| /* |
| * Copyright (C) 2008-2018 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #pragma once |
| |
| #if ENABLE(ASSEMBLER) && CPU(X86_64) |
| |
| #include "MacroAssemblerX86Common.h" |
| |
| #define REPATCH_OFFSET_CALL_R11 3 |
| |
| inline bool CAN_SIGN_EXTEND_32_64(int64_t value) { return value == (int64_t)(int32_t)value; } |
| |
| namespace JSC { |
| |
| class MacroAssemblerX86_64 : public MacroAssemblerX86Common { |
| public: |
| static const unsigned numGPRs = 16; |
| static const unsigned numFPRs = 16; |
| |
| static const Scale ScalePtr = TimesEight; |
| |
| using MacroAssemblerX86Common::add32; |
| using MacroAssemblerX86Common::and32; |
| using MacroAssemblerX86Common::branch32; |
| using MacroAssemblerX86Common::branchAdd32; |
| using MacroAssemblerX86Common::or32; |
| using MacroAssemblerX86Common::sub32; |
| using MacroAssemblerX86Common::load8; |
| using MacroAssemblerX86Common::load32; |
| using MacroAssemblerX86Common::store32; |
| using MacroAssemblerX86Common::store8; |
| using MacroAssemblerX86Common::call; |
| using MacroAssemblerX86Common::jump; |
| using MacroAssemblerX86Common::addDouble; |
| using MacroAssemblerX86Common::loadDouble; |
| using MacroAssemblerX86Common::convertInt32ToDouble; |
| |
| void add32(TrustedImm32 imm, AbsoluteAddress address) |
| { |
| move(TrustedImmPtr(address.m_ptr), scratchRegister()); |
| add32(imm, Address(scratchRegister())); |
| } |
| |
| void and32(TrustedImm32 imm, AbsoluteAddress address) |
| { |
| move(TrustedImmPtr(address.m_ptr), scratchRegister()); |
| and32(imm, Address(scratchRegister())); |
| } |
| |
| void add32(AbsoluteAddress address, RegisterID dest) |
| { |
| move(TrustedImmPtr(address.m_ptr), scratchRegister()); |
| add32(Address(scratchRegister()), dest); |
| } |
| |
| void or32(TrustedImm32 imm, AbsoluteAddress address) |
| { |
| move(TrustedImmPtr(address.m_ptr), scratchRegister()); |
| or32(imm, Address(scratchRegister())); |
| } |
| |
| void or32(RegisterID reg, AbsoluteAddress address) |
| { |
| move(TrustedImmPtr(address.m_ptr), scratchRegister()); |
| or32(reg, Address(scratchRegister())); |
| } |
| |
| void sub32(TrustedImm32 imm, AbsoluteAddress address) |
| { |
| move(TrustedImmPtr(address.m_ptr), scratchRegister()); |
| sub32(imm, Address(scratchRegister())); |
| } |
| |
| void load8(const void* address, RegisterID dest) |
| { |
| move(TrustedImmPtr(address), dest); |
| load8(dest, dest); |
| } |
| |
| void load16(ExtendedAddress address, RegisterID dest) |
| { |
| TrustedImmPtr addr(reinterpret_cast<void*>(address.offset)); |
| MacroAssemblerX86Common::move(addr, scratchRegister()); |
| MacroAssemblerX86Common::load16(BaseIndex(scratchRegister(), address.base, TimesTwo), dest); |
| } |
| |
| void load16(BaseIndex address, RegisterID dest) |
| { |
| MacroAssemblerX86Common::load16(address, dest); |
| } |
| |
| void load16(Address address, RegisterID dest) |
| { |
| MacroAssemblerX86Common::load16(address, dest); |
| } |
| |
| void load32(const void* address, RegisterID dest) |
| { |
| if (dest == X86Registers::eax) |
| m_assembler.movl_mEAX(address); |
| else { |
| move(TrustedImmPtr(address), dest); |
| load32(dest, dest); |
| } |
| } |
| |
| void addDouble(AbsoluteAddress address, FPRegisterID dest) |
| { |
| move(TrustedImmPtr(address.m_ptr), scratchRegister()); |
| m_assembler.addsd_mr(0, scratchRegister(), dest); |
| } |
| |
| void convertInt32ToDouble(TrustedImm32 imm, FPRegisterID dest) |
| { |
| move(imm, scratchRegister()); |
| m_assembler.cvtsi2sd_rr(scratchRegister(), dest); |
| } |
| |
| void store32(TrustedImm32 imm, void* address) |
| { |
| move(TrustedImmPtr(address), scratchRegister()); |
| store32(imm, scratchRegister()); |
| } |
| |
| void store32(RegisterID source, void* address) |
| { |
| if (source == X86Registers::eax) |
| m_assembler.movl_EAXm(address); |
| else { |
| move(TrustedImmPtr(address), scratchRegister()); |
| store32(source, scratchRegister()); |
| } |
| } |
| |
| void store8(TrustedImm32 imm, void* address) |
| { |
| TrustedImm32 imm8(static_cast<int8_t>(imm.m_value)); |
