blob: d58ff41fbbcff87bc1e462eb525bfe86c4ce6c7a [file] [log] [blame]
/*
* Copyright (C) 2008, 2009, 2012-2015 Apple Inc. All rights reserved.
* Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
* Copyright (C) 2012 Igalia, S.L.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "BytecodeGenerator.h"
#include "BuiltinExecutables.h"
#include "Interpreter.h"
#include "JSFunction.h"
#include "JSLexicalEnvironment.h"
#include "JSTemplateRegistryKey.h"
#include "LowLevelInterpreter.h"
#include "JSCInlines.h"
#include "Options.h"
#include "StackAlignment.h"
#include "StrongInlines.h"
#include "UnlinkedCodeBlock.h"
#include "UnlinkedInstructionStream.h"
#include <wtf/StdLibExtras.h>
#include <wtf/text/WTFString.h>
using namespace std;
namespace JSC {
void Label::setLocation(unsigned location)
{
m_location = location;
unsigned size = m_unresolvedJumps.size();
for (unsigned i = 0; i < size; ++i)
m_generator.instructions()[m_unresolvedJumps[i].second].u.operand = m_location - m_unresolvedJumps[i].first;
}
ParserError BytecodeGenerator::generate()
{
SamplingRegion samplingRegion("Bytecode Generation");
m_codeBlock->setThisRegister(m_thisRegister.virtualRegister());
// If we have declared a variable named "arguments" and we are using arguments then we should
// perform that assignment now.
if (m_needToInitializeArguments)
initializeVariable(variable(propertyNames().arguments), m_argumentsRegister);
if (m_restParameter)
m_restParameter->emit(*this);
{
RefPtr<RegisterID> temp = newTemporary();
RefPtr<RegisterID> globalScope;
for (auto functionPair : m_functionsToInitialize) {
FunctionMetadataNode* metadata = functionPair.first;
FunctionVariableType functionType = functionPair.second;
emitNewFunction(temp.get(), metadata);
if (functionType == NormalFunctionVariable)
initializeVariable(variable(metadata->ident()), temp.get());
else if (functionType == GlobalFunctionVariable) {
if (!globalScope) {
// We know this will resolve to the global object because our parser/global initialization code
// doesn't allow let/const/class variables to have the same names as functions.
RefPtr<RegisterID> globalObjectScope = emitResolveScope(nullptr, Variable(metadata->ident()));
globalScope = newBlockScopeVariable();
emitMove(globalScope.get(), globalObjectScope.get());
}
emitPutToScope(globalScope.get(), Variable(metadata->ident()), temp.get(), ThrowIfNotFound, NotInitialization);
} else
RELEASE_ASSERT_NOT_REACHED();
}
}
bool callingClassConstructor = constructorKind() != ConstructorKind::None && !isConstructor();
if (!callingClassConstructor)
m_scopeNode->emitBytecode(*this);
m_staticPropertyAnalyzer.kill();
for (unsigned i = 0; i < m_tryRanges.size(); ++i) {
TryRange& range = m_tryRanges[i];
int start = range.start->bind();
int end = range.end->bind();
// This will happen for empty try blocks and for some cases of finally blocks:
//
// try {
// try {
// } finally {
// return 42;
// // *HERE*
// }
// } finally {
// print("things");
// }
//
// The return will pop scopes to execute the outer finally block. But this includes
// popping the try context for the inner try. The try context is live in the fall-through
// part of the finally block not because we will emit a handler that overlaps the finally,
// but because we haven't yet had a chance to plant the catch target. Then when we finish
// emitting code for the outer finally block, we repush the try contex, this time with a
// new start index. But that means that the start index for the try range corresponding
// to the inner-finally-following-the-return (marked as "*HERE*" above) will be greater
// than the end index of the try block. This is harmless since end < start handlers will
// never get matched in our logic, but we do the runtime a favor and choose to not emit
// such handlers at all.
if (end <= start)
continue;
ASSERT(range.tryData->handlerType != HandlerType::Illegal);
UnlinkedHandlerInfo info(static_cast<uint32_t>(start), static_cast<uint32_t>(end),
static_cast<uint32_t>(range.tryData->target->bind()), range.tryData->handlerType);
m_codeBlock->addExceptionHandler(info);
}
m_codeBlock->setInstructions(std::make_unique<UnlinkedInstructionStream>(m_instructions));
m_codeBlock->shrinkToFit();
if (m_expressionTooDeep)
return ParserError(ParserError::OutOfMemory);
return ParserError(ParserError::ErrorNone);
}
BytecodeGenerator::BytecodeGenerator(VM& vm, ProgramNode* programNode, UnlinkedProgramCodeBlock* codeBlock, DebuggerMode debuggerMode, ProfilerMode profilerMode, const VariableEnvironment* parentScopeTDZVariables)
: m_shouldEmitDebugHooks(Options::forceDebuggerBytecodeGeneration() || debuggerMode == DebuggerOn)
, m_shouldEmitProfileHooks(Options::forceProfilerBytecodeGeneration() || profilerMode == ProfilerOn)
, m_scopeNode(programNode)
, m_codeBlock(vm, codeBlock)
, m_thisRegister(CallFrame::thisArgumentOffset())
, m_codeType(GlobalCode)
, m_vm(&vm)
, m_isDerivedConstructorContext(false)
, m_needsToUpdateArrowFunctionContext(programNode->usesArrowFunction() || programNode->usesEval())
{
ASSERT_UNUSED(parentScopeTDZVariables, !parentScopeTDZVariables->size());
for (auto& constantRegister : m_linkTimeConstantRegisters)
constantRegister = nullptr;
allocateCalleeSaveSpace();
m_codeBlock->setNumParameters(1); // Allocate space for "this"
emitOpcode(op_enter);
allocateAndEmitScope();
const FunctionStack& functionStack = programNode->functionStack();
for (size_t i = 0; i < functionStack.size(); ++i) {
FunctionMetadataNode* function = functionStack[i];
m_functionsToInitialize.append(std::make_pair(function, GlobalFunctionVariable));
}
if (Options::validateBytecode()) {
for (auto& entry : programNode->varDeclarations())
RELEASE_ASSERT(entry.value.isVar());
}
codeBlock->setVariableDeclarations(programNode->varDeclarations());
codeBlock->setLexicalDeclarations(programNode->lexicalVariables());
// Even though this program may have lexical variables that go under TDZ, when linking the get_from_scope/put_to_scope
// operations we emit we will have ResolveTypes that implictly do TDZ checks. Therefore, we don't need
// additional TDZ checks on top of those. This is why we can omit pushing programNode->lexicalVariables()
// to the TDZ stack.
if (needsToUpdateArrowFunctionContext()) {
initializeArrowFunctionContextScopeIfNeeded();
emitPutThisToArrowFunctionContextScope();
}
}
BytecodeGenerator::BytecodeGenerator(VM& vm, FunctionNode* functionNode, UnlinkedFunctionCodeBlock* codeBlock, DebuggerMode debuggerMode, ProfilerMode profilerMode, const VariableEnvironment* parentScopeTDZVariables)
: m_shouldEmitDebugHooks(Options::forceDebuggerBytecodeGeneration() || debuggerMode == DebuggerOn)
, m_shouldEmitProfileHooks(Options::forceProfilerBytecodeGeneration() || profilerMode == ProfilerOn)
, m_scopeNode(functionNode)
, m_codeBlock(vm, codeBlock)
, m_codeType(FunctionCode)
, m_vm(&vm)
, m_isBuiltinFunction(codeBlock->isBuiltinFunction())
, m_usesNonStrictEval(codeBlock->usesEval() && !codeBlock->isStrictMode())
// FIXME: We should be able to have tail call elimination with the profiler
// enabled. This is currently not possible because the profiler expects
// op_will_call / op_did_call pairs before and after a call, which are not
// compatible with tail calls (we have no way of emitting op_did_call).
// https://bugs.webkit.org/show_bug.cgi?id=148819
, m_inTailPosition(Options::useTailCalls() && !isConstructor() && constructorKind() == ConstructorKind::None && isStrictMode() && !m_shouldEmitProfileHooks)
, m_isDerivedConstructorContext(codeBlock->isDerivedConstructorContext())
, m_needsToUpdateArrowFunctionContext(functionNode->usesArrowFunction() || functionNode->usesEval())
{
for (auto& constantRegister : m_linkTimeConstantRegisters)
constantRegister = nullptr;
if (m_isBuiltinFunction)
m_shouldEmitDebugHooks = false;
allocateCalleeSaveSpace();
SymbolTable* functionSymbolTable = SymbolTable::create(*m_vm);
functionSymbolTable->setUsesNonStrictEval(m_usesNonStrictEval);
int symbolTableConstantIndex = addConstantValue(functionSymbolTable)->index();
Vector<Identifier> boundParameterProperties;
FunctionParameters& parameters = *functionNode->parameters();
if (!parameters.hasDefaultParameterValues()) {
// If we do have default parameters, they will be allocated in a separate scope.
for (size_t i = 0; i < parameters.size(); i++) {
auto pattern = parameters.at(i).first;
if (pattern->isBindingNode())
continue;
pattern->collectBoundIdentifiers(boundParameterProperties);
}
}
bool containsArrowOrEvalButNotInArrowBlock = needsToUpdateArrowFunctionContext() && !m_codeBlock->isArrowFunction();
bool shouldCaptureSomeOfTheThings = m_shouldEmitDebugHooks || m_codeBlock->needsFullScopeChain() || containsArrowOrEvalButNotInArrowBlock;
bool shouldCaptureAllOfTheThings = m_shouldEmitDebugHooks || codeBlock->usesEval();
bool needsArguments = functionNode->usesArguments() || codeBlock->usesEval();
if (shouldCaptureAllOfTheThings)
functionNode->varDeclarations().markAllVariablesAsCaptured();
auto captures = [&] (UniquedStringImpl* uid) -> bool {
if (!shouldCaptureSomeOfTheThings)
return false;
if (needsArguments && uid == propertyNames().arguments.impl()) {
// Actually, we only need to capture the arguments object when we "need full activation"
// because of name scopes. But historically we did it this way, so for now we just preserve
// the old behavior.
// FIXME: https://bugs.webkit.org/show_bug.cgi?id=143072
return true;
}
return functionNode->captures(uid);
};
auto varKind = [&] (UniquedStringImpl* uid) -> VarKind {
return captures(uid) ? VarKind::Scope : VarKind::Stack;
};
emitOpcode(op_enter);
allocateAndEmitScope();
m_calleeRegister.setIndex(JSStack::Callee);
if (functionNameIsInScope(functionNode->ident(), functionNode->functionMode())) {
bool isDynamicScope = functionNameScopeIsDynamic(codeBlock->usesEval(), codeBlock->isStrictMode());
bool isFunctionNameCaptured = captures(functionNode->ident().impl());
bool markAsCaptured = isDynamicScope || isFunctionNameCaptured;
emitPushFunctionNameScope(functionNode->ident(), &m_calleeRegister, markAsCaptured);
}
if (shouldCaptureSomeOfTheThings) {
m_lexicalEnvironmentRegister = addVar();
// We can allocate the "var" environment if we don't have default parameter expressions. If we have
// default parameter expressions, we have to hold off on allocating the "var" environment because
// the parent scope of the "var" environment is the parameter environment.
if (!parameters.hasDefaultParameterValues())
initializeVarLexicalEnvironment(symbolTableConstantIndex);
}
// Make sure the code block knows about all of our parameters, and make sure that parameters
// needing destructuring are noted.
m_parameters.grow(parameters.size() + 1); // reserve space for "this"
m_thisRegister.setIndex(initializeNextParameter()->index()); // this
for (unsigned i = 0; i < parameters.size(); ++i) {
auto pattern = parameters.at(i).first;
if (pattern->isRestParameter()) {
RELEASE_ASSERT(!m_restParameter);
m_restParameter = static_cast<RestParameterNode*>(pattern);
} else
initializeNextParameter();
}
// Figure out some interesting facts about our arguments.
bool capturesAnyArgumentByName = false;
if (functionNode->hasCapturedVariables()) {
FunctionParameters& parameters = *functionNode->parameters();
for (size_t i = 0; i < parameters.size(); ++i) {
auto pattern = parameters.at(i).first;
if (!pattern->isBindingNode())
continue;
const Identifier& ident = static_cast<const BindingNode*>(pattern)->boundProperty();
capturesAnyArgumentByName |= captures(ident.impl());
}
}
if (capturesAnyArgumentByName)
ASSERT(m_lexicalEnvironmentRegister);
// Need to know what our functions are called. Parameters have some goofy behaviors when it
// comes to functions of the same name.
for (FunctionMetadataNode* function : functionNode->functionStack())
m_functions.add(function->ident().impl());
if (needsArguments) {
// Create the arguments object now. We may put the arguments object into the activation if
// it is captured. Either way, we create two arguments object variables: one is our
// private variable that is immutable, and another that is the user-visible variable. The
// immutable one is only used here, or during formal parameter resolutions if we opt for
// DirectArguments.
m_argumentsRegister = addVar();
m_argumentsRegister->ref();
}
// http://www.ecma-international.org/ecma-262/6.0/index.html#sec-functiondeclarationinstantiation
// This implements IsSimpleParameterList in the Ecma 2015 spec.
// If IsSimpleParameterList is false, we will create a strict-mode like arguments object.
// IsSimpleParameterList is false if the argument list contains any default parameter values,
// a rest parameter, or any destructuring patterns.
// FIXME: Take into account destructuring to make isSimpleParameterList false. https://bugs.webkit.org/show_bug.cgi?id=151450
bool isSimpleParameterList = !parameters.hasDefaultParameterValues() && !m_restParameter;
if (needsArguments && !codeBlock->isStrictMode() && isSimpleParameterList) {
// If we captured any formal parameter by name, then we use ScopedArguments. Otherwise we
// use DirectArguments. With ScopedArguments, we lift all of our arguments into the
// activation.
if (capturesAnyArgumentByName) {
functionSymbolTable->setArgumentsLength(vm, parameters.size());
// For each parameter, we have two possibilities:
// Either it's a binding node with no function overlap, in which case it gets a name
// in the symbol table - or it just gets space reserved in the symbol table. Either
// way we lift the value into the scope.
for (unsigned i = 0; i < parameters.size(); ++i) {
ScopeOffset offset = functionSymbolTable->takeNextScopeOffset();
functionSymbolTable->setArgumentOffset(vm, i, offset);
if (UniquedStringImpl* name = visibleNameForParameter(parameters.at(i).first)) {
VarOffset varOffset(offset);
SymbolTableEntry entry(varOffset);
// Stores to these variables via the ScopedArguments object will not do
// notifyWrite(), since that would be cumbersome. Also, watching formal
// parameters when "arguments" is in play is unlikely to be super profitable.
// So, we just disable it.
entry.disableWatching();
functionSymbolTable->set(name, entry);
}
emitOpcode(op_put_to_scope);
instructions().append(m_lexicalEnvironmentRegister->index());
instructions().append(UINT_MAX);
instructions().append(virtualRegisterForArgument(1 + i).offset());
instructions().append(GetPutInfo(ThrowIfNotFound, LocalClosureVar, NotInitialization).operand());
instructions().append(symbolTableConstantIndex);
instructions().append(offset.offset());
}
// This creates a scoped arguments object and copies the overflow arguments into the
// scope. It's the equivalent of calling ScopedArguments::createByCopying().
emitOpcode(op_create_scoped_arguments);
instructions().append(m_argumentsRegister->index());
instructions().append(m_lexicalEnvironmentRegister->index());
} else {
// We're going to put all parameters into the DirectArguments object. First ensure
// that the symbol table knows that this is happening.
for (unsigned i = 0; i < parameters.size(); ++i) {
if (UniquedStringImpl* name = visibleNameForParameter(parameters.at(i).first))
functionSymbolTable->set(name, SymbolTableEntry(VarOffset(DirectArgumentsOffset(i))));
}
emitOpcode(op_create_direct_arguments);
instructions().append(m_argumentsRegister->index());
}
} else if (!parameters.hasDefaultParameterValues()) {
// Create the formal parameters the normal way. Any of them could be captured, or not. If
// captured, lift them into the scope. We can not do this if we have default parameter expressions
// because when default parameter expressions exist, they belong in their own lexical environment
// separate from the "var" lexical environment.
for (unsigned i = 0; i < parameters.size(); ++i) {
UniquedStringImpl* name = visibleNameForParameter(parameters.at(i).first);
if (!name)
continue;
if (!captures(name)) {
// This is the easy case - just tell the symbol table about the argument. It will
// be accessed directly.
functionSymbolTable->set(name, SymbolTableEntry(VarOffset(virtualRegisterForArgument(1 + i))));
continue;
}
ScopeOffset offset = functionSymbolTable->takeNextScopeOffset();
const Identifier& ident =
static_cast<const BindingNode*>(parameters.at(i).first)->boundProperty();
functionSymbolTable->set(name, SymbolTableEntry(VarOffset(offset)));
emitOpcode(op_put_to_scope);
instructions().append(m_lexicalEnvironmentRegister->index());
instructions().append(addConstant(ident));
instructions().append(virtualRegisterForArgument(1 + i).offset());
instructions().append(GetPutInfo(ThrowIfNotFound, LocalClosureVar, NotInitialization).operand());
instructions().append(symbolTableConstantIndex);
instructions().append(offset.offset());
}
}
if (needsArguments && (codeBlock->isStrictMode() || !isSimpleParameterList)) {
// Allocate an out-of-bands arguments object.
emitOpcode(op_create_out_of_band_arguments);
instructions().append(m_argumentsRegister->index());
}
// Now declare all variables.
for (const Identifier& ident : boundParameterProperties) {
ASSERT(!parameters.hasDefaultParameterValues());
createVariable(ident, varKind(ident.impl()), functionSymbolTable);
}
for (FunctionMetadataNode* function : functionNode->functionStack()) {
const Identifier& ident = function->ident();
createVariable(ident, varKind(ident.impl()), functionSymbolTable);
m_functionsToInitialize.append(std::make_pair(function, NormalFunctionVariable));
}
for (auto& entry : functionNode->varDeclarations()) {
ASSERT(!entry.value.isLet() && !entry.value.isConst());
if (!entry.value.isVar()) // This is either a parameter or callee.
continue;
// Variables named "arguments" are never const.
createVariable(Identifier::fromUid(m_vm, entry.key.get()), varKind(entry.key.get()), functionSymbolTable, IgnoreExisting);
}
// There are some variables that need to be preinitialized to something other than Undefined:
//
// - "arguments": unless it's used as a function or parameter, this should refer to the
// arguments object.
//
// - functions: these always override everything else.
//
// The most logical way to do all of this is to initialize none of the variables until now,
// and then initialize them in BytecodeGenerator::generate() in such an order that the rules
// for how these things override each other end up holding. We would initialize "arguments" first,
// then all arguments, then the functions.
