blob: 596dc898f06dd83c7d36a733542b5e24e0b7dc03 [file] [log] [blame]
/*
* Copyright (C) 2010, 2012, 2013 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "ThunkGenerators.h"
#include "CodeBlock.h"
#include "Operations.h"
#include "SpecializedThunkJIT.h"
#include <wtf/InlineASM.h>
#include <wtf/StringPrintStream.h>
#include <wtf/text/StringImpl.h>
#if ENABLE(JIT)
namespace JSC {
static JSInterfaceJIT::Call generateSlowCaseFor(VM* vm, JSInterfaceJIT& jit)
{
jit.emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, JSInterfaceJIT::regT2);
jit.emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, JSInterfaceJIT::regT2, JSInterfaceJIT::regT2);
jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT2, JSStack::ScopeChain);
// Also initialize ReturnPC and CodeBlock, like a JS function would.
jit.preserveReturnAddressAfterCall(JSInterfaceJIT::regT3);
jit.emitPutToCallFrameHeader(JSInterfaceJIT::regT3, JSStack::ReturnPC);
jit.emitPutImmediateToCallFrameHeader(0, JSStack::CodeBlock);
jit.storePtr(JSInterfaceJIT::callFrameRegister, &vm->topCallFrame);
jit.restoreArgumentReference();
JSInterfaceJIT::Call callNotJSFunction = jit.call();
jit.emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, JSInterfaceJIT::callFrameRegister);
jit.restoreReturnAddressBeforeReturn(JSInterfaceJIT::regT3);
jit.ret();
return callNotJSFunction;
}
static MacroAssemblerCodeRef linkForGenerator(VM* vm, FunctionPtr lazyLink, FunctionPtr notJSFunction, const char* name)
{
JSInterfaceJIT jit;
JSInterfaceJIT::JumpList slowCase;
#if USE(JSVALUE64)
slowCase.append(jit.emitJumpIfNotJSCell(JSInterfaceJIT::regT0));
slowCase.append(jit.emitJumpIfNotType(JSInterfaceJIT::regT0, JSInterfaceJIT::regT1, JSFunctionType));
#else // USE(JSVALUE64)
slowCase.append(jit.branch32(JSInterfaceJIT::NotEqual, JSInterfaceJIT::regT1, JSInterfaceJIT::TrustedImm32(JSValue::CellTag)));
slowCase.append(jit.emitJumpIfNotType(JSInterfaceJIT::regT0, JSInterfaceJIT::regT1, JSFunctionType));
#endif // USE(JSVALUE64)
// Finish canonical initialization before JS function call.
jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::regT0, JSFunction::offsetOfScopeChain()), JSInterfaceJIT::regT1);
jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain);
// Also initialize ReturnPC for use by lazy linking and exceptions.
jit.preserveReturnAddressAfterCall(JSInterfaceJIT::regT3);
jit.emitPutToCallFrameHeader(JSInterfaceJIT::regT3, JSStack::ReturnPC);
jit.storePtr(JSInterfaceJIT::callFrameRegister, &vm->topCallFrame);
jit.restoreArgumentReference();
JSInterfaceJIT::Call callLazyLink = jit.call();
jit.restoreReturnAddressBeforeReturn(JSInterfaceJIT::regT3);
jit.jump(JSInterfaceJIT::regT0);
slowCase.link(&jit);
JSInterfaceJIT::Call callNotJSFunction = generateSlowCaseFor(vm, jit);
LinkBuffer patchBuffer(*vm, &jit, GLOBAL_THUNK_ID);
patchBuffer.link(callLazyLink, lazyLink);
patchBuffer.link(callNotJSFunction, notJSFunction);
return FINALIZE_CODE(patchBuffer, ("link %s trampoline", name));
}
MacroAssemblerCodeRef linkCallGenerator(VM* vm)
{
return linkForGenerator(vm, FunctionPtr(cti_vm_lazyLinkCall), FunctionPtr(cti_op_call_NotJSFunction), "call");
}
MacroAssemblerCodeRef linkConstructGenerator(VM* vm)
{
return linkForGenerator(vm, FunctionPtr(cti_vm_lazyLinkConstruct), FunctionPtr(cti_op_construct_NotJSConstruct), "construct");
}
MacroAssemblerCodeRef linkClosureCallGenerator(VM* vm)
{
return linkForGenerator(vm, FunctionPtr(cti_vm_lazyLinkClosureCall), FunctionPtr(cti_op_call_NotJSFunction), "closure call");
}
static MacroAssemblerCodeRef virtualForGenerator(VM* vm, FunctionPtr compile, FunctionPtr notJSFunction, const char* name, CodeSpecializationKind kind)
{
JSInterfaceJIT jit;
JSInterfaceJIT::JumpList slowCase;
#if USE(JSVALUE64)
slowCase.append(jit.emitJumpIfNotJSCell(JSInterfaceJIT::regT0));
#else // USE(JSVALUE64)
slowCase.append(jit.branch32(JSInterfaceJIT::NotEqual, JSInterfaceJIT::regT1, JSInterfaceJIT::TrustedImm32(JSValue::CellTag)));
#endif // USE(JSVALUE64)
slowCase.append(jit.emitJumpIfNotType(JSInterfaceJIT::regT0, JSInterfaceJIT::regT1, JSFunctionType));
// Finish canonical initialization before JS function call.
jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::regT0, JSFunction::offsetOfScopeChain()), JSInterfaceJIT::regT1);
jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain);
jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::regT0, JSFunction::offsetOfExecutable()), JSInterfaceJIT::regT2);
JSInterfaceJIT::Jump hasCodeBlock1 = jit.branch32(JSInterfaceJIT::GreaterThanOrEqual, JSInterfaceJIT::Address(JSInterfaceJIT::regT2, FunctionExecutable::offsetOfNumParametersFor(kind)), JSInterfaceJIT::TrustedImm32(0));
jit.preserveReturnAddressAfterCall(JSInterfaceJIT::regT3);
jit.storePtr(JSInterfaceJIT::callFrameRegister, &vm->topCallFrame);
jit.restoreArgumentReference();
JSInterfaceJIT::Call callCompile = jit.call();
jit.restoreReturnAddressBeforeReturn(JSInterfaceJIT::regT3);
jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::regT0, JSFunction::offsetOfExecutable()), JSInterfaceJIT::regT2);
hasCodeBlock1.link(&jit);
jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::regT2, FunctionExecutable::offsetOfJITCodeWithArityCheckFor(kind)), JSInterfaceJIT::regT0);
#if !ASSERT_DISABLED
JSInterfaceJIT::Jump ok = jit.branchTestPtr(JSInterfaceJIT::NonZero, JSInterfaceJIT::regT0);
jit.breakpoint();
ok.link(&jit);
#endif
jit.jump(JSInterfaceJIT::regT0);
slowCase.link(&jit);
JSInterfaceJIT::Call callNotJSFunction = generateSlowCaseFor(vm, jit);
LinkBuffer patchBuffer(*vm, &jit, GLOBAL_THUNK_ID);
patchBuffer.link(callCompile, compile);
patchBuffer.link(callNotJSFunction, notJSFunction);
return FINALIZE_CODE(patchBuffer, ("virtual %s trampoline", name));
}
MacroAssemblerCodeRef virtualCallGenerator(VM* vm)
{
return virtualForGenerator(vm, FunctionPtr(cti_op_call_jitCompile), FunctionPtr(cti_op_call_NotJSFunction), "call", CodeForCall);
}
MacroAssemblerCodeRef virtualConstructGenerator(VM* vm)
{
return virtualForGenerator(vm, FunctionPtr(cti_op_construct_jitCompile), FunctionPtr(cti_op_construct_NotJSConstruct), "construct", CodeForConstruct);
}
MacroAssemblerCodeRef stringLengthTrampolineGenerator(VM* vm)
{
JSInterfaceJIT jit;
#if USE(JSVALUE64)
// Check eax is a string
JSInterfaceJIT::Jump failureCases1 = jit.emitJumpIfNotJSCell(JSInterfaceJIT::regT0);
JSInterfaceJIT::Jump failureCases2 = jit.branchPtr(
JSInterfaceJIT::NotEqual, JSInterfaceJIT::Address(
JSInterfaceJIT::regT0, JSCell::structureOffset()),
JSInterfaceJIT::TrustedImmPtr(vm->stringStructure.get()));
// Checks out okay! - get the length from the Ustring.
jit.load32(
JSInterfaceJIT::Address(JSInterfaceJIT::regT0, JSString::offsetOfLength()),
JSInterfaceJIT::regT0);
JSInterfaceJIT::Jump failureCases3 = jit.branch32(
JSInterfaceJIT::LessThan, JSInterfaceJIT::regT0, JSInterfaceJIT::TrustedImm32(0));
// regT0 contains a 64 bit value (is positive, is zero extended) so we don't need sign extend here.
jit.emitFastArithIntToImmNoCheck(JSInterfaceJIT::regT0, JSInterfaceJIT::regT0);
#else // USE(JSVALUE64)
// regT0 holds payload, regT1 holds tag
JSInterfaceJIT::Jump failureCases1 = jit.branch32(
JSInterfaceJIT::NotEqual, JSInterfaceJIT::regT1,
JSInterfaceJIT::TrustedImm32(JSValue::CellTag));
JSInterfaceJIT::Jump failureCases2 = jit.branchPtr(
JSInterfaceJIT::NotEqual,
JSInterfaceJIT::Address(JSInterfaceJIT::regT0, JSCell::structureOffset()),
JSInterfaceJIT::TrustedImmPtr(vm->stringStructure.get()));
// Checks out okay! - get the length from the Ustring.