| move(TrustedImmPtr(address), scratchRegister()); |
| store8(imm8, Address(scratchRegister())); |
| } |
| |
| void store8(RegisterID reg, void* address) |
| { |
| move(TrustedImmPtr(address), scratchRegister()); |
| store8(reg, Address(scratchRegister())); |
| } |
| |
| #if OS(WINDOWS) |
| Call callWithSlowPathReturnType(PtrTag) |
| { |
| // On Win64, when the return type is larger than 8 bytes, we need to allocate space on the stack for the return value. |
| // On entry, rcx should contain a pointer to this stack space. The other parameters are shifted to the right, |
| // rdx should contain the first argument, r8 should contain the second argument, and r9 should contain the third argument. |
| // On return, rax contains a pointer to this stack value. See http://msdn.microsoft.com/en-us/library/7572ztz4.aspx. |
| // We then need to copy the 16 byte return value into rax and rdx, since JIT expects the return value to be split between the two. |
| // It is assumed that the parameters are already shifted to the right, when entering this method. |
| // Note: this implementation supports up to 3 parameters. |
| |
| // JIT relies on the CallerFrame (frame pointer) being put on the stack, |
| // On Win64 we need to manually copy the frame pointer to the stack, since MSVC may not maintain a frame pointer on 64-bit. |
| // See http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx where it's stated that rbp MAY be used as a frame pointer. |
| store64(X86Registers::ebp, Address(X86Registers::esp, -16)); |
| |
| // We also need to allocate the shadow space on the stack for the 4 parameter registers. |
| // In addition, we need to allocate 16 bytes for the return value. |
| // Also, we should allocate 16 bytes for the frame pointer, and return address (not populated). |
| sub64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp); |
| |
| // The first parameter register should contain a pointer to the stack allocated space for the return value. |
| move(X86Registers::esp, X86Registers::ecx); |
| add64(TrustedImm32(4 * sizeof(int64_t)), X86Registers::ecx); |
| |
| DataLabelPtr label = moveWithPatch(TrustedImmPtr(nullptr), scratchRegister()); |
| Call result = Call(m_assembler.call(scratchRegister()), Call::Linkable); |
| |
| add64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp); |
| |
| // Copy the return value into rax and rdx. |
| load64(Address(X86Registers::eax, sizeof(int64_t)), X86Registers::edx); |
| load64(Address(X86Registers::eax), X86Registers::eax); |
| |
| ASSERT_UNUSED(label, differenceBetween(label, result) == REPATCH_OFFSET_CALL_R11); |
| return result; |
| } |
| #endif |
| |
| Call call(PtrTag) |
| { |
| #if OS(WINDOWS) |
| // JIT relies on the CallerFrame (frame pointer) being put on the stack, |
| // On Win64 we need to manually copy the frame pointer to the stack, since MSVC may not maintain a frame pointer on 64-bit. |
| // See http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx where it's stated that rbp MAY be used as a frame pointer. |
| store64(X86Registers::ebp, Address(X86Registers::esp, -16)); |
| |
| // On Windows we need to copy the arguments that don't fit in registers to the stack location where the callee expects to find them. |
| // We don't know the number of arguments at this point, so the arguments (5, 6, ...) should always be copied. |
| |
| // Copy argument 5 |
| load64(Address(X86Registers::esp, 4 * sizeof(int64_t)), scratchRegister()); |
| store64(scratchRegister(), Address(X86Registers::esp, -4 * static_cast<int32_t>(sizeof(int64_t)))); |
| |
| // Copy argument 6 |
| load64(Address(X86Registers::esp, 5 * sizeof(int64_t)), scratchRegister()); |
| store64(scratchRegister(), Address(X86Registers::esp, -3 * static_cast<int32_t>(sizeof(int64_t)))); |
| |
| // We also need to allocate the shadow space on the stack for the 4 parameter registers. |
| // Also, we should allocate 16 bytes for the frame pointer, and return address (not populated). |
| // In addition, we need to allocate 16 bytes for two more parameters, since the call can have up to 6 parameters. |