//
// But some arguments are already initialized by default, since if they aren't captured and we
// don't have "arguments" then we just point the symbol table at the stack slot of those
// arguments. We end up initializing the rest of the arguments that have an uncomplicated
// binding (i.e. don't involve destructuring) above when figuring out how to lay them out,
// because that's just the simplest thing. This means that when we initialize them, we have to
// watch out for the things that override arguments (namely, functions).
// This is our final act of weirdness. "arguments" is overridden by everything except the
// callee. We add it to the symbol table if it's not already there and it's not an argument.
if (needsArguments) {
// If "arguments" is overridden by a function or destructuring parameter name, then it's
// OK for us to call createVariable() because it won't change anything. It's also OK for
// us to them tell BytecodeGenerator::generate() to write to it because it will do so
// before it initializes functions and destructuring parameters. But if "arguments" is
// overridden by a "simple" function parameter, then we have to bail: createVariable()
// would assert and BytecodeGenerator::generate() would write the "arguments" after the
// argument value had already been properly initialized.
bool haveParameterNamedArguments = false;
for (unsigned i = 0; i < parameters.size(); ++i) {
UniquedStringImpl* name = visibleNameForParameter(parameters.at(i).first);
if (name == propertyNames().arguments.impl()) {
haveParameterNamedArguments = true;
break;
}
}
if (!haveParameterNamedArguments) {
createVariable(
propertyNames().arguments, varKind(propertyNames().arguments.impl()), functionSymbolTable);
m_needToInitializeArguments = true;
}
}
m_newTargetRegister = addVar();
if (!codeBlock->isArrowFunction()) {
if (isConstructor()) {
emitMove(m_newTargetRegister, &m_thisRegister);
if (constructorKind() == ConstructorKind::Derived)
emitMoveEmptyValue(&m_thisRegister);
else
emitCreateThis(&m_thisRegister);
} else if (constructorKind() != ConstructorKind::None) {
emitThrowTypeError("Cannot call a class constructor");
} else if (functionNode->usesThis() || codeBlock->usesEval()) {
m_codeBlock->addPropertyAccessInstruction(instructions().size());
emitOpcode(op_to_this);
instructions().append(kill(&m_thisRegister));
instructions().append(0);
instructions().append(0);
}
} else if (functionNode->usesThis())
emitLoadThisFromArrowFunctionLexicalEnvironment();
// All "addVar()"s needs to happen before "initializeDefaultParameterValuesAndSetupFunctionScopeStack()" is called
// because a function's default parameter ExpressionNodes will use temporary registers.
m_TDZStack.append(std::make_pair(*parentScopeTDZVariables, false));
initializeDefaultParameterValuesAndSetupFunctionScopeStack(parameters, functionNode, functionSymbolTable, symbolTableConstantIndex, captures);
if (needsToUpdateArrowFunctionContext() && !codeBlock->isArrowFunction()) {
initializeArrowFunctionContextScopeIfNeeded(functionSymbolTable);
emitPutThisToArrowFunctionContextScope();
emitPutNewTargetToArrowFunctionContextScope();
emitPutDerivedConstructorToArrowFunctionContextScope();
}
pushLexicalScope(m_scopeNode, true);
}
BytecodeGenerator::BytecodeGenerator(VM& vm, EvalNode* evalNode, UnlinkedEvalCodeBlock* codeBlock, DebuggerMode debuggerMode, ProfilerMode profilerMode, const VariableEnvironment* parentScopeTDZVariables)
: m_shouldEmitDebugHooks(Options::forceDebuggerBytecodeGeneration() || debuggerMode == DebuggerOn)
, m_shouldEmitProfileHooks(Options::forceProfilerBytecodeGeneration() || profilerMode == ProfilerOn)
, m_scopeNode(evalNode)
, m_codeBlock(vm, codeBlock)
, m_thisRegister(CallFrame::thisArgumentOffset())
, m_codeType(EvalCode)
, m_vm(&vm)
, m_usesNonStrictEval(codeBlock->usesEval() && !codeBlock->isStrictMode())
, m_isDerivedConstructorContext(codeBlock->isDerivedConstructorContext())
, m_needsToUpdateArrowFunctionContext(evalNode->usesArrowFunction() || evalNode->usesEval())
{
for (auto& constantRegister : m_linkTimeConstantRegisters)
constantRegister = nullptr;
allocateCalleeSaveSpace();
m_codeBlock->setNumParameters(1);
emitOpcode(op_enter);
allocateAndEmitScope();
const DeclarationStacks::FunctionStack& functionStack = evalNode->functionStack();
for (size_t i = 0; i < functionStack.size(); ++i)
m_codeBlock->addFunctionDecl(makeFunction(functionStack[i]));
const VariableEnvironment& varDeclarations = evalNode->varDeclarations();
unsigned numVariables = varDeclarations.size();
Vector<Identifier, 0, UnsafeVectorOverflow> variables;
variables.reserveCapacity(numVariables);
for (auto& entry : varDeclarations) {
ASSERT(entry.value.isVar());
ASSERT(entry.key->isAtomic() || entry.key->isSymbol());
variables.append(Identifier::fromUid(m_vm, entry.key.get()));
}
codeBlock->adoptVariables(variables);
m_TDZStack.append(std::make_pair(*parentScopeTDZVariables, false));
if (codeBlock->isArrowFunctionContext() && evalNode->usesThis())
emitLoadThisFromArrowFunctionLexicalEnvironment();
if (needsToUpdateArrowFunctionContext() && !codeBlock->isArrowFunctionContext()) {
initializeArrowFunctionContextScopeIfNeeded();
emitPutThisToArrowFunctionContextScope();
}
pushLexicalScope(m_scopeNode, true);
}
BytecodeGenerator::BytecodeGenerator(VM& vm, ModuleProgramNode* moduleProgramNode, UnlinkedModuleProgramCodeBlock* codeBlock, DebuggerMode debuggerMode, ProfilerMode profilerMode, const VariableEnvironment* parentScopeTDZVariables)
: m_shouldEmitDebugHooks(Options::forceDebuggerBytecodeGeneration() || debuggerMode == DebuggerOn)
, m_shouldEmitProfileHooks(Options::forceProfilerBytecodeGeneration() || profilerMode == ProfilerOn)
, m_scopeNode(moduleProgramNode)
, m_codeBlock(vm, codeBlock)
, m_thisRegister(CallFrame::thisArgumentOffset())
, m_codeType(ModuleCode)
, m_vm(&vm)
, m_usesNonStrictEval(false)
, m_isDerivedConstructorContext(false)
, m_needsToUpdateArrowFunctionContext(moduleProgramNode->usesArrowFunction() || moduleProgramNode->usesEval())
{
ASSERT_UNUSED(parentScopeTDZVariables, !parentScopeTDZVariables->size());
for (auto& constantRegister : m_linkTimeConstantRegisters)
constantRegister = nullptr;
if (m_isBuiltinFunction)
m_shouldEmitDebugHooks = false;
allocateCalleeSaveSpace();
SymbolTable* moduleEnvironmentSymbolTable = SymbolTable::create(*m_vm);
moduleEnvironmentSymbolTable->setUsesNonStrictEval(m_usesNonStrictEval);
moduleEnvironmentSymbolTable->setScopeType(SymbolTable::ScopeType::LexicalScope);
bool shouldCaptureSomeOfTheThings = m_shouldEmitDebugHooks || m_codeBlock->needsFullScopeChain();
bool shouldCaptureAllOfTheThings = m_shouldEmitDebugHooks || codeBlock->usesEval();
if (shouldCaptureAllOfTheThings)
moduleProgramNode->varDeclarations().markAllVariablesAsCaptured();
auto captures = [&] (UniquedStringImpl* uid) -> bool {
if (!shouldCaptureSomeOfTheThings)
return false;
return moduleProgramNode->captures(uid);
};
auto lookUpVarKind = [&] (UniquedStringImpl* uid, const VariableEnvironmentEntry& entry) -> VarKind {
// Allocate the exported variables in the module environment.
if (entry.isExported())
return VarKind::Scope;
// Allocate the namespace variables in the module environment to instantiate
// it from the outside of the module code.
if (entry.isImportedNamespace())
return VarKind::Scope;
if (entry.isCaptured())
return VarKind::Scope;
return captures(uid) ? VarKind::Scope : VarKind::Stack;
};
emitOpcode(op_enter);
allocateAndEmitScope();
m_calleeRegister.setIndex(JSStack::Callee);
m_codeBlock->setNumParameters(1); // Allocate space for "this"
// Now declare all variables.
for (auto& entry : moduleProgramNode->varDeclarations()) {
ASSERT(!entry.value.isLet() && !entry.value.isConst());
if (!entry.value.isVar()) // This is either a parameter or callee.
continue;
// Imported bindings are not allocated in the module environment as usual variables' way.
// These references remain the "Dynamic" in the unlinked code block. Later, when linking
// the code block, we resolve the reference to the "ModuleVar".
if (entry.value.isImported() && !entry.value.isImportedNamespace())
continue;
createVariable(Identifier::fromUid(m_vm, entry.key.get()), lookUpVarKind(entry.key.get(), entry.value), moduleEnvironmentSymbolTable, IgnoreExisting);
}
VariableEnvironment& lexicalVariables = moduleProgramNode->lexicalVariables();
instantiateLexicalVariables(lexicalVariables, moduleEnvironmentSymbolTable, ScopeRegisterType::Block, lookUpVarKind);
// We keep the symbol table in the constant pool.
RegisterID* constantSymbolTable = nullptr;
if (vm.typeProfiler())
constantSymbolTable = addConstantValue(moduleEnvironmentSymbolTable);
else
constantSymbolTable = addConstantValue(moduleEnvironmentSymbolTable->cloneScopePart(*m_vm));
m_TDZStack.append(std::make_pair(lexicalVariables, true));
m_symbolTableStack.append(SymbolTableStackEntry { Strong<SymbolTable>(*m_vm, moduleEnvironmentSymbolTable), m_topMostScope, false, constantSymbolTable->index() });
emitPrefillStackTDZVariables(lexicalVariables, moduleEnvironmentSymbolTable);
// makeFunction assumes that there's correct TDZ stack entries.
// So it should be called after putting our lexical environment to the TDZ stack correctly.
for (FunctionMetadataNode* function : moduleProgramNode->functionStack()) {
const auto& iterator = moduleProgramNode->varDeclarations().find(function->ident().impl());
RELEASE_ASSERT(iterator != moduleProgramNode->varDeclarations().end());
RELEASE_ASSERT(!iterator->value.isImported());
VarKind varKind = lookUpVarKind(iterator->key.get(), iterator->value);
if (varKind == VarKind::Scope) {
// http://www.ecma-international.org/ecma-262/6.0/#sec-moduledeclarationinstantiation
// Section 15.2.1.16.4, step 16-a-iv-1.
// All heap allocated function declarations should be instantiated when the module environment
// is created. They include the exported function declarations and not-exported-but-heap-allocated
// function declarations. This is required because exported function should be instantiated before
// executing the any module in the dependency graph. This enables the modules to link the imported
// bindings before executing the any module code.
//
// And since function declarations are instantiated before executing the module body code, the spec
// allows the functions inside the module to be executed before its module body is executed under
// the circular dependencies. The following is the example.
//
// Module A (executed first):
// import { b } from "B";
// // Here, the module "B" is not executed yet, but the function declaration is already instantiated.
// // So we can call the function exported from "B".
// b();
//
// export function a() {
// }
//
// Module B (executed second):
// import { a } from "A";
//
// export function b() {
// c();
// }
//
// // c is not exported, but since it is referenced from the b, we should instantiate it before
// // executing the "B" module code.
// function c() {
// a();
// }
//
// Module EntryPoint (executed last):
// import "B";
// import "A";
//
m_codeBlock->addFunctionDecl(makeFunction(function));
} else {
// Stack allocated functions can be allocated when executing the module's body.
m_functionsToInitialize.append(std::make_pair(function, NormalFunctionVariable));
}
}
// Remember the constant register offset to the top-most symbol table. This symbol table will be
// cloned in the code block linking. After that, to create the module environment, we retrieve
// the cloned symbol table from the linked code block by using this offset.
codeBlock->setModuleEnvironmentSymbolTableConstantRegisterOffset(constantSymbolTable->index());
}
BytecodeGenerator::~BytecodeGenerator()
{
}
void BytecodeGenerator::initializeDefaultParameterValuesAndSetupFunctionScopeStack(
FunctionParameters& parameters, FunctionNode* functionNode, SymbolTable* functionSymbolTable,
int symbolTableConstantIndex, const std::function<bool (UniquedStringImpl*)>& captures)
{
Vector<std::pair<Identifier, RefPtr<RegisterID>>> valuesToMoveIntoVars;
if (parameters.hasDefaultParameterValues()) {
// Refer to the ES6 spec section 9.2.12: http://www.ecma-international.org/ecma-262/6.0/index.html#sec-functiondeclarationinstantiation
// This implements step 21.
VariableEnvironment environment;
Vector<Identifier> allParameterNames;
for (unsigned i = 0; i < parameters.size(); i++)
parameters.at(i).first->collectBoundIdentifiers(allParameterNames);
IdentifierSet parameterSet;
for (auto& ident : allParameterNames) {
parameterSet.add(ident.impl());
auto addResult = environment.add(ident);
addResult.iterator->value.setIsLet(); // When we have default parameter expressions, parameters act like "let" variables.
if (captures(ident.impl()))
addResult.iterator->value.setIsCaptured();
}
// This implements step 25 of section 9.2.12.
pushLexicalScopeInternal(environment, true, nullptr, TDZRequirement::UnderTDZ, ScopeType::LetConstScope, ScopeRegisterType::Block);
RefPtr<RegisterID> temp = newTemporary();
for (unsigned i = 0; i < parameters.size(); i++) {
std::pair<DestructuringPatternNode*, ExpressionNode*> parameter = parameters.at(i);
if (parameter.first->isRestParameter())
continue;
RefPtr<RegisterID> parameterValue = &registerFor(virtualRegisterForArgument(1 + i));
emitMove(temp.get(), parameterValue.get());
if (parameter.second) {
RefPtr<RegisterID> condition = emitIsUndefined(newTemporary(), parameterValue.get());
RefPtr<Label> skipDefaultParameterBecauseNotUndefined = newLabel();
emitJumpIfFalse(condition.get(), skipDefaultParameterBecauseNotUndefined.get());
emitNode(temp.get(), parameter.second);
emitLabel(skipDefaultParameterBecauseNotUndefined.get());
}
parameter.first->bindValue(*this, temp.get());
}
// Final act of weirdness for default parameters. If a "var" also
// has the same name as a parameter, it should start out as the
// value of that parameter. Note, though, that they will be distinct
// bindings.
// This is step 28 of section 9.2.12.
for (auto& entry : functionNode->varDeclarations()) {
if (!entry.value.isVar()) // This is either a parameter or callee.
continue;
if (parameterSet.contains(entry.key)) {
Identifier ident = Identifier::fromUid(m_vm, entry.key.get());
Variable var = variable(ident);
RegisterID* scope = emitResolveScope(nullptr, var);
RefPtr<RegisterID> value = emitGetFromScope(newTemporary(), scope, var, DoNotThrowIfNotFound);
valuesToMoveIntoVars.append(std::make_pair(ident, value));
}
}
// Functions with default parameter expressions must have a separate environment
// record for parameters and "var"s. The "var" environment record must have the
// parameter environment record as its parent.
// See step 28 of section 9.2.12.
if (m_lexicalEnvironmentRegister)
initializeVarLexicalEnvironment(symbolTableConstantIndex);
}
if (m_lexicalEnvironmentRegister)
pushScopedControlFlowContext();
m_symbolTableStack.append(SymbolTableStackEntry{ Strong<SymbolTable>(*m_vm, functionSymbolTable), m_lexicalEnvironmentRegister, false, symbolTableConstantIndex });
// This completes step 28 of section 9.2.12.
for (unsigned i = 0; i < valuesToMoveIntoVars.size(); i++) {
ASSERT(parameters.hasDefaultParameterValues());
Variable var = variable(valuesToMoveIntoVars[i].first);
RegisterID* scope = emitResolveScope(nullptr, var);
emitPutToScope(scope, var, valuesToMoveIntoVars[i].second.get(), DoNotThrowIfNotFound, NotInitialization);
}
if (!parameters.hasDefaultParameterValues()) {
ASSERT(!valuesToMoveIntoVars.size());
// Initialize destructuring parameters the old way as if we don't have any default parameter values.
