |
| // for the finally block. |
| FinallyContext finallyContext = topScope->finallyContext; |
| bool flipScopes = finallyContext.scopeContextStackSize != m_scopeContextStack.size(); |
| bool flipSwitches = finallyContext.switchContextStackSize != m_switchContextStack.size(); |
| bool flipForIns = finallyContext.forInContextStackSize != m_forInContextStack.size(); |
| bool flipTries = finallyContext.tryContextStackSize != m_tryContextStack.size(); |
| bool flipLabelScopes = finallyContext.labelScopesSize != m_labelScopes.size(); |
| bool flipSymbolTableStack = finallyContext.symbolTableStackSize != m_symbolTableStack.size(); |
| int topScopeIndex = -1; |
| int bottomScopeIndex = -1; |
| if (flipScopes) { |
| topScopeIndex = topScope - m_scopeContextStack.begin(); |
| bottomScopeIndex = bottomScope - m_scopeContextStack.begin(); |
| savedScopeContextStack = m_scopeContextStack; |
| m_scopeContextStack.shrink(finallyContext.scopeContextStackSize); |
| } |
| if (flipSwitches) { |
| savedSwitchContextStack = m_switchContextStack; |
| m_switchContextStack.shrink(finallyContext.switchContextStackSize); |
| } |
| if (flipForIns) { |
| savedForInContextStack.swap(m_forInContextStack); |
| m_forInContextStack.shrink(finallyContext.forInContextStackSize); |
| } |
| if (flipTries) { |
| while (m_tryContextStack.size() != finallyContext.tryContextStackSize) { |
| ASSERT(m_tryContextStack.size() > finallyContext.tryContextStackSize); |
| TryContext context = m_tryContextStack.last(); |
| m_tryContextStack.removeLast(); |
| TryRange range; |
| range.start = context.start; |
| range.end = beforeFinally; |
| range.tryData = context.tryData; |
| m_tryRanges.append(range); |
| poppedTryContexts.append(context); |
| } |
| } |
| if (flipLabelScopes) { |
| savedLabelScopes = m_labelScopes; |
| while (m_labelScopes.size() > finallyContext.labelScopesSize) |
| m_labelScopes.removeLast(); |
| } |
| if (flipSymbolTableStack) { |
| savedSymbolTableStack = m_symbolTableStack; |
| m_symbolTableStack.shrink(finallyContext.symbolTableStackSize); |
| } |
| int savedFinallyDepth = m_finallyDepth; |
| m_finallyDepth = finallyContext.finallyDepth; |
| int savedDynamicScopeDepth = m_localScopeDepth; |
| m_localScopeDepth = finallyContext.dynamicScopeDepth; |
| |
| if (finallyContext.finallyBlock) { |
| // Emit the finally block. |
| emitNode(finallyContext.finallyBlock); |
| } else { |
| // Emit the IteratorClose block. |
| ASSERT(finallyContext.iterator); |
| emitIteratorClose(finallyContext.iterator, finallyContext.enumerationNode); |
| } |
| |
| RefPtr<Label> afterFinally = emitLabel(newLabel().get()); |
| |
| // Restore the state of the world. |
| if (flipScopes) { |
| m_scopeContextStack = savedScopeContextStack; |
| topScope = &m_scopeContextStack[topScopeIndex]; // assert it's within bounds |
| bottomScope = m_scopeContextStack.begin() + bottomScopeIndex; // don't assert, since it the index might be -1. |
| } |
| if (flipSwitches) |
| m_switchContextStack = savedSwitchContextStack; |
| if (flipForIns) |
| m_forInContextStack.swap(savedForInContextStack); |
| if (flipTries) { |
| ASSERT(m_tryContextStack.size() == finallyContext.tryContextStackSize); |
| for (unsigned i = poppedTryContexts.size(); i--;) { |
| TryContext context = poppedTryContexts[i]; |
| context.start = afterFinally; |
| m_tryContextStack.append(context); |
| } |
| poppedTryContexts.clear(); |
| } |
| if (flipLabelScopes) |
| m_labelScopes = savedLabelScopes; |
| if (flipSymbolTableStack) |
| m_symbolTableStack = savedSymbolTableStack; |
| m_finallyDepth = savedFinallyDepth; |
| m_localScopeDepth = savedDynamicScopeDepth; |
| |
| --topScope; |
| } |
| } |
| } |
| |
| void BytecodeGenerator::emitPopScopes(RegisterID* scope, int targetScopeDepth) |
| { |