| sub64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp); |
| #endif |
| DataLabelPtr label = moveWithPatch(TrustedImmPtr(nullptr), scratchRegister()); |
| Call result = Call(m_assembler.call(scratchRegister()), Call::Linkable); |
| #if OS(WINDOWS) |
| add64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp); |
| #endif |
| ASSERT_UNUSED(label, differenceBetween(label, result) == REPATCH_OFFSET_CALL_R11); |
| return result; |
| } |
| |
| ALWAYS_INLINE Call call(RegisterID callTag) { return UNUSED_PARAM(callTag), call(NoPtrTag); } |
| |
| // Address is a memory location containing the address to jump to |
| void jump(AbsoluteAddress address, PtrTag tag) |
| { |
| move(TrustedImmPtr(address.m_ptr), scratchRegister()); |
| jump(Address(scratchRegister()), tag); |
| } |
| |
| ALWAYS_INLINE void jump(AbsoluteAddress address, RegisterID jumpTag) { UNUSED_PARAM(jumpTag), jump(address, NoPtrTag); } |
| |
| Call tailRecursiveCall() |
| { |
| DataLabelPtr label = moveWithPatch(TrustedImmPtr(nullptr), scratchRegister()); |
| Jump newJump = Jump(m_assembler.jmp_r(scratchRegister())); |
| ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPATCH_OFFSET_CALL_R11); |
| return Call::fromTailJump(newJump); |
| } |
| |
| Call makeTailRecursiveCall(Jump oldJump) |
| { |
| oldJump.link(this); |
| DataLabelPtr label = moveWithPatch(TrustedImmPtr(nullptr), scratchRegister()); |
| Jump newJump = Jump(m_assembler.jmp_r(scratchRegister())); |
| ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPATCH_OFFSET_CALL_R11); |
| return Call::fromTailJump(newJump); |
| } |
| |
| Call threadSafePatchableNearCall() |
| { |
| const size_t nearCallOpcodeSize = 1; |
| const size_t nearCallRelativeLocationSize = sizeof(int32_t); |
| // We want to make sure the 32-bit near call immediate is 32-bit aligned. |
| size_t codeSize = m_assembler.codeSize(); |
| size_t alignedSize = WTF::roundUpToMultipleOf<nearCallRelativeLocationSize>(codeSize + nearCallOpcodeSize); |
| emitNops(alignedSize - (codeSize + nearCallOpcodeSize)); |
| DataLabelPtr label = DataLabelPtr(this); |
| Call result = nearCall(); |
| ASSERT_UNUSED(label, differenceBetween(label, result) == (nearCallOpcodeSize + nearCallRelativeLocationSize)); |
| return result; |
| } |
| |
| Jump branchAdd32(ResultCondition cond, TrustedImm32 src, AbsoluteAddress dest) |
| { |
| move(TrustedImmPtr(dest.m_ptr), scratchRegister()); |
| add32(src, Address(scratchRegister())); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| void add64(RegisterID src, RegisterID dest) |
| { |
| m_assembler.addq_rr(src, dest); |
| } |
| |
| void add64(Address src, RegisterID dest) |
| { |
| m_assembler.addq_mr(src.offset, src.base, dest); |
| } |
| |
| void add64(BaseIndex src, RegisterID dest) |
| { |
| m_assembler.addq_mr(src.offset, src.base, src.index, src.scale, dest); |
| } |
| |
| void add64(RegisterID src, Address dest) |
| { |
| m_assembler.addq_rm(src, dest.offset, dest.base); |
| } |
| |
| void add64(RegisterID src, BaseIndex dest) |
| { |
| m_assembler.addq_rm(src, dest.offset, dest.base, dest.index, dest.scale); |
| } |
| |
| void add64(AbsoluteAddress src, RegisterID dest) |
| { |
| move(TrustedImmPtr(src.m_ptr), scratchRegister()); |
| add64(Address(scratchRegister()), dest); |
| } |
| |
| void add64(TrustedImm32 imm, RegisterID srcDest) |
| { |
| if (imm.m_value == 1) |
| m_assembler.incq_r(srcDest); |
| else |
| m_assembler.addq_ir(imm.m_value, srcDest); |
| } |
| |
| void add64(TrustedImm64 imm, RegisterID dest) |
| { |
| if (imm.m_value == 1) |
| m_assembler.incq_r(dest); |
| else { |
| move(imm, scratchRegister()); |
| add64(scratchRegister(), dest); |
| } |
| } |
| |
| void add64(TrustedImm32 imm, RegisterID src, RegisterID dest) |
| { |
| m_assembler.leaq_mr(imm.m_value, src, dest); |
| } |
| |
| void add64(TrustedImm32 imm, Address address) |
| { |
| if (imm.m_value == 1) |
| m_assembler.incq_m(address.offset, address.base); |
| else |
| m_assembler.addq_im(imm.m_value, address.offset, address.base); |
| } |
| |