jit.load32(
JSInterfaceJIT::Address(JSInterfaceJIT::regT0, JSString::offsetOfLength()),
JSInterfaceJIT::regT2);
JSInterfaceJIT::Jump failureCases3 = jit.branch32(
JSInterfaceJIT::Above, JSInterfaceJIT::regT2, JSInterfaceJIT::TrustedImm32(INT_MAX));
jit.move(JSInterfaceJIT::regT2, JSInterfaceJIT::regT0);
jit.move(JSInterfaceJIT::TrustedImm32(JSValue::Int32Tag), JSInterfaceJIT::regT1);
#endif // USE(JSVALUE64)
jit.ret();
JSInterfaceJIT::Call failureCases1Call = jit.makeTailRecursiveCall(failureCases1);
JSInterfaceJIT::Call failureCases2Call = jit.makeTailRecursiveCall(failureCases2);
JSInterfaceJIT::Call failureCases3Call = jit.makeTailRecursiveCall(failureCases3);
LinkBuffer patchBuffer(*vm, &jit, GLOBAL_THUNK_ID);
patchBuffer.link(failureCases1Call, FunctionPtr(cti_op_get_by_id_string_fail));
patchBuffer.link(failureCases2Call, FunctionPtr(cti_op_get_by_id_string_fail));
patchBuffer.link(failureCases3Call, FunctionPtr(cti_op_get_by_id_string_fail));
return FINALIZE_CODE(patchBuffer, ("string length trampoline"));
}
static MacroAssemblerCodeRef nativeForGenerator(VM* vm, CodeSpecializationKind kind)
{
int executableOffsetToFunction = NativeExecutable::offsetOfNativeFunctionFor(kind);
JSInterfaceJIT jit;
jit.emitPutImmediateToCallFrameHeader(0, JSStack::CodeBlock);
jit.storePtr(JSInterfaceJIT::callFrameRegister, &vm->topCallFrame);
#if CPU(X86)
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
jit.emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, JSInterfaceJIT::regT0);
jit.emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, JSInterfaceJIT::regT1, JSInterfaceJIT::regT0);
jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain);
jit.peek(JSInterfaceJIT::regT1);
jit.emitPutToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ReturnPC);
// Calling convention: f(ecx, edx, ...);
// Host function signature: f(ExecState*);
jit.move(JSInterfaceJIT::callFrameRegister, X86Registers::ecx);
jit.subPtr(JSInterfaceJIT::TrustedImm32(16 - sizeof(void*)), JSInterfaceJIT::stackPointerRegister); // Align stack after call.
// call the function
jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, JSInterfaceJIT::regT1);
jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::regT1, JSFunction::offsetOfExecutable()), JSInterfaceJIT::regT1);
jit.move(JSInterfaceJIT::regT0, JSInterfaceJIT::callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
jit.call(JSInterfaceJIT::Address(JSInterfaceJIT::regT1, executableOffsetToFunction));
jit.addPtr(JSInterfaceJIT::TrustedImm32(16 - sizeof(void*)), JSInterfaceJIT::stackPointerRegister);
#elif CPU(X86_64)
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
jit.emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, JSInterfaceJIT::regT0);
jit.emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, JSInterfaceJIT::regT1, JSInterfaceJIT::regT0);
jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain);
jit.peek(JSInterfaceJIT::regT1);
jit.emitPutToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ReturnPC);
#if !OS(WINDOWS)
// Calling convention: f(edi, esi, edx, ecx, ...);
// Host function signature: f(ExecState*);
jit.move(JSInterfaceJIT::callFrameRegister, X86Registers::edi);
jit.subPtr(JSInterfaceJIT::TrustedImm32(16 - sizeof(int64_t)), JSInterfaceJIT::stackPointerRegister); // Align stack after call.
jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, X86Registers::esi);
jit.loadPtr(JSInterfaceJIT::Address(X86Registers::esi, JSFunction::offsetOfExecutable()), X86Registers::r9);
jit.move(JSInterfaceJIT::regT0, JSInterfaceJIT::callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
jit.call(JSInterfaceJIT::Address(X86Registers::r9, executableOffsetToFunction));
jit.addPtr(JSInterfaceJIT::TrustedImm32(16 - sizeof(int64_t)), JSInterfaceJIT::stackPointerRegister);
#else
// Calling convention: f(ecx, edx, r8, r9, ...);
// Host function signature: f(ExecState*);
jit.move(JSInterfaceJIT::callFrameRegister, X86Registers::ecx);
// Leave space for the callee parameter home addresses and align the stack.
