| /* |
| * Copyright (C) 2002 Lars Knoll (knoll@kde.org) |
| * (C) 2002 Dirk Mueller (mueller@kde.org) |
| * Copyright (C) 2003, 2006, 2008, 2010 Apple Inc. All rights reserved. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public License |
| * along with this library; see the file COPYING.LIB. If not, write to |
| * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| * Boston, MA 02110-1301, USA. |
| */ |
| |
| #include "config.h" |
| #include "AutoTableLayout.h" |
| |
| #include "RenderTable.h" |
| #include "RenderTableCell.h" |
| #include "RenderTableCol.h" |
| #include "RenderTableSection.h" |
| #include "RenderView.h" |
| |
| namespace WebCore { |
| |
| AutoTableLayout::AutoTableLayout(RenderTable* table) |
| : TableLayout(table) |
| , m_hasPercent(false) |
| , m_effectiveLogicalWidthDirty(true) |
| { |
| } |
| |
| AutoTableLayout::~AutoTableLayout() |
| { |
| } |
| |
| void AutoTableLayout::recalcColumn(unsigned effCol) |
| { |
| Layout& columnLayout = m_layoutStruct[effCol]; |
| |
| RenderTableCell* fixedContributor = nullptr; |
| RenderTableCell* maxContributor = nullptr; |
| |
| for (RenderObject* child = m_table->firstChild(); child; child = child->nextSibling()) { |
| if (is<RenderTableCol>(*child)) { |
| // RenderTableCols don't have the concept of preferred logical width, but we need to clear their dirty bits |
| // so that if we call setPreferredWidthsDirty(true) on a col or one of its descendants, we'll mark it's |
| // ancestors as dirty. |
| downcast<RenderTableCol>(*child).clearPreferredLogicalWidthsDirtyBits(); |
| } else if (is<RenderTableSection>(*child)) { |
| RenderTableSection& section = downcast<RenderTableSection>(*child); |
| unsigned numRows = section.numRows(); |
| for (unsigned i = 0; i < numRows; ++i) { |
| RenderTableSection::CellStruct current = section.cellAt(i, effCol); |
| RenderTableCell* cell = current.primaryCell(); |
| |
| if (current.inColSpan || !cell) |
| continue; |
| |
| bool cellHasContent = cell->firstChild() || cell->style().hasBorder() || cell->style().hasPadding() || cell->style().hasBackground(); |
| if (cellHasContent) |
| columnLayout.emptyCellsOnly = false; |
| |
| // A cell originates in this column. Ensure we have |
| // a min/max width of at least 1px for this column now. |
| columnLayout.minLogicalWidth = std::max<float>(columnLayout.minLogicalWidth, cellHasContent ? 1 : 0); |
| columnLayout.maxLogicalWidth = std::max<float>(columnLayout.maxLogicalWidth, 1); |
| |
| if (cell->colSpan() == 1) { |
| columnLayout.minLogicalWidth = std::max(cell->minPreferredLogicalWidth().ceilToFloat(), columnLayout.minLogicalWidth); |
| float maxPreferredWidth = cell->maxPreferredLogicalWidth().ceilToFloat(); |
| if (maxPreferredWidth > columnLayout.maxLogicalWidth) { |
| columnLayout.maxLogicalWidth = maxPreferredWidth; |
| maxContributor = cell; |
| } |
| |
| // All browsers implement a size limit on the cell's max width. |
| // Our limit is based on KHTML's representation that used 16 bits widths. |
| // FIXME: Other browsers have a lower limit for the cell's max width. |
| const float cCellMaxWidth = 32760; |
| Length cellLogicalWidth = cell->styleOrColLogicalWidth(); |
| if (cellLogicalWidth.value() > cCellMaxWidth) |
| cellLogicalWidth.setValue(Fixed, cCellMaxWidth); |
| if (cellLogicalWidth.isNegative()) |
| cellLogicalWidth.setValue(Fixed, 0); |
| switch (cellLogicalWidth.type()) { |
| case Fixed: |
| // ignore width=0 |
| if (cellLogicalWidth.isPositive() && !columnLayout.logicalWidth.isPercentOrCalculated()) { |
| float logicalWidth = cell->adjustBorderBoxLogicalWidthForBoxSizing(cellLogicalWidth.value()); |
| if (columnLayout.logicalWidth.isFixed()) { |
| // Nav/IE weirdness |
| if ((logicalWidth > columnLayout.logicalWidth.value()) |
| || ((columnLayout.logicalWidth.value() == logicalWidth) && (maxContributor == cell))) { |