| void add64(TrustedImm32 imm, BaseIndex address) |
| { |
| if (imm.m_value == 1) |
| m_assembler.incq_m(address.offset, address.base, address.index, address.scale); |
| else |
| m_assembler.addq_im(imm.m_value, address.offset, address.base, address.index, address.scale); |
| } |
| |
| void add64(TrustedImm32 imm, AbsoluteAddress address) |
| { |
| move(TrustedImmPtr(address.m_ptr), scratchRegister()); |
| add64(imm, Address(scratchRegister())); |
| } |
| |
| void add64(RegisterID a, RegisterID b, RegisterID dest) |
| { |
| x86Lea64(BaseIndex(a, b, TimesOne), dest); |
| } |
| |
| void x86Lea64(BaseIndex index, RegisterID dest) |
| { |
| if (!index.scale && !index.offset) { |
| if (index.base == dest) { |
| add64(index.index, dest); |
| return; |
| } |
| if (index.index == dest) { |
| add64(index.base, dest); |
| return; |
| } |
| } |
| m_assembler.leaq_mr(index.offset, index.base, index.index, index.scale, dest); |
| } |
| |
| void getEffectiveAddress(BaseIndex address, RegisterID dest) |
| { |
| return x86Lea64(address, dest); |
| } |
| |
| void addPtrNoFlags(TrustedImm32 imm, RegisterID srcDest) |
| { |
| m_assembler.leaq_mr(imm.m_value, srcDest, srcDest); |
| } |
| |
| void and64(RegisterID src, RegisterID dest) |
| { |
| m_assembler.andq_rr(src, dest); |
| } |
| |
| void and64(RegisterID src, Address dest) |
| { |
| m_assembler.andq_rm(src, dest.offset, dest.base); |
| } |
| |
| void and64(RegisterID src, BaseIndex dest) |
| { |
| m_assembler.andq_rm(src, dest.offset, dest.base, dest.index, dest.scale); |
| } |
| |
| void and64(Address src, RegisterID dest) |
| { |
| m_assembler.andq_mr(src.offset, src.base, dest); |
| } |
| |
| void and64(BaseIndex src, RegisterID dest) |
| { |
| m_assembler.andq_mr(src.offset, src.base, src.index, src.scale, dest); |
| } |
| |
| void and64(TrustedImm32 imm, RegisterID srcDest) |
| { |
| m_assembler.andq_ir(imm.m_value, srcDest); |
| } |
| |
| void and64(TrustedImm32 imm, Address dest) |
| { |
| m_assembler.andq_im(imm.m_value, dest.offset, dest.base); |
| } |
| |
| void and64(TrustedImm32 imm, BaseIndex dest) |
| { |
| m_assembler.andq_im(imm.m_value, dest.offset, dest.base, dest.index, dest.scale); |
| } |
| |
| void and64(TrustedImmPtr imm, RegisterID srcDest) |
| { |
| intptr_t intValue = imm.asIntptr(); |
| if (intValue <= std::numeric_limits<int32_t>::max() |
| && intValue >= std::numeric_limits<int32_t>::min()) { |
| and64(TrustedImm32(static_cast<int32_t>(intValue)), srcDest); |
| return; |
| } |
| move(imm, scratchRegister()); |
| and64(scratchRegister(), srcDest); |
| } |
| |
| void and64(RegisterID op1, RegisterID op2, RegisterID dest) |
| { |
| if (op1 == op2 && op1 != dest && op2 != dest) |
| move(op1, dest); |
| else if (op1 == dest) |
| and64(op2, dest); |
| else { |
| move(op2, dest); |
| and64(op1, dest); |
| } |
| } |
| |
| void countLeadingZeros64(RegisterID src, RegisterID dst) |
| { |
| if (supportsLZCNT()) { |
| m_assembler.lzcntq_rr(src, dst); |
| return; |
| } |
| m_assembler.bsrq_rr(src, dst); |
| clz64AfterBsr(dst); |
| } |
| |
| void countLeadingZeros64(Address src, RegisterID dst) |
| { |
| if (supportsLZCNT()) { |
| m_assembler.lzcntq_mr(src.offset, src.base, dst); |
| return; |
| } |
| m_assembler.bsrq_mr(src.offset, src.base, dst); |
| clz64AfterBsr(dst); |
| } |
| |
| void countTrailingZeros64(RegisterID src, RegisterID dst) |
| { |
| if (supportsBMI1()) { |
| m_assembler.tzcntq_rr(src, dst); |
| return; |
| } |
| m_assembler.bsfq_rr(src, dst); |
| ctzAfterBsf<64>(dst); |
| } |
| |
| void countPopulation64(RegisterID src, RegisterID dst) |
| { |
| ASSERT(supportsCountPopulation()); |
| m_assembler.popcntq_rr(src, dst); |
| } |
| |
| void countPopulation64(Address src, RegisterID dst) |
| { |
| ASSERT(supportsCountPopulation()); |
| m_assembler.popcntq_mr(src.offset, src.base, dst); |
| } |
| |
| void lshift64(TrustedImm32 imm, RegisterID dest) |
| { |
| m_assembler.shlq_i8r(imm.m_value, dest); |
| } |
| |
| void lshift64(RegisterID src, RegisterID dest) |
| { |
| if (src == X86Registers::ecx) |
| m_assembler.shlq_CLr(dest); |