jit.subPtr(JSInterfaceJIT::TrustedImm32(4 * sizeof(int64_t) + 16 - sizeof(int64_t)), JSInterfaceJIT::stackPointerRegister);
jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, X86Registers::edx);
jit.loadPtr(JSInterfaceJIT::Address(X86Registers::edx, JSFunction::offsetOfExecutable()), X86Registers::r9);
jit.move(JSInterfaceJIT::regT0, JSInterfaceJIT::callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
jit.call(JSInterfaceJIT::Address(X86Registers::r9, executableOffsetToFunction));
jit.addPtr(JSInterfaceJIT::TrustedImm32(4 * sizeof(int64_t) + 16 - sizeof(int64_t)), JSInterfaceJIT::stackPointerRegister);
#endif
#elif CPU(ARM)
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
jit.emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, JSInterfaceJIT::regT2);
jit.emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, JSInterfaceJIT::regT1, JSInterfaceJIT::regT2);
jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain);
jit.preserveReturnAddressAfterCall(JSInterfaceJIT::regT3); // Callee preserved
jit.emitPutToCallFrameHeader(JSInterfaceJIT::regT3, JSStack::ReturnPC);
// Calling convention: f(r0 == regT0, r1 == regT1, ...);
// Host function signature: f(ExecState*);
jit.move(JSInterfaceJIT::callFrameRegister, ARMRegisters::r0);
jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, ARMRegisters::r1);
jit.move(JSInterfaceJIT::regT2, JSInterfaceJIT::callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
jit.loadPtr(JSInterfaceJIT::Address(ARMRegisters::r1, JSFunction::offsetOfExecutable()), JSInterfaceJIT::regT2);
jit.call(JSInterfaceJIT::Address(JSInterfaceJIT::regT2, executableOffsetToFunction));
jit.restoreReturnAddressBeforeReturn(JSInterfaceJIT::regT3);
#elif CPU(SH4)
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
jit.emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, JSInterfaceJIT::regT2);
jit.emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, JSInterfaceJIT::regT1, JSInterfaceJIT::regT2);
jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain);
jit.preserveReturnAddressAfterCall(JSInterfaceJIT::regT3); // Callee preserved
jit.emitPutToCallFrameHeader(JSInterfaceJIT::regT3, JSStack::ReturnPC);
// Calling convention: f(r0 == regT4, r1 == regT5, ...);
// Host function signature: f(ExecState*);
jit.move(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::regT4);
jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, JSInterfaceJIT::regT5);
jit.move(JSInterfaceJIT::regT2, JSInterfaceJIT::callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::regT5, JSFunction::offsetOfExecutable()), JSInterfaceJIT::regT2);
jit.call(JSInterfaceJIT::Address(JSInterfaceJIT::regT2, executableOffsetToFunction), JSInterfaceJIT::regT0);
jit.restoreReturnAddressBeforeReturn(JSInterfaceJIT::regT3);
#elif CPU(MIPS)
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
jit.emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, JSInterfaceJIT::regT0);
jit.emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, JSInterfaceJIT::regT1, JSInterfaceJIT::regT0);
jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain);
jit.preserveReturnAddressAfterCall(JSInterfaceJIT::regT3); // Callee preserved
jit.emitPutToCallFrameHeader(JSInterfaceJIT::regT3, JSStack::ReturnPC);
// Calling convention: f(a0, a1, a2, a3);
// Host function signature: f(ExecState*);
// Allocate stack space for 16 bytes (8-byte aligned)
// 16 bytes (unused) for 4 arguments
jit.subPtr(JSInterfaceJIT::TrustedImm32(16), JSInterfaceJIT::stackPointerRegister);
// Setup arg0
jit.move(JSInterfaceJIT::callFrameRegister, MIPSRegisters::a0);
// Call
jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, MIPSRegisters::a2);
jit.loadPtr(JSInterfaceJIT::Address(MIPSRegisters::a2, JSFunction::offsetOfExecutable()), JSInterfaceJIT::regT2);
jit.move(JSInterfaceJIT::regT0, JSInterfaceJIT::callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
jit.call(JSInterfaceJIT::Address(JSInterfaceJIT::regT2, executableOffsetToFunction));
// Restore stack space
jit.addPtr(JSInterfaceJIT::TrustedImm32(16), JSInterfaceJIT::stackPointerRegister);
jit.restoreReturnAddressBeforeReturn(JSInterfaceJIT::regT3);
#else
#error "JIT not supported on this platform."