| columnLayout.logicalWidth.setValue(Fixed, logicalWidth); |
| fixedContributor = cell; |
| } |
| } else { |
| columnLayout.logicalWidth.setValue(Fixed, logicalWidth); |
| fixedContributor = cell; |
| } |
| } |
| break; |
| case Percent: |
| m_hasPercent = true; |
| if (cellLogicalWidth.isPositive() && (!columnLayout.logicalWidth.isPercent() || cellLogicalWidth.percent() > columnLayout.logicalWidth.percent())) |
| columnLayout.logicalWidth = cellLogicalWidth; |
| break; |
| case Relative: |
| // FIXME: Need to understand this case and whether it makes sense to compare values |
| // which are not necessarily of the same type. |
| if (cellLogicalWidth.value() > columnLayout.logicalWidth.value()) |
| columnLayout.logicalWidth = cellLogicalWidth; |
| break; |
| default: |
| break; |
| } |
| } else if (!effCol || section.primaryCellAt(i, effCol - 1) != cell) { |
| // This spanning cell originates in this column. Insert the cell into spanning cells list. |
| insertSpanCell(cell); |
| } |
| } |
| } |
| } |
| |
| // Nav/IE weirdness |
| if (columnLayout.logicalWidth.isFixed()) { |
| if (m_table->document().inQuirksMode() && columnLayout.maxLogicalWidth > columnLayout.logicalWidth.value() && fixedContributor != maxContributor) { |
| columnLayout.logicalWidth = Length(); |
| fixedContributor = nullptr; |
| } |
| } |
| |
| columnLayout.maxLogicalWidth = std::max(columnLayout.maxLogicalWidth, columnLayout.minLogicalWidth); |
| } |
| |
| void AutoTableLayout::fullRecalc() |
| { |
| m_hasPercent = false; |
| m_effectiveLogicalWidthDirty = true; |
| |
| unsigned nEffCols = m_table->numEffCols(); |
| m_layoutStruct.resize(nEffCols); |
| m_layoutStruct.fill(Layout()); |
| m_spanCells.fill(0); |
| |
| Length groupLogicalWidth; |
| unsigned currentColumn = 0; |
| for (RenderTableCol* column = m_table->firstColumn(); column; column = column->nextColumn()) { |
| if (column->isTableColumnGroupWithColumnChildren()) |
| groupLogicalWidth = column->style().logicalWidth(); |
| else { |
| Length colLogicalWidth = column->style().logicalWidth(); |
| if (colLogicalWidth.isAuto()) |
| colLogicalWidth = groupLogicalWidth; |
| if ((colLogicalWidth.isFixed() || colLogicalWidth.isPercentOrCalculated()) && colLogicalWidth.isZero()) |
| colLogicalWidth = Length(); |
| unsigned effCol = m_table->colToEffCol(currentColumn); |
| unsigned span = column->span(); |
| if (!colLogicalWidth.isAuto() && span == 1 && effCol < nEffCols && m_table->spanOfEffCol(effCol) == 1) { |
| m_layoutStruct[effCol].logicalWidth = colLogicalWidth; |
| if (colLogicalWidth.isFixed() && m_layoutStruct[effCol].maxLogicalWidth < colLogicalWidth.value()) |
| m_layoutStruct[effCol].maxLogicalWidth = colLogicalWidth.value(); |
| } |
| currentColumn += span; |
| } |
| |
| // For the last column in a column-group, we invalidate our group logical width. |
| if (column->isTableColumn() && !column->nextSibling()) |
| groupLogicalWidth = Length(); |
| } |
| |
| for (unsigned i = 0; i < nEffCols; i++) |
| recalcColumn(i); |
| } |
| |
| // FIXME: This needs to be adapted for vertical writing modes. |
| static bool shouldScaleColumns(RenderTable* table) |
| { |
| // A special case. If this table is not fixed width and contained inside |
| // a cell, then don't bloat the maxwidth by examining percentage growth. |
| bool scale = true; |
| while (table) { |
| Length tableWidth = table->style().width(); |
| if ((tableWidth.isAuto() || tableWidth.isPercentOrCalculated()) && !table->isOutOfFlowPositioned()) { |
| RenderBlock* containingBlock = table->containingBlock(); |
| while (containingBlock && !is<RenderView>(*containingBlock) && !is<RenderTableCell>(*containingBlock) |
| && containingBlock->style().width().isAuto() && !containingBlock->isOutOfFlowPositioned()) |
| containingBlock = containingBlock->containingBlock(); |
| |
| table = nullptr; |
| if (is<RenderTableCell>(containingBlock) |