| ASSERT(labelScopeDepth() - targetScopeDepth >= 0); |
| |
| size_t scopeDelta = labelScopeDepth() - targetScopeDepth; |
| ASSERT(scopeDelta <= m_scopeContextStack.size()); |
| if (!scopeDelta) |
| return; |
| |
| if (!m_finallyDepth) { |
| RefPtr<RegisterID> parentScope = newTemporary(); |
| while (scopeDelta--) { |
| parentScope = emitGetParentScope(parentScope.get(), scope); |
| emitMove(scope, parentScope.get()); |
| } |
| return; |
| } |
| |
| emitComplexPopScopes(scope, &m_scopeContextStack.last(), &m_scopeContextStack.last() - scopeDelta); |
| } |
| |
| TryData* BytecodeGenerator::pushTry(Label* start) |
| { |
| TryData tryData; |
| tryData.target = newLabel(); |
| tryData.handlerType = HandlerType::Illegal; |
| m_tryData.append(tryData); |
| TryData* result = &m_tryData.last(); |
| |
| TryContext tryContext; |
| tryContext.start = start; |
| tryContext.tryData = result; |
| |
| m_tryContextStack.append(tryContext); |
| |
| return result; |
| } |
| |
| void BytecodeGenerator::popTryAndEmitCatch(TryData* tryData, RegisterID* exceptionRegister, RegisterID* thrownValueRegister, Label* end, HandlerType handlerType) |
| { |
| m_usesExceptions = true; |
| |
| ASSERT_UNUSED(tryData, m_tryContextStack.last().tryData == tryData); |
| |
| TryRange tryRange; |
| tryRange.start = m_tryContextStack.last().start; |
| tryRange.end = end; |
| tryRange.tryData = m_tryContextStack.last().tryData; |
| m_tryRanges.append(tryRange); |
| m_tryContextStack.removeLast(); |
| |
| emitLabel(tryRange.tryData->target.get()); |
| tryRange.tryData->handlerType = handlerType; |
| |
| emitOpcode(op_catch); |
| instructions().append(exceptionRegister->index()); |
| instructions().append(thrownValueRegister->index()); |
| |
| bool foundLocalScope = false; |
| for (unsigned i = m_symbolTableStack.size(); i--; ) { |
| // Note that if we don't find a local scope in the current function/program, |
| // we must grab the outer-most scope of this bytecode generation. |
| if (m_symbolTableStack[i].m_scope) { |
| foundLocalScope = true; |
| emitMove(scopeRegister(), m_symbolTableStack[i].m_scope); |
| break; |
| } |
| } |
| if (!foundLocalScope) |
| emitMove(scopeRegister(), m_topMostScope); |
| } |
| |
| int BytecodeGenerator::localScopeDepth() const |
| { |
| return m_localScopeDepth; |
| } |
| |
| int BytecodeGenerator::labelScopeDepth() const |
| { |
| return localScopeDepth() + m_finallyDepth; |
| } |
| |
| void BytecodeGenerator::emitThrowReferenceError(const String& message) |
| { |
| emitOpcode(op_throw_static_error); |
| instructions().append(addConstantValue(addStringConstant(Identifier::fromString(m_vm, message)))->index()); |
| instructions().append(true); |
| } |
| |
| void BytecodeGenerator::emitThrowTypeError(const String& message) |
| { |
| emitOpcode(op_throw_static_error); |
| instructions().append(addConstantValue(addStringConstant(Identifier::fromString(m_vm, message)))->index()); |
| instructions().append(false); |
| } |
| |
| void BytecodeGenerator::emitPushFunctionNameScope(const Identifier& property, RegisterID* callee, bool isCaptured) |
| { |
| // There is some nuance here: |
| // If we're in strict mode code, the function name scope variable acts exactly like a "const" variable. |
| // If we're not in strict mode code, we want to allow bogus assignments to the name scoped variable. |
| // This means any assignment to the variable won't throw, but it won't actually assign a new value to it. |
| // To accomplish this, we don't report that this scope is a lexical scope. This will prevent |
| // any throws when trying to assign to the variable (while still ensuring it keeps its original |
| // value). There is some ugliness and exploitation of a leaky abstraction here, but it's better than |
| // having a completely new op code and a class to handle name scopes which are so close in functionality |
| // to lexical environments. |
| VariableEnvironment nameScopeEnvironment; |
| auto addResult = nameScopeEnvironment.add(property); |
| if (isCaptured) |
| addResult.iterator->value.setIsCaptured(); |
| addResult.iterator->value.setIsConst(); // The function name scope name acts like a const variable. |
| unsigned numVars = m_codeBlock->m_numVars; |
| pushLexicalScopeInternal(nameScopeEnvironment, true, nullptr, TDZRequirement::NotUnderTDZ, ScopeType::FunctionNameScope, ScopeRegisterType::Var); |
| ASSERT_UNUSED(numVars, m_codeBlock->m_numVars == static_cast<int>(numVars + 1)); // Should have only created one new "var" for the function name scope. |
| bool shouldTreatAsLexicalVariable = isStrictMode(); |
| Variable functionVar = variableForLocalEntry(property, m_symbolTableStack.last().m_symbolTable->get(property.impl()), m_symbolTableStack.last().m_symbolTableConstantIndex, shouldTreatAsLexicalVariable); |
| emitPutToScope(m_symbolTableStack.last().m_scope, functionVar, callee, ThrowIfNotFound, NotInitialization); |
| } |
| |
| void BytecodeGenerator::pushScopedControlFlowContext() |
| { |
| ControlFlowContext context; |
| context.isFinallyBlock = false; |
| m_scopeContextStack.append(context); |
| m_localScopeDepth++; |
| } |
| |
| void BytecodeGenerator::popScopedControlFlowContext() |
| { |
| ASSERT(m_scopeContextStack.size()); |
| ASSERT(!m_scopeContextStack.last().isFinallyBlock); |
| m_scopeContextStack.removeLast(); |
| m_localScopeDepth--; |
| } |
| |
| void BytecodeGenerator::emitPushCatchScope(const Identifier& property, RegisterID* exceptionValue, VariableEnvironment& environment) |
| { |
| RELEASE_ASSERT(environment.contains(property.impl())); |
| pushLexicalScopeInternal(environment, true, nullptr, TDZRequirement::NotUnderTDZ, ScopeType::CatchScope, ScopeRegisterType::Block); |
| Variable exceptionVar = variable(property); |
| RELEASE_ASSERT(exceptionVar.isResolved()); |
| RefPtr<RegisterID> scope = emitResolveScope(nullptr, exceptionVar); |
| emitPutToScope(scope.get(), exceptionVar, exceptionValue, ThrowIfNotFound, NotInitialization); |
| } |
| |
| void BytecodeGenerator::emitPopCatchScope(VariableEnvironment& environment) |
| { |
| popLexicalScopeInternal(environment, TDZRequirement::NotUnderTDZ); |
| } |
| |
| void BytecodeGenerator::beginSwitch(RegisterID* scrutineeRegister, SwitchInfo::SwitchType type) |
| { |
| SwitchInfo info = { static_cast<uint32_t>(instructions().size()), type }; |
| switch (type) { |
| case SwitchInfo::SwitchImmediate: |
| emitOpcode(op_switch_imm); |
| break; |
| case SwitchInfo::SwitchCharacter: |
| emitOpcode(op_switch_char); |
| break; |
| case SwitchInfo::SwitchString: |
| emitOpcode(op_switch_string); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| instructions().append(0); // place holder for table index |
| instructions().append(0); // place holder for default target |
| instructions().append(scrutineeRegister->index()); |
| m_switchContextStack.append(info); |
| } |
| |
| static int32_t keyForImmediateSwitch(ExpressionNode* node, int32_t min, int32_t max) |
| { |
| UNUSED_PARAM(max); |
| ASSERT(node->isNumber()); |
| double value = static_cast<NumberNode*>(node)->value(); |
| int32_t key = static_cast<int32_t>(value); |
| ASSERT(key == value); |
| ASSERT(key >= min); |
| ASSERT(key <= max); |
| return key - min; |
| } |
| |
| static int32_t keyForCharacterSwitch(ExpressionNode* node, int32_t min, int32_t max) |
| { |
| UNUSED_PARAM(max); |
| ASSERT(node->isString()); |
| StringImpl* clause = static_cast<StringNode*>(node)->value().impl(); |
| ASSERT(clause->length() == 1); |
| |
| int32_t key = (*clause)[0]; |
| ASSERT(key >= min); |
| ASSERT(key <= max); |
| return key - min; |