UNUSED_PARAM(executableOffsetToFunction);
breakpoint();
#endif
// Check for an exception
#if USE(JSVALUE64)
jit.load64(&(vm->exception), JSInterfaceJIT::regT2);
JSInterfaceJIT::Jump exceptionHandler = jit.branchTest64(JSInterfaceJIT::NonZero, JSInterfaceJIT::regT2);
#else
JSInterfaceJIT::Jump exceptionHandler = jit.branch32(
JSInterfaceJIT::NotEqual,
JSInterfaceJIT::AbsoluteAddress(reinterpret_cast<char*>(&vm->exception) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.tag)),
JSInterfaceJIT::TrustedImm32(JSValue::EmptyValueTag));
#endif
// Return.
jit.ret();
// Handle an exception
exceptionHandler.link(&jit);
// Grab the return address.
jit.preserveReturnAddressAfterCall(JSInterfaceJIT::regT1);
jit.move(JSInterfaceJIT::TrustedImmPtr(&vm->exceptionLocation), JSInterfaceJIT::regT2);
jit.storePtr(JSInterfaceJIT::regT1, JSInterfaceJIT::regT2);
jit.poke(JSInterfaceJIT::callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*));
jit.storePtr(JSInterfaceJIT::callFrameRegister, &vm->topCallFrame);
// Set the return address.
jit.move(JSInterfaceJIT::TrustedImmPtr(FunctionPtr(ctiVMThrowTrampoline).value()), JSInterfaceJIT::regT1);
jit.restoreReturnAddressBeforeReturn(JSInterfaceJIT::regT1);
jit.ret();
LinkBuffer patchBuffer(*vm, &jit, GLOBAL_THUNK_ID);
return FINALIZE_CODE(patchBuffer, ("native %s trampoline", toCString(kind).data()));
}
MacroAssemblerCodeRef nativeCallGenerator(VM* vm)
{
return nativeForGenerator(vm, CodeForCall);
}
MacroAssemblerCodeRef nativeConstructGenerator(VM* vm)
{
return nativeForGenerator(vm, CodeForConstruct);
}
static void stringCharLoad(SpecializedThunkJIT& jit, VM* vm)
{
// load string
jit.loadJSStringArgument(*vm, SpecializedThunkJIT::ThisArgument, SpecializedThunkJIT::regT0);
// Load string length to regT2, and start the process of loading the data pointer into regT0
jit.load32(MacroAssembler::Address(SpecializedThunkJIT::regT0, ThunkHelpers::jsStringLengthOffset()), SpecializedThunkJIT::regT2);
jit.loadPtr(MacroAssembler::Address(SpecializedThunkJIT::regT0, ThunkHelpers::jsStringValueOffset()), SpecializedThunkJIT::regT0);
jit.appendFailure(jit.branchTest32(MacroAssembler::Zero, SpecializedThunkJIT::regT0));
// load index
jit.loadInt32Argument(0, SpecializedThunkJIT::regT1); // regT1 contains the index
// Do an unsigned compare to simultaneously filter negative indices as well as indices that are too large
jit.appendFailure(jit.branch32(MacroAssembler::AboveOrEqual, SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT2));
// Load the character
SpecializedThunkJIT::JumpList is16Bit;
SpecializedThunkJIT::JumpList cont8Bit;
// Load the string flags
jit.loadPtr(MacroAssembler::Address(SpecializedThunkJIT::regT0, StringImpl::flagsOffset()), SpecializedThunkJIT::regT2);
jit.loadPtr(MacroAssembler::Address(SpecializedThunkJIT::regT0, StringImpl::dataOffset()), SpecializedThunkJIT::regT0);
is16Bit.append(jit.branchTest32(MacroAssembler::Zero, SpecializedThunkJIT::regT2, MacroAssembler::TrustedImm32(StringImpl::flagIs8Bit())));
jit.load8(MacroAssembler::BaseIndex(SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1, MacroAssembler::TimesOne, 0), SpecializedThunkJIT::regT0);
cont8Bit.append(jit.jump());
is16Bit.link(&jit);
jit.load16(MacroAssembler::BaseIndex(SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1, MacroAssembler::TimesTwo, 0), SpecializedThunkJIT::regT0);
cont8Bit.link(&jit);
}
static void charToString(SpecializedThunkJIT& jit, VM* vm, MacroAssembler::RegisterID src, MacroAssembler::RegisterID dst, MacroAssembler::RegisterID scratch)
{
jit.appendFailure(jit.branch32(MacroAssembler::AboveOrEqual, src, MacroAssembler::TrustedImm32(0x100)));
jit.move(MacroAssembler::TrustedImmPtr(vm->smallStrings.singleCharacterStrings()), scratch);
jit.loadPtr(MacroAssembler::BaseIndex(scratch, src, MacroAssembler::ScalePtr, 0), dst);
jit.appendFailure(jit.branchTestPtr(MacroAssembler::Zero, dst));
}
MacroAssemblerCodeRef charCodeAtThunkGenerator(VM* vm)
{
SpecializedThunkJIT jit(1);
stringCharLoad(jit, vm);
jit.returnInt32(SpecializedThunkJIT::regT0);
return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "charCodeAt");
}
MacroAssemblerCodeRef charAtThunkGenerator(VM* vm)
{
SpecializedThunkJIT jit(1);
stringCharLoad(jit, vm);