// If we have default parameter values, we handle this case above.
for (unsigned i = 0; i < parameters.size(); i++) {
DestructuringPatternNode* pattern = parameters.at(i).first;
if (!pattern->isBindingNode() && !pattern->isRestParameter()) {
RefPtr<RegisterID> parameterValue = &registerFor(virtualRegisterForArgument(1 + i));
pattern->bindValue(*this, parameterValue.get());
}
}
}
}
void BytecodeGenerator::initializeArrowFunctionContextScopeIfNeeded(SymbolTable* symbolTable)
{
if (m_arrowFunctionContextLexicalEnvironmentRegister != nullptr)
return;
if (m_lexicalEnvironmentRegister != nullptr) {
m_arrowFunctionContextLexicalEnvironmentRegister = m_lexicalEnvironmentRegister;
if (!m_codeBlock->isArrowFunction()) {
ScopeOffset offset;
offset = symbolTable->takeNextScopeOffset();
symbolTable->set(propertyNames().thisIdentifier.impl(), SymbolTableEntry(VarOffset(offset)));
if (m_codeType == FunctionCode) {
offset = symbolTable->takeNextScopeOffset();
symbolTable->set(propertyNames().newTargetLocalPrivateName.impl(), SymbolTableEntry(VarOffset(offset)));
}
if (isConstructor() && constructorKind() == ConstructorKind::Derived) {
offset = symbolTable->takeNextScopeOffset();
symbolTable->set(propertyNames().derivedConstructorPrivateName.impl(), SymbolTableEntry(VarOffset(offset)));
}
}
return;
}
VariableEnvironment environment;
auto addResult = environment.add(propertyNames().thisIdentifier);
addResult.iterator->value.setIsCaptured();
addResult.iterator->value.setIsConst();
if (m_codeType == FunctionCode) {
auto addTarget = environment.add(propertyNames().newTargetLocalPrivateName);
addTarget.iterator->value.setIsCaptured();
addTarget.iterator->value.setIsLet();
}
if (isConstructor() && constructorKind() == ConstructorKind::Derived) {
auto derivedConstructor = environment.add(propertyNames().derivedConstructorPrivateName);
derivedConstructor.iterator->value.setIsCaptured();
derivedConstructor.iterator->value.setIsLet();
}
size_t size = m_symbolTableStack.size();
pushLexicalScopeInternal(environment, true, nullptr, TDZRequirement::UnderTDZ, ScopeType::LetConstScope, ScopeRegisterType::Block);
ASSERT_UNUSED(size, m_symbolTableStack.size() == size + 1);
m_arrowFunctionContextLexicalEnvironmentRegister = m_symbolTableStack.last().m_scope;
}
RegisterID* BytecodeGenerator::initializeNextParameter()
{
VirtualRegister reg = virtualRegisterForArgument(m_codeBlock->numParameters());
RegisterID& parameter = registerFor(reg);
parameter.setIndex(reg.offset());
m_codeBlock->addParameter();
return &parameter;
}
void BytecodeGenerator::initializeVarLexicalEnvironment(int symbolTableConstantIndex)
{
RELEASE_ASSERT(m_lexicalEnvironmentRegister);
m_codeBlock->setActivationRegister(m_lexicalEnvironmentRegister->virtualRegister());
emitOpcode(op_create_lexical_environment);
instructions().append(m_lexicalEnvironmentRegister->index());
instructions().append(scopeRegister()->index());
instructions().append(symbolTableConstantIndex);
instructions().append(addConstantValue(jsUndefined())->index());
emitOpcode(op_mov);
instructions().append(scopeRegister()->index());
instructions().append(m_lexicalEnvironmentRegister->index());
}
UniquedStringImpl* BytecodeGenerator::visibleNameForParameter(DestructuringPatternNode* pattern)
{
if (pattern->isBindingNode()) {
const Identifier& ident = static_cast<const BindingNode*>(pattern)->boundProperty();
if (!m_functions.contains(ident.impl()))
return ident.impl();
}
return nullptr;
}
RegisterID* BytecodeGenerator::newRegister()
{
m_calleeRegisters.append(virtualRegisterForLocal(m_calleeRegisters.size()));
int numCalleeRegisters = max<int>(m_codeBlock->m_numCalleeRegisters, m_calleeRegisters.size());
numCalleeRegisters = WTF::roundUpToMultipleOf(stackAlignmentRegisters(), numCalleeRegisters);
m_codeBlock->m_numCalleeRegisters = numCalleeRegisters;
return &m_calleeRegisters.last();
}
void BytecodeGenerator::reclaimFreeRegisters()
{
while (m_calleeRegisters.size() && !m_calleeRegisters.last().refCount())
m_calleeRegisters.removeLast();
}
RegisterID* BytecodeGenerator::newBlockScopeVariable()
{
reclaimFreeRegisters();
return newRegister();
}
RegisterID* BytecodeGenerator::newTemporary()
{
reclaimFreeRegisters();
RegisterID* result = newRegister();
result->setTemporary();
return result;
}
LabelScopePtr BytecodeGenerator::newLabelScope(LabelScope::Type type, const Identifier* name)
{
// Reclaim free label scopes.
while (m_labelScopes.size() && !m_labelScopes.last().refCount())
m_labelScopes.removeLast();
// Allocate new label scope.
LabelScope scope(type, name, labelScopeDepth(), newLabel(), type == LabelScope::Loop ? newLabel() : PassRefPtr<Label>()); // Only loops have continue targets.
m_labelScopes.append(scope);
return LabelScopePtr(m_labelScopes, m_labelScopes.size() - 1);
}
PassRefPtr<Label> BytecodeGenerator::newLabel()
{
// Reclaim free label IDs.
while (m_labels.size() && !m_labels.last().refCount())
m_labels.removeLast();
// Allocate new label ID.
m_labels.append(*this);
return &m_labels.last();
}
PassRefPtr<Label> BytecodeGenerator::emitLabel(Label* l0)
{
unsigned newLabelIndex = instructions().size();
l0->setLocation(newLabelIndex);
if (m_codeBlock->numberOfJumpTargets()) {
unsigned lastLabelIndex = m_codeBlock->lastJumpTarget();
ASSERT(lastLabelIndex <= newLabelIndex);
if (newLabelIndex == lastLabelIndex) {
// Peephole optimizations have already been disabled by emitting the last label
return l0;
}
}
m_codeBlock->addJumpTarget(newLabelIndex);
// This disables peephole optimizations when an instruction is a jump target
m_lastOpcodeID = op_end;
return l0;
}
void BytecodeGenerator::emitOpcode(OpcodeID opcodeID)
{
#ifndef NDEBUG
size_t opcodePosition = instructions().size();
ASSERT(opcodePosition - m_lastOpcodePosition == opcodeLength(m_lastOpcodeID) || m_lastOpcodeID == op_end);
m_lastOpcodePosition = opcodePosition;
#endif
instructions().append(opcodeID);
m_lastOpcodeID = opcodeID;
}
UnlinkedArrayProfile BytecodeGenerator::newArrayProfile()
{
return m_codeBlock->addArrayProfile();
}
UnlinkedArrayAllocationProfile BytecodeGenerator::newArrayAllocationProfile()
{
return m_codeBlock->addArrayAllocationProfile();
}
UnlinkedObjectAllocationProfile BytecodeGenerator::newObjectAllocationProfile()
{
return m_codeBlock->addObjectAllocationProfile();
}
UnlinkedValueProfile BytecodeGenerator::emitProfiledOpcode(OpcodeID opcodeID)
{
UnlinkedValueProfile result = m_codeBlock->addValueProfile();
emitOpcode(opcodeID);
return result;
}
void BytecodeGenerator::emitLoopHint()
{
emitOpcode(op_loop_hint);
}
void BytecodeGenerator::retrieveLastBinaryOp(int& dstIndex, int& src1Index, int& src2Index)
{
ASSERT(instructions().size() >= 4);
size_t size = instructions().size();
dstIndex = instructions().at(size - 3).u.operand;
src1Index = instructions().at(size - 2).u.operand;
src2Index = instructions().at(size - 1).u.operand;
}
void BytecodeGenerator::retrieveLastUnaryOp(int& dstIndex, int& srcIndex)
{
ASSERT(instructions().size() >= 3);
size_t size = instructions().size();
dstIndex = instructions().at(size - 2).u.operand;
srcIndex = instructions().at(size - 1).u.operand;
}
void ALWAYS_INLINE BytecodeGenerator::rewindBinaryOp()
{
ASSERT(instructions().size() >= 4);
instructions().shrink(instructions().size() - 4);
m_lastOpcodeID = op_end;
}
void ALWAYS_INLINE BytecodeGenerator::rewindUnaryOp()
{
ASSERT(instructions().size() >= 3);
instructions().shrink(instructions().size() - 3);
m_lastOpcodeID = op_end;
}
PassRefPtr<Label> BytecodeGenerator::emitJump(Label* target)
{
size_t begin = instructions().size();
emitOpcode(op_jmp);
instructions().append(target->bind(begin, instructions().size()));
return target;
}
PassRefPtr<Label> BytecodeGenerator::emitJumpIfTrue(RegisterID* cond, Label* target)
{
if (m_lastOpcodeID == op_less) {
int dstIndex;
int src1Index;
int src2Index;
retrieveLastBinaryOp(dstIndex, src1Index, src2Index);
if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) {
rewindBinaryOp();
size_t begin = instructions().size();
emitOpcode(op_jless);
instructions().append(src1Index);
instructions().append(src2Index);
instructions().append(target->bind(begin, instructions().size()));
return target;
}
} else if (m_lastOpcodeID == op_lesseq) {
int dstIndex;
int src1Index;
int src2Index;
retrieveLastBinaryOp(dstIndex, src1Index, src2Index);
if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) {
rewindBinaryOp();
size_t begin = instructions().size();
emitOpcode(op_jlesseq);
instructions().append(src1Index);
instructions().append(src2Index);
instructions().append(target->bind(begin, instructions().size()));
return target;
}
} else if (m_lastOpcodeID == op_greater) {
int dstIndex;
int src1Index;
int src2Index;
retrieveLastBinaryOp(dstIndex, src1Index, src2Index);
if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) {
rewindBinaryOp();
size_t begin = instructions().size();
emitOpcode(op_jgreater);
instructions().append(src1Index);
instructions().append(src2Index);
instructions().append(target->bind(begin, instructions().size()));
return target;
}
} else if (m_lastOpcodeID == op_greatereq) {
int dstIndex;
int src1Index;
int src2Index;
retrieveLastBinaryOp(dstIndex, src1Index, src2Index);
if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) {
rewindBinaryOp();
size_t begin = instructions().size();
emitOpcode(op_jgreatereq);
instructions().append(src1Index);
instructions().append(src2Index);
instructions().append(target->bind(begin, instructions().size()));
return target;
}
} else if (m_lastOpcodeID == op_eq_null && target->isForward()) {
int dstIndex;
int srcIndex;
retrieveLastUnaryOp(dstIndex, srcIndex);
if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) {
rewindUnaryOp();
size_t begin = instructions().size();
emitOpcode(op_jeq_null);
instructions().append(srcIndex);
instructions().append(target->bind(begin, instructions().size()));
return target;
}
} else if (m_lastOpcodeID == op_neq_null && target->isForward()) {
int dstIndex;
int srcIndex;
retrieveLastUnaryOp(dstIndex, srcIndex);
if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) {
rewindUnaryOp();
size_t begin = instructions().size();
emitOpcode(op_jneq_null);
instructions().append(srcIndex);
instructions().append(target->bind(begin, instructions().size()));
return target;
}
}
size_t begin = instructions().size();
emitOpcode(op_jtrue);
instructions().append(cond->index());
instructions().append(target->bind(begin, instructions().size()));
return target;
}
PassRefPtr<Label> BytecodeGenerator::emitJumpIfFalse(RegisterID* cond, Label* target)
{
if (m_lastOpcodeID == op_less && target->isForward()) {
int dstIndex;
int src1Index;
int src2Index;
retrieveLastBinaryOp(dstIndex, src1Index, src2Index);
if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) {
rewindBinaryOp();
size_t begin = instructions().size();
emitOpcode(op_jnless);
instructions().append(src1Index);
instructions().append(src2Index);
instructions().append(target->bind(begin, instructions().size()));
return target;
}
} else if (m_lastOpcodeID == op_lesseq && target->isForward()) {
int dstIndex;
int src1Index;
int src2Index;
retrieveLastBinaryOp(dstIndex, src1Index, src2Index);
if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) {
rewindBinaryOp();
size_t begin = instructions().size();
emitOpcode(op_jnlesseq);
instructions().append(src1Index);
instructions().append(src2Index);
instructions().append(target->bind(begin, instructions().size()));
return target;
}
} else if (m_lastOpcodeID == op_greater && target->isForward()) {
int dstIndex;
int src1Index;
int src2Index;
retrieveLastBinaryOp(dstIndex, src1Index, src2Index);
if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) {
rewindBinaryOp();
size_t begin = instructions().size();
emitOpcode(op_jngreater);
instructions().append(src1Index);
instructions().append(src2Index);
instructions().append(target->bind(begin, instructions().size()));
return target;
}
} else if (m_lastOpcodeID == op_greatereq && target->isForward()) {
int dstIndex;
int src1Index;
int src2Index;
retrieveLastBinaryOp(dstIndex, src1Index, src2Index);
if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) {
rewindBinaryOp();
size_t begin = instructions().size();
emitOpcode(op_jngreatereq);
instructions().append(src1Index);
instructions().append(src2Index);
instructions().append(target->bind(begin, instructions().size()));
return target;
}
} else if (m_lastOpcodeID == op_not) {
int dstIndex;
int srcIndex;
retrieveLastUnaryOp(dstIndex, srcIndex);
if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) {
rewindUnaryOp();
size_t begin = instructions().size();
emitOpcode(op_jtrue);
instructions().append(srcIndex);
instructions().append(target->bind(begin, instructions().size()));
return target;
}
} else if (m_lastOpcodeID == op_eq_null && target->isForward()) {
int dstIndex;
int srcIndex;
retrieveLastUnaryOp(dstIndex, srcIndex);
if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) {
rewindUnaryOp();
size_t begin = instructions().size();
emitOpcode(op_jneq_null);
instructions().append(srcIndex);
instructions().append(target->bind(begin, instructions().size()));
return target;
}
} else if (m_lastOpcodeID == op_neq_null && target->isForward()) {
int dstIndex;
int srcIndex;
retrieveLastUnaryOp(dstIndex, srcIndex);
if (cond->index() == dstIndex && cond->isTemporary() && !cond->refCount()) {
rewindUnaryOp();
size_t begin = instructions().size();
emitOpcode(op_jeq_null);
instructions().append(srcIndex);
instructions().append(target->bind(begin, instructions().size()));
return target;
}
}
size_t begin = instructions().size();
emitOpcode(op_jfalse);
instructions().append(cond->index());
instructions().append(target->bind(begin, instructions().size()));
return target;
}
PassRefPtr<Label> BytecodeGenerator::emitJumpIfNotFunctionCall(RegisterID* cond, Label* target)
{
size_t begin = instructions().size();
emitOpcode(op_jneq_ptr);
instructions().append(cond->index());
instructions().append(Special::CallFunction);
instructions().append(target->bind(begin, instructions().size()));
return target;
}
PassRefPtr<Label> BytecodeGenerator::emitJumpIfNotFunctionApply(RegisterID* cond, Label* target)
{
size_t begin = instructions().size();
emitOpcode(op_jneq_ptr);
instructions().append(cond->index());
instructions().append(Special::ApplyFunction);
instructions().append(target->bind(begin, instructions().size()));
return target;
}
bool BytecodeGenerator::hasConstant(const Identifier& ident) const
{
UniquedStringImpl* rep = ident.impl();
return m_identifierMap.contains(rep);
}
unsigned BytecodeGenerator::addConstant(const Identifier& ident)
{
UniquedStringImpl* rep = ident.impl();
IdentifierMap::AddResult result = m_identifierMap.add(rep, m_codeBlock->numberOfIdentifiers());
if (result.isNewEntry)
m_codeBlock->addIdentifier(ident);
return result.iterator->value;
}
// We can't hash JSValue(), so we use a dedicated data member to cache it.
RegisterID* BytecodeGenerator::addConstantEmptyValue()
{
if (!m_emptyValueRegister) {
int index = m_nextConstantOffset;
m_constantPoolRegisters.append(FirstConstantRegisterIndex + m_nextConstantOffset);
++m_nextConstantOffset;
m_codeBlock->addConstant(JSValue());
m_emptyValueRegister = &m_constantPoolRegisters[index];
}
return m_emptyValueRegister;
}
RegisterID* BytecodeGenerator::addConstantValue(JSValue v, SourceCodeRepresentation sourceCodeRepresentation)
{
if (!v)
return addConstantEmptyValue();
int index = m_nextConstantOffset;
if (sourceCodeRepresentation == SourceCodeRepresentation::Double && v.isInt32())
v = jsDoubleNumber(v.asNumber());
EncodedJSValueWithRepresentation valueMapKey { JSValue::encode(v), sourceCodeRepresentation };
JSValueMap::AddResult result = m_jsValueMap.add(valueMapKey, m_nextConstantOffset);
if (result.isNewEntry) {
m_constantPoolRegisters.append(FirstConstantRegisterIndex + m_nextConstantOffset);
++m_nextConstantOffset;
m_codeBlock->addConstant(v, sourceCodeRepresentation);
} else
index = result.iterator->value;
return &m_constantPoolRegisters[index];
}
RegisterID* BytecodeGenerator::emitMoveLinkTimeConstant(RegisterID* dst, LinkTimeConstant type)
{
unsigned constantIndex = static_cast<unsigned>(type);
if (!m_linkTimeConstantRegisters[constantIndex]) {
int index = m_nextConstantOffset;
m_constantPoolRegisters.append(FirstConstantRegisterIndex + m_nextConstantOffset);
++m_nextConstantOffset;
m_codeBlock->addConstant(type);
m_linkTimeConstantRegisters[constantIndex] = &m_constantPoolRegisters[index];
}
emitOpcode(op_mov);
instructions().append(dst->index());
instructions().append(m_linkTimeConstantRegisters[constantIndex]->index());
return dst;
}
unsigned BytecodeGenerator::addRegExp(RegExp* r)
{
return m_codeBlock->addRegExp(r);
}
RegisterID* BytecodeGenerator::emitMoveEmptyValue(RegisterID* dst)
{
RefPtr<RegisterID> emptyValue = addConstantEmptyValue();
emitOpcode(op_mov);
instructions().append(dst->index());
instructions().append(emptyValue->index());
return dst;
}
RegisterID* BytecodeGenerator::emitMove(RegisterID* dst, RegisterID* src)
{
ASSERT(src != m_emptyValueRegister);
m_staticPropertyAnalyzer.mov(dst->index(), src->index());
emitOpcode(op_mov);
instructions().append(dst->index());
instructions().append(src->index());
return dst;
}
RegisterID* BytecodeGenerator::emitUnaryOp(OpcodeID opcodeID, RegisterID* dst, RegisterID* src)
{
emitOpcode(opcodeID);
instructions().append(dst->index());
instructions().append(src->index());
return dst;
}
RegisterID* BytecodeGenerator::emitInc(RegisterID* srcDst)
{
emitOpcode(op_inc);
instructions().append(srcDst->index());
return srcDst;
}
RegisterID* BytecodeGenerator::emitDec(RegisterID* srcDst)
{
emitOpcode(op_dec);
instructions().append(srcDst->index());
return srcDst;
}
RegisterID* BytecodeGenerator::emitBinaryOp(OpcodeID opcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2, OperandTypes types)
{
emitOpcode(opcodeID);
instructions().append(dst->index());
instructions().append(src1->index());
instructions().append(src2->index());
if (opcodeID == op_bitor || opcodeID == op_bitand || opcodeID == op_bitxor ||
opcodeID == op_add || opcodeID == op_mul || opcodeID == op_sub || opcodeID == op_div)
instructions().append(types.toInt());
return dst;
}
RegisterID* BytecodeGenerator::emitEqualityOp(OpcodeID opcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2)
{
if (m_lastOpcodeID == op_typeof) {
int dstIndex;
int srcIndex;
retrieveLastUnaryOp(dstIndex, srcIndex);
if (src1->index() == dstIndex
&& src1->isTemporary()
&& m_codeBlock->isConstantRegisterIndex(src2->index())
&& m_codeBlock->constantRegister(src2->index()).get().isString()) {
const String& value = asString(m_codeBlock->constantRegister(src2->index()).get())->tryGetValue();
if (value == "undefined") {
rewindUnaryOp();
emitOpcode(op_is_undefined);
instructions().append(dst->index());
instructions().append(srcIndex);
return dst;
}
if (value == "boolean") {
rewindUnaryOp();
emitOpcode(op_is_boolean);
instructions().append(dst->index());
instructions().append(srcIndex);
return dst;
}
if (value == "number") {
rewindUnaryOp();
emitOpcode(op_is_number);
instructions().append(dst->index());
instructions().append(srcIndex);
return dst;
}
if (value == "string") {
rewindUnaryOp();
emitOpcode(op_is_string);
instructions().append(dst->index());
instructions().append(srcIndex);
return dst;
}
if (value == "object") {
rewindUnaryOp();
emitOpcode(op_is_object_or_null);
instructions().append(dst->index());
instructions().append(srcIndex);
return dst;
}
if (value == "function") {
rewindUnaryOp();
emitOpcode(op_is_function);
instructions().append(dst->index());
instructions().append(srcIndex);
return dst;
}
}
}
emitOpcode(opcodeID);
instructions().append(dst->index());
instructions().append(src1->index());
instructions().append(src2->index());
return dst;
}
void BytecodeGenerator::emitTypeProfilerExpressionInfo(const JSTextPosition& startDivot, const JSTextPosition& endDivot)
{
ASSERT(vm()->typeProfiler());
unsigned start = startDivot.offset; // Ranges are inclusive of their endpoints, AND 0 indexed.
unsigned end = endDivot.offset - 1; // End Ranges already go one past the inclusive range, so subtract 1.
unsigned instructionOffset = instructions().size() - 1;
m_codeBlock->addTypeProfilerExpressionInfo(instructionOffset, start, end);
}
void BytecodeGenerator::emitProfileType(RegisterID* registerToProfile, ProfileTypeBytecodeFlag flag)
{
if (!vm()->typeProfiler())
return;
if (!registerToProfile)
return;
emitOpcode(op_profile_type);
instructions().append(registerToProfile->index());
instructions().append(0);
instructions().append(flag);
instructions().append(0);
instructions().append(resolveType());
// Don't emit expression info for this version of profile type. This generally means
// we're profiling information for something that isn't in the actual text of a JavaScript
// program. For example, implicit return undefined from a function call.
