blob: 97bb798cd3119747841e3a6ce014c01279679f1e [file] [log] [blame]
/*
* Copyright (C) 2017 Igalia S.L.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "Grid.h"
#include "GridBaselineAlignment.h"
#include "GridTrackSize.h"
#include "LayoutSize.h"
namespace WebCore {
static const int infinity = -1;
enum SizingOperation { TrackSizing, IntrinsicSizeComputation };
enum TrackSizeComputationPhase {
ResolveIntrinsicMinimums,
ResolveContentBasedMinimums,
ResolveMaxContentMinimums,
ResolveIntrinsicMaximums,
ResolveMaxContentMaximums,
MaximizeTracks,
};
class GridTrackSizingAlgorithmStrategy;
class GridTrack {
public:
GridTrack() = default;
const LayoutUnit& baseSize() const;
void setBaseSize(LayoutUnit);
const LayoutUnit& growthLimit() const;
bool growthLimitIsInfinite() const { return m_growthLimit == infinity; }
void setGrowthLimit(LayoutUnit);
bool infiniteGrowthPotential() const { return growthLimitIsInfinite() || m_infinitelyGrowable; }
const LayoutUnit& growthLimitIfNotInfinite() const;
const LayoutUnit& plannedSize() const { return m_plannedSize; }
void setPlannedSize(LayoutUnit plannedSize) { m_plannedSize = plannedSize; }
const LayoutUnit& tempSize() const { return m_tempSize; }
void setTempSize(const LayoutUnit&);
void growTempSize(const LayoutUnit&);
bool infinitelyGrowable() const { return m_infinitelyGrowable; }
void setInfinitelyGrowable(bool infinitelyGrowable) { m_infinitelyGrowable = infinitelyGrowable; }
void setGrowthLimitCap(Optional<LayoutUnit>);
Optional<LayoutUnit> growthLimitCap() const { return m_growthLimitCap; }
private:
bool isGrowthLimitBiggerThanBaseSize() const { return growthLimitIsInfinite() || m_growthLimit >= m_baseSize; }
void ensureGrowthLimitIsBiggerThanBaseSize();
LayoutUnit m_baseSize { 0 };
LayoutUnit m_growthLimit { 0 };
LayoutUnit m_plannedSize { 0 };
LayoutUnit m_tempSize { 0 };
Optional<LayoutUnit> m_growthLimitCap;
bool m_infinitelyGrowable { false };
};
class GridTrackSizingAlgorithm final {
friend class GridTrackSizingAlgorithmStrategy;
public:
GridTrackSizingAlgorithm(const RenderGrid* renderGrid, Grid& grid)
: m_grid(grid)
, m_renderGrid(renderGrid)
, m_sizingState(ColumnSizingFirstIteration)
{
}
void setup(GridTrackSizingDirection, unsigned numTracks, SizingOperation, Optional<LayoutUnit> availableSpace, Optional<LayoutUnit> freeSpace);
void run();
void reset();
// Required by RenderGrid. Try to minimize the exposed surface.
const Grid& grid() const { return m_grid; }
// FIXME (jfernandez): We should remove any public getter for this attribute
// and encapsulate any access in the algorithm class.
Grid& mutableGrid() const { return m_grid; }
LayoutUnit minContentSize() const { return m_minContentSize; };
LayoutUnit maxContentSize() const { return m_maxContentSize; };
LayoutSize estimatedGridAreaBreadthForChild(const RenderBox&) const;
LayoutUnit baselineOffsetForChild(const RenderBox&, GridAxis) const;
void cacheBaselineAlignedItem(const RenderBox&, GridAxis);
void copyBaselineItemsCache(const GridTrackSizingAlgorithm&, GridAxis);
void clearBaselineItemsCache();
Vector<GridTrack>& tracks(GridTrackSizingDirection direction) { return direction == ForColumns ? m_columns : m_rows; }
const Vector<GridTrack>& tracks(GridTrackSizingDirection direction) const { return direction == ForColumns ? m_columns : m_rows; }
Optional<LayoutUnit> freeSpace(GridTrackSizingDirection direction) const { return direction == ForColumns ? m_freeSpaceColumns : m_freeSpaceRows; }
void setFreeSpace(GridTrackSizingDirection, Optional<LayoutUnit>);
Optional<LayoutUnit> availableSpace(GridTrackSizingDirection direction) const { return direction == ForColumns ? m_availableSpaceColumns : m_availableSpaceRows; }
void setAvailableSpace(GridTrackSizingDirection, Optional<LayoutUnit>);
LayoutUnit computeTrackBasedSize() const;
bool hasAnyPercentSizedRowsIndefiniteHeight() const { return m_hasPercentSizedRowsIndefiniteHeight; }
#ifndef NDEBUG
bool tracksAreWiderThanMinTrackBreadth() const;
#endif
private:
Optional<LayoutUnit> availableSpace() const;
bool isRelativeGridLengthAsAuto(const GridLength&, GridTrackSizingDirection) const;
GridTrackSize gridTrackSize(GridTrackSizingDirection, unsigned translatedIndex) const;
const GridTrackSize& rawGridTrackSize(GridTrackSizingDirection, unsigned translatedIndex) const;
// Helper methods for step 1. initializeTrackSizes().