charToString(jit, vm, SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1);
jit.returnJSCell(SpecializedThunkJIT::regT0);
return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "charAt");
}
MacroAssemblerCodeRef fromCharCodeThunkGenerator(VM* vm)
{
SpecializedThunkJIT jit(1);
// load char code
jit.loadInt32Argument(0, SpecializedThunkJIT::regT0);
charToString(jit, vm, SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1);
jit.returnJSCell(SpecializedThunkJIT::regT0);
return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "fromCharCode");
}
MacroAssemblerCodeRef sqrtThunkGenerator(VM* vm)
{
SpecializedThunkJIT jit(1);
if (!jit.supportsFloatingPointSqrt())
return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm));
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
jit.sqrtDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0);
jit.returnDouble(SpecializedThunkJIT::fpRegT0);
return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "sqrt");
}
#define UnaryDoubleOpWrapper(function) function##Wrapper
enum MathThunkCallingConvention { };
typedef MathThunkCallingConvention(*MathThunk)(MathThunkCallingConvention);
extern "C" {
double jsRound(double) REFERENCED_FROM_ASM;
double jsRound(double d)
{
double integer = ceil(d);
return integer - (integer - d > 0.5);
}
}
#if CPU(X86_64) && COMPILER(GCC) && (PLATFORM(MAC) || OS(LINUX))
#define defineUnaryDoubleOpWrapper(function) \
asm( \
".text\n" \
".globl " SYMBOL_STRING(function##Thunk) "\n" \
HIDE_SYMBOL(function##Thunk) "\n" \
SYMBOL_STRING(function##Thunk) ":" "\n" \
"call " GLOBAL_REFERENCE(function) "\n" \
"ret\n" \
);\
extern "C" { \
MathThunkCallingConvention function##Thunk(MathThunkCallingConvention); \
} \
static MathThunk UnaryDoubleOpWrapper(function) = &function##Thunk;
#elif CPU(X86) && COMPILER(GCC) && (PLATFORM(MAC) || OS(LINUX))
#define defineUnaryDoubleOpWrapper(function) \
asm( \
".text\n" \
".globl " SYMBOL_STRING(function##Thunk) "\n" \
HIDE_SYMBOL(function##Thunk) "\n" \
SYMBOL_STRING(function##Thunk) ":" "\n" \
"subl $8, %esp\n" \
"movsd %xmm0, (%esp) \n" \
"call " GLOBAL_REFERENCE(function) "\n" \
"fstpl (%esp) \n" \
"movsd (%esp), %xmm0 \n" \
"addl $8, %esp\n" \
"ret\n" \
);\
extern "C" { \
MathThunkCallingConvention function##Thunk(MathThunkCallingConvention); \
} \
static MathThunk UnaryDoubleOpWrapper(function) = &function##Thunk;
#elif CPU(ARM_THUMB2) && COMPILER(GCC) && PLATFORM(IOS)
#define defineUnaryDoubleOpWrapper(function) \
asm( \
".text\n" \
".align 2\n" \
".globl " SYMBOL_STRING(function##Thunk) "\n" \
HIDE_SYMBOL(function##Thunk) "\n" \
".thumb\n" \
".thumb_func " THUMB_FUNC_PARAM(function##Thunk) "\n" \
SYMBOL_STRING(function##Thunk) ":" "\n" \
"push {lr}\n" \
"vmov r0, r1, d0\n" \
"blx " GLOBAL_REFERENCE(function) "\n" \
"vmov d0, r0, r1\n" \
"pop {lr}\n" \
"bx lr\n" \
); \
extern "C" { \
MathThunkCallingConvention function##Thunk(MathThunkCallingConvention); \
} \
static MathThunk UnaryDoubleOpWrapper(function) = &function##Thunk;
#else
#define defineUnaryDoubleOpWrapper(function) \
static MathThunk UnaryDoubleOpWrapper(function) = 0
#endif
defineUnaryDoubleOpWrapper(jsRound);
defineUnaryDoubleOpWrapper(exp);
defineUnaryDoubleOpWrapper(log);
defineUnaryDoubleOpWrapper(floor);
defineUnaryDoubleOpWrapper(ceil);
static const double oneConstant = 1.0;
static const double negativeHalfConstant = -0.5;
static const double zeroConstant = 0.0;
static const double halfConstant = 0.5;
MacroAssemblerCodeRef floorThunkGenerator(VM* vm)
{
SpecializedThunkJIT jit(1);
MacroAssembler::Jump nonIntJump;
if (!UnaryDoubleOpWrapper(floor) || !jit.supportsFloatingPoint())
return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm));
jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump);
jit.returnInt32(SpecializedThunkJIT::regT0);
nonIntJump.link(&jit);
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
SpecializedThunkJIT::Jump intResult;
SpecializedThunkJIT::JumpList doubleResult;
if (jit.supportsFloatingPointTruncate()) {
jit.loadDouble(&zeroConstant, SpecializedThunkJIT::fpRegT1);
doubleResult.append(jit.branchDouble(MacroAssembler::DoubleEqual, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1));
SpecializedThunkJIT::JumpList slowPath;
// Handle the negative doubles in the slow path for now.
slowPath.append(jit.branchDouble(MacroAssembler::DoubleLessThanOrUnordered, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1));
slowPath.append(jit.branchTruncateDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0));
intResult = jit.jump();
slowPath.link(&jit);
}
jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(floor));
jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1);
if (jit.supportsFloatingPointTruncate())
intResult.link(&jit);
jit.returnInt32(SpecializedThunkJIT::regT0);
doubleResult.link(&jit);
jit.returnDouble(SpecializedThunkJIT::fpRegT0);
return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "floor");
}
MacroAssemblerCodeRef ceilThunkGenerator(VM* vm)
{
SpecializedThunkJIT jit(1);
if (!UnaryDoubleOpWrapper(ceil) || !jit.supportsFloatingPoint())
return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm));
MacroAssembler::Jump nonIntJump;
jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump);
jit.returnInt32(SpecializedThunkJIT::regT0);
nonIntJump.link(&jit);
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(ceil));
SpecializedThunkJIT::JumpList doubleResult;
jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1);
jit.returnInt32(SpecializedThunkJIT::regT0);
doubleResult.link(&jit);
jit.returnDouble(SpecializedThunkJIT::fpRegT0);
return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "ceil");
}
MacroAssemblerCodeRef roundThunkGenerator(VM* vm)
{
SpecializedThunkJIT jit(1);
if (!UnaryDoubleOpWrapper(jsRound) || !jit.supportsFloatingPoint())
return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm));
MacroAssembler::Jump nonIntJump;
jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump);
jit.returnInt32(SpecializedThunkJIT::regT0);
nonIntJump.link(&jit);
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
SpecializedThunkJIT::Jump intResult;
SpecializedThunkJIT::JumpList doubleResult;
if (jit.supportsFloatingPointTruncate()) {
jit.loadDouble(&zeroConstant, SpecializedThunkJIT::fpRegT1);
doubleResult.append(jit.branchDouble(MacroAssembler::DoubleEqual, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1));
SpecializedThunkJIT::JumpList slowPath;
// Handle the negative doubles in the slow path for now.
slowPath.append(jit.branchDouble(MacroAssembler::DoubleLessThanOrUnordered, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1));
jit.loadDouble(&halfConstant, SpecializedThunkJIT::fpRegT1);
jit.addDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1);
slowPath.append(jit.branchTruncateDoubleToInt32(SpecializedThunkJIT::fpRegT1, SpecializedThunkJIT::regT0));
intResult = jit.jump();
slowPath.link(&jit);
}
jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(jsRound));
jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1);
if (jit.supportsFloatingPointTruncate())
intResult.link(&jit);
jit.returnInt32(SpecializedThunkJIT::regT0);
doubleResult.link(&jit);
jit.returnDouble(SpecializedThunkJIT::fpRegT0);
return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "round");
}
MacroAssemblerCodeRef expThunkGenerator(VM* vm)
{
if (!UnaryDoubleOpWrapper(exp))
return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm));
SpecializedThunkJIT jit(1);
if (!jit.supportsFloatingPoint())
return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm));
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(exp));
jit.returnDouble(SpecializedThunkJIT::fpRegT0);
return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "exp");
}
MacroAssemblerCodeRef logThunkGenerator(VM* vm)
{
if (!UnaryDoubleOpWrapper(log))
return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm));
SpecializedThunkJIT jit(1);
if (!jit.supportsFloatingPoint())
return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm));
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(log));
jit.returnDouble(SpecializedThunkJIT::fpRegT0);
return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "log");
}
MacroAssemblerCodeRef absThunkGenerator(VM* vm)
{
SpecializedThunkJIT jit(1);
if (!jit.supportsFloatingPointAbs())
return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm));
MacroAssembler::Jump nonIntJump;
jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump);
jit.rshift32(SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(31), SpecializedThunkJIT::regT1);
jit.add32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT0);
jit.xor32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT0);
jit.appendFailure(jit.branch32(MacroAssembler::Equal, SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(1 << 31)));
jit.returnInt32(SpecializedThunkJIT::regT0);
nonIntJump.link(&jit);
// Shame about the double int conversion here.