}
void BytecodeGenerator::emitProfileType(RegisterID* registerToProfile, const JSTextPosition& startDivot, const JSTextPosition& endDivot)
{
emitProfileType(registerToProfile, ProfileTypeBytecodeDoesNotHaveGlobalID, startDivot, endDivot);
}
void BytecodeGenerator::emitProfileType(RegisterID* registerToProfile, ProfileTypeBytecodeFlag flag, const JSTextPosition& startDivot, const JSTextPosition& endDivot)
{
if (!vm()->typeProfiler())
return;
if (!registerToProfile)
return;
// The format of this instruction is: op_profile_type regToProfile, TypeLocation*, flag, identifier?, resolveType?
emitOpcode(op_profile_type);
instructions().append(registerToProfile->index());
instructions().append(0);
instructions().append(flag);
instructions().append(0);
instructions().append(resolveType());
emitTypeProfilerExpressionInfo(startDivot, endDivot);
}
void BytecodeGenerator::emitProfileType(RegisterID* registerToProfile, const Variable& var, const JSTextPosition& startDivot, const JSTextPosition& endDivot)
{
if (!vm()->typeProfiler())
return;
if (!registerToProfile)
return;
ProfileTypeBytecodeFlag flag;
int symbolTableOrScopeDepth;
if (var.local() || var.offset().isScope()) {
flag = ProfileTypeBytecodeLocallyResolved;
symbolTableOrScopeDepth = var.symbolTableConstantIndex();
} else {
flag = ProfileTypeBytecodeClosureVar;
symbolTableOrScopeDepth = localScopeDepth();
}
// The format of this instruction is: op_profile_type regToProfile, TypeLocation*, flag, identifier?, resolveType?
emitOpcode(op_profile_type);
instructions().append(registerToProfile->index());
instructions().append(symbolTableOrScopeDepth);
instructions().append(flag);
instructions().append(addConstant(var.ident()));
instructions().append(resolveType());
emitTypeProfilerExpressionInfo(startDivot, endDivot);
}
void BytecodeGenerator::emitProfileControlFlow(int textOffset)
{
if (vm()->controlFlowProfiler()) {
RELEASE_ASSERT(textOffset >= 0);
size_t bytecodeOffset = instructions().size();
m_codeBlock->addOpProfileControlFlowBytecodeOffset(bytecodeOffset);
emitOpcode(op_profile_control_flow);
instructions().append(textOffset);
}
}
RegisterID* BytecodeGenerator::emitLoad(RegisterID* dst, bool b)
{
return emitLoad(dst, jsBoolean(b));
}
RegisterID* BytecodeGenerator::emitLoad(RegisterID* dst, const Identifier& identifier)
{
JSString*& stringInMap = m_stringMap.add(identifier.impl(), nullptr).iterator->value;
if (!stringInMap)
stringInMap = jsOwnedString(vm(), identifier.string());
return emitLoad(dst, JSValue(stringInMap));
}
RegisterID* BytecodeGenerator::emitLoad(RegisterID* dst, JSValue v, SourceCodeRepresentation sourceCodeRepresentation)
{
RegisterID* constantID = addConstantValue(v, sourceCodeRepresentation);
if (dst)
return emitMove(dst, constantID);
return constantID;
}
RegisterID* BytecodeGenerator::emitLoadGlobalObject(RegisterID* dst)
{
if (!m_globalObjectRegister) {
int index = m_nextConstantOffset;
m_constantPoolRegisters.append(FirstConstantRegisterIndex + m_nextConstantOffset);
++m_nextConstantOffset;
m_codeBlock->addConstant(JSValue());
m_globalObjectRegister = &m_constantPoolRegisters[index];
m_codeBlock->setGlobalObjectRegister(VirtualRegister(index));
}
if (dst)
emitMove(dst, m_globalObjectRegister);
return m_globalObjectRegister;
}
template<typename LookUpVarKindFunctor>
bool BytecodeGenerator::instantiateLexicalVariables(const VariableEnvironment& lexicalVariables, SymbolTable* symbolTable, ScopeRegisterType scopeRegisterType, LookUpVarKindFunctor lookUpVarKind)
{
bool hasCapturedVariables = false;
{
ConcurrentJITLocker locker(symbolTable->m_lock);
for (auto& entry : lexicalVariables) {
ASSERT(entry.value.isLet() || entry.value.isConst());
ASSERT(!entry.value.isVar());
SymbolTableEntry symbolTableEntry = symbolTable->get(locker, entry.key.get());
ASSERT(symbolTableEntry.isNull());
// Imported bindings which are not the namespace bindings are not allocated
// in the module environment as usual variables' way.
// And since these types of the variables only seen in the module environment,
// other lexical environment need not to take care this.
if (entry.value.isImported() && !entry.value.isImportedNamespace())
continue;
VarKind varKind = lookUpVarKind(entry.key.get(), entry.value);
VarOffset varOffset;
if (varKind == VarKind::Scope) {
varOffset = VarOffset(symbolTable->takeNextScopeOffset(locker));
hasCapturedVariables = true;
} else {
ASSERT(varKind == VarKind::Stack);
RegisterID* local;
if (scopeRegisterType == ScopeRegisterType::Block) {
local = newBlockScopeVariable();
local->ref();
} else
local = addVar();
varOffset = VarOffset(local->virtualRegister());
}
SymbolTableEntry newEntry(varOffset, entry.value.isConst() ? ReadOnly : 0);
symbolTable->add(locker, entry.key.get(), newEntry);
}
}
return hasCapturedVariables;
}
void BytecodeGenerator::emitPrefillStackTDZVariables(const VariableEnvironment& lexicalVariables, SymbolTable* symbolTable)
{
// Prefill stack variables with the TDZ empty value.
// Scope variables will be initialized to the TDZ empty value when JSLexicalEnvironment is allocated.
for (auto& entry : lexicalVariables) {
// Imported bindings which are not the namespace bindings are not allocated
// in the module environment as usual variables' way.
// And since these types of the variables only seen in the module environment,
// other lexical environment need not to take care this.
if (entry.value.isImported() && !entry.value.isImportedNamespace())
continue;
SymbolTableEntry symbolTableEntry = symbolTable->get(entry.key.get());
ASSERT(!symbolTableEntry.isNull());
VarOffset offset = symbolTableEntry.varOffset();
if (offset.isScope())
continue;
ASSERT(offset.isStack());
emitMoveEmptyValue(&registerFor(offset.stackOffset()));
}
}
void BytecodeGenerator::pushLexicalScope(VariableEnvironmentNode* node, bool canOptimizeTDZChecks, RegisterID** constantSymbolTableResult)
{
VariableEnvironment& environment = node->lexicalVariables();
pushLexicalScopeInternal(environment, canOptimizeTDZChecks, constantSymbolTableResult, TDZRequirement::UnderTDZ, ScopeType::LetConstScope, ScopeRegisterType::Block);
}
void BytecodeGenerator::pushLexicalScopeInternal(VariableEnvironment& environment, bool canOptimizeTDZChecks,
RegisterID** constantSymbolTableResult, TDZRequirement tdzRequirement, ScopeType scopeType, ScopeRegisterType scopeRegisterType)
{
if (!environment.size())
return;
if (m_shouldEmitDebugHooks)
environment.markAllVariablesAsCaptured();
Strong<SymbolTable> symbolTable(*m_vm, SymbolTable::create(*m_vm));
switch (scopeType) {
case ScopeType::CatchScope:
symbolTable->setScopeType(SymbolTable::ScopeType::CatchScope);
break;
case ScopeType::LetConstScope:
symbolTable->setScopeType(SymbolTable::ScopeType::LexicalScope);
break;
case ScopeType::FunctionNameScope:
symbolTable->setScopeType(SymbolTable::ScopeType::FunctionNameScope);
break;
}
auto lookUpVarKind = [] (UniquedStringImpl*, const VariableEnvironmentEntry& entry) -> VarKind {
return entry.isCaptured() ? VarKind::Scope : VarKind::Stack;
};
bool hasCapturedVariables = instantiateLexicalVariables(environment, symbolTable.get(), scopeRegisterType, lookUpVarKind);
RegisterID* newScope = nullptr;
RegisterID* constantSymbolTable = nullptr;
int symbolTableConstantIndex = 0;
if (vm()->typeProfiler()) {
constantSymbolTable = addConstantValue(symbolTable.get());
symbolTableConstantIndex = constantSymbolTable->index();
}
if (hasCapturedVariables) {
if (scopeRegisterType == ScopeRegisterType::Block) {
newScope = newBlockScopeVariable();
newScope->ref();
} else
newScope = addVar();
if (!constantSymbolTable) {
ASSERT(!vm()->typeProfiler());
constantSymbolTable = addConstantValue(symbolTable->cloneScopePart(*m_vm));
symbolTableConstantIndex = constantSymbolTable->index();
}
if (constantSymbolTableResult)
*constantSymbolTableResult = constantSymbolTable;
emitOpcode(op_create_lexical_environment);
instructions().append(newScope->index());
instructions().append(scopeRegister()->index());
instructions().append(constantSymbolTable->index());
instructions().append(addConstantValue(tdzRequirement == TDZRequirement::UnderTDZ ? jsTDZValue() : jsUndefined())->index());
emitMove(scopeRegister(), newScope);
pushScopedControlFlowContext();
}
m_symbolTableStack.append(SymbolTableStackEntry{ symbolTable, newScope, false, symbolTableConstantIndex });
if (tdzRequirement == TDZRequirement::UnderTDZ)
m_TDZStack.append(std::make_pair(environment, canOptimizeTDZChecks));
if (tdzRequirement == TDZRequirement::UnderTDZ)
emitPrefillStackTDZVariables(environment, symbolTable.get());
}
void BytecodeGenerator::popLexicalScope(VariableEnvironmentNode* node)
{
VariableEnvironment& environment = node->lexicalVariables();
popLexicalScopeInternal(environment, TDZRequirement::UnderTDZ);
}
void BytecodeGenerator::popLexicalScopeInternal(VariableEnvironment& environment, TDZRequirement tdzRequirement)
{
// NOTE: This function only makes sense for scopes that aren't ScopeRegisterType::Var (only function name scope right now is ScopeRegisterType::Var).
// This doesn't make sense for ScopeRegisterType::Var because we deref RegisterIDs here.
if (!environment.size())
return;
if (m_shouldEmitDebugHooks)
environment.markAllVariablesAsCaptured();
SymbolTableStackEntry stackEntry = m_symbolTableStack.takeLast();
Strong<SymbolTable> symbolTable = stackEntry.m_symbolTable;
ConcurrentJITLocker locker(symbolTable->m_lock);
bool hasCapturedVariables = false;
for (auto& entry : environment) {
if (entry.value.isCaptured()) {
hasCapturedVariables = true;
continue;
}
SymbolTableEntry symbolTableEntry = symbolTable->get(locker, entry.key.get());
ASSERT(!symbolTableEntry.isNull());
VarOffset offset = symbolTableEntry.varOffset();
ASSERT(offset.isStack());
RegisterID* local = &registerFor(offset.stackOffset());
local->deref();
}
if (hasCapturedVariables) {
RELEASE_ASSERT(stackEntry.m_scope);
emitPopScope(scopeRegister(), stackEntry.m_scope);
popScopedControlFlowContext();
stackEntry.m_scope->deref();
}
if (tdzRequirement == TDZRequirement::UnderTDZ)
m_TDZStack.removeLast();
}
void BytecodeGenerator::prepareLexicalScopeForNextForLoopIteration(VariableEnvironmentNode* node, RegisterID* loopSymbolTable)
{
VariableEnvironment& environment = node->lexicalVariables();
if (!environment.size())
return;
if (m_shouldEmitDebugHooks)
environment.markAllVariablesAsCaptured();
if (!environment.hasCapturedVariables())
return;
RELEASE_ASSERT(loopSymbolTable);
// This function needs to do setup for a for loop's activation if any of
// the for loop's lexically declared variables are captured (that is, variables
// declared in the loop header, not the loop body). This function needs to
// make a copy of the current activation and copy the values from the previous
// activation into the new activation because each iteration of a for loop
// gets a new activation.
SymbolTableStackEntry stackEntry = m_symbolTableStack.last();
Strong<SymbolTable> symbolTable = stackEntry.m_symbolTable;
RegisterID* loopScope = stackEntry.m_scope;
ASSERT(symbolTable->scopeSize());
ASSERT(loopScope);
Vector<std::pair<RegisterID*, Identifier>> activationValuesToCopyOver;
{
ConcurrentJITLocker locker(symbolTable->m_lock);
activationValuesToCopyOver.reserveInitialCapacity(symbolTable->scopeSize());
for (auto end = symbolTable->end(locker), ptr = symbolTable->begin(locker); ptr != end; ++ptr) {
if (!ptr->value.varOffset().isScope())
continue;
RefPtr<UniquedStringImpl> ident = ptr->key;
Identifier identifier = Identifier::fromUid(m_vm, ident.get());
RegisterID* transitionValue = newBlockScopeVariable();
transitionValue->ref();
emitGetFromScope(transitionValue, loopScope, variableForLocalEntry(identifier, ptr->value, loopSymbolTable->index(), true), DoNotThrowIfNotFound);
activationValuesToCopyOver.uncheckedAppend(std::make_pair(transitionValue, identifier));
}
}
// We need this dynamic behavior of the executing code to ensure
// each loop iteration has a new activation object. (It's pretty ugly).
// Also, this new activation needs to be assigned to the same register
// as the previous scope because the loop body is compiled under
// the assumption that the scope's register index is constant even
// though the value in that register will change on each loop iteration.
RefPtr<RegisterID> parentScope = emitGetParentScope(newTemporary(), loopScope);
emitMove(scopeRegister(), parentScope.get());
emitOpcode(op_create_lexical_environment);
instructions().append(loopScope->index());
instructions().append(scopeRegister()->index());
instructions().append(loopSymbolTable->index());
instructions().append(addConstantValue(jsTDZValue())->index());
emitMove(scopeRegister(), loopScope);
{
ConcurrentJITLocker locker(symbolTable->m_lock);
for (auto pair : activationValuesToCopyOver) {
const Identifier& identifier = pair.second;
SymbolTableEntry entry = symbolTable->get(locker, identifier.impl());
RELEASE_ASSERT(!entry.isNull());
RegisterID* transitionValue = pair.first;
emitPutToScope(loopScope, variableForLocalEntry(identifier, entry, loopSymbolTable->index(), true), transitionValue, DoNotThrowIfNotFound, NotInitialization);
transitionValue->deref();
}
}
}
Variable BytecodeGenerator::variable(const Identifier& property, ThisResolutionType thisResolutionType)
{
if (property == propertyNames().thisIdentifier && thisResolutionType == ThisResolutionType::Local) {
return Variable(property, VarOffset(thisRegister()->virtualRegister()), thisRegister(),
ReadOnly, Variable::SpecialVariable, 0, false);
}
// We can optimize lookups if the lexical variable is found before a "with" or "catch"
// scope because we're guaranteed static resolution. If we have to pass through
// a "with" or "catch" scope we loose this guarantee.
// We can't optimize cases like this:
// {
// let x = ...;
// with (o) {
// doSomethingWith(x);
// }
// }
// Because we can't gaurantee static resolution on x.
// But, in this case, we are guaranteed static resolution:
// {
// let x = ...;
// with (o) {
// let x = ...;
// doSomethingWith(x);
// }
// }
for (unsigned i = m_symbolTableStack.size(); i--; ) {
SymbolTableStackEntry& stackEntry = m_symbolTableStack[i];
if (stackEntry.m_isWithScope)
return Variable(property);
Strong<SymbolTable>& symbolTable = stackEntry.m_symbolTable;
SymbolTableEntry symbolTableEntry = symbolTable->get(property.impl());
if (symbolTableEntry.isNull())
continue;
bool resultIsCallee = false;
if (symbolTable->scopeType() == SymbolTable::ScopeType::FunctionNameScope) {
if (m_usesNonStrictEval) {
// We don't know if an eval has introduced a "var" named the same thing as the function name scope variable name.
// We resort to dynamic lookup to answer this question.
Variable result = Variable(property);
return result;
}
resultIsCallee = true;
}
Variable result = variableForLocalEntry(property, symbolTableEntry, stackEntry.m_symbolTableConstantIndex, symbolTable->scopeType() == SymbolTable::ScopeType::LexicalScope);
if (resultIsCallee)
result.setIsReadOnly();
return result;
}
return Variable(property);
}
Variable BytecodeGenerator::variableForLocalEntry(
const Identifier& property, const SymbolTableEntry& entry, int symbolTableConstantIndex, bool isLexicallyScoped)
{
VarOffset offset = entry.varOffset();
RegisterID* local;
if (offset.isStack())
local = &registerFor(offset.stackOffset());
else
local = nullptr;
return Variable(property, offset, local, entry.getAttributes(), Variable::NormalVariable, symbolTableConstantIndex, isLexicallyScoped);
}
void BytecodeGenerator::createVariable(
const Identifier& property, VarKind varKind, SymbolTable* symbolTable, ExistingVariableMode existingVariableMode)
{
ASSERT(property != propertyNames().thisIdentifier);
ConcurrentJITLocker locker(symbolTable->m_lock);
SymbolTableEntry entry = symbolTable->get(locker, property.impl());
if (!entry.isNull()) {
if (existingVariableMode == IgnoreExisting)
return;
// Do some checks to ensure that the variable we're being asked to create is sufficiently
// compatible with the one we have already created.