| } |
| |
| static void prepareJumpTableForSwitch( |
| UnlinkedSimpleJumpTable& jumpTable, int32_t switchAddress, uint32_t clauseCount, |
| RefPtr<Label>* labels, ExpressionNode** nodes, int32_t min, int32_t max, |
| int32_t (*keyGetter)(ExpressionNode*, int32_t min, int32_t max)) |
| { |
| jumpTable.min = min; |
| jumpTable.branchOffsets.resize(max - min + 1); |
| jumpTable.branchOffsets.fill(0); |
| for (uint32_t i = 0; i < clauseCount; ++i) { |
| // We're emitting this after the clause labels should have been fixed, so |
| // the labels should not be "forward" references |
| ASSERT(!labels[i]->isForward()); |
| jumpTable.add(keyGetter(nodes[i], min, max), labels[i]->bind(switchAddress, switchAddress + 3)); |
| } |
| } |
| |
| static void prepareJumpTableForStringSwitch(UnlinkedStringJumpTable& jumpTable, int32_t switchAddress, uint32_t clauseCount, RefPtr<Label>* labels, ExpressionNode** nodes) |
| { |
| for (uint32_t i = 0; i < clauseCount; ++i) { |
| // We're emitting this after the clause labels should have been fixed, so |
| // the labels should not be "forward" references |
| ASSERT(!labels[i]->isForward()); |
| |
| ASSERT(nodes[i]->isString()); |
| StringImpl* clause = static_cast<StringNode*>(nodes[i])->value().impl(); |
| jumpTable.offsetTable.add(clause, labels[i]->bind(switchAddress, switchAddress + 3)); |
| } |
| } |
| |
| void BytecodeGenerator::endSwitch(uint32_t clauseCount, RefPtr<Label>* labels, ExpressionNode** nodes, Label* defaultLabel, int32_t min, int32_t max) |
| { |
| SwitchInfo switchInfo = m_switchContextStack.last(); |
| m_switchContextStack.removeLast(); |
| |
| switch (switchInfo.switchType) { |
| case SwitchInfo::SwitchImmediate: |
| case SwitchInfo::SwitchCharacter: { |
| instructions()[switchInfo.bytecodeOffset + 1] = m_codeBlock->numberOfSwitchJumpTables(); |
| instructions()[switchInfo.bytecodeOffset + 2] = defaultLabel->bind(switchInfo.bytecodeOffset, switchInfo.bytecodeOffset + 3); |
| |
| UnlinkedSimpleJumpTable& jumpTable = m_codeBlock->addSwitchJumpTable(); |
| prepareJumpTableForSwitch( |
| jumpTable, switchInfo.bytecodeOffset, clauseCount, labels, nodes, min, max, |
| switchInfo.switchType == SwitchInfo::SwitchImmediate |
| ? keyForImmediateSwitch |
| : keyForCharacterSwitch); |
| break; |
| } |
| |
| case SwitchInfo::SwitchString: { |
| instructions()[switchInfo.bytecodeOffset + 1] = m_codeBlock->numberOfStringSwitchJumpTables(); |
| instructions()[switchInfo.bytecodeOffset + 2] = defaultLabel->bind(switchInfo.bytecodeOffset, switchInfo.bytecodeOffset + 3); |
| |
| UnlinkedStringJumpTable& jumpTable = m_codeBlock->addStringSwitchJumpTable(); |
| prepareJumpTableForStringSwitch(jumpTable, switchInfo.bytecodeOffset, clauseCount, labels, nodes); |
| break; |
| } |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| } |
| |
| RegisterID* BytecodeGenerator::emitThrowExpressionTooDeepException() |
| { |
| // It would be nice to do an even better job of identifying exactly where the expression is. |
| // And we could make the caller pass the node pointer in, if there was some way of getting |
| // that from an arbitrary node. However, calling emitExpressionInfo without any useful data |
| // is still good enough to get us an accurate line number. |
| m_expressionTooDeep = true; |
| return newTemporary(); |
| } |
| |
| bool BytecodeGenerator::isArgumentNumber(const Identifier& ident, int argumentNumber) |
| { |
| RegisterID* registerID = variable(ident).local(); |
| if (!registerID) |
| return false; |
| return registerID->index() == CallFrame::argumentOffset(argumentNumber); |
| } |
| |
| bool BytecodeGenerator::emitReadOnlyExceptionIfNeeded(const Variable& variable) |
| { |
| // If we're in strict mode, we always throw. |