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
jit.absDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1);
jit.returnDouble(SpecializedThunkJIT::fpRegT1);
return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "abs");
}
MacroAssemblerCodeRef powThunkGenerator(VM* vm)
{
SpecializedThunkJIT jit(2);
if (!jit.supportsFloatingPoint())
return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm));
jit.loadDouble(&oneConstant, SpecializedThunkJIT::fpRegT1);
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
MacroAssembler::Jump nonIntExponent;
jit.loadInt32Argument(1, SpecializedThunkJIT::regT0, nonIntExponent);
jit.appendFailure(jit.branch32(MacroAssembler::LessThan, SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(0)));
MacroAssembler::Jump exponentIsZero = jit.branchTest32(MacroAssembler::Zero, SpecializedThunkJIT::regT0);
MacroAssembler::Label startLoop(jit.label());
MacroAssembler::Jump exponentIsEven = jit.branchTest32(MacroAssembler::Zero, SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(1));
jit.mulDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1);
exponentIsEven.link(&jit);
jit.mulDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0);
jit.rshift32(MacroAssembler::TrustedImm32(1), SpecializedThunkJIT::regT0);
jit.branchTest32(MacroAssembler::NonZero, SpecializedThunkJIT::regT0).linkTo(startLoop, &jit);
exponentIsZero.link(&jit);
{
SpecializedThunkJIT::JumpList doubleResult;
jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT1, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT0);
jit.returnInt32(SpecializedThunkJIT::regT0);
doubleResult.link(&jit);
jit.returnDouble(SpecializedThunkJIT::fpRegT1);
}
if (jit.supportsFloatingPointSqrt()) {
nonIntExponent.link(&jit);
jit.loadDouble(&negativeHalfConstant, SpecializedThunkJIT::fpRegT3);
jit.loadDoubleArgument(1, SpecializedThunkJIT::fpRegT2, SpecializedThunkJIT::regT0);
jit.appendFailure(jit.branchDouble(MacroAssembler::DoubleLessThanOrEqual, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1));
jit.appendFailure(jit.branchDouble(MacroAssembler::DoubleNotEqualOrUnordered, SpecializedThunkJIT::fpRegT2, SpecializedThunkJIT::fpRegT3));
jit.sqrtDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0);
jit.divDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1);
SpecializedThunkJIT::JumpList doubleResult;
jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT1, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT0);
jit.returnInt32(SpecializedThunkJIT::regT0);
doubleResult.link(&jit);
jit.returnDouble(SpecializedThunkJIT::fpRegT1);
} else
jit.appendFailure(nonIntExponent);
return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "pow");
}
MacroAssemblerCodeRef imulThunkGenerator(VM* vm)
{
SpecializedThunkJIT jit(2);
MacroAssembler::Jump nonIntArg0Jump;
jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntArg0Jump);
SpecializedThunkJIT::Label doneLoadingArg0(&jit);
MacroAssembler::Jump nonIntArg1Jump;
jit.loadInt32Argument(1, SpecializedThunkJIT::regT1, nonIntArg1Jump);
SpecializedThunkJIT::Label doneLoadingArg1(&jit);
jit.mul32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT0);
jit.returnInt32(SpecializedThunkJIT::regT0);
if (jit.supportsFloatingPointTruncate()) {
nonIntArg0Jump.link(&jit);
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
jit.branchTruncateDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, SpecializedThunkJIT::BranchIfTruncateSuccessful).linkTo(doneLoadingArg0, &jit);
jit.xor32(SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT0);
jit.jump(doneLoadingArg0);
} else
jit.appendFailure(nonIntArg0Jump);
if (jit.supportsFloatingPointTruncate()) {
nonIntArg1Jump.link(&jit);
jit.loadDoubleArgument(1, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT1);
jit.branchTruncateDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT1, SpecializedThunkJIT::BranchIfTruncateSuccessful).linkTo(doneLoadingArg1, &jit);
jit.xor32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT1);
jit.jump(doneLoadingArg1);
} else
jit.appendFailure(nonIntArg1Jump);
return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "imul");
}
}
#endif // ENABLE(JIT)