VarOffset offset = entry.varOffset();
// We can't change our minds about whether it's captured.
if (offset.kind() != varKind) {
dataLog(
"Trying to add variable called ", property, " as ", varKind,
" but it was already added as ", offset, ".\n");
RELEASE_ASSERT_NOT_REACHED();
}
return;
}
VarOffset varOffset;
if (varKind == VarKind::Scope)
varOffset = VarOffset(symbolTable->takeNextScopeOffset(locker));
else {
ASSERT(varKind == VarKind::Stack);
varOffset = VarOffset(virtualRegisterForLocal(m_calleeRegisters.size()));
}
SymbolTableEntry newEntry(varOffset, 0);
symbolTable->add(locker, property.impl(), newEntry);
if (varKind == VarKind::Stack) {
RegisterID* local = addVar();
RELEASE_ASSERT(local->index() == varOffset.stackOffset().offset());
}
}
void BytecodeGenerator::emitCheckHasInstance(RegisterID* dst, RegisterID* value, RegisterID* base, Label* target)
{
size_t begin = instructions().size();
emitOpcode(op_check_has_instance);
instructions().append(dst->index());
instructions().append(value->index());
instructions().append(base->index());
instructions().append(target->bind(begin, instructions().size()));
}
// Indicates the least upper bound of resolve type based on local scope. The bytecode linker
// will start with this ResolveType and compute the least upper bound including intercepting scopes.
ResolveType BytecodeGenerator::resolveType()
{
for (unsigned i = m_symbolTableStack.size(); i--; ) {
if (m_symbolTableStack[i].m_isWithScope)
return Dynamic;
if (m_usesNonStrictEval && m_symbolTableStack[i].m_symbolTable->scopeType() == SymbolTable::ScopeType::FunctionNameScope) {
// We never want to assign to a FunctionNameScope. Returning Dynamic here achieves this goal.
// If we aren't in non-strict eval mode, then NodesCodeGen needs to take care not to emit
// a put_to_scope with the destination being the function name scope variable.
return Dynamic;
}
}
if (m_usesNonStrictEval)
return GlobalPropertyWithVarInjectionChecks;
return GlobalProperty;
}
RegisterID* BytecodeGenerator::emitResolveScope(RegisterID* dst, const Variable& variable)
{
switch (variable.offset().kind()) {
case VarKind::Stack:
return nullptr;
case VarKind::DirectArgument:
return argumentsRegister();
case VarKind::Scope:
// This always refers to the activation that *we* allocated, and not the current scope that code
// lives in. Note that this will change once we have proper support for block scoping. Once that
// changes, it will be correct for this code to return scopeRegister(). The only reason why we
// don't do that already is that m_lexicalEnvironment is required by ConstDeclNode. ConstDeclNode
// requires weird things because it is a shameful pile of nonsense, but block scoping would make
// that code sensible and obviate the need for us to do bad things.
for (unsigned i = m_symbolTableStack.size(); i--; ) {
SymbolTableStackEntry& stackEntry = m_symbolTableStack[i];
// We should not resolve a variable to VarKind::Scope if a "with" scope lies in between the current
// scope and the resolved scope.
RELEASE_ASSERT(!stackEntry.m_isWithScope);
if (stackEntry.m_symbolTable->get(variable.ident().impl()).isNull())
continue;
RegisterID* scope = stackEntry.m_scope;
RELEASE_ASSERT(scope);
return scope;
}
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
case VarKind::Invalid:
// Indicates non-local resolution.
m_codeBlock->addPropertyAccessInstruction(instructions().size());
// resolve_scope dst, id, ResolveType, depth
dst = tempDestination(dst);
emitOpcode(op_resolve_scope);
instructions().append(kill(dst));
instructions().append(scopeRegister()->index());
instructions().append(addConstant(variable.ident()));
instructions().append(resolveType());
instructions().append(localScopeDepth());
instructions().append(0);
return dst;
}
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
}
RegisterID* BytecodeGenerator::emitGetFromScope(RegisterID* dst, RegisterID* scope, const Variable& variable, ResolveMode resolveMode)
{
switch (variable.offset().kind()) {
case VarKind::Stack:
return emitMove(dst, variable.local());
case VarKind::DirectArgument: {
UnlinkedValueProfile profile = emitProfiledOpcode(op_get_from_arguments);
instructions().append(kill(dst));
instructions().append(scope->index());
instructions().append(variable.offset().capturedArgumentsOffset().offset());
instructions().append(profile);
return dst;
}
case VarKind::Scope:
case VarKind::Invalid: {
m_codeBlock->addPropertyAccessInstruction(instructions().size());
// get_from_scope dst, scope, id, GetPutInfo, Structure, Operand
UnlinkedValueProfile profile = emitProfiledOpcode(op_get_from_scope);
instructions().append(kill(dst));
instructions().append(scope->index());
instructions().append(addConstant(variable.ident()));
instructions().append(GetPutInfo(resolveMode, variable.offset().isScope() ? LocalClosureVar : resolveType(), NotInitialization).operand());
instructions().append(localScopeDepth());
instructions().append(variable.offset().isScope() ? variable.offset().scopeOffset().offset() : 0);
instructions().append(profile);
return dst;
} }
RELEASE_ASSERT_NOT_REACHED();
}
RegisterID* BytecodeGenerator::emitPutToScope(RegisterID* scope, const Variable& variable, RegisterID* value, ResolveMode resolveMode, InitializationMode initializationMode)
{
switch (variable.offset().kind()) {
case VarKind::Stack:
emitMove(variable.local(), value);
return value;
case VarKind::DirectArgument:
emitOpcode(op_put_to_arguments);
instructions().append(scope->index());
instructions().append(variable.offset().capturedArgumentsOffset().offset());
instructions().append(value->index());
return value;
case VarKind::Scope:
case VarKind::Invalid: {
m_codeBlock->addPropertyAccessInstruction(instructions().size());
// put_to_scope scope, id, value, GetPutInfo, Structure, Operand
emitOpcode(op_put_to_scope);
instructions().append(scope->index());
instructions().append(addConstant(variable.ident()));
instructions().append(value->index());
ScopeOffset offset;
if (variable.offset().isScope()) {
offset = variable.offset().scopeOffset();
instructions().append(GetPutInfo(resolveMode, LocalClosureVar, initializationMode).operand());
instructions().append(variable.symbolTableConstantIndex());
} else {
ASSERT(resolveType() != LocalClosureVar);
instructions().append(GetPutInfo(resolveMode, resolveType(), initializationMode).operand());
instructions().append(localScopeDepth());
}
instructions().append(!!offset ? offset.offset() : 0);
return value;
} }
RELEASE_ASSERT_NOT_REACHED();
}
RegisterID* BytecodeGenerator::initializeVariable(const Variable& variable, RegisterID* value)
{
RELEASE_ASSERT(variable.offset().kind() != VarKind::Invalid);
RegisterID* scope = emitResolveScope(nullptr, variable);
return emitPutToScope(scope, variable, value, ThrowIfNotFound, NotInitialization);
}
RegisterID* BytecodeGenerator::emitInstanceOf(RegisterID* dst, RegisterID* value, RegisterID* basePrototype)
{
emitOpcode(op_instanceof);
instructions().append(dst->index());
instructions().append(value->index());
instructions().append(basePrototype->index());
return dst;
}
RegisterID* BytecodeGenerator::emitGetById(RegisterID* dst, RegisterID* base, const Identifier& property)
{
m_codeBlock->addPropertyAccessInstruction(instructions().size());
UnlinkedValueProfile profile = emitProfiledOpcode(op_get_by_id);
instructions().append(kill(dst));
instructions().append(base->index());
instructions().append(addConstant(property));
instructions().append(0);
instructions().append(0);
instructions().append(0);
instructions().append(0);
instructions().append(profile);
return dst;
}
RegisterID* BytecodeGenerator::emitPutById(RegisterID* base, const Identifier& property, RegisterID* value)
{
unsigned propertyIndex = addConstant(property);
m_staticPropertyAnalyzer.putById(base->index(), propertyIndex);
m_codeBlock->addPropertyAccessInstruction(instructions().size());
emitOpcode(op_put_by_id);
instructions().append(base->index());
instructions().append(propertyIndex);
instructions().append(value->index());
instructions().append(0); // old structure
instructions().append(0); // offset
instructions().append(0); // new structure
instructions().append(0); // structure chain
instructions().append(static_cast<int>(PutByIdNone)); // is not direct
return value;
}
RegisterID* BytecodeGenerator::emitDirectPutById(RegisterID* base, const Identifier& property, RegisterID* value, PropertyNode::PutType putType)
{
ASSERT(!parseIndex(property));
unsigned propertyIndex = addConstant(property);
m_staticPropertyAnalyzer.putById(base->index(), propertyIndex);
m_codeBlock->addPropertyAccessInstruction(instructions().size());
emitOpcode(op_put_by_id);
instructions().append(base->index());
instructions().append(propertyIndex);
instructions().append(value->index());
instructions().append(0); // old structure
instructions().append(0); // offset
instructions().append(0); // new structure
instructions().append(0); // structure chain (unused if direct)
instructions().append(static_cast<int>((putType == PropertyNode::KnownDirect || property != m_vm->propertyNames->underscoreProto) ? PutByIdIsDirect : PutByIdNone));
return value;
}
void BytecodeGenerator::emitPutGetterById(RegisterID* base, const Identifier& property, unsigned attributes, RegisterID* getter)
{
unsigned propertyIndex = addConstant(property);
m_staticPropertyAnalyzer.putById(base->index(), propertyIndex);
emitOpcode(op_put_getter_by_id);
instructions().append(base->index());
instructions().append(propertyIndex);
instructions().append(attributes);
instructions().append(getter->index());
}
void BytecodeGenerator::emitPutSetterById(RegisterID* base, const Identifier& property, unsigned attributes, RegisterID* setter)
{
unsigned propertyIndex = addConstant(property);
m_staticPropertyAnalyzer.putById(base->index(), propertyIndex);
emitOpcode(op_put_setter_by_id);
instructions().append(base->index());
instructions().append(propertyIndex);
instructions().append(attributes);
instructions().append(setter->index());
}
void BytecodeGenerator::emitPutGetterSetter(RegisterID* base, const Identifier& property, unsigned attributes, RegisterID* getter, RegisterID* setter)
{
unsigned propertyIndex = addConstant(property);
m_staticPropertyAnalyzer.putById(base->index(), propertyIndex);
emitOpcode(op_put_getter_setter_by_id);
instructions().append(base->index());
instructions().append(propertyIndex);
instructions().append(attributes);
instructions().append(getter->index());
instructions().append(setter->index());
}
void BytecodeGenerator::emitPutGetterByVal(RegisterID* base, RegisterID* property, unsigned attributes, RegisterID* getter)
{
emitOpcode(op_put_getter_by_val);
instructions().append(base->index());
instructions().append(property->index());
instructions().append(attributes);
instructions().append(getter->index());
}
void BytecodeGenerator::emitPutSetterByVal(RegisterID* base, RegisterID* property, unsigned attributes, RegisterID* setter)
{
emitOpcode(op_put_setter_by_val);
instructions().append(base->index());
instructions().append(property->index());
instructions().append(attributes);
instructions().append(setter->index());
}
RegisterID* BytecodeGenerator::emitDeleteById(RegisterID* dst, RegisterID* base, const Identifier& property)
{
emitOpcode(op_del_by_id);
instructions().append(dst->index());
instructions().append(base->index());
instructions().append(addConstant(property));
return dst;
}
RegisterID* BytecodeGenerator::emitGetByVal(RegisterID* dst, RegisterID* base, RegisterID* property)
{
for (size_t i = m_forInContextStack.size(); i > 0; i--) {
ForInContext* context = m_forInContextStack[i - 1].get();
if (context->local() != property)
continue;
if (!context->isValid())
break;
if (context->type() == ForInContext::IndexedForInContextType) {
property = static_cast<IndexedForInContext*>(context)->index();
break;
}
ASSERT(context->type() == ForInContext::StructureForInContextType);
StructureForInContext* structureContext = static_cast<StructureForInContext*>(context);
UnlinkedValueProfile profile = emitProfiledOpcode(op_get_direct_pname);
instructions().append(kill(dst));
instructions().append(base->index());
instructions().append(property->index());
instructions().append(structureContext->index()->index());
instructions().append(structureContext->enumerator()->index());
instructions().append(profile);
return dst;
}
UnlinkedArrayProfile arrayProfile = newArrayProfile();
UnlinkedValueProfile profile = emitProfiledOpcode(op_get_by_val);
instructions().append(kill(dst));
instructions().append(base->index());
instructions().append(property->index());
instructions().append(arrayProfile);
instructions().append(profile);
return dst;
}
RegisterID* BytecodeGenerator::emitPutByVal(RegisterID* base, RegisterID* property, RegisterID* value)
{
UnlinkedArrayProfile arrayProfile = newArrayProfile();
emitOpcode(op_put_by_val);
instructions().append(base->index());
instructions().append(property->index());
instructions().append(value->index());
instructions().append(arrayProfile);
return value;
}
RegisterID* BytecodeGenerator::emitDirectPutByVal(RegisterID* base, RegisterID* property, RegisterID* value)
{
UnlinkedArrayProfile arrayProfile = newArrayProfile();
emitOpcode(op_put_by_val_direct);
instructions().append(base->index());
instructions().append(property->index());
instructions().append(value->index());
instructions().append(arrayProfile);
return value;
}
RegisterID* BytecodeGenerator::emitDeleteByVal(RegisterID* dst, RegisterID* base, RegisterID* property)
{
emitOpcode(op_del_by_val);
instructions().append(dst->index());
instructions().append(base->index());
instructions().append(property->index());
return dst;
}
RegisterID* BytecodeGenerator::emitPutByIndex(RegisterID* base, unsigned index, RegisterID* value)
{
emitOpcode(op_put_by_index);
instructions().append(base->index());
instructions().append(index);
instructions().append(value->index());
return value;
}
RegisterID* BytecodeGenerator::emitAssert(RegisterID* condition, int line)
{
emitOpcode(op_assert);
instructions().append(condition->index());
instructions().append(line);
return condition;
}
RegisterID* BytecodeGenerator::emitCreateThis(RegisterID* dst)
{
size_t begin = instructions().size();
m_staticPropertyAnalyzer.createThis(m_thisRegister.index(), begin + 3);
m_codeBlock->addPropertyAccessInstruction(instructions().size());
emitOpcode(op_create_this);
instructions().append(m_thisRegister.index());
instructions().append(m_thisRegister.index());
instructions().append(0);
instructions().append(0);
return dst;
}
void BytecodeGenerator::emitTDZCheck(RegisterID* target)
{
emitOpcode(op_check_tdz);
instructions().append(target->index());
}
bool BytecodeGenerator::needsTDZCheck(const Variable& variable)
{
for (unsigned i = m_TDZStack.size(); i--;) {
VariableEnvironment& identifiers = m_TDZStack[i].first;
if (identifiers.contains(variable.ident().impl()))
return true;
}
return false;
}
void BytecodeGenerator::emitTDZCheckIfNecessary(const Variable& variable, RegisterID* target, RegisterID* scope)
{
if (needsTDZCheck(variable)) {
if (target)
emitTDZCheck(target);
else {
RELEASE_ASSERT(!variable.isLocal() && scope);
RefPtr<RegisterID> result = emitGetFromScope(newTemporary(), scope, variable, DoNotThrowIfNotFound);
emitTDZCheck(result.get());
}
}
}
void BytecodeGenerator::liftTDZCheckIfPossible(const Variable& variable)
{
RefPtr<UniquedStringImpl> identifier(variable.ident().impl());
for (unsigned i = m_TDZStack.size(); i--;) {
VariableEnvironment& environment = m_TDZStack[i].first;
if (environment.contains(identifier)) {
bool isSyntacticallyAbleToOptimizeTDZ = m_TDZStack[i].second;
if (isSyntacticallyAbleToOptimizeTDZ) {
bool wasRemoved = environment.remove(identifier);
RELEASE_ASSERT(wasRemoved);
}
break;
}
}
}
void BytecodeGenerator::getVariablesUnderTDZ(VariableEnvironment& result)
{
for (auto& pair : m_TDZStack) {
VariableEnvironment& environment = pair.first;
for (auto entry : environment)
result.add(entry.key.get());
}
}
RegisterID* BytecodeGenerator::emitNewObject(RegisterID* dst)
{
size_t begin = instructions().size();
m_staticPropertyAnalyzer.newObject(dst->index(), begin + 2);
emitOpcode(op_new_object);
instructions().append(dst->index());
instructions().append(0);
instructions().append(newObjectAllocationProfile());
return dst;
}
unsigned BytecodeGenerator::addConstantBuffer(unsigned length)
{
return m_codeBlock->addConstantBuffer(length);
}
JSString* BytecodeGenerator::addStringConstant(const Identifier& identifier)
{
JSString*& stringInMap = m_stringMap.add(identifier.impl(), nullptr).iterator->value;
if (!stringInMap) {
stringInMap = jsString(vm(), identifier.string());
addConstantValue(stringInMap);
}
return stringInMap;
}
JSTemplateRegistryKey* BytecodeGenerator::addTemplateRegistryKeyConstant(const TemplateRegistryKey& templateRegistryKey)
{
JSTemplateRegistryKey*& templateRegistryKeyInMap = m_templateRegistryKeyMap.add(templateRegistryKey, nullptr).iterator->value;
if (!templateRegistryKeyInMap) {
templateRegistryKeyInMap = JSTemplateRegistryKey::create(*vm(), templateRegistryKey);
addConstantValue(templateRegistryKeyInMap);
}
return templateRegistryKeyInMap;
}
RegisterID* BytecodeGenerator::emitNewArray(RegisterID* dst, ElementNode* elements, unsigned length)
{
#if !ASSERT_DISABLED
unsigned checkLength = 0;
#endif
bool hadVariableExpression = false;
if (length) {
for (ElementNode* n = elements; n; n = n->next()) {
if (!n->value()->isConstant()) {
hadVariableExpression = true;
break;
}
if (n->elision())
break;
#if !ASSERT_DISABLED
checkLength++;
#endif
}
if (!hadVariableExpression) {
ASSERT(length == checkLength);
unsigned constantBufferIndex = addConstantBuffer(length);
JSValue* constantBuffer = m_codeBlock->constantBuffer(constantBufferIndex).data();
unsigned index = 0;
for (ElementNode* n = elements; index < length; n = n->next()) {
ASSERT(n->value()->isConstant());
constantBuffer[index++] = static_cast<ConstantNode*>(n->value())->jsValue(*this);
}
emitOpcode(op_new_array_buffer);
instructions().append(dst->index());
instructions().append(constantBufferIndex);
instructions().append(length);
instructions().append(newArrayAllocationProfile());
return dst;
}
}
Vector<RefPtr<RegisterID>, 16, UnsafeVectorOverflow> argv;
for (ElementNode* n = elements; n; n = n->next()) {
if (!length)
break;
length--;
ASSERT(!n->value()->isSpreadExpression());
argv.append(newTemporary());
// op_new_array requires the initial values to be a sequential range of registers
ASSERT(argv.size() == 1 || argv[argv.size() - 1]->index() == argv[argv.size() - 2]->index() - 1);
emitNode(argv.last().get(), n->value());
}
ASSERT(!length);
emitOpcode(op_new_array);
instructions().append(dst->index());
instructions().append(argv.size() ? argv[0]->index() : 0); // argv
instructions().append(argv.size()); // argc
instructions().append(newArrayAllocationProfile());
return dst;
}
RegisterID* BytecodeGenerator::emitNewArrayWithSize(RegisterID* dst, RegisterID* length)
{
emitOpcode(op_new_array_with_size);
instructions().append(dst->index());
instructions().append(length->index());
instructions().append(newArrayAllocationProfile());
return dst;
}
RegisterID* BytecodeGenerator::emitNewFunction(RegisterID* dst, FunctionMetadataNode* function)
{
return emitNewFunctionInternal(dst, m_codeBlock->addFunctionDecl(makeFunction(function)));
}
RegisterID* BytecodeGenerator::emitNewFunctionInternal(RegisterID* dst, unsigned index)
{
emitOpcode(op_new_func);
instructions().append(dst->index());
instructions().append(scopeRegister()->index());
instructions().append(index);
return dst;
}
RegisterID* BytecodeGenerator::emitNewRegExp(RegisterID* dst, RegExp* regExp)
{
emitOpcode(op_new_regexp);
instructions().append(dst->index());
instructions().append(addRegExp(regExp));
return dst;
}
void BytecodeGenerator::emitNewFunctionCommon(RegisterID* dst, BaseFuncExprNode* func, OpcodeID opcodeID)
{
ASSERT(opcodeID == op_new_func_exp || opcodeID == op_new_arrow_func_exp);
FunctionMetadataNode* function = func->metadata();
unsigned index = m_codeBlock->addFunctionExpr(makeFunction(function));
emitOpcode(opcodeID);
instructions().append(dst->index());
instructions().append(scopeRegister()->index());
instructions().append(index);
}
RegisterID* BytecodeGenerator::emitNewFunctionExpression(RegisterID* dst, FuncExprNode* func)
{
emitNewFunctionCommon(dst, func, op_new_func_exp);
return dst;
}
RegisterID* BytecodeGenerator::emitNewArrowFunctionExpression(RegisterID* dst, ArrowFuncExprNode* func)
{
emitNewFunctionCommon(dst, func, op_new_arrow_func_exp);
return dst;
}
RegisterID* BytecodeGenerator::emitNewDefaultConstructor(RegisterID* dst, ConstructorKind constructorKind, const Identifier& name)
{
UnlinkedFunctionExecutable* executable = m_vm->builtinExecutables()->createDefaultConstructor(constructorKind, name);
executable->setInvalidTypeProfilingOffsets();
unsigned index = m_codeBlock->addFunctionExpr(executable);
emitOpcode(op_new_func_exp);
instructions().append(dst->index());
instructions().append(scopeRegister()->index());
instructions().append(index);
return dst;
}
RegisterID* BytecodeGenerator::emitCall(RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd)
{
return emitCall(op_call, dst, func, expectedFunction, callArguments, divot, divotStart, divotEnd);
}
RegisterID* BytecodeGenerator::emitCallInTailPosition(RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd)
{
return emitCall(m_inTailPosition ? op_tail_call : op_call, dst, func, expectedFunction, callArguments, divot, divotStart, divotEnd);
}
RegisterID* BytecodeGenerator::emitCallEval(RegisterID* dst, RegisterID* func, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd)
{
return emitCall(op_call_eval, dst, func, NoExpectedFunction, callArguments, divot, divotStart, divotEnd);
}
ExpectedFunction BytecodeGenerator::expectedFunctionForIdentifier(const Identifier& identifier)
{
if (identifier == m_vm->propertyNames->Object || identifier == m_vm->propertyNames->ObjectPrivateName)
return ExpectObjectConstructor;
if (identifier == m_vm->propertyNames->Array || identifier == m_vm->propertyNames->ArrayPrivateName)
return ExpectArrayConstructor;
return NoExpectedFunction;
}
ExpectedFunction BytecodeGenerator::emitExpectedFunctionSnippet(RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, Label* done)
{
RefPtr<Label> realCall = newLabel();
switch (expectedFunction) {
case ExpectObjectConstructor: {
// If the number of arguments is non-zero, then we can't do anything interesting.
if (callArguments.argumentCountIncludingThis() >= 2)
return NoExpectedFunction;
size_t begin = instructions().size();
emitOpcode(op_jneq_ptr);
instructions().append(func->index());
instructions().append(Special::ObjectConstructor);
instructions().append(realCall->bind(begin, instructions().size()));
if (dst != ignoredResult())
emitNewObject(dst);
break;
}
case ExpectArrayConstructor: {
// If you're doing anything other than "new Array()" or "new Array(foo)" then we
// don't do inline it, for now. The only reason is that call arguments are in
// the opposite order of what op_new_array expects, so we'd either need to change
// how op_new_array works or we'd need an op_new_array_reverse. Neither of these
// things sounds like it's worth it.
if (callArguments.argumentCountIncludingThis() > 2)
return NoExpectedFunction;
size_t begin = instructions().size();
emitOpcode(op_jneq_ptr);
instructions().append(func->index());
instructions().append(Special::ArrayConstructor);
instructions().append(realCall->bind(begin, instructions().size()));
if (dst != ignoredResult()) {
if (callArguments.argumentCountIncludingThis() == 2)
emitNewArrayWithSize(dst, callArguments.argumentRegister(0));
else {
ASSERT(callArguments.argumentCountIncludingThis() == 1);
emitOpcode(op_new_array);
instructions().append(dst->index());
instructions().append(0);
instructions().append(0);
instructions().append(newArrayAllocationProfile());
}
}
break;
}
default:
ASSERT(expectedFunction == NoExpectedFunction);
return NoExpectedFunction;
}
size_t begin = instructions().size();
emitOpcode(op_jmp);
instructions().append(done->bind(begin, instructions().size()));
emitLabel(realCall.get());
return expectedFunction;
}
RegisterID* BytecodeGenerator::emitCall(OpcodeID opcodeID, RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd)
{
ASSERT(opcodeID == op_call || opcodeID == op_call_eval || opcodeID == op_tail_call);
ASSERT(func->refCount());
if (m_shouldEmitProfileHooks)
emitMove(callArguments.profileHookRegister(), func);
// Generate code for arguments.
unsigned argument = 0;
if (callArguments.argumentsNode()) {
ArgumentListNode* n = callArguments.argumentsNode()->m_listNode;
if (n && n->m_expr->isSpreadExpression()) {
RELEASE_ASSERT(!n->m_next);
auto expression = static_cast<SpreadExpressionNode*>(n->m_expr)->expression();
RefPtr<RegisterID> argumentRegister;
argumentRegister = expression->emitBytecode(*this, callArguments.argumentRegister(0));
RefPtr<RegisterID> thisRegister = emitMove(newTemporary(), callArguments.thisRegister());
return emitCallVarargs(opcodeID == op_tail_call ? op_tail_call_varargs : op_call_varargs, dst, func, callArguments.thisRegister(), argumentRegister.get(), newTemporary(), 0, callArguments.profileHookRegister(), divot, divotStart, divotEnd);
}
for (; n; n = n->m_next)
emitNode(callArguments.argumentRegister(argument++), n);
}
// Reserve space for call frame.
Vector<RefPtr<RegisterID>, JSStack::CallFrameHeaderSize, UnsafeVectorOverflow> callFrame;
for (int i = 0; i < JSStack::CallFrameHeaderSize; ++i)
callFrame.append(newTemporary());
if (m_shouldEmitProfileHooks) {
emitOpcode(op_profile_will_call);
instructions().append(callArguments.profileHookRegister()->index());
}
emitExpressionInfo(divot, divotStart, divotEnd);
RefPtr<Label> done = newLabel();
expectedFunction = emitExpectedFunctionSnippet(dst, func, expectedFunction, callArguments, done.get());
// Emit call.
UnlinkedArrayProfile arrayProfile = newArrayProfile();
UnlinkedValueProfile profile = emitProfiledOpcode(opcodeID);
ASSERT(dst);
ASSERT(dst != ignoredResult());
instructions().append(dst->index());
instructions().append(func->index());
instructions().append(callArguments.argumentCountIncludingThis());
instructions().append(callArguments.stackOffset());
instructions().append(m_codeBlock->addLLIntCallLinkInfo());
instructions().append(0);
instructions().append(arrayProfile);
instructions().append(profile);
if (expectedFunction != NoExpectedFunction)
emitLabel(done.get());
if (m_shouldEmitProfileHooks) {
emitOpcode(op_profile_did_call);
instructions().append(callArguments.profileHookRegister()->index());
}
return dst;
}
RegisterID* BytecodeGenerator::emitCallVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, RegisterID* profileHookRegister, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd)
{
return emitCallVarargs(op_call_varargs, dst, func, thisRegister, arguments, firstFreeRegister, firstVarArgOffset, profileHookRegister, divot, divotStart, divotEnd);
}
RegisterID* BytecodeGenerator::emitCallVarargsInTailPosition(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, RegisterID* profileHookRegister, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd)
{
return emitCallVarargs(m_inTailPosition ? op_tail_call_varargs : op_call_varargs, dst, func, thisRegister, arguments, firstFreeRegister, firstVarArgOffset, profileHookRegister, divot, divotStart, divotEnd);
}
RegisterID* BytecodeGenerator::emitConstructVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, RegisterID* profileHookRegister, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd)
{
return emitCallVarargs(op_construct_varargs, dst, func, thisRegister, arguments, firstFreeRegister, firstVarArgOffset, profileHookRegister, divot, divotStart, divotEnd);
}
RegisterID* BytecodeGenerator::emitCallVarargs(OpcodeID opcode, RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, RegisterID* profileHookRegister, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd)
{
if (m_shouldEmitProfileHooks) {
emitMove(profileHookRegister, func);
emitOpcode(op_profile_will_call);
instructions().append(profileHookRegister->index());
}
emitExpressionInfo(divot, divotStart, divotEnd);
// Emit call.
UnlinkedArrayProfile arrayProfile = newArrayProfile();
UnlinkedValueProfile profile = emitProfiledOpcode(opcode);
ASSERT(dst != ignoredResult());
instructions().append(dst->index());
instructions().append(func->index());
instructions().append(thisRegister ? thisRegister->index() : 0);
instructions().append(arguments->index());
instructions().append(firstFreeRegister->index());
instructions().append(firstVarArgOffset);
instructions().append(arrayProfile);
instructions().append(profile);
if (m_shouldEmitProfileHooks) {
emitOpcode(op_profile_did_call);
instructions().append(profileHookRegister->index());
}
return dst;
}
void BytecodeGenerator::emitCallDefineProperty(RegisterID* newObj, RegisterID* propertyNameRegister,
RegisterID* valueRegister, RegisterID* getterRegister, RegisterID* setterRegister, unsigned options, const JSTextPosition& position)
{
RefPtr<RegisterID> descriptorRegister = emitNewObject(newTemporary());
RefPtr<RegisterID> trueRegister = emitLoad(newTemporary(), true);
if (options & PropertyConfigurable)
emitDirectPutById(descriptorRegister.get(), propertyNames().configurable, trueRegister.get(), PropertyNode::Unknown);
if (options & PropertyWritable)
emitDirectPutById(descriptorRegister.get(), propertyNames().writable, trueRegister.get(), PropertyNode::Unknown);
else if (valueRegister) {
RefPtr<RegisterID> falseRegister = emitLoad(newTemporary(), false);
emitDirectPutById(descriptorRegister.get(), propertyNames().writable, falseRegister.get(), PropertyNode::Unknown);
}
if (options & PropertyEnumerable)
emitDirectPutById(descriptorRegister.get(), propertyNames().enumerable, trueRegister.get(), PropertyNode::Unknown);
if (valueRegister)
emitDirectPutById(descriptorRegister.get(), propertyNames().value, valueRegister, PropertyNode::Unknown);
if (getterRegister)
emitDirectPutById(descriptorRegister.get(), propertyNames().get, getterRegister, PropertyNode::Unknown);
if (setterRegister)
emitDirectPutById(descriptorRegister.get(), propertyNames().set, setterRegister, PropertyNode::Unknown);
RefPtr<RegisterID> definePropertyRegister = emitMoveLinkTimeConstant(newTemporary(), LinkTimeConstant::DefinePropertyFunction);
CallArguments callArguments(*this, nullptr, 3);
emitLoad(callArguments.thisRegister(), jsUndefined());
emitMove(callArguments.argumentRegister(0), newObj);
emitMove(callArguments.argumentRegister(1), propertyNameRegister);
emitMove(callArguments.argumentRegister(2), descriptorRegister.get());
emitCall(newTemporary(), definePropertyRegister.get(), NoExpectedFunction, callArguments, position, position, position);
}
RegisterID* BytecodeGenerator::emitReturn(RegisterID* src)
{
if (isConstructor()) {
bool derived = constructorKind() == ConstructorKind::Derived;
if (derived && src->index() == m_thisRegister.index())
emitTDZCheck(src);
RefPtr<Label> isObjectLabel = newLabel();
emitJumpIfTrue(emitIsObject(newTemporary(), src), isObjectLabel.get());
if (derived) {
RefPtr<Label> isUndefinedLabel = newLabel();
emitJumpIfTrue(emitIsUndefined(newTemporary(), src), isUndefinedLabel.get());
emitThrowTypeError("Cannot return a non-object type in the constructor of a derived class.");
emitLabel(isUndefinedLabel.get());
if (constructorKind() == ConstructorKind::Derived)
emitTDZCheck(&m_thisRegister);
}
emitUnaryNoDstOp(op_ret, &m_thisRegister);
emitLabel(isObjectLabel.get());
}
return emitUnaryNoDstOp(op_ret, src);
}
RegisterID* BytecodeGenerator::emitUnaryNoDstOp(OpcodeID opcodeID, RegisterID* src)
{
emitOpcode(opcodeID);
instructions().append(src->index());
return src;
}
RegisterID* BytecodeGenerator::emitConstruct(RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd)
{
ASSERT(func->refCount());
if (m_shouldEmitProfileHooks)
emitMove(callArguments.profileHookRegister(), func);
// Generate code for arguments.
unsigned argument = 0;
if (ArgumentsNode* argumentsNode = callArguments.argumentsNode()) {
ArgumentListNode* n = callArguments.argumentsNode()->m_listNode;
if (n && n->m_expr->isSpreadExpression()) {
RELEASE_ASSERT(!n->m_next);
auto expression = static_cast<SpreadExpressionNode*>(n->m_expr)->expression();
RefPtr<RegisterID> argumentRegister;
argumentRegister = expression->emitBytecode(*this, callArguments.argumentRegister(0));
return emitConstructVarargs(dst, func, callArguments.thisRegister(), argumentRegister.get(), newTemporary(), 0, callArguments.profileHookRegister(), divot, divotStart, divotEnd);
}
for (ArgumentListNode* n = argumentsNode->m_listNode; n; n = n->m_next)
emitNode(callArguments.argumentRegister(argument++), n);
}
if (m_shouldEmitProfileHooks) {
emitOpcode(op_profile_will_call);
instructions().append(callArguments.profileHookRegister()->index());
}
// Reserve space for call frame.
Vector<RefPtr<RegisterID>, JSStack::CallFrameHeaderSize, UnsafeVectorOverflow> callFrame;
for (int i = 0; i < JSStack::CallFrameHeaderSize; ++i)
callFrame.append(newTemporary());
emitExpressionInfo(divot, divotStart, divotEnd);
RefPtr<Label> done = newLabel();
expectedFunction = emitExpectedFunctionSnippet(dst, func, expectedFunction, callArguments, done.get());
UnlinkedValueProfile profile = emitProfiledOpcode(op_construct);
ASSERT(dst != ignoredResult());
instructions().append(dst->index());
instructions().append(func->index());
instructions().append(callArguments.argumentCountIncludingThis());
instructions().append(callArguments.stackOffset());
instructions().append(m_codeBlock->addLLIntCallLinkInfo());
instructions().append(0);
instructions().append(0);
instructions().append(profile);
if (expectedFunction != NoExpectedFunction)
emitLabel(done.get());
if (m_shouldEmitProfileHooks) {
emitOpcode(op_profile_did_call);
instructions().append(callArguments.profileHookRegister()->index());
}
return dst;
}
RegisterID* BytecodeGenerator::emitStrcat(RegisterID* dst, RegisterID* src, int count)
{
emitOpcode(op_strcat);
instructions().append(dst->index());
instructions().append(src->index());
instructions().append(count);
return dst;
}
void BytecodeGenerator::emitToPrimitive(RegisterID* dst, RegisterID* src)
{
emitOpcode(op_to_primitive);
instructions().append(dst->index());
instructions().append(src->index());
}
void BytecodeGenerator::emitGetScope()
{
emitOpcode(op_get_scope);
instructions().append(scopeRegister()->index());
}
RegisterID* BytecodeGenerator::emitPushWithScope(RegisterID* objectScope)
{
pushScopedControlFlowContext();
RegisterID* newScope = newBlockScopeVariable();
newScope->ref();
emitOpcode(op_push_with_scope);
instructions().append(newScope->index());
instructions().append(objectScope->index());
instructions().append(scopeRegister()->index());
emitMove(scopeRegister(), newScope);
m_symbolTableStack.append(SymbolTableStackEntry{ Strong<SymbolTable>(), newScope, true, 0 });
return newScope;
}
RegisterID* BytecodeGenerator::emitGetParentScope(RegisterID* dst, RegisterID* scope)
{
emitOpcode(op_get_parent_scope);
instructions().append(dst->index());
instructions().append(scope->index());
return dst;
}
void BytecodeGenerator::emitPopScope(RegisterID* dst, RegisterID* scope)
{
RefPtr<RegisterID> parentScope = emitGetParentScope(newTemporary(), scope);
emitMove(dst, parentScope.get());
}
void BytecodeGenerator::emitPopWithScope()
{
emitPopScope(scopeRegister(), scopeRegister());
popScopedControlFlowContext();
SymbolTableStackEntry stackEntry = m_symbolTableStack.takeLast();
stackEntry.m_scope->deref();
RELEASE_ASSERT(stackEntry.m_isWithScope);
}
void BytecodeGenerator::emitDebugHook(DebugHookID debugHookID, unsigned line, unsigned charOffset, unsigned lineStart)
{
#if ENABLE(DEBUG_WITH_BREAKPOINT)
if (debugHookID != DidReachBreakpoint)
return;
#else
if (!m_shouldEmitDebugHooks)
return;
#endif
JSTextPosition divot(line, charOffset, lineStart);
emitExpressionInfo(divot, divot, divot);
emitOpcode(op_debug);
instructions().append(debugHookID);
instructions().append(false);
}
void BytecodeGenerator::pushFinallyContext(StatementNode* finallyBlock)
{
// Reclaim free label scopes.