| // If we're not in strict mode, we throw for "const" variables but not the function callee. |
| if (isStrictMode() || variable.isConst()) { |
| emitOpcode(op_throw_static_error); |
| instructions().append(addConstantValue(addStringConstant(Identifier::fromString(m_vm, StrictModeReadonlyPropertyWriteError)))->index()); |
| instructions().append(false); |
| return true; |
| } |
| return false; |
| } |
| |
| void BytecodeGenerator::emitEnumeration(ThrowableExpressionData* node, ExpressionNode* subjectNode, const std::function<void(BytecodeGenerator&, RegisterID*)>& callBack, VariableEnvironmentNode* forLoopNode, RegisterID* forLoopSymbolTable) |
| { |
| RefPtr<RegisterID> subject = newTemporary(); |
| emitNode(subject.get(), subjectNode); |
| RefPtr<RegisterID> iterator = emitGetById(newTemporary(), subject.get(), propertyNames().iteratorSymbol); |
| { |
| CallArguments args(*this, nullptr); |
| emitMove(args.thisRegister(), subject.get()); |
| emitCall(iterator.get(), iterator.get(), NoExpectedFunction, args, node->divot(), node->divotStart(), node->divotEnd()); |
| } |
| |
| RefPtr<Label> loopDone = newLabel(); |
| // RefPtr<Register> iterator's lifetime must be longer than IteratorCloseContext. |
| pushIteratorCloseContext(iterator.get(), node); |
| { |
| LabelScopePtr scope = newLabelScope(LabelScope::Loop); |
| RefPtr<RegisterID> value = newTemporary(); |
| emitLoad(value.get(), jsUndefined()); |
| |
| emitJump(scope->continueTarget()); |
| |
| RefPtr<Label> loopStart = newLabel(); |
| emitLabel(loopStart.get()); |
| emitLoopHint(); |
| |
| RefPtr<Label> tryStartLabel = newLabel(); |
| emitLabel(tryStartLabel.get()); |
| TryData* tryData = pushTry(tryStartLabel.get()); |
| callBack(*this, value.get()); |
| emitJump(scope->continueTarget()); |
| |
| // IteratorClose sequence for throw-ed control flow. |
| { |
| RefPtr<Label> catchHere = emitLabel(newLabel().get()); |
| RefPtr<RegisterID> exceptionRegister = newTemporary(); |
| RefPtr<RegisterID> thrownValueRegister = newTemporary(); |
| popTryAndEmitCatch(tryData, exceptionRegister.get(), |
| thrownValueRegister.get(), catchHere.get(), HandlerType::SynthesizedFinally); |
| |
| RefPtr<Label> catchDone = newLabel(); |
| |
| RefPtr<RegisterID> returnMethod = emitGetById(newTemporary(), iterator.get(), propertyNames().returnKeyword); |
| emitJumpIfTrue(emitIsUndefined(newTemporary(), returnMethod.get()), catchDone.get()); |
| |
| RefPtr<Label> returnCallTryStart = newLabel(); |
| emitLabel(returnCallTryStart.get()); |
| TryData* returnCallTryData = pushTry(returnCallTryStart.get()); |
| |
| CallArguments returnArguments(*this, nullptr); |
| emitMove(returnArguments.thisRegister(), iterator.get()); |
| emitCall(value.get(), returnMethod.get(), NoExpectedFunction, returnArguments, node->divot(), node->divotStart(), node->divotEnd()); |
| |
| emitLabel(catchDone.get()); |
| emitThrow(exceptionRegister.get()); |
| |
| // Absorb exception. |
| popTryAndEmitCatch(returnCallTryData, newTemporary(), |
| newTemporary(), catchDone.get(), HandlerType::SynthesizedFinally); |
| emitThrow(exceptionRegister.get()); |
| } |
| |
| emitLabel(scope->continueTarget()); |
| if (forLoopNode) |
| prepareLexicalScopeForNextForLoopIteration(forLoopNode, forLoopSymbolTable); |
| |
| { |
| emitIteratorNext(value.get(), iterator.get(), node); |
| emitJumpIfTrue(emitGetById(newTemporary(), value.get(), propertyNames().done), loopDone.get()); |
| emitGetById(value.get(), value.get(), propertyNames().value); |
| emitJump(loopStart.get()); |
| } |
| |
| emitLabel(scope->breakTarget()); |
| } |
| |
| // IteratorClose sequence for break-ed control flow. |
| popIteratorCloseContext(); |
| emitIteratorClose(iterator.get(), node); |
| emitLabel(loopDone.get()); |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetTemplateObject(RegisterID* dst, TaggedTemplateNode* taggedTemplate) |