| && (containingBlock->style().width().isAuto() || containingBlock->style().width().isPercentOrCalculated())) { |
| RenderTableCell& cell = downcast<RenderTableCell>(*containingBlock); |
| if (cell.colSpan() > 1 || cell.table()->style().width().isAuto()) |
| scale = false; |
| else |
| table = cell.table(); |
| } |
| } |
| else |
| table = nullptr; |
| } |
| return scale; |
| } |
| |
| void AutoTableLayout::computeIntrinsicLogicalWidths(LayoutUnit& minWidth, LayoutUnit& maxWidth) |
| { |
| fullRecalc(); |
| |
| float spanMaxLogicalWidth = calcEffectiveLogicalWidth(); |
| minWidth = 0; |
| maxWidth = 0; |
| float maxPercent = 0; |
| float maxNonPercent = 0; |
| bool scaleColumns = shouldScaleColumns(m_table); |
| |
| // We substitute 0 percent by (epsilon / percentScaleFactor) percent in two places below to avoid division by zero. |
| // FIXME: Handle the 0% cases properly. |
| const float epsilon = 1 / 128.0f; |
| |
| float remainingPercent = 100; |
| for (size_t i = 0; i < m_layoutStruct.size(); ++i) { |
| minWidth += m_layoutStruct[i].effectiveMinLogicalWidth; |
| maxWidth += m_layoutStruct[i].effectiveMaxLogicalWidth; |
| if (scaleColumns) { |
| if (m_layoutStruct[i].effectiveLogicalWidth.isPercent()) { |
| float percent = std::min(m_layoutStruct[i].effectiveLogicalWidth.percent(), remainingPercent); |
| float logicalWidth = m_layoutStruct[i].effectiveMaxLogicalWidth * 100 / std::max(percent, epsilon); |
| maxPercent = std::max(logicalWidth, maxPercent); |
| remainingPercent -= percent; |
| } else |
| maxNonPercent += m_layoutStruct[i].effectiveMaxLogicalWidth; |
| } |
| } |
| |
| if (scaleColumns) { |
| maxNonPercent = maxNonPercent * 100 / std::max(remainingPercent, epsilon); |
| maxWidth = std::max(maxWidth, LayoutUnit(std::min<float>(maxNonPercent, tableMaxWidth))); |
| maxWidth = std::max(maxWidth, LayoutUnit(std::min<float>(maxPercent, tableMaxWidth))); |
| } |
| |
| maxWidth = std::max(maxWidth, LayoutUnit(spanMaxLogicalWidth)); |
| } |
| |
| void AutoTableLayout::applyPreferredLogicalWidthQuirks(LayoutUnit& minWidth, LayoutUnit& maxWidth) const |
| { |
| Length tableLogicalWidth = m_table->style().logicalWidth(); |
| if (tableLogicalWidth.isFixed() && tableLogicalWidth.isPositive()) |
| minWidth = maxWidth = std::max(minWidth, LayoutUnit(tableLogicalWidth.value())); |
| } |
| |
| /* |
| This method takes care of colspans. |
| effWidth is the same as width for cells without colspans. If we have colspans, they get modified. |
| */ |
| float AutoTableLayout::calcEffectiveLogicalWidth() |
| { |
| float maxLogicalWidth = 0; |
| |
| size_t nEffCols = m_layoutStruct.size(); |
| float spacingInRowDirection = m_table->hBorderSpacing(); |
| |
| for (size_t i = 0; i < nEffCols; ++i) { |
| m_layoutStruct[i].effectiveLogicalWidth = m_layoutStruct[i].logicalWidth; |
| m_layoutStruct[i].effectiveMinLogicalWidth = m_layoutStruct[i].minLogicalWidth; |
| m_layoutStruct[i].effectiveMaxLogicalWidth = m_layoutStruct[i].maxLogicalWidth; |
| } |
| |
| for (size_t i = 0; i < m_spanCells.size(); ++i) { |
| RenderTableCell* cell = m_spanCells[i]; |
| if (!cell) |
| break; |
| |
| unsigned span = cell->colSpan(); |
| |
| Length cellLogicalWidth = cell->styleOrColLogicalWidth(); |
| if (!cellLogicalWidth.isRelative() && cellLogicalWidth.isZero()) |
| cellLogicalWidth = Length(); // make it Auto |
| |
| unsigned effCol = m_table->colToEffCol(cell->col()); |
| size_t lastCol = effCol; |
| float cellMinLogicalWidth = cell->minPreferredLogicalWidth() + spacingInRowDirection; |
| float cellMaxLogicalWidth = cell->maxPreferredLogicalWidth() + spacingInRowDirection; |
| float totalPercent = 0; |
| float spanMinLogicalWidth = 0; |
| float spanMaxLogicalWidth = 0; |
| bool allColsArePercent = true; |
| bool allColsAreFixed = true; |
| bool haveAuto = false; |
| bool spanHasEmptyCellsOnly = true; |
| float fixedWidth = 0; |
| while (lastCol < nEffCols && span > 0) { |
| Layout& columnLayout = m_layoutStruct[lastCol]; |
| switch (columnLayout.logicalWidth.type()) { |
| case Percent: |
| totalPercent += columnLayout.logicalWidth.percent(); |
| allColsAreFixed = false; |
| break; |
| case Fixed: |
| if (columnLayout.logicalWidth.value() > 0) { |
| fixedWidth += columnLayout.logicalWidth.value(); |
| allColsArePercent = false; |
| // IE resets effWidth to Auto here, but this breaks the konqueror about page and seems to be some bad |
| // legacy behaviour anyway. mozilla doesn't do this so I decided we don't neither. |
| break; |
| } |
| FALLTHROUGH; |
| case Auto: |
| haveAuto = true; |
| FALLTHROUGH; |
| default: |
| // If the column is a percentage width, do not let the spanning cell overwrite the |
| // width value. This caused a mis-rendering on amazon.com. |
| // Sample snippet: |
| // <table border=2 width=100%>< |
| // <tr><td>1</td><td colspan=2>2-3</tr> |
| // <tr><td>1</td><td colspan=2 width=100%>2-3</td></tr> |
| // </table> |
| if (!columnLayout.effectiveLogicalWidth.isPercent()) { |
| columnLayout.effectiveLogicalWidth = Length(); |
| allColsArePercent = false; |
| } else |
| totalPercent += columnLayout.effectiveLogicalWidth.percent(); |
| allColsAreFixed = false; |
| } |
| if (!columnLayout.emptyCellsOnly) |
| spanHasEmptyCellsOnly = false; |
| span -= m_table->spanOfEffCol(lastCol); |
| spanMinLogicalWidth += columnLayout.effectiveMinLogicalWidth; |
| spanMaxLogicalWidth += columnLayout.effectiveMaxLogicalWidth; |
| lastCol++; |
| cellMinLogicalWidth -= spacingInRowDirection; |
| cellMaxLogicalWidth -= spacingInRowDirection; |
| } |
| |
| // adjust table max width if needed |
| if (cellLogicalWidth.isPercent()) { |
| if (totalPercent > cellLogicalWidth.percent() || allColsArePercent) { |
| // can't satify this condition, treat as variable |
| cellLogicalWidth = Length(); |
| } else { |
| maxLogicalWidth = std::max(maxLogicalWidth, std::max(spanMaxLogicalWidth, cellMaxLogicalWidth) * 100 / cellLogicalWidth.percent()); |
| |
| // all non percent columns in the span get percent values to sum up correctly. |
| float percentMissing = cellLogicalWidth.percent() - totalPercent; |
| float totalWidth = 0; |
| for (unsigned pos = effCol; pos < lastCol; ++pos) { |
| if (!m_layoutStruct[pos].effectiveLogicalWidth.isPercentOrCalculated()) |
| totalWidth += m_layoutStruct[pos].effectiveMaxLogicalWidth; |
| } |
| |
| for (unsigned pos = effCol; pos < lastCol && totalWidth > 0; ++pos) { |
| if (!m_layoutStruct[pos].effectiveLogicalWidth.isPercentOrCalculated()) { |
| float percent = percentMissing * m_layoutStruct[pos].effectiveMaxLogicalWidth / totalWidth; |
| totalWidth -= m_layoutStruct[pos].effectiveMaxLogicalWidth; |
| percentMissing -= percent; |
| if (percent > 0) |
| m_layoutStruct[pos].effectiveLogicalWidth.setValue(Percent, percent); |
| else |
| m_layoutStruct[pos].effectiveLogicalWidth = Length(); |
| } |
| } |
| } |
| } |
| |
| // make sure minWidth and maxWidth of the spanning cell are honoured |
| if (cellMinLogicalWidth > spanMinLogicalWidth) { |
| if (allColsAreFixed) { |
| for (unsigned pos = effCol; fixedWidth > 0 && pos < lastCol; ++pos) { |
| float cellLogicalWidth = std::max(m_layoutStruct[pos].effectiveMinLogicalWidth, cellMinLogicalWidth * m_layoutStruct[pos].logicalWidth.value() / fixedWidth); |
| fixedWidth -= m_layoutStruct[pos].logicalWidth.value(); |
| cellMinLogicalWidth -= cellLogicalWidth; |
| m_layoutStruct[pos].effectiveMinLogicalWidth = cellLogicalWidth; |
| } |
| } else if (allColsArePercent) { |
| // In this case, we just split the colspan's min amd max widths following the percentage. |
| float allocatedMinLogicalWidth = 0; |
| float allocatedMaxLogicalWidth = 0; |
| for (unsigned pos = effCol; pos < lastCol; ++pos) { |
| ASSERT(m_layoutStruct[pos].logicalWidth.isPercent() || m_layoutStruct[pos].effectiveLogicalWidth.isPercent()); |
| // |allColsArePercent| means that either the logicalWidth *or* the effectiveLogicalWidth are percents, handle both of them here. |
| float percent = m_layoutStruct[pos].logicalWidth.isPercent() ? m_layoutStruct[pos].logicalWidth.percent() : m_layoutStruct[pos].effectiveLogicalWidth.percent(); |
| float columnMinLogicalWidth = percent * cellMinLogicalWidth / totalPercent; |
| float columnMaxLogicalWidth = percent * cellMaxLogicalWidth / totalPercent; |
| m_layoutStruct[pos].effectiveMinLogicalWidth = std::max(m_layoutStruct[pos].effectiveMinLogicalWidth, columnMinLogicalWidth); |
| m_layoutStruct[pos].effectiveMaxLogicalWidth = columnMaxLogicalWidth; |
| allocatedMinLogicalWidth += columnMinLogicalWidth; |
| allocatedMaxLogicalWidth += columnMaxLogicalWidth; |
| } |
| ASSERT(allocatedMinLogicalWidth < cellMinLogicalWidth || WTF::areEssentiallyEqual(allocatedMinLogicalWidth, cellMinLogicalWidth)); |
| ASSERT(allocatedMaxLogicalWidth < cellMaxLogicalWidth || WTF::areEssentiallyEqual(allocatedMaxLogicalWidth, cellMaxLogicalWidth)); |
| cellMinLogicalWidth -= allocatedMinLogicalWidth; |
| cellMaxLogicalWidth -= allocatedMaxLogicalWidth; |
| } else { |
| float remainingMaxLogicalWidth = spanMaxLogicalWidth; |
| float remainingMinLogicalWidth = spanMinLogicalWidth; |
| |
| // Give min to variable first, to fixed second, and to others third. |
| for (unsigned pos = effCol; remainingMaxLogicalWidth >= 0 && pos < lastCol; ++pos) { |
| if (m_layoutStruct[pos].logicalWidth.isFixed() && haveAuto && fixedWidth <= cellMinLogicalWidth) { |
| float colMinLogicalWidth = std::max(m_layoutStruct[pos].effectiveMinLogicalWidth, m_layoutStruct[pos].logicalWidth.value()); |
| fixedWidth -= m_layoutStruct[pos].logicalWidth.value(); |
| remainingMinLogicalWidth -= m_layoutStruct[pos].effectiveMinLogicalWidth; |
| remainingMaxLogicalWidth -= m_layoutStruct[pos].effectiveMaxLogicalWidth; |
| cellMinLogicalWidth -= colMinLogicalWidth; |
| m_layoutStruct[pos].effectiveMinLogicalWidth = colMinLogicalWidth; |
| } |
| } |
| |
| for (unsigned pos = effCol; remainingMaxLogicalWidth >= 0 && pos < lastCol && remainingMinLogicalWidth < cellMinLogicalWidth; ++pos) { |
| if (!(m_layoutStruct[pos].logicalWidth.isFixed() && haveAuto && fixedWidth <= cellMinLogicalWidth)) { |
| float colMinLogicalWidth = std::max(m_layoutStruct[pos].effectiveMinLogicalWidth, remainingMaxLogicalWidth ? cellMinLogicalWidth * m_layoutStruct[pos].effectiveMaxLogicalWidth / remainingMaxLogicalWidth : cellMinLogicalWidth); |
| colMinLogicalWidth = std::min(m_layoutStruct[pos].effectiveMinLogicalWidth + (cellMinLogicalWidth - remainingMinLogicalWidth), colMinLogicalWidth); |
| remainingMaxLogicalWidth -= m_layoutStruct[pos].effectiveMaxLogicalWidth; |
| remainingMinLogicalWidth -= m_layoutStruct[pos].effectiveMinLogicalWidth; |
| cellMinLogicalWidth -= colMinLogicalWidth; |
| m_layoutStruct[pos].effectiveMinLogicalWidth = colMinLogicalWidth; |
| } |
| } |
| } |
| } |
| if (!cellLogicalWidth.isPercentOrCalculated()) { |
| if (cellMaxLogicalWidth > spanMaxLogicalWidth) { |
| for (unsigned pos = effCol; spanMaxLogicalWidth >= 0 && pos < lastCol; ++pos) { |
| float colMaxLogicalWidth = std::max(m_layoutStruct[pos].effectiveMaxLogicalWidth, spanMaxLogicalWidth ? cellMaxLogicalWidth * m_layoutStruct[pos].effectiveMaxLogicalWidth / spanMaxLogicalWidth : cellMaxLogicalWidth); |
| spanMaxLogicalWidth -= m_layoutStruct[pos].effectiveMaxLogicalWidth; |
| cellMaxLogicalWidth -= colMaxLogicalWidth; |
| m_layoutStruct[pos].effectiveMaxLogicalWidth = colMaxLogicalWidth; |
| } |
| } |
| } else { |
| for (unsigned pos = effCol; pos < lastCol; ++pos) |
| m_layoutStruct[pos].maxLogicalWidth = std::max(m_layoutStruct[pos].maxLogicalWidth, m_layoutStruct[pos].minLogicalWidth); |
| } |
| // treat span ranges consisting of empty cells only as if they had content |
| if (spanHasEmptyCellsOnly) { |
| for (unsigned pos = effCol; pos < lastCol; ++pos) |
| m_layoutStruct[pos].emptyCellsOnly = false; |
| } |
| } |
| m_effectiveLogicalWidthDirty = false; |
| |
| return std::min<float>(maxLogicalWidth, tableMaxWidth); |
| } |
| |
| /* gets all cells that originate in a column and have a cellspan > 1 |
| Sorts them by increasing cellspan |
| */ |
| void AutoTableLayout::insertSpanCell(RenderTableCell *cell) |
| { |
| ASSERT_ARG(cell, cell && cell->colSpan() != 1); |
| if (!cell || cell->colSpan() == 1) |
| return; |
| |
| unsigned size = m_spanCells.size(); |
| if (!size || m_spanCells[size-1] != 0) { |
| m_spanCells.grow(size + 10); |
| for (unsigned i = 0; i < 10; i++) |
| m_spanCells[size+i] = 0; |
| size += 10; |
| } |
| |
| // add them in sort. This is a slow algorithm, and a binary search or a fast sorting after collection would be better |
| unsigned pos = 0; |
| unsigned span = cell->colSpan(); |
| while (pos < m_spanCells.size() && m_spanCells[pos] && span > m_spanCells[pos]->colSpan()) |
| pos++; |
| memmove(m_spanCells.data()+pos+1, m_spanCells.data()+pos, (size-pos-1)*sizeof(RenderTableCell *)); |
| m_spanCells[pos] = cell; |
| } |
| |
| |
| void AutoTableLayout::layout() |
| { |
| // table layout based on the values collected in the layout structure. |
| float tableLogicalWidth = m_table->logicalWidth() - m_table->bordersPaddingAndSpacingInRowDirection(); |
| float available = tableLogicalWidth; |
| size_t nEffCols = m_table->numEffCols(); |
| |
| // FIXME: It is possible to be called without having properly updated our internal representation. |
| // This means that our preferred logical widths were not recomputed as expected. |
| if (nEffCols != m_layoutStruct.size()) { |
| fullRecalc(); |
| // FIXME: Table layout shouldn't modify our table structure (but does due to columns and column-groups). |
| nEffCols = m_table->numEffCols(); |
| } |
| |
| if (m_effectiveLogicalWidthDirty) |
| calcEffectiveLogicalWidth(); |
| |
| bool havePercent = false; |
| float totalRelative = 0; |
| int numAuto = 0; |
| int numFixed = 0; |
| float totalAuto = 0; |
| float totalFixed = 0; |
| float totalPercent = 0; |
| float allocAuto = 0; |
| unsigned numAutoEmptyCellsOnly = 0; |
| |
| // fill up every cell with its minWidth |
| for (size_t i = 0; i < nEffCols; ++i) { |
| float cellLogicalWidth = m_layoutStruct[i].effectiveMinLogicalWidth; |
| m_layoutStruct[i].computedLogicalWidth = cellLogicalWidth; |
| available -= cellLogicalWidth; |
| Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
| switch (logicalWidth.type()) { |
| case Percent: |
| havePercent = true; |
| totalPercent += logicalWidth.percent(); |
| break; |
| case Relative: |
| totalRelative += logicalWidth.value(); |
| break; |
| case Fixed: |
| numFixed++; |
| totalFixed += m_layoutStruct[i].effectiveMaxLogicalWidth; |
| break; |
| case Auto: |
| if (m_layoutStruct[i].emptyCellsOnly) |
| numAutoEmptyCellsOnly++; |
| else { |
| numAuto++; |
| totalAuto += m_layoutStruct[i].effectiveMaxLogicalWidth; |
| allocAuto += cellLogicalWidth; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // allocate width to percent cols |
| if (available > 0 && havePercent) { |
| for (size_t i = 0; i < nEffCols; ++i) { |
| Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
| if (logicalWidth.isPercentOrCalculated()) { |
| float cellLogicalWidth = std::max<float>(m_layoutStruct[i].effectiveMinLogicalWidth, minimumValueForLength(logicalWidth, tableLogicalWidth)); |
| available += m_layoutStruct[i].computedLogicalWidth - cellLogicalWidth; |
| m_layoutStruct[i].computedLogicalWidth = cellLogicalWidth; |
| } |
| } |
| if (totalPercent > 100) { |
| // remove overallocated space from the last columns |
| float excess = tableLogicalWidth * (totalPercent - 100) / 100; |
| for (unsigned i = nEffCols; i; ) { |
| --i; |
| if (m_layoutStruct[i].effectiveLogicalWidth.isPercentOrCalculated()) { |
| float cellLogicalWidth = m_layoutStruct[i].computedLogicalWidth; |
| float reduction = std::min(cellLogicalWidth, excess); |
| // the lines below might look inconsistent, but that's the way it's handled in mozilla |
| excess -= reduction; |
| float newLogicalWidth = std::max(m_layoutStruct[i].effectiveMinLogicalWidth, cellLogicalWidth - reduction); |
| available += cellLogicalWidth - newLogicalWidth; |
| m_layoutStruct[i].computedLogicalWidth = newLogicalWidth; |
| } |
| } |
| } |
| } |
| |
| // then allocate width to fixed cols |
| if (available > 0) { |
| for (size_t i = 0; i < nEffCols; ++i) { |
| Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
| if (logicalWidth.isFixed() && logicalWidth.value() > m_layoutStruct[i].computedLogicalWidth) { |
| available += m_layoutStruct[i].computedLogicalWidth - logicalWidth.value(); |
| m_layoutStruct[i].computedLogicalWidth = logicalWidth.value(); |
| } |
| } |
| } |
| |
| // now satisfy relative |
| if (available > 0) { |
| for (size_t i = 0; i < nEffCols; ++i) { |
| Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
| if (logicalWidth.isRelative() && logicalWidth.value() != 0) { |
| // width=0* gets effMinWidth. |
| float cellLogicalWidth = logicalWidth.value() * tableLogicalWidth / totalRelative; |
| available += m_layoutStruct[i].computedLogicalWidth - cellLogicalWidth; |
| m_layoutStruct[i].computedLogicalWidth = cellLogicalWidth; |
| } |
| } |
| } |
| |
| // now satisfy variable |
| if (available > 0 && numAuto) { |
| available += allocAuto; // this gets redistributed |
| for (size_t i = 0; i < nEffCols; ++i) { |
| Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
| if (logicalWidth.isAuto() && totalAuto && !m_layoutStruct[i].emptyCellsOnly) { |
| float cellLogicalWidth = std::max(m_layoutStruct[i].computedLogicalWidth, available * m_layoutStruct[i].effectiveMaxLogicalWidth / totalAuto); |
| available -= cellLogicalWidth; |
| totalAuto -= m_layoutStruct[i].effectiveMaxLogicalWidth; |
| m_layoutStruct[i].computedLogicalWidth = cellLogicalWidth; |
| } |
| } |
| } |
| |
| // spread over fixed columns |
| if (available > 0 && numFixed) { |
| for (size_t i = 0; i < nEffCols; ++i) { |
| Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
| if (logicalWidth.isFixed()) { |
| float cellLogicalWidth = available * m_layoutStruct[i].effectiveMaxLogicalWidth / totalFixed; |
| available -= cellLogicalWidth; |
| totalFixed -= m_layoutStruct[i].effectiveMaxLogicalWidth; |
| m_layoutStruct[i].computedLogicalWidth += cellLogicalWidth; |
| } |
| } |
| } |
| |
| // spread over percent colums |
| if (available > 0 && m_hasPercent && totalPercent < 100) { |
| for (size_t i = 0; i < nEffCols; ++i) { |
| Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
| if (logicalWidth.isPercent()) { |
| float cellLogicalWidth = available * logicalWidth.percent() / totalPercent; |
| available -= cellLogicalWidth; |
| totalPercent -= logicalWidth.percent(); |
| m_layoutStruct[i].computedLogicalWidth += cellLogicalWidth; |
| if (!available || !totalPercent) |
| break; |
| } |
| } |
| } |
| |
| // spread over the rest |
| if (available > 0 && nEffCols > numAutoEmptyCellsOnly) { |
| unsigned total = nEffCols - numAutoEmptyCellsOnly; |
| // still have some width to spread |
| for (unsigned i = nEffCols; i; ) { |
| --i; |
| // variable columns with empty cells only don't get any width |
| if (m_layoutStruct[i].effectiveLogicalWidth.isAuto() && m_layoutStruct[i].emptyCellsOnly) |
| continue; |
| float cellLogicalWidth = available / total; |
| available -= cellLogicalWidth; |
| total--; |
| m_layoutStruct[i].computedLogicalWidth += cellLogicalWidth; |
| } |
| } |
| |
| // If we have overallocated, reduce every cell according to the difference between desired width and minwidth |