while (m_labelScopes.size() && !m_labelScopes.last().refCount())
m_labelScopes.removeLast();
ControlFlowContext scope;
scope.isFinallyBlock = true;
FinallyContext context = {
finallyBlock,
nullptr,
nullptr,
static_cast<unsigned>(m_scopeContextStack.size()),
static_cast<unsigned>(m_switchContextStack.size()),
static_cast<unsigned>(m_forInContextStack.size()),
static_cast<unsigned>(m_tryContextStack.size()),
static_cast<unsigned>(m_labelScopes.size()),
static_cast<unsigned>(m_symbolTableStack.size()),
m_finallyDepth,
m_localScopeDepth
};
scope.finallyContext = context;
m_scopeContextStack.append(scope);
m_finallyDepth++;
}
void BytecodeGenerator::pushIteratorCloseContext(RegisterID* iterator, ThrowableExpressionData* node)
{
// Reclaim free label scopes.
while (m_labelScopes.size() && !m_labelScopes.last().refCount())
m_labelScopes.removeLast();
ControlFlowContext scope;
scope.isFinallyBlock = true;
FinallyContext context = {
nullptr,
iterator,
node,
static_cast<unsigned>(m_scopeContextStack.size()),
static_cast<unsigned>(m_switchContextStack.size()),
static_cast<unsigned>(m_forInContextStack.size()),
static_cast<unsigned>(m_tryContextStack.size()),
static_cast<unsigned>(m_labelScopes.size()),
static_cast<unsigned>(m_symbolTableStack.size()),
m_finallyDepth,
m_localScopeDepth
};
scope.finallyContext = context;
m_scopeContextStack.append(scope);
m_finallyDepth++;
}
void BytecodeGenerator::popFinallyContext()
{
ASSERT(m_scopeContextStack.size());
ASSERT(m_scopeContextStack.last().isFinallyBlock);
ASSERT(m_scopeContextStack.last().finallyContext.finallyBlock);
ASSERT(!m_scopeContextStack.last().finallyContext.iterator);
ASSERT(!m_scopeContextStack.last().finallyContext.enumerationNode);
ASSERT(m_finallyDepth > 0);
m_scopeContextStack.removeLast();
m_finallyDepth--;
}
void BytecodeGenerator::popIteratorCloseContext()
{
ASSERT(m_scopeContextStack.size());
ASSERT(m_scopeContextStack.last().isFinallyBlock);
ASSERT(!m_scopeContextStack.last().finallyContext.finallyBlock);
ASSERT(m_scopeContextStack.last().finallyContext.iterator);
ASSERT(m_scopeContextStack.last().finallyContext.enumerationNode);
ASSERT(m_finallyDepth > 0);
m_scopeContextStack.removeLast();
m_finallyDepth--;
}
LabelScopePtr BytecodeGenerator::breakTarget(const Identifier& name)
{
// Reclaim free label scopes.
//
// The condition was previously coded as 'm_labelScopes.size() && !m_labelScopes.last().refCount()',
// however sometimes this appears to lead to GCC going a little haywire and entering the loop with
// size 0, leading to segfaulty badness. We are yet to identify a valid cause within our code to
// cause the GCC codegen to misbehave in this fashion, and as such the following refactoring of the
// loop condition is a workaround.
while (m_labelScopes.size()) {
if (m_labelScopes.last().refCount())
break;
m_labelScopes.removeLast();
}
if (!m_labelScopes.size())
return LabelScopePtr::null();
// We special-case the following, which is a syntax error in Firefox:
// label:
// break;
if (name.isEmpty()) {
for (int i = m_labelScopes.size() - 1; i >= 0; --i) {
LabelScope* scope = &m_labelScopes[i];
if (scope->type() != LabelScope::NamedLabel) {
ASSERT(scope->breakTarget());
return LabelScopePtr(m_labelScopes, i);
}
}
return LabelScopePtr::null();
}
for (int i = m_labelScopes.size() - 1; i >= 0; --i) {
LabelScope* scope = &m_labelScopes[i];
if (scope->name() && *scope->name() == name) {
ASSERT(scope->breakTarget());
return LabelScopePtr(m_labelScopes, i);
}
}
return LabelScopePtr::null();
}
LabelScopePtr BytecodeGenerator::continueTarget(const Identifier& name)
{
// Reclaim free label scopes.
while (m_labelScopes.size() && !m_labelScopes.last().refCount())
m_labelScopes.removeLast();
if (!m_labelScopes.size())
return LabelScopePtr::null();
if (name.isEmpty()) {
for (int i = m_labelScopes.size() - 1; i >= 0; --i) {
LabelScope* scope = &m_labelScopes[i];
if (scope->type() == LabelScope::Loop) {
ASSERT(scope->continueTarget());
return LabelScopePtr(m_labelScopes, i);
}
}
return LabelScopePtr::null();
}
// Continue to the loop nested nearest to the label scope that matches
// 'name'.
LabelScopePtr result = LabelScopePtr::null();
for (int i = m_labelScopes.size() - 1; i >= 0; --i) {
LabelScope* scope = &m_labelScopes[i];
if (scope->type() == LabelScope::Loop) {
ASSERT(scope->continueTarget());
result = LabelScopePtr(m_labelScopes, i);
}
if (scope->name() && *scope->name() == name)
return result; // may be null.
}
return LabelScopePtr::null();
}
void BytecodeGenerator::allocateCalleeSaveSpace()
{
size_t virtualRegisterCountForCalleeSaves = CodeBlock::llintBaselineCalleeSaveSpaceAsVirtualRegisters();
for (size_t i = 0; i < virtualRegisterCountForCalleeSaves; i++) {
RegisterID* localRegister = addVar();
localRegister->ref();
m_localRegistersForCalleeSaveRegisters.append(localRegister);
}
}
void BytecodeGenerator::allocateAndEmitScope()
{
m_scopeRegister = addVar();
m_scopeRegister->ref();
m_codeBlock->setScopeRegister(scopeRegister()->virtualRegister());
emitGetScope();
m_topMostScope = addVar();
emitMove(m_topMostScope, scopeRegister());
}
void BytecodeGenerator::emitComplexPopScopes(RegisterID* scope, ControlFlowContext* topScope, ControlFlowContext* bottomScope)
{
while (topScope > bottomScope) {
// First we count the number of dynamic scopes we need to remove to get
// to a finally block.
int nNormalScopes = 0;
while (topScope > bottomScope) {
if (topScope->isFinallyBlock)
break;
++nNormalScopes;
--topScope;
}
if (nNormalScopes) {
// We need to remove a number of dynamic scopes to get to the next
// finally block
RefPtr<RegisterID> parentScope = newTemporary();
while (nNormalScopes--) {
parentScope = emitGetParentScope(parentScope.get(), scope);
emitMove(scope, parentScope.get());
}
// If topScope == bottomScope then there isn't a finally block left to emit.
if (topScope == bottomScope)
return;
}
Vector<ControlFlowContext> savedScopeContextStack;
Vector<SwitchInfo> savedSwitchContextStack;
Vector<std::unique_ptr<ForInContext>> savedForInContextStack;
Vector<TryContext> poppedTryContexts;
Vector<SymbolTableStackEntry> savedSymbolTableStack;
LabelScopeStore savedLabelScopes;
while (topScope > bottomScope && topScope->isFinallyBlock) {
RefPtr<Label> beforeFinally = emitLabel(newLabel().get());
// Save the current state of the world while instating the state of the world
// for the finally block.
FinallyContext finallyContext = topScope->finallyContext;
bool flipScopes = finallyContext.scopeContextStackSize != m_scopeContextStack.size();
bool flipSwitches = finallyContext.switchContextStackSize != m_switchContextStack.size();
bool flipForIns = finallyContext.forInContextStackSize != m_forInContextStack.size();
bool flipTries = finallyContext.tryContextStackSize != m_tryContextStack.size();
bool flipLabelScopes = finallyContext.labelScopesSize != m_labelScopes.size();
bool flipSymbolTableStack = finallyContext.symbolTableStackSize != m_symbolTableStack.size();
int topScopeIndex = -1;
int bottomScopeIndex = -1;
if (flipScopes) {
topScopeIndex = topScope - m_scopeContextStack.begin();
bottomScopeIndex = bottomScope - m_scopeContextStack.begin();
savedScopeContextStack = m_scopeContextStack;
m_scopeContextStack.shrink(finallyContext.scopeContextStackSize);
}
if (flipSwitches) {
savedSwitchContextStack = m_switchContextStack;
m_switchContextStack.shrink(finallyContext.switchContextStackSize);
}
if (flipForIns) {
savedForInContextStack.swap(m_forInContextStack);
m_forInContextStack.shrink(finallyContext.forInContextStackSize);
}
if (flipTries) {
while (m_tryContextStack.size() != finallyContext.tryContextStackSize) {
ASSERT(m_tryContextStack.size() > finallyContext.tryContextStackSize);
TryContext context = m_tryContextStack.last();
m_tryContextStack.removeLast();
TryRange range;
range.start = context.start;
range.end = beforeFinally;
range.tryData = context.tryData;
m_tryRanges.append(range);
poppedTryContexts.append(context);
}
}
if (flipLabelScopes) {
savedLabelScopes = m_labelScopes;
while (m_labelScopes.size() > finallyContext.labelScopesSize)
m_labelScopes.removeLast();
}
if (flipSymbolTableStack) {
savedSymbolTableStack = m_symbolTableStack;
m_symbolTableStack.shrink(finallyContext.symbolTableStackSize);
}
int savedFinallyDepth = m_finallyDepth;
m_finallyDepth = finallyContext.finallyDepth;
int savedDynamicScopeDepth = m_localScopeDepth;
m_localScopeDepth = finallyContext.dynamicScopeDepth;
if (finallyContext.finallyBlock) {
// Emit the finally block.
emitNode(finallyContext.finallyBlock);
} else {
// Emit the IteratorClose block.
ASSERT(finallyContext.iterator);
emitIteratorClose(finallyContext.iterator, finallyContext.enumerationNode);
}
RefPtr<Label> afterFinally = emitLabel(newLabel().get());
// Restore the state of the world.
if (flipScopes) {
m_scopeContextStack = savedScopeContextStack;
topScope = &m_scopeContextStack[topScopeIndex]; // assert it's within bounds
bottomScope = m_scopeContextStack.begin() + bottomScopeIndex; // don't assert, since it the index might be -1.
}
if (flipSwitches)
m_switchContextStack = savedSwitchContextStack;
if (flipForIns)
m_forInContextStack.swap(savedForInContextStack);
if (flipTries) {
ASSERT(m_tryContextStack.size() == finallyContext.tryContextStackSize);
for (unsigned i = poppedTryContexts.size(); i--;) {
TryContext context = poppedTryContexts[i];
context.start = afterFinally;
m_tryContextStack.append(context);
}
poppedTryContexts.clear();
}
if (flipLabelScopes)
m_labelScopes = savedLabelScopes;
if (flipSymbolTableStack)
m_symbolTableStack = savedSymbolTableStack;
m_finallyDepth = savedFinallyDepth;
m_localScopeDepth = savedDynamicScopeDepth;
--topScope;
}
}
}
void BytecodeGenerator::emitPopScopes(RegisterID* scope, int targetScopeDepth)
{
ASSERT(labelScopeDepth() - targetScopeDepth >= 0);
size_t scopeDelta = labelScopeDepth() - targetScopeDepth;
ASSERT(scopeDelta <= m_scopeContextStack.size());
if (!scopeDelta)
return;
if (!m_finallyDepth) {
RefPtr<RegisterID> parentScope = newTemporary();
while (scopeDelta--) {
parentScope = emitGetParentScope(parentScope.get(), scope);
emitMove(scope, parentScope.get());
}
return;
}
emitComplexPopScopes(scope, &m_scopeContextStack.last(), &m_scopeContextStack.last() - scopeDelta);
}
TryData* BytecodeGenerator::pushTry(Label* start)
{
TryData tryData;
tryData.target = newLabel();
tryData.handlerType = HandlerType::Illegal;
m_tryData.append(tryData);
TryData* result = &m_tryData.last();
TryContext tryContext;
tryContext.start = start;
tryContext.tryData = result;
m_tryContextStack.append(tryContext);
return result;
}
void BytecodeGenerator::popTryAndEmitCatch(TryData* tryData, RegisterID* exceptionRegister, RegisterID* thrownValueRegister, Label* end, HandlerType handlerType)
{
m_usesExceptions = true;
ASSERT_UNUSED(tryData, m_tryContextStack.last().tryData == tryData);
TryRange tryRange;
tryRange.start = m_tryContextStack.last().start;
tryRange.end = end;
tryRange.tryData = m_tryContextStack.last().tryData;
m_tryRanges.append(tryRange);
m_tryContextStack.removeLast();
emitLabel(tryRange.tryData->target.get());
tryRange.tryData->handlerType = handlerType;
emitOpcode(op_catch);
instructions().append(exceptionRegister->index());
instructions().append(thrownValueRegister->index());
bool foundLocalScope = false;
for (unsigned i = m_symbolTableStack.size(); i--; ) {
// Note that if we don't find a local scope in the current function/program,
// we must grab the outer-most scope of this bytecode generation.
if (m_symbolTableStack[i].m_scope) {
foundLocalScope = true;
emitMove(scopeRegister(), m_symbolTableStack[i].m_scope);
break;
}
}
if (!foundLocalScope)
emitMove(scopeRegister(), m_topMostScope);
}
int BytecodeGenerator::localScopeDepth() const
{
return m_localScopeDepth;
}
int BytecodeGenerator::labelScopeDepth() const
{
return localScopeDepth() + m_finallyDepth;
}
void BytecodeGenerator::emitThrowReferenceError(const String& message)
{
emitOpcode(op_throw_static_error);
instructions().append(addConstantValue(addStringConstant(Identifier::fromString(m_vm, message)))->index());
instructions().append(true);
}
void BytecodeGenerator::emitThrowTypeError(const String& message)
{
emitOpcode(op_throw_static_error);
instructions().append(addConstantValue(addStringConstant(Identifier::fromString(m_vm, message)))->index());
instructions().append(false);
}
void BytecodeGenerator::emitPushFunctionNameScope(const Identifier& property, RegisterID* callee, bool isCaptured)
{
// There is some nuance here:
// If we're in strict mode code, the function name scope variable acts exactly like a "const" variable.
// If we're not in strict mode code, we want to allow bogus assignments to the name scoped variable.
// This means any assignment to the variable won't throw, but it won't actually assign a new value to it.
// To accomplish this, we don't report that this scope is a lexical scope. This will prevent
// any throws when trying to assign to the variable (while still ensuring it keeps its original
// value). There is some ugliness and exploitation of a leaky abstraction here, but it's better than
// having a completely new op code and a class to handle name scopes which are so close in functionality
// to lexical environments.
VariableEnvironment nameScopeEnvironment;
auto addResult = nameScopeEnvironment.add(property);
if (isCaptured)
addResult.iterator->value.setIsCaptured();
addResult.iterator->value.setIsConst(); // The function name scope name acts like a const variable.
unsigned numVars = m_codeBlock->m_numVars;
pushLexicalScopeInternal(nameScopeEnvironment, true, nullptr, TDZRequirement::NotUnderTDZ, ScopeType::FunctionNameScope, ScopeRegisterType::Var);
ASSERT_UNUSED(numVars, m_codeBlock->m_numVars == static_cast<int>(numVars + 1)); // Should have only created one new "var" for the function name scope.
bool shouldTreatAsLexicalVariable = isStrictMode();
Variable functionVar = variableForLocalEntry(property, m_symbolTableStack.last().m_symbolTable->get(property.impl()), m_symbolTableStack.last().m_symbolTableConstantIndex, shouldTreatAsLexicalVariable);
emitPutToScope(m_symbolTableStack.last().m_scope, functionVar, callee, ThrowIfNotFound, NotInitialization);
}
void BytecodeGenerator::pushScopedControlFlowContext()
{
ControlFlowContext context;
context.isFinallyBlock = false;
m_scopeContextStack.append(context);
m_localScopeDepth++;
}
void BytecodeGenerator::popScopedControlFlowContext()
{
ASSERT(m_scopeContextStack.size());
ASSERT(!m_scopeContextStack.last().isFinallyBlock);
m_scopeContextStack.removeLast();
m_localScopeDepth--;
}
void BytecodeGenerator::emitPushCatchScope(const Identifier& property, RegisterID* exceptionValue, VariableEnvironment& environment)
{
RELEASE_ASSERT(environment.contains(property.impl()));
pushLexicalScopeInternal(environment, true, nullptr, TDZRequirement::NotUnderTDZ, ScopeType::CatchScope, ScopeRegisterType::Block);
Variable exceptionVar = variable(property);
RELEASE_ASSERT(exceptionVar.isResolved());
RefPtr<RegisterID> scope = emitResolveScope(nullptr, exceptionVar);
emitPutToScope(scope.get(), exceptionVar, exceptionValue, ThrowIfNotFound, NotInitialization);
}
void BytecodeGenerator::emitPopCatchScope(VariableEnvironment& environment)
{
popLexicalScopeInternal(environment, TDZRequirement::NotUnderTDZ);
}
void BytecodeGenerator::beginSwitch(RegisterID* scrutineeRegister, SwitchInfo::SwitchType type)
{
SwitchInfo info = { static_cast<uint32_t>(instructions().size()), type };
switch (type) {
case SwitchInfo::SwitchImmediate:
emitOpcode(op_switch_imm);
break;
case SwitchInfo::SwitchCharacter:
emitOpcode(op_switch_char);
break;
case SwitchInfo::SwitchString:
emitOpcode(op_switch_string);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
instructions().append(0); // place holder for table index
instructions().append(0); // place holder for default target
instructions().append(scrutineeRegister->index());
m_switchContextStack.append(info);
}
static int32_t keyForImmediateSwitch(ExpressionNode* node, int32_t min, int32_t max)
{
UNUSED_PARAM(max);
ASSERT(node->isNumber());
double value = static_cast<NumberNode*>(node)->value();
int32_t key = static_cast<int32_t>(value);
ASSERT(key == value);
ASSERT(key >= min);
ASSERT(key <= max);
return key - min;
}
static int32_t keyForCharacterSwitch(ExpressionNode* node, int32_t min, int32_t max)
{
UNUSED_PARAM(max);
ASSERT(node->isString());
StringImpl* clause = static_cast<StringNode*>(node)->value().impl();
ASSERT(clause->length() == 1);
int32_t key = (*clause)[0];
ASSERT(key >= min);
ASSERT(key <= max);
return key - min;
}
static void prepareJumpTableForSwitch(
UnlinkedSimpleJumpTable& jumpTable, int32_t switchAddress, uint32_t clauseCount,
RefPtr<Label>* labels, ExpressionNode** nodes, int32_t min, int32_t max,
int32_t (*keyGetter)(ExpressionNode*, int32_t min, int32_t max))
{
jumpTable.min = min;
jumpTable.branchOffsets.resize(max - min + 1);
jumpTable.branchOffsets.fill(0);
for (uint32_t i = 0; i < clauseCount; ++i) {
// We're emitting this after the clause labels should have been fixed, so
// the labels should not be "forward" references
ASSERT(!labels[i]->isForward());
jumpTable.add(keyGetter(nodes[i], min, max), labels[i]->bind(switchAddress, switchAddress + 3));
}
}
static void prepareJumpTableForStringSwitch(UnlinkedStringJumpTable& jumpTable, int32_t switchAddress, uint32_t clauseCount, RefPtr<Label>* labels, ExpressionNode** nodes)
{
for (uint32_t i = 0; i < clauseCount; ++i) {
// We're emitting this after the clause labels should have been fixed, so
// the labels should not be "forward" references
ASSERT(!labels[i]->isForward());
ASSERT(nodes[i]->isString());
StringImpl* clause = static_cast<StringNode*>(nodes[i])->value().impl();
jumpTable.offsetTable.add(clause, labels[i]->bind(switchAddress, switchAddress + 3));
}
}
void BytecodeGenerator::endSwitch(uint32_t clauseCount, RefPtr<Label>* labels, ExpressionNode** nodes, Label* defaultLabel, int32_t min, int32_t max)
{
SwitchInfo switchInfo = m_switchContextStack.last();
m_switchContextStack.removeLast();
switch (switchInfo.switchType) {
case SwitchInfo::SwitchImmediate:
case SwitchInfo::SwitchCharacter: {
instructions()[switchInfo.bytecodeOffset + 1] = m_codeBlock->numberOfSwitchJumpTables();
instructions()[switchInfo.bytecodeOffset + 2] = defaultLabel->bind(switchInfo.bytecodeOffset, switchInfo.bytecodeOffset + 3);
UnlinkedSimpleJumpTable& jumpTable = m_codeBlock->addSwitchJumpTable();
prepareJumpTableForSwitch(
jumpTable, switchInfo.bytecodeOffset, clauseCount, labels, nodes, min, max,
switchInfo.switchType == SwitchInfo::SwitchImmediate
? keyForImmediateSwitch
: keyForCharacterSwitch);
break;
}
case SwitchInfo::SwitchString: {
instructions()[switchInfo.bytecodeOffset + 1] = m_codeBlock->numberOfStringSwitchJumpTables();
instructions()[switchInfo.bytecodeOffset + 2] = defaultLabel->bind(switchInfo.bytecodeOffset, switchInfo.bytecodeOffset + 3);
UnlinkedStringJumpTable& jumpTable = m_codeBlock->addStringSwitchJumpTable();
prepareJumpTableForStringSwitch(jumpTable, switchInfo.bytecodeOffset, clauseCount, labels, nodes);
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
RegisterID* BytecodeGenerator::emitThrowExpressionTooDeepException()
{
// It would be nice to do an even better job of identifying exactly where the expression is.
// And we could make the caller pass the node pointer in, if there was some way of getting
// that from an arbitrary node. However, calling emitExpressionInfo without any useful data
// is still good enough to get us an accurate line number.
m_expressionTooDeep = true;
return newTemporary();
}
bool BytecodeGenerator::isArgumentNumber(const Identifier& ident, int argumentNumber)
{
RegisterID* registerID = variable(ident).local();
if (!registerID)
return false;
return registerID->index() == CallFrame::argumentOffset(argumentNumber);
}
bool BytecodeGenerator::emitReadOnlyExceptionIfNeeded(const Variable& variable)
{
// If we're in strict mode, we always throw.
// If we're not in strict mode, we throw for "const" variables but not the function callee.
if (isStrictMode() || variable.isConst()) {
emitOpcode(op_throw_static_error);
instructions().append(addConstantValue(addStringConstant(Identifier::fromString(m_vm, StrictModeReadonlyPropertyWriteError)))->index());
instructions().append(false);
return true;
}
return false;
}
void BytecodeGenerator::emitEnumeration(ThrowableExpressionData* node, ExpressionNode* subjectNode, const std::function<void(BytecodeGenerator&, RegisterID*)>& callBack, VariableEnvironmentNode* forLoopNode, RegisterID* forLoopSymbolTable)
{
RefPtr<RegisterID> subject = newTemporary();
emitNode(subject.get(), subjectNode);
RefPtr<RegisterID> iterator = emitGetById(newTemporary(), subject.get(), propertyNames().iteratorSymbol);
{
CallArguments args(*this, nullptr);
emitMove(args.thisRegister(), subject.get());
emitCall(iterator.get(), iterator.get(), NoExpectedFunction, args, node->divot(), node->divotStart(), node->divotEnd());
}
RefPtr<Label> loopDone = newLabel();
// RefPtr<Register> iterator's lifetime must be longer than IteratorCloseContext.
pushIteratorCloseContext(iterator.get(), node);
{
LabelScopePtr scope = newLabelScope(LabelScope::Loop);
RefPtr<RegisterID> value = newTemporary();
emitLoad(value.get(), jsUndefined());
emitJump(scope->continueTarget());
RefPtr<Label> loopStart = newLabel();
emitLabel(loopStart.get());
emitLoopHint();
RefPtr<Label> tryStartLabel = newLabel();
emitLabel(tryStartLabel.get());
TryData* tryData = pushTry(tryStartLabel.get());
callBack(*this, value.get());
emitJump(scope->continueTarget());
// IteratorClose sequence for throw-ed control flow.
{
RefPtr<Label> catchHere = emitLabel(newLabel().get());
RefPtr<RegisterID> exceptionRegister = newTemporary();
RefPtr<RegisterID> thrownValueRegister = newTemporary();
popTryAndEmitCatch(tryData, exceptionRegister.get(),
thrownValueRegister.get(), catchHere.get(), HandlerType::SynthesizedFinally);
RefPtr<Label> catchDone = newLabel();
RefPtr<RegisterID> returnMethod = emitGetById(newTemporary(), iterator.get(), propertyNames().returnKeyword);
emitJumpIfTrue(emitIsUndefined(newTemporary(), returnMethod.get()), catchDone.get());
RefPtr<Label> returnCallTryStart = newLabel();
emitLabel(returnCallTryStart.get());
TryData* returnCallTryData = pushTry(returnCallTryStart.get());
CallArguments returnArguments(*this, nullptr);
emitMove(returnArguments.thisRegister(), iterator.get());
emitCall(value.get(), returnMethod.get(), NoExpectedFunction, returnArguments, node->divot(), node->divotStart(), node->divotEnd());
emitLabel(catchDone.get());
emitThrow(exceptionRegister.get());
// Absorb exception.
popTryAndEmitCatch(returnCallTryData, newTemporary(),
newTemporary(), catchDone.get(), HandlerType::SynthesizedFinally);
emitThrow(exceptionRegister.get());
}
emitLabel(scope->continueTarget());
if (forLoopNode)
prepareLexicalScopeForNextForLoopIteration(forLoopNode, forLoopSymbolTable);
{
emitIteratorNext(value.get(), iterator.get(), node);
emitJumpIfTrue(emitGetById(newTemporary(), value.get(), propertyNames().done), loopDone.get());
emitGetById(value.get(), value.get(), propertyNames().value);
emitJump(loopStart.get());
}
emitLabel(scope->breakTarget());
}
// IteratorClose sequence for break-ed control flow.
popIteratorCloseContext();
emitIteratorClose(iterator.get(), node);
emitLabel(loopDone.get());
}
RegisterID* BytecodeGenerator::emitGetTemplateObject(RegisterID* dst, TaggedTemplateNode* taggedTemplate)
{
TemplateRegistryKey::StringVector rawStrings;
TemplateRegistryKey::StringVector cookedStrings;
TemplateStringListNode* templateString = taggedTemplate->templateLiteral()->templateStrings();
for (; templateString; templateString = templateString->next()) {
rawStrings.append(templateString->value()->raw().impl());
cookedStrings.append(templateString->value()->cooked().impl());
}
RefPtr<RegisterID> getTemplateObject = nullptr;
Variable var = variable(propertyNames().getTemplateObjectPrivateName);
if (RegisterID* local = var.local())
getTemplateObject = emitMove(newTemporary(), local);
else {
getTemplateObject = newTemporary();
RefPtr<RegisterID> scope = newTemporary();
moveToDestinationIfNeeded(scope.get(), emitResolveScope(scope.get(), var));
emitGetFromScope(getTemplateObject.get(), scope.get(), var, ThrowIfNotFound);
}
CallArguments arguments(*this, nullptr);
emitLoad(arguments.thisRegister(), JSValue(addTemplateRegistryKeyConstant(TemplateRegistryKey(rawStrings, cookedStrings))));
return emitCall(dst, getTemplateObject.get(), NoExpectedFunction, arguments, taggedTemplate->divot(), taggedTemplate->divotStart(), taggedTemplate->divotEnd());
}
RegisterID* BytecodeGenerator::emitGetEnumerableLength(RegisterID* dst, RegisterID* base)
{
emitOpcode(op_get_enumerable_length);
instructions().append(dst->index());
instructions().append(base->index());
return dst;
}
RegisterID* BytecodeGenerator::emitHasGenericProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName)
{
emitOpcode(op_has_generic_property);
instructions().append(dst->index());
instructions().append(base->index());
instructions().append(propertyName->index());
return dst;
}
RegisterID* BytecodeGenerator::emitHasIndexedProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName)
{
UnlinkedArrayProfile arrayProfile = newArrayProfile();
emitOpcode(op_has_indexed_property);
instructions().append(dst->index());
instructions().append(base->index());
instructions().append(propertyName->index());
instructions().append(arrayProfile);
return dst;
}
RegisterID* BytecodeGenerator::emitHasStructureProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName, RegisterID* enumerator)
{
emitOpcode(op_has_structure_property);
instructions().append(dst->index());
instructions().append(base->index());
instructions().append(propertyName->index());
instructions().append(enumerator->index());
return dst;
}
RegisterID* BytecodeGenerator::emitGetPropertyEnumerator(RegisterID* dst, RegisterID* base)
{
emitOpcode(op_get_property_enumerator);
instructions().append(dst->index());
instructions().append(base->index());
return dst;
}
RegisterID* BytecodeGenerator::emitEnumeratorStructurePropertyName(RegisterID* dst, RegisterID* enumerator, RegisterID* index)
{
emitOpcode(op_enumerator_structure_pname);
instructions().append(dst->index());
instructions().append(enumerator->index());
instructions().append(index->index());
return dst;
}
RegisterID* BytecodeGenerator::emitEnumeratorGenericPropertyName(RegisterID* dst, RegisterID* enumerator, RegisterID* index)
{
emitOpcode(op_enumerator_generic_pname);
instructions().append(dst->index());
instructions().append(enumerator->index());
instructions().append(index->index());
return dst;
}
RegisterID* BytecodeGenerator::emitToIndexString(RegisterID* dst, RegisterID* index)
{
emitOpcode(op_to_index_string);
instructions().append(dst->index());
instructions().append(index->index());
return dst;
}
RegisterID* BytecodeGenerator::emitIsObject(RegisterID* dst, RegisterID* src)
{
emitOpcode(op_is_object);
instructions().append(dst->index());
instructions().append(src->index());
return dst;
}
RegisterID* BytecodeGenerator::emitIsUndefined(RegisterID* dst, RegisterID* src)
{
emitOpcode(op_is_undefined);
instructions().append(dst->index());
instructions().append(src->index());
return dst;
}
RegisterID* BytecodeGenerator::emitIteratorNext(RegisterID* dst, RegisterID* iterator, const ThrowableExpressionData* node)
{
{
RefPtr<RegisterID> next = emitGetById(newTemporary(), iterator, propertyNames().next);
CallArguments nextArguments(*this, nullptr);
emitMove(nextArguments.thisRegister(), iterator);
emitCall(dst, next.get(), NoExpectedFunction, nextArguments, node->divot(), node->divotStart(), node->divotEnd());
}
{
RefPtr<Label> typeIsObject = newLabel();
emitJumpIfTrue(emitIsObject(newTemporary(), dst), typeIsObject.get());
emitThrowTypeError(ASCIILiteral("Iterator result interface is not an object."));
emitLabel(typeIsObject.get());
}
return dst;
}
void BytecodeGenerator::emitIteratorClose(RegisterID* iterator, const ThrowableExpressionData* node)
{
RefPtr<Label> done = newLabel();
RefPtr<RegisterID> returnMethod = emitGetById(newTemporary(), iterator, propertyNames().returnKeyword);
emitJumpIfTrue(emitIsUndefined(newTemporary(), returnMethod.get()), done.get());
RefPtr<RegisterID> value = newTemporary();
CallArguments returnArguments(*this, nullptr);
emitMove(returnArguments.thisRegister(), iterator);
emitCall(value.get(), returnMethod.get(), NoExpectedFunction, returnArguments, node->divot(), node->divotStart(), node->divotEnd());
emitJumpIfTrue(emitIsObject(newTemporary(), value.get()), done.get());
emitThrowTypeError(ASCIILiteral("Iterator result interface is not an object."));
emitLabel(done.get());
}
void BytecodeGenerator::pushIndexedForInScope(RegisterID* localRegister, RegisterID* indexRegister)
{
if (!localRegister)
return;
m_forInContextStack.append(std::make_unique<IndexedForInContext>(localRegister, indexRegister));
}
void BytecodeGenerator::popIndexedForInScope(RegisterID* localRegister)
{
if (!localRegister)
return;
m_forInContextStack.removeLast();
}
RegisterID* BytecodeGenerator::emitLoadArrowFunctionLexicalEnvironment()
{
ASSERT(m_codeBlock->isArrowFunction() || m_codeBlock->isArrowFunctionContext() || constructorKind() == ConstructorKind::Derived);
m_resolvedArrowFunctionScopeContextRegister = emitResolveScope(nullptr, variable(propertyNames().thisIdentifier, ThisResolutionType::Scoped));
return m_resolvedArrowFunctionScopeContextRegister.get();
}
void BytecodeGenerator::emitLoadThisFromArrowFunctionLexicalEnvironment()
{
emitGetFromScope(thisRegister(), emitLoadArrowFunctionLexicalEnvironment(), variable(propertyNames().thisIdentifier, ThisResolutionType::Scoped), DoNotThrowIfNotFound);
}
RegisterID* BytecodeGenerator::emitLoadNewTargetFromArrowFunctionLexicalEnvironment()
{
m_isNewTargetLoadedInArrowFunction = true;
Variable newTargetVar = variable(propertyNames().newTargetLocalPrivateName);
emitMove(m_newTargetRegister, emitGetFromScope(newTemporary(), emitLoadArrowFunctionLexicalEnvironment(), newTargetVar, ThrowIfNotFound));
return m_newTargetRegister;
}
RegisterID* BytecodeGenerator::emitLoadDerivedConstructorFromArrowFunctionLexicalEnvironment()
{
Variable protoScopeVar = variable(propertyNames().derivedConstructorPrivateName);
return emitGetFromScope(newTemporary(), emitLoadArrowFunctionLexicalEnvironment(), protoScopeVar, ThrowIfNotFound);
}
void BytecodeGenerator::emitPutNewTargetToArrowFunctionContextScope()
{
ASSERT(m_arrowFunctionContextLexicalEnvironmentRegister != nullptr);
Variable newTargetVar = variable(propertyNames().newTargetLocalPrivateName);
emitPutToScope(m_arrowFunctionContextLexicalEnvironmentRegister, newTargetVar, newTarget(), DoNotThrowIfNotFound, Initialization);
}
void BytecodeGenerator::emitPutDerivedConstructorToArrowFunctionContextScope()
{
if (isConstructor() && constructorKind() == ConstructorKind::Derived) {
ASSERT(m_arrowFunctionContextLexicalEnvironmentRegister != nullptr);
Variable protoScope = variable(propertyNames().derivedConstructorPrivateName);
emitPutToScope(m_arrowFunctionContextLexicalEnvironmentRegister, protoScope, &m_calleeRegister, DoNotThrowIfNotFound, Initialization);
}
}
void BytecodeGenerator::emitPutThisToArrowFunctionContextScope()
{
ASSERT(isDerivedConstructorContext() || m_arrowFunctionContextLexicalEnvironmentRegister != nullptr);
if (isDerivedConstructorContext())
emitLoadArrowFunctionLexicalEnvironment();
Variable thisVar = variable(propertyNames().thisIdentifier, ThisResolutionType::Scoped);
emitPutToScope(isDerivedConstructorContext() ? m_resolvedArrowFunctionScopeContextRegister.get() : m_arrowFunctionContextLexicalEnvironmentRegister, thisVar, thisRegister(), DoNotThrowIfNotFound, NotInitialization);
}
void BytecodeGenerator::pushStructureForInScope(RegisterID* localRegister, RegisterID* indexRegister, RegisterID* propertyRegister, RegisterID* enumeratorRegister)
{
if (!localRegister)
return;
m_forInContextStack.append(std::make_unique<StructureForInContext>(localRegister, indexRegister, propertyRegister, enumeratorRegister));
}
void BytecodeGenerator::popStructureForInScope(RegisterID* localRegister)
{
if (!localRegister)
return;
m_forInContextStack.removeLast();
}
void BytecodeGenerator::invalidateForInContextForLocal(RegisterID* localRegister)
{
// Lexically invalidating ForInContexts is kind of weak sauce, but it only occurs if
// either of the following conditions is true:
//
// (1) The loop iteration variable is re-assigned within the body of the loop.
// (2) The loop iteration variable is captured in the lexical scope of the function.
//
// These two situations occur sufficiently rarely that it's okay to use this style of
// "analysis" to make iteration faster. If we didn't want to do this, we would either have
// to perform some flow-sensitive analysis to see if/when the loop iteration variable was
// reassigned, or we'd have to resort to runtime checks to see if the variable had been
// reassigned from its original value.
for (size_t i = m_forInContextStack.size(); i > 0; i--) {
ForInContext* context = m_forInContextStack[i - 1].get();
if (context->local() != localRegister)
continue;
context->invalidate();
break;
}
}
RegisterID* BytecodeGenerator::emitRestParameter(RegisterID* result, unsigned numParametersToSkip)
{
RefPtr<RegisterID> restArrayLength = newTemporary();
emitOpcode(op_get_rest_length);
instructions().append(restArrayLength->index());
instructions().append(numParametersToSkip);
emitNewArrayWithSize(result, restArrayLength.get());
emitOpcode(op_copy_rest);
instructions().append(result->index());
instructions().append(restArrayLength->index());
instructions().append(numParametersToSkip);
return result;
}
} // namespace JSC