blob: 746453a792420d166c768014b754cf5d413d5af5 [file] [log] [blame]
//
// Copyright 2018 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// FixedVector_unittest:
// Tests of the FastVector class
//
#include <gtest/gtest.h>
#include "common/FastVector.h"
namespace angle
{
// Make sure the various constructors compile and do basic checks
TEST(FastVector, Constructors)
{
FastVector<int, 5> defaultContructor;
EXPECT_EQ(0u, defaultContructor.size());
// Try varying initial vector sizes to test purely stack-allocated and
// heap-allocated vectors, and ensure they copy correctly.
size_t vectorSizes[] = {5, 3, 16, 32};
for (size_t i = 0; i < sizeof(vectorSizes) / sizeof(vectorSizes[0]); i++)
{
FastVector<int, 5> count(vectorSizes[i]);
EXPECT_EQ(vectorSizes[i], count.size());
FastVector<int, 5> countAndValue(vectorSizes[i], 2);
EXPECT_EQ(vectorSizes[i], countAndValue.size());
EXPECT_EQ(2, countAndValue[1]);
FastVector<int, 5> copy(countAndValue);
EXPECT_EQ(copy, countAndValue);
FastVector<int, 5> copyRValue(std::move(count));
EXPECT_EQ(vectorSizes[i], copyRValue.size());
FastVector<int, 5> copyIter(countAndValue.begin(), countAndValue.end());
EXPECT_EQ(copyIter, countAndValue);
FastVector<int, 5> copyIterEmpty(countAndValue.begin(), countAndValue.begin());
EXPECT_TRUE(copyIterEmpty.empty());
FastVector<int, 5> assignCopy(copyRValue);
EXPECT_EQ(vectorSizes[i], assignCopy.size());
FastVector<int, 5> assignRValue(std::move(assignCopy));
EXPECT_EQ(vectorSizes[i], assignRValue.size());
}
FastVector<int, 5> initializerList{1, 2, 3, 4, 5};
EXPECT_EQ(5u, initializerList.size());
EXPECT_EQ(3, initializerList[2]);
// Larger than stack-allocated vector size
FastVector<int, 5> initializerListHeap{1, 2, 3, 4, 5, 6, 7, 8};
EXPECT_EQ(8u, initializerListHeap.size());
EXPECT_EQ(3, initializerListHeap[2]);
FastVector<int, 5> assignmentInitializerList = {1, 2, 3, 4, 5};
EXPECT_EQ(5u, assignmentInitializerList.size());
EXPECT_EQ(3, assignmentInitializerList[2]);
// Larger than stack-allocated vector size
FastVector<int, 5> assignmentInitializerListLarge = {1, 2, 3, 4, 5, 6, 7, 8};
EXPECT_EQ(8u, assignmentInitializerListLarge.size());
EXPECT_EQ(3, assignmentInitializerListLarge[2]);
}
// Test indexing operations (at, operator[])
TEST(FastVector, Indexing)
{
FastVector<int, 5> vec = {0, 1, 2, 3, 4};
for (int i = 0; i < 5; ++i)
{
EXPECT_EQ(i, vec.at(i));
EXPECT_EQ(vec[i], vec.at(i));
}
}
// Test the push_back functions
TEST(FastVector, PushBack)
{
FastVector<int, 5> vec;
vec.push_back(1);
EXPECT_EQ(1, vec[0]);
vec.push_back(1);
vec.push_back(1);
vec.push_back(1);
vec.push_back(1);
EXPECT_EQ(5u, vec.size());
}
// Tests growing the fast vector beyond the fixed storage.
TEST(FastVector, Growth)
{
constexpr size_t kSize = 4;
FastVector<size_t, kSize> vec;
for (size_t i = 0; i < kSize * 2; ++i)
{
vec.push_back(i);
}
EXPECT_EQ(kSize * 2, vec.size());
for (size_t i = kSize * 2; i > 0; --i)
{
ASSERT_EQ(vec.back(), i - 1);
vec.pop_back();
}
EXPECT_EQ(0u, vec.size());
}
// Test the pop_back function
TEST(FastVector, PopBack)
{
FastVector<int, 5> vec;
vec.push_back(1);
EXPECT_EQ(1, (int)vec.size());
vec.pop_back();
EXPECT_EQ(0, (int)vec.size());
}
// Test the back function
TEST(FastVector, Back)
{
FastVector<int, 5> vec;
vec.push_back(1);
vec.push_back(2);
EXPECT_EQ(2, vec.back());
}
// Test the back function
TEST(FastVector, Front)
{
FastVector<int, 5> vec;
vec.push_back(1);
vec.push_back(2);
EXPECT_EQ(1, vec.front());
}
// Test the sizing operations
TEST(FastVector, Size)
{
FastVector<int, 5> vec;
EXPECT_TRUE(vec.empty());
EXPECT_EQ(0u, vec.size());
vec.push_back(1);
EXPECT_FALSE(vec.empty());
EXPECT_EQ(1u, vec.size());
}
// Test clearing the vector
TEST(FastVector, Clear)
{
FastVector<int, 5> vec = {0, 1, 2, 3, 4};
vec.clear();
EXPECT_TRUE(vec.empty());
}
// Test clearing the vector larger than the fixed size.
TEST(FastVector, ClearWithLargerThanFixedSize)
{
FastVector<int, 3> vec = {0, 1, 2, 3, 4};
vec.clear();
EXPECT_TRUE(vec.empty());
}
// Test resizing the vector
TEST(FastVector, Resize)
{
FastVector<int, 5> vec;
vec.resize(5u, 1);
EXPECT_EQ(5u, vec.size());
for (int i : vec)
{
EXPECT_EQ(1, i);
}
vec.resize(2u);
EXPECT_EQ(2u, vec.size());
for (int i : vec)
{
EXPECT_EQ(1, i);
}
// Resize to larger than minimum
vec.resize(10u, 2);
EXPECT_EQ(10u, vec.size());
for (size_t index = 0; index < 2u; ++index)
{
EXPECT_EQ(1, vec[index]);
}
for (size_t index = 2u; index < 10u; ++index)
{
EXPECT_EQ(2, vec[index]);
}
// Resize back to smaller
vec.resize(2u, 2);
EXPECT_EQ(2u, vec.size());
}
// Test iterating over the vector
TEST(FastVector, Iteration)
{
FastVector<int, 5> vec = {0, 1, 2, 3};
int vistedCount = 0;
for (int value : vec)
{
EXPECT_EQ(vistedCount, value);
vistedCount++;
}
EXPECT_EQ(4, vistedCount);
}
// Tests that equality comparisons work even if reserved size differs.
TEST(FastVector, EqualityWithDifferentReservedSizes)
{
FastVector<int, 3> vec1 = {1, 2, 3, 4, 5};
FastVector<int, 5> vec2 = {1, 2, 3, 4, 5};
EXPECT_EQ(vec1, vec2);
vec2.push_back(6);
EXPECT_NE(vec1, vec2);
}
// Tests vector operations with a non copyable type.
TEST(FastVector, NonCopyable)
{
struct s : angle::NonCopyable
{
s() : x(0) {}
s(int xin) : x(xin) {}
s(s &&other) : x(other.x) {}
s &operator=(s &&other)
{
x = other.x;
return *this;
}
int x;
};
FastVector<s, 3> vec;
vec.push_back(3);
EXPECT_EQ(3, vec[0].x);
FastVector<s, 3> copy = std::move(vec);
EXPECT_EQ(1u, copy.size());
EXPECT_EQ(3, copy[0].x);
}
// Basic functionality for FlatUnorderedMap
TEST(FlatUnorderedMap, BasicUsage)
{
FlatUnorderedMap<int, bool, 3> testMap;
EXPECT_TRUE(testMap.empty());
EXPECT_EQ(testMap.size(), 0u);
testMap.insert(5, true);
EXPECT_TRUE(testMap.contains(5));
EXPECT_EQ(testMap.size(), 1u);
bool value = false;
EXPECT_TRUE(testMap.get(5, &value));
EXPECT_TRUE(value);
EXPECT_FALSE(testMap.get(6, &value));
EXPECT_FALSE(testMap.empty());
testMap.clear();
EXPECT_TRUE(testMap.empty());
EXPECT_EQ(testMap.size(), 0u);
for (int i = 0; i < 10; ++i)
{
testMap.insert(i, false);
}
EXPECT_FALSE(testMap.empty());
EXPECT_EQ(testMap.size(), 10u);
for (int i = 0; i < 10; ++i)
{
EXPECT_TRUE(testMap.contains(i));
EXPECT_TRUE(testMap.get(i, &value));
EXPECT_FALSE(value);
}
}
// Basic functionality for FlatUnorderedSet
TEST(FlatUnorderedSet, BasicUsage)
{
FlatUnorderedSet<int, 3> testMap;
EXPECT_TRUE(testMap.empty());
testMap.insert(5);
EXPECT_TRUE(testMap.contains(5));
EXPECT_FALSE(testMap.contains(6));
EXPECT_FALSE(testMap.empty());
testMap.clear();
EXPECT_TRUE(testMap.empty());
for (int i = 0; i < 10; ++i)
{
testMap.insert(i);
}
for (int i = 0; i < 10; ++i)
{
EXPECT_TRUE(testMap.contains(i));
}
}
// Comparison of FlatUnorderedSet
TEST(FlatUnorderedSet, Comparison)
{
FlatUnorderedSet<int, 3> testSet0;
FlatUnorderedSet<int, 3> testSet1;
EXPECT_TRUE(testSet0.empty());
EXPECT_TRUE(testSet1.empty());
testSet0.insert(5);
EXPECT_FALSE(testSet0 == testSet1);
testSet0.insert(10);
EXPECT_FALSE(testSet0 == testSet1);
testSet1.insert(5);
EXPECT_FALSE(testSet0 == testSet1);
testSet1.insert(15);
EXPECT_FALSE(testSet0 == testSet1);
testSet1.clear();
testSet1.insert(5);
testSet1.insert(10);
EXPECT_TRUE(testSet0 == testSet1);
}
// Basic functionality for FastIntegerSet
TEST(FastIntegerSet, BasicUsage)
{
FastIntegerSet testMap;
EXPECT_TRUE(testMap.empty());
testMap.insert(5);
EXPECT_TRUE(testMap.contains(5));
EXPECT_FALSE(testMap.contains(6));
EXPECT_FALSE(testMap.empty());
testMap.clear();
EXPECT_TRUE(testMap.empty());
for (int i = 0; i < 10; ++i)
{
testMap.insert(i);
}
for (int i = 0; i < 10; ++i)
{
EXPECT_TRUE(testMap.contains(i));
}
}
// Basic functionality for FastIntegerMap
TEST(FastIntegerMap, BasicUsage)
{
using KeyValuePair = std::pair<int, std::string>;
std::set<KeyValuePair> entries = {KeyValuePair(17, "testing"), KeyValuePair(63, "fast"),
KeyValuePair(97, "integer"), KeyValuePair(256, "map")};
FastIntegerMap<std::string> testMap;
EXPECT_TRUE(testMap.empty());
std::string str;
testMap.insert(entries.begin()->first, entries.begin()->second);
EXPECT_TRUE(testMap.contains(entries.begin()->first));
EXPECT_FALSE(testMap.contains(entries.rbegin()->first));
EXPECT_FALSE(testMap.empty());
EXPECT_EQ(testMap.size(), 1u);
EXPECT_TRUE(testMap.get(entries.begin()->first, &str));
EXPECT_EQ(entries.begin()->second, str);
EXPECT_FALSE(testMap.get(1, &str));
testMap.clear();
EXPECT_TRUE(testMap.empty());
EXPECT_EQ(testMap.size(), 0u);
for (KeyValuePair entry : entries)
{
testMap.insert(entry.first, entry.second);
}
EXPECT_EQ(testMap.size(), 4u);
for (KeyValuePair entry : entries)
{
EXPECT_TRUE(testMap.get(entry.first, &str));
EXPECT_EQ(entry.second, str);
}
testMap.clear();
EXPECT_TRUE(testMap.empty());
EXPECT_EQ(testMap.size(), 0u);
}
// Basic usage tests of fast map.
TEST(FastMap, Basic)
{
FastMap<int, 5> testMap;
EXPECT_TRUE(testMap.empty());
testMap[5] = 5;
EXPECT_FALSE(testMap.empty());
testMap.clear();
EXPECT_TRUE(testMap.empty());
for (int i = 0; i < 10; ++i)
{
testMap[i] = i;
}
for (int i = 0; i < 10; ++i)
{
EXPECT_TRUE(testMap[i] == i);
}
}
} // namespace angle