| // this seems to produce to the pixel exact results with IE. Wonder if some of this also holds for width distributing. |
| if (available < 0) { |
| // Need to reduce cells with the following prioritization: |
| // (1) Auto |
| // (2) Relative |
| // (3) Fixed |
| // (4) Percent |
| // This is basically the reverse of how we grew the cells. |
| if (available < 0) { |
| float logicalWidthBeyondMin = 0; |
| for (unsigned i = nEffCols; i; ) { |
| --i; |
| Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
| if (logicalWidth.isAuto()) |
| logicalWidthBeyondMin += m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; |
| } |
| |
| for (unsigned i = nEffCols; i && logicalWidthBeyondMin > 0; ) { |
| --i; |
| Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
| if (logicalWidth.isAuto()) { |
| float minMaxDiff = m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; |
| float reduce = available * minMaxDiff / logicalWidthBeyondMin; |
| m_layoutStruct[i].computedLogicalWidth += reduce; |
| available -= reduce; |
| logicalWidthBeyondMin -= minMaxDiff; |
| if (available >= 0) |
| break; |
| } |
| } |
| } |
| |
| if (available < 0) { |
| float logicalWidthBeyondMin = 0; |
| for (unsigned i = nEffCols; i; ) { |
| --i; |
| Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
| if (logicalWidth.isRelative()) |
| logicalWidthBeyondMin += m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; |
| } |
| |
| for (unsigned i = nEffCols; i && logicalWidthBeyondMin > 0; ) { |
| --i; |
| Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
| if (logicalWidth.isRelative()) { |
| float minMaxDiff = m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; |
| float reduce = available * minMaxDiff / logicalWidthBeyondMin; |
| m_layoutStruct[i].computedLogicalWidth += reduce; |
| available -= reduce; |
| logicalWidthBeyondMin -= minMaxDiff; |
| if (available >= 0) |
| break; |
| } |
| } |
| } |
| |
| if (available < 0) { |
| float logicalWidthBeyondMin = 0; |
| for (unsigned i = nEffCols; i; ) { |
| --i; |
| Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
| if (logicalWidth.isFixed()) |
| logicalWidthBeyondMin += m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; |
| } |
| |
| for (unsigned i = nEffCols; i && logicalWidthBeyondMin > 0; ) { |
| --i; |
| Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
| if (logicalWidth.isFixed()) { |
| float minMaxDiff = m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; |
| float reduce = available * minMaxDiff / logicalWidthBeyondMin; |
| m_layoutStruct[i].computedLogicalWidth += reduce; |
| available -= reduce; |
| logicalWidthBeyondMin -= minMaxDiff; |
| if (available >= 0) |
| break; |
| } |
| } |
| } |
| |
| if (available < 0) { |
| float logicalWidthBeyondMin = 0; |
| for (unsigned i = nEffCols; i; ) { |
| --i; |
| Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
| if (logicalWidth.isPercentOrCalculated()) |
| logicalWidthBeyondMin += m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; |
| } |
| |
| for (unsigned i = nEffCols; i && logicalWidthBeyondMin > 0; ) { |
| --i; |
| Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
| if (logicalWidth.isPercentOrCalculated()) { |
| float minMaxDiff = m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; |
| float reduce = available * minMaxDiff / logicalWidthBeyondMin; |
| m_layoutStruct[i].computedLogicalWidth += reduce; |
| available -= reduce; |
| logicalWidthBeyondMin -= minMaxDiff; |
| if (available >= 0) |
| break; |
| } |
| } |
| } |
| } |
| |
| LayoutUnit pos = 0; |
| for (size_t i = 0; i < nEffCols; ++i) { |
| m_table->setColumnPosition(i, pos); |
| pos += LayoutUnit::fromFloatCeil(m_layoutStruct[i].computedLogicalWidth) + m_table->hBorderSpacing(); |
| } |
| m_table->setColumnPosition(m_table->columnPositions().size() - 1, pos); |
| } |
| |
| } |