| { |
| TemplateRegistryKey::StringVector rawStrings; |
| TemplateRegistryKey::StringVector cookedStrings; |
| |
| TemplateStringListNode* templateString = taggedTemplate->templateLiteral()->templateStrings(); |
| for (; templateString; templateString = templateString->next()) { |
| rawStrings.append(templateString->value()->raw().impl()); |
| cookedStrings.append(templateString->value()->cooked().impl()); |
| } |
| |
| RefPtr<RegisterID> getTemplateObject = nullptr; |
| Variable var = variable(propertyNames().getTemplateObjectPrivateName); |
| if (RegisterID* local = var.local()) |
| getTemplateObject = emitMove(newTemporary(), local); |
| else { |
| getTemplateObject = newTemporary(); |
| RefPtr<RegisterID> scope = newTemporary(); |
| moveToDestinationIfNeeded(scope.get(), emitResolveScope(scope.get(), var)); |
| emitGetFromScope(getTemplateObject.get(), scope.get(), var, ThrowIfNotFound); |
| } |
| |
| CallArguments arguments(*this, nullptr); |
| emitLoad(arguments.thisRegister(), JSValue(addTemplateRegistryKeyConstant(TemplateRegistryKey(rawStrings, cookedStrings)))); |
| return emitCall(dst, getTemplateObject.get(), NoExpectedFunction, arguments, taggedTemplate->divot(), taggedTemplate->divotStart(), taggedTemplate->divotEnd()); |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetEnumerableLength(RegisterID* dst, RegisterID* base) |
| { |
| emitOpcode(op_get_enumerable_length); |
| instructions().append(dst->index()); |
| instructions().append(base->index()); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitHasGenericProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName) |
| { |
| emitOpcode(op_has_generic_property); |
| instructions().append(dst->index()); |
| instructions().append(base->index()); |
| instructions().append(propertyName->index()); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitHasIndexedProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName) |
| { |
| UnlinkedArrayProfile arrayProfile = newArrayProfile(); |
| emitOpcode(op_has_indexed_property); |
| instructions().append(dst->index()); |
| instructions().append(base->index()); |
| instructions().append(propertyName->index()); |
| instructions().append(arrayProfile); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitHasStructureProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName, RegisterID* enumerator) |
| { |
| emitOpcode(op_has_structure_property); |
| instructions().append(dst->index()); |
| instructions().append(base->index()); |
| instructions().append(propertyName->index()); |
| instructions().append(enumerator->index()); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetPropertyEnumerator(RegisterID* dst, RegisterID* base) |
| { |
| emitOpcode(op_get_property_enumerator); |
| instructions().append(dst->index()); |
| instructions().append(base->index()); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitEnumeratorStructurePropertyName(RegisterID* dst, RegisterID* enumerator, RegisterID* index) |
| { |
| emitOpcode(op_enumerator_structure_pname); |
| instructions().append(dst->index()); |
| instructions().append(enumerator->index()); |
| instructions().append(index->index()); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitEnumeratorGenericPropertyName(RegisterID* dst, RegisterID* enumerator, RegisterID* index) |
| { |
| emitOpcode(op_enumerator_generic_pname); |
| instructions().append(dst->index()); |
| instructions().append(enumerator->index()); |
| instructions().append(index->index()); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitToIndexString(RegisterID* dst, RegisterID* index) |
| { |
| emitOpcode(op_to_index_string); |
| instructions().append(dst->index()); |
| instructions().append(index->index()); |
| return dst; |
| } |
| |
| |
| RegisterID* BytecodeGenerator::emitIsObject(RegisterID* dst, RegisterID* src) |
| { |
| emitOpcode(op_is_object); |
| instructions().append(dst->index()); |
| instructions().append(src->index()); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitIsUndefined(RegisterID* dst, RegisterID* src) |
| { |
| emitOpcode(op_is_undefined); |
| instructions().append(dst->index()); |
| instructions().append(src->index()); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitIteratorNext(RegisterID* dst, RegisterID* iterator, const ThrowableExpressionData* node) |
| { |
| { |
| RefPtr<RegisterID> next = emitGetById(newTemporary(), iterator, propertyNames().next); |
| CallArguments nextArguments(*this, nullptr); |
| emitMove(nextArguments.thisRegister(), iterator); |
| emitCall(dst, next.get(), NoExpectedFunction, nextArguments, node->divot(), node->divotStart(), node->divotEnd()); |
| } |
| { |
| RefPtr<Label> typeIsObject = newLabel(); |
| emitJumpIfTrue(emitIsObject(newTemporary(), dst), typeIsObject.get()); |
| emitThrowTypeError(ASCIILiteral("Iterator result interface is not an object.")); |
| emitLabel(typeIsObject.get()); |
| } |
| return dst; |
| } |
| |
| void BytecodeGenerator::emitIteratorClose(RegisterID* iterator, const ThrowableExpressionData* node) |
| { |
| RefPtr<Label> done = newLabel(); |
| RefPtr<RegisterID> returnMethod = emitGetById(newTemporary(), iterator, propertyNames().returnKeyword); |
| emitJumpIfTrue(emitIsUndefined(newTemporary(), returnMethod.get()), done.get()); |
| |
| RefPtr<RegisterID> value = newTemporary(); |
| CallArguments returnArguments(*this, nullptr); |
| emitMove(returnArguments.thisRegister(), iterator); |
| emitCall(value.get(), returnMethod.get(), NoExpectedFunction, returnArguments, node->divot(), node->divotStart(), node->divotEnd()); |
| emitJumpIfTrue(emitIsObject(newTemporary(), value.get()), done.get()); |
| emitThrowTypeError(ASCIILiteral("Iterator result interface is not an object.")); |
| emitLabel(done.get()); |
| } |
| |
| void BytecodeGenerator::pushIndexedForInScope(RegisterID* localRegister, RegisterID* indexRegister) |
| { |
| if (!localRegister) |
| return; |
| m_forInContextStack.append(std::make_unique<IndexedForInContext>(localRegister, indexRegister)); |
| } |
| |
| void BytecodeGenerator::popIndexedForInScope(RegisterID* localRegister) |
| { |
| if (!localRegister) |
| return; |
| m_forInContextStack.removeLast(); |
| } |
| |
| RegisterID* BytecodeGenerator::emitLoadArrowFunctionLexicalEnvironment() |
| { |
| ASSERT(m_codeBlock->isArrowFunction() || m_codeBlock->isArrowFunctionContext() || constructorKind() == ConstructorKind::Derived); |
| |
| m_resolvedArrowFunctionScopeContextRegister = emitResolveScope(nullptr, variable(propertyNames().thisIdentifier, ThisResolutionType::Scoped)); |
| return m_resolvedArrowFunctionScopeContextRegister.get(); |
| } |
| |
| void BytecodeGenerator::emitLoadThisFromArrowFunctionLexicalEnvironment() |
| { |
| emitGetFromScope(thisRegister(), emitLoadArrowFunctionLexicalEnvironment(), variable(propertyNames().thisIdentifier, ThisResolutionType::Scoped), DoNotThrowIfNotFound); |
| } |
| |
| RegisterID* BytecodeGenerator::emitLoadNewTargetFromArrowFunctionLexicalEnvironment() |
| { |
| m_isNewTargetLoadedInArrowFunction = true; |
| |
| Variable newTargetVar = variable(propertyNames().newTargetLocalPrivateName); |
| emitMove(m_newTargetRegister, emitGetFromScope(newTemporary(), emitLoadArrowFunctionLexicalEnvironment(), newTargetVar, ThrowIfNotFound)); |
| |
| return m_newTargetRegister; |
| } |
| |
| RegisterID* BytecodeGenerator::emitLoadDerivedConstructorFromArrowFunctionLexicalEnvironment() |
| { |
| Variable protoScopeVar = variable(propertyNames().derivedConstructorPrivateName); |
| return emitGetFromScope(newTemporary(), emitLoadArrowFunctionLexicalEnvironment(), protoScopeVar, ThrowIfNotFound); |
| } |
| |
| void BytecodeGenerator::emitPutNewTargetToArrowFunctionContextScope() |
| { |
| ASSERT(m_arrowFunctionContextLexicalEnvironmentRegister != nullptr); |
| |
| Variable newTargetVar = variable(propertyNames().newTargetLocalPrivateName); |
| emitPutToScope(m_arrowFunctionContextLexicalEnvironmentRegister, newTargetVar, newTarget(), DoNotThrowIfNotFound, Initialization); |
| } |
| |
| void BytecodeGenerator::emitPutDerivedConstructorToArrowFunctionContextScope() |
| { |
| if (isConstructor() && constructorKind() == ConstructorKind::Derived) { |
| ASSERT(m_arrowFunctionContextLexicalEnvironmentRegister != nullptr); |
| |
| Variable protoScope = variable(propertyNames().derivedConstructorPrivateName); |
| emitPutToScope(m_arrowFunctionContextLexicalEnvironmentRegister, protoScope, &m_calleeRegister, DoNotThrowIfNotFound, Initialization); |
| } |
| } |
| |
| void BytecodeGenerator::emitPutThisToArrowFunctionContextScope() |
| { |
| ASSERT(isDerivedConstructorContext() || m_arrowFunctionContextLexicalEnvironmentRegister != nullptr); |
| |
| if (isDerivedConstructorContext()) |
| emitLoadArrowFunctionLexicalEnvironment(); |
| |
| Variable thisVar = variable(propertyNames().thisIdentifier, ThisResolutionType::Scoped); |
| emitPutToScope(isDerivedConstructorContext() ? m_resolvedArrowFunctionScopeContextRegister.get() : m_arrowFunctionContextLexicalEnvironmentRegister, thisVar, thisRegister(), DoNotThrowIfNotFound, NotInitialization); |
| } |
| |
| void BytecodeGenerator::pushStructureForInScope(RegisterID* localRegister, RegisterID* indexRegister, RegisterID* propertyRegister, RegisterID* enumeratorRegister) |
| { |
| if (!localRegister) |
| return; |
| m_forInContextStack.append(std::make_unique<StructureForInContext>(localRegister, indexRegister, propertyRegister, enumeratorRegister)); |
| } |
| |
| void BytecodeGenerator::popStructureForInScope(RegisterID* localRegister) |
| { |
| if (!localRegister) |
| return; |
| m_forInContextStack.removeLast(); |
| } |
| |
| void BytecodeGenerator::invalidateForInContextForLocal(RegisterID* localRegister) |
| { |
| // Lexically invalidating ForInContexts is kind of weak sauce, but it only occurs if |
| // either of the following conditions is true: |
| // |
| // (1) The loop iteration variable is re-assigned within the body of the loop. |
| // (2) The loop iteration variable is captured in the lexical scope of the function. |
| // |
| // These two situations occur sufficiently rarely that it's okay to use this style of |
| // "analysis" to make iteration faster. If we didn't want to do this, we would either have |
| // to perform some flow-sensitive analysis to see if/when the loop iteration variable was |
| // reassigned, or we'd have to resort to runtime checks to see if the variable had been |
| // reassigned from its original value. |
| for (size_t i = m_forInContextStack.size(); i > 0; i--) { |
| ForInContext* context = m_forInContextStack[i - 1].get(); |
| if (context->local() != localRegister) |
| continue; |
| context->invalidate(); |
| break; |
| } |
| } |
| |
| RegisterID* BytecodeGenerator::emitRestParameter(RegisterID* result, unsigned numParametersToSkip) |
| { |
| RefPtr<RegisterID> restArrayLength = newTemporary(); |
| emitOpcode(op_get_rest_length); |
| instructions().append(restArrayLength->index()); |
| instructions().append(numParametersToSkip); |
| |
| emitNewArrayWithSize(result, restArrayLength.get()); |
| |
| emitOpcode(op_copy_rest); |
| instructions().append(result->index()); |
| instructions().append(restArrayLength->index()); |
| instructions().append(numParametersToSkip); |
| |
| return result; |
| } |
| |
| } // namespace JSC |