| else { |
| ASSERT(src != dest); |
| |
| // Can only shift by ecx, so we do some swapping if we see anything else. |
| swap(src, X86Registers::ecx); |
| m_assembler.shlq_CLr(dest == X86Registers::ecx ? src : dest); |
| swap(src, X86Registers::ecx); |
| } |
| } |
| |
| void rshift64(TrustedImm32 imm, RegisterID dest) |
| { |
| m_assembler.sarq_i8r(imm.m_value, dest); |
| } |
| |
| void rshift64(RegisterID src, RegisterID dest) |
| { |
| if (src == X86Registers::ecx) |
| m_assembler.sarq_CLr(dest); |
| else { |
| ASSERT(src != dest); |
| |
| // Can only shift by ecx, so we do some swapping if we see anything else. |
| swap(src, X86Registers::ecx); |
| m_assembler.sarq_CLr(dest == X86Registers::ecx ? src : dest); |
| swap(src, X86Registers::ecx); |
| } |
| } |
| |
| void urshift64(TrustedImm32 imm, RegisterID dest) |
| { |
| m_assembler.shrq_i8r(imm.m_value, dest); |
| } |
| |
| void urshift64(RegisterID src, RegisterID dest) |
| { |
| if (src == X86Registers::ecx) |
| m_assembler.shrq_CLr(dest); |
| else { |
| ASSERT(src != dest); |
| |
| // Can only shift by ecx, so we do some swapping if we see anything else. |
| swap(src, X86Registers::ecx); |
| m_assembler.shrq_CLr(dest == X86Registers::ecx ? src : dest); |
| swap(src, X86Registers::ecx); |
| } |
| } |
| |
| void rotateRight64(TrustedImm32 imm, RegisterID dest) |
| { |
| m_assembler.rorq_i8r(imm.m_value, dest); |
| } |
| |
| void rotateRight64(RegisterID src, RegisterID dest) |
| { |
| if (src == X86Registers::ecx) |
| m_assembler.rorq_CLr(dest); |
| else { |
| ASSERT(src != dest); |
| |
| // Can only rotate by ecx, so we do some swapping if we see anything else. |
| swap(src, X86Registers::ecx); |
| m_assembler.rorq_CLr(dest == X86Registers::ecx ? src : dest); |
| swap(src, X86Registers::ecx); |
| } |
| } |
| |
| void rotateLeft64(TrustedImm32 imm, RegisterID dest) |
| { |
| m_assembler.rolq_i8r(imm.m_value, dest); |
| } |
| |
| void rotateLeft64(RegisterID src, RegisterID dest) |
| { |
| if (src == X86Registers::ecx) |
| m_assembler.rolq_CLr(dest); |
| else { |
| ASSERT(src != dest); |
| |
| // Can only rotate by ecx, so we do some swapping if we see anything else. |
| swap(src, X86Registers::ecx); |
| m_assembler.rolq_CLr(dest == X86Registers::ecx ? src : dest); |
| swap(src, X86Registers::ecx); |
| } |
| } |
| |
| void mul64(RegisterID src, RegisterID dest) |
| { |
| m_assembler.imulq_rr(src, dest); |
| } |
| |
| void mul64(RegisterID src1, RegisterID src2, RegisterID dest) |
| { |
| if (src2 == dest) { |
| m_assembler.imulq_rr(src1, dest); |
| return; |
| } |
| move(src1, dest); |
| m_assembler.imulq_rr(src2, dest); |
| } |
| |
| void x86ConvertToQuadWord64() |
| { |
| m_assembler.cqo(); |
| } |
| |
| void x86ConvertToQuadWord64(RegisterID rax, RegisterID rdx) |
| { |
| ASSERT_UNUSED(rax, rax == X86Registers::eax); |
| ASSERT_UNUSED(rdx, rdx == X86Registers::edx); |
| x86ConvertToQuadWord64(); |
| } |
| |
| void x86Div64(RegisterID denominator) |
| { |
| m_assembler.idivq_r(denominator); |
| } |
| |
| void x86Div64(RegisterID rax, RegisterID rdx, RegisterID denominator) |
| { |
| ASSERT_UNUSED(rax, rax == X86Registers::eax); |
| ASSERT_UNUSED(rdx, rdx == X86Registers::edx); |
| x86Div64(denominator); |
| } |
| |
| void x86UDiv64(RegisterID denominator) |
| { |
| m_assembler.divq_r(denominator); |
| } |
| |
| void x86UDiv64(RegisterID rax, RegisterID rdx, RegisterID denominator) |
| { |
| ASSERT_UNUSED(rax, rax == X86Registers::eax); |
| ASSERT_UNUSED(rdx, rdx == X86Registers::edx); |
| x86UDiv64(denominator); |
| } |
| |
| void neg64(RegisterID dest) |
| { |
| m_assembler.negq_r(dest); |
| } |
| |
| void neg64(RegisterID src, RegisterID dest) |
| { |
| move(src, dest); |
| m_assembler.negq_r(dest); |
| } |
| |
| void neg64(Address dest) |
| { |
| m_assembler.negq_m(dest.offset, dest.base); |
| } |
| |
| void neg64(BaseIndex dest) |
| { |
| m_assembler.negq_m(dest.offset, dest.base, dest.index, dest.scale); |
| } |
| |
| void or64(RegisterID src, RegisterID dest) |
| { |
| m_assembler.orq_rr(src, dest); |
| } |
| |