LayoutUnit initialBaseSize(const GridTrackSize&) const;
LayoutUnit initialGrowthLimit(const GridTrackSize&, LayoutUnit baseSize) const;
// Helper methods for step 2. resolveIntrinsicTrackSizes().
void sizeTrackToFitNonSpanningItem(const GridSpan&, RenderBox& gridItem, GridTrack&);
bool spanningItemCrossesFlexibleSizedTracks(const GridSpan&) const;
typedef struct GridItemsSpanGroupRange GridItemsSpanGroupRange;
template <TrackSizeComputationPhase phase> void increaseSizesToAccommodateSpanningItems(const GridItemsSpanGroupRange& gridItemsWithSpan);
LayoutUnit itemSizeForTrackSizeComputationPhase(TrackSizeComputationPhase, RenderBox&) const;
template <TrackSizeComputationPhase phase> void distributeSpaceToTracks(Vector<GridTrack*>& tracks, Vector<GridTrack*>* growBeyondGrowthLimitsTracks, LayoutUnit& availableLogicalSpace) const;
LayoutUnit estimatedGridAreaBreadthForChild(const RenderBox&, GridTrackSizingDirection) const;
LayoutUnit gridAreaBreadthForChild(const RenderBox&, GridTrackSizingDirection) const;
void computeBaselineAlignmentContext();
void updateBaselineAlignmentContext(const RenderBox&, GridAxis);
bool canParticipateInBaselineAlignment(const RenderBox&, GridAxis) const;
bool participateInBaselineAlignment(const RenderBox&, GridAxis) const;
bool isIntrinsicSizedGridArea(const RenderBox&, GridAxis) const;
void computeGridContainerIntrinsicSizes();
// Helper methods for step 4. Strech flexible tracks.
typedef HashSet<unsigned, DefaultHash<unsigned>::Hash, WTF::UnsignedWithZeroKeyHashTraits<unsigned>> TrackIndexSet;
double computeFlexFactorUnitSize(const Vector<GridTrack>& tracks, double flexFactorSum, LayoutUnit& leftOverSpace, const Vector<unsigned, 8>& flexibleTracksIndexes, std::unique_ptr<TrackIndexSet> tracksToTreatAsInflexible = nullptr) const;
void computeFlexSizedTracksGrowth(double flexFraction, Vector<LayoutUnit>& increments, LayoutUnit& totalGrowth) const;
double findFrUnitSize(const GridSpan& tracksSpan, LayoutUnit leftOverSpace) const;
// Track sizing algorithm steps. Note that the "Maximize Tracks" step is done
// entirely inside the strategies, that's why we don't need an additional
// method at thise level.
void initializeTrackSizes();
void resolveIntrinsicTrackSizes();
void stretchFlexibleTracks(Optional<LayoutUnit> freeSpace);
void stretchAutoTracks();
// State machine.
void advanceNextState();
bool isValidTransition() const;
// Data.
bool wasSetup() const { return !!m_strategy; }
bool m_needsSetup { true };
bool m_hasPercentSizedRowsIndefiniteHeight { false };
Optional<LayoutUnit> m_availableSpaceRows;
Optional<LayoutUnit> m_availableSpaceColumns;
Optional<LayoutUnit> m_freeSpaceColumns;
Optional<LayoutUnit> m_freeSpaceRows;
// We need to keep both alive in order to properly size grids with orthogonal
// writing modes.
Vector<GridTrack> m_columns;
Vector<GridTrack> m_rows;
Vector<unsigned> m_contentSizedTracksIndex;
Vector<unsigned> m_flexibleSizedTracksIndex;
Vector<unsigned> m_autoSizedTracksForStretchIndex;
GridTrackSizingDirection m_direction;
SizingOperation m_sizingOperation;
Grid& m_grid;
const RenderGrid* m_renderGrid;
std::unique_ptr<GridTrackSizingAlgorithmStrategy> m_strategy;
// The track sizing algorithm is used for both layout and intrinsic size
// computation. We're normally just interested in intrinsic inline sizes
// (a.k.a widths in most of the cases) for the computeIntrinsicLogicalWidths()
// computations. That's why we don't need to keep around different values for
// rows/columns.
LayoutUnit m_minContentSize;
LayoutUnit m_maxContentSize;
enum SizingState {
ColumnSizingFirstIteration,
RowSizingFirstIteration,
ColumnSizingSecondIteration,
RowSizingSecondIteration
};
SizingState m_sizingState;
GridBaselineAlignment m_baselineAlignment;
typedef HashMap<const RenderBox*, bool> BaselineItemsCache;
BaselineItemsCache m_columnBaselineItemsMap;
BaselineItemsCache m_rowBaselineItemsMap;
// This is a RAII class used to ensure that the track sizing algorithm is
// executed as it is suppossed to be, i.e., first resolve columns and then
// rows. Only if required a second iteration is run following the same order,
// first columns and then rows.
class StateMachine {
public:
StateMachine(GridTrackSizingAlgorithm&);
~StateMachine();
private:
GridTrackSizingAlgorithm& m_algorithm;
};
};
class GridTrackSizingAlgorithmStrategy {
WTF_MAKE_FAST_ALLOCATED;
public:
LayoutUnit minContentForChild(RenderBox&) const;
LayoutUnit maxContentForChild(RenderBox&) const;
LayoutUnit minSizeForChild(RenderBox&) const;
virtual ~GridTrackSizingAlgorithmStrategy() = default;
virtual void maximizeTracks(Vector<GridTrack>&, Optional<LayoutUnit>& freeSpace) = 0;
virtual double findUsedFlexFraction(Vector<unsigned>& flexibleSizedTracksIndex, GridTrackSizingDirection, Optional<LayoutUnit> initialFreeSpace) const = 0;
virtual bool recomputeUsedFlexFractionIfNeeded(double& flexFraction, LayoutUnit& totalGrowth) const = 0;
virtual LayoutUnit freeSpaceForStretchAutoTracksStep() const = 0;
protected:
GridTrackSizingAlgorithmStrategy(GridTrackSizingAlgorithm& algorithm)
: m_algorithm(algorithm) { }
virtual LayoutUnit minLogicalWidthForChild(RenderBox&, Length childMinSize, LayoutUnit availableSize) const = 0;
virtual void layoutGridItemForMinSizeComputation(RenderBox&, bool overrideSizeHasChanged) const = 0;
LayoutUnit logicalHeightForChild(RenderBox&) const;
bool updateOverrideContainingBlockContentSizeForChild(RenderBox&, GridTrackSizingDirection, Optional<LayoutUnit> = WTF::nullopt) const;
GridTrackSize gridTrackSize(GridTrackSizingDirection direction, size_t translatedIndex) const { return m_algorithm.gridTrackSize(direction, translatedIndex); }
// GridTrackSizingAlgorithm accessors for subclasses.
LayoutUnit computeTrackBasedSize() const { return m_algorithm.computeTrackBasedSize(); }
GridTrackSizingDirection direction() const { return m_algorithm.m_direction; }
double findFrUnitSize(const GridSpan& tracksSpan, LayoutUnit leftOverSpace) const { return m_algorithm.findFrUnitSize(tracksSpan, leftOverSpace); }
void distributeSpaceToTracks(Vector<GridTrack*>& tracks, LayoutUnit& availableLogicalSpace) const { m_algorithm.distributeSpaceToTracks<MaximizeTracks>(tracks, nullptr, availableLogicalSpace); }
const RenderGrid* renderGrid() const { return m_algorithm.m_renderGrid; }
Optional<LayoutUnit> availableSpace() const { return m_algorithm.availableSpace(); }
GridTrackSizingAlgorithm& m_algorithm;
};
} // namespace WebCore