| void or64(RegisterID src, Address dest) |
| { |
| m_assembler.orq_rm(src, dest.offset, dest.base); |
| } |
| |
| void or64(RegisterID src, BaseIndex dest) |
| { |
| m_assembler.orq_rm(src, dest.offset, dest.base, dest.index, dest.scale); |
| } |
| |
| void or64(Address src, RegisterID dest) |
| { |
| m_assembler.orq_mr(src.offset, src.base, dest); |
| } |
| |
| void or64(BaseIndex src, RegisterID dest) |
| { |
| m_assembler.orq_mr(src.offset, src.base, src.index, src.scale, dest); |
| } |
| |
| void or64(TrustedImm32 imm, Address dest) |
| { |
| m_assembler.orq_im(imm.m_value, dest.offset, dest.base); |
| } |
| |
| void or64(TrustedImm32 imm, BaseIndex dest) |
| { |
| m_assembler.orq_im(imm.m_value, dest.offset, dest.base, dest.index, dest.scale); |
| } |
| |
| void or64(TrustedImm64 imm, RegisterID srcDest) |
| { |
| if (imm.m_value <= std::numeric_limits<int32_t>::max() |
| && imm.m_value >= std::numeric_limits<int32_t>::min()) { |
| or64(TrustedImm32(static_cast<int32_t>(imm.m_value)), srcDest); |
| return; |
| } |
| move(imm, scratchRegister()); |
| or64(scratchRegister(), srcDest); |
| } |
| |
| void or64(TrustedImm32 imm, RegisterID dest) |
| { |
| m_assembler.orq_ir(imm.m_value, dest); |
| } |
| |
| void or64(RegisterID op1, RegisterID op2, RegisterID dest) |
| { |
| if (op1 == op2) |
| move(op1, dest); |
| else if (op1 == dest) |
| or64(op2, dest); |
| else { |
| move(op2, dest); |
| or64(op1, dest); |
| } |
| } |
| |
| void or64(TrustedImm32 imm, RegisterID src, RegisterID dest) |
| { |
| move(src, dest); |
| or64(imm, dest); |
| } |
| |
| void sub64(RegisterID src, RegisterID dest) |
| { |
| m_assembler.subq_rr(src, dest); |
| } |
| |
| void sub64(TrustedImm32 imm, RegisterID dest) |
| { |
| if (imm.m_value == 1) |
| m_assembler.decq_r(dest); |
| else |
| m_assembler.subq_ir(imm.m_value, dest); |
| } |
| |
| void sub64(TrustedImm64 imm, RegisterID dest) |
| { |
| if (imm.m_value == 1) |
| m_assembler.decq_r(dest); |
| else { |
| move(imm, scratchRegister()); |
| sub64(scratchRegister(), dest); |
| } |
| } |
| |
| void sub64(TrustedImm32 imm, Address address) |
| { |
| m_assembler.subq_im(imm.m_value, address.offset, address.base); |
| } |
| |
| void sub64(TrustedImm32 imm, BaseIndex address) |
| { |
| m_assembler.subq_im(imm.m_value, address.offset, address.base, address.index, address.scale); |
| } |
| |
| void sub64(Address src, RegisterID dest) |
| { |
| m_assembler.subq_mr(src.offset, src.base, dest); |
| } |
| |
| void sub64(BaseIndex src, RegisterID dest) |
| { |
| m_assembler.subq_mr(src.offset, src.base, src.index, src.scale, dest); |
| } |
| |
| void sub64(RegisterID src, Address dest) |
| { |
| m_assembler.subq_rm(src, dest.offset, dest.base); |
| } |
| |
| void sub64(RegisterID src, BaseIndex dest) |
| { |
| m_assembler.subq_rm(src, dest.offset, dest.base, dest.index, dest.scale); |
| } |
| |
| void xor64(RegisterID src, RegisterID dest) |
| { |
| m_assembler.xorq_rr(src, dest); |
| } |
| |
| void xor64(RegisterID op1, RegisterID op2, RegisterID dest) |
| { |
| if (op1 == op2) |
| move(TrustedImm32(0), dest); |
| else if (op1 == dest) |
| xor64(op2, dest); |
| else { |
| move(op2, dest); |
| xor64(op1, dest); |
| } |
| } |
| |
| void xor64(RegisterID src, Address dest) |
| { |
| m_assembler.xorq_rm(src, dest.offset, dest.base); |
| } |
| |
| void xor64(RegisterID src, BaseIndex dest) |
| { |
| m_assembler.xorq_rm(src, dest.offset, dest.base, dest.index, dest.scale); |
| } |
| |
| void xor64(Address src, RegisterID dest) |
| { |
| m_assembler.xorq_mr(src.offset, src.base, dest); |
| } |
| |
| void xor64(BaseIndex src, RegisterID dest) |
| { |
| m_assembler.xorq_mr(src.offset, src.base, src.index, src.scale, dest); |
| } |
| |
| void xor64(TrustedImm32 imm, Address dest) |
| { |
| m_assembler.xorq_im(imm.m_value, dest.offset, dest.base); |
| } |
| |
| void xor64(TrustedImm32 imm, BaseIndex dest) |
| { |
| m_assembler.xorq_im(imm.m_value, dest.offset, dest.base, dest.index, dest.scale); |
| } |
| |
| void xor64(TrustedImm32 imm, RegisterID srcDest) |
| { |
| m_assembler.xorq_ir(imm.m_value, srcDest); |
| } |
| |
| void xor64(TrustedImm64 imm, RegisterID srcDest) |
| { |
| move(imm, scratchRegister()); |
| xor64(scratchRegister(), srcDest); |
| } |
| |
| void not64(RegisterID srcDest) |
| { |
| m_assembler.notq_r(srcDest); |
| } |
| |
| void not64(Address dest) |
| { |
| m_assembler.notq_m(dest.offset, dest.base); |
| } |
| |
| void not64(BaseIndex dest) |
| { |
| m_assembler.notq_m(dest.offset, dest.base, dest.index, dest.scale); |
| } |
| |
| void load64(ImplicitAddress address, RegisterID dest) |
| { |
| m_assembler.movq_mr(address.offset, address.base, dest); |
| } |
| |
| void load64(BaseIndex address, RegisterID dest) |
| { |
| m_assembler.movq_mr(address.offset, address.base, address.index, address.scale, dest); |
| } |
| |
| void load64(const void* address, RegisterID dest) |
| { |
| if (dest == X86Registers::eax) |
| m_assembler.movq_mEAX(address); |
| else { |
| move(TrustedImmPtr(address), dest); |
| load64(dest, dest); |
| } |
| } |
| |
| DataLabel32 load64WithAddressOffsetPatch(Address address, RegisterID dest) |
| { |
| padBeforePatch(); |
| m_assembler.movq_mr_disp32(address.offset, address.base, dest); |
| return DataLabel32(this); |
| } |
| |
| DataLabelCompact load64WithCompactAddressOffsetPatch(Address address, RegisterID dest) |
| { |
| padBeforePatch(); |
| m_assembler.movq_mr_disp8(address.offset, address.base, dest); |
| return DataLabelCompact(this); |
| } |
| |
| void store64(RegisterID src, ImplicitAddress address) |
| { |
| m_assembler.movq_rm(src, address.offset, address.base); |
| } |
| |
| void store64(RegisterID src, BaseIndex address) |
| { |
| m_assembler.movq_rm(src, address.offset, address.base, address.index, address.scale); |
| } |
| |
| void store64(RegisterID src, void* address) |
| { |
| if (src == X86Registers::eax) |
| m_assembler.movq_EAXm(address); |
| else { |
| move(TrustedImmPtr(address), scratchRegister()); |
| store64(src, scratchRegister()); |
| } |
| } |
| |
| void store64(TrustedImm32 imm, ImplicitAddress address) |
| { |
| m_assembler.movq_i32m(imm.m_value, address.offset, address.base); |
| } |
| |
| void store64(TrustedImm32 imm, BaseIndex address) |
| { |
| m_assembler.movq_i32m(imm.m_value, address.offset, address.base, address.index, address.scale); |
| } |
| |
| void store64(TrustedImm64 imm, ImplicitAddress address) |
| { |
| if (CAN_SIGN_EXTEND_32_64(imm.m_value)) { |
| store64(TrustedImm32(static_cast<int32_t>(imm.m_value)), address); |
| return; |
| } |
| |
| move(imm, scratchRegister()); |
| store64(scratchRegister(), address); |
| } |
| |
| void store64(TrustedImm64 imm, BaseIndex address) |
| { |
| move(imm, scratchRegister()); |
| m_assembler.movq_rm(scratchRegister(), address.offset, address.base, address.index, address.scale); |
| } |
| |
| void storeZero64(ImplicitAddress address) |
| { |
| store64(TrustedImm32(0), address); |
| } |
| |
| void storeZero64(BaseIndex address) |
| { |
| store64(TrustedImm32(0), address); |
| } |
| |
| DataLabel32 store64WithAddressOffsetPatch(RegisterID src, Address address) |
| { |
| padBeforePatch(); |
| m_assembler.movq_rm_disp32(src, address.offset, address.base); |
| return DataLabel32(this); |
| } |
| |
| void swap64(RegisterID src, RegisterID dest) |
| { |
| m_assembler.xchgq_rr(src, dest); |
| } |
| |
| void swap64(RegisterID src, Address dest) |
| { |
| m_assembler.xchgq_rm(src, dest.offset, dest.base); |
| } |
| |
| void move64ToDouble(RegisterID src, FPRegisterID dest) |
| { |
| m_assembler.movq_rr(src, dest); |
| } |
| |
| void moveDoubleTo64(FPRegisterID src, RegisterID dest) |
| { |
| m_assembler.movq_rr(src, dest); |
| } |
| |
| void compare64(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest) |
| { |
| if (!right.m_value) { |
| if (auto resultCondition = commuteCompareToZeroIntoTest(cond)) { |
| test64(*resultCondition, left, left, dest); |
| return; |
| } |
| } |
| |
| m_assembler.cmpq_ir(right.m_value, left); |
| set32(x86Condition(cond), dest); |
| } |
| |
| void compare64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest) |
| { |
| m_assembler.cmpq_rr(right, left); |
| set32(x86Condition(cond), dest); |
| } |
| |
| Jump branch64(RelationalCondition cond, RegisterID left, RegisterID right) |
| { |
| m_assembler.cmpq_rr(right, left); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| Jump branch64(RelationalCondition cond, RegisterID left, TrustedImm32 right) |
| { |
| if (!right.m_value) { |
| if (auto resultCondition = commuteCompareToZeroIntoTest(cond)) |
| return branchTest64(*resultCondition, left, left); |
| } |
| m_assembler.cmpq_ir(right.m_value, left); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| Jump branch64(RelationalCondition cond, RegisterID left, TrustedImm64 right) |
| { |
| if (((cond == Equal) || (cond == NotEqual)) && !right.m_value) { |
| m_assembler.testq_rr(left, left); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| move(right, scratchRegister()); |
| return branch64(cond, left, scratchRegister()); |
| } |
| |
| Jump branch64(RelationalCondition cond, RegisterID left, Address right) |
| { |
| m_assembler.cmpq_mr(right.offset, right.base, left); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| Jump branch64(RelationalCondition cond, AbsoluteAddress left, RegisterID right) |
| { |
| move(TrustedImmPtr(left.m_ptr), scratchRegister()); |
| return branch64(cond, Address(scratchRegister()), right); |
| } |
| |
| Jump branch64(RelationalCondition cond, Address left, RegisterID right) |
| { |
| m_assembler.cmpq_rm(right, left.offset, left.base); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| Jump branch64(RelationalCondition cond, Address left, TrustedImm32 right) |
| { |
| m_assembler.cmpq_im(right.m_value, left.offset, left.base); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| Jump branch64(RelationalCondition cond, Address left, TrustedImm64 right) |
| { |
| move(right, scratchRegister()); |
| return branch64(cond, left, scratchRegister()); |
| } |
| |
| Jump branch64(RelationalCondition cond, BaseIndex address, RegisterID right) |
| { |
| m_assembler.cmpq_rm(right, address.offset, address.base, address.index, address.scale); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| Jump branch32(RelationalCondition cond, AbsoluteAddress left, RegisterID right) |
| { |
| load32(left.m_ptr, scratchRegister()); |
| return branch32(cond, scratchRegister(), right); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, BaseIndex left, RegisterID right) |
| { |
| return branch64(cond, left, right); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, BaseIndex left, TrustedImmPtr right) |
| { |
| move(right, scratchRegister()); |
| return branchPtr(cond, left, scratchRegister()); |
| } |
| |
| Jump branchTest64(ResultCondition cond, RegisterID reg, RegisterID mask) |
| { |
| m_assembler.testq_rr(reg, mask); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| Jump branchTest64(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| // if we are only interested in the low seven bits, this can be tested with a testb |
| if (mask.m_value == -1) |
| m_assembler.testq_rr(reg, reg); |
| else if ((mask.m_value & ~0x7f) == 0) |
| m_assembler.testb_i8r(mask.m_value, reg); |
| else |
| m_assembler.testq_i32r(mask.m_value, reg); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| Jump branchTest64(ResultCondition cond, RegisterID reg, TrustedImm64 mask) |
| { |
| move(mask, scratchRegister()); |
| return branchTest64(cond, reg, scratchRegister()); |
| } |
| |
| void test64(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest) |
| { |
| if (mask.m_value == -1) |
| m_assembler.testq_rr(reg, reg); |
| else if ((mask.m_value & ~0x7f) == 0) |
| m_assembler.testb_i8r(mask.m_value, reg); |
| else |
| m_assembler.testq_i32r(mask.m_value, reg); |
| set32(x86Condition(cond), dest); |
| } |
| |
| void test64(ResultCondition cond, RegisterID reg, RegisterID mask, RegisterID dest) |
| { |
| m_assembler.testq_rr(reg, mask); |
| set32(x86Condition(cond), dest); |
| } |
| |
| Jump branchTest64(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| load64(address.m_ptr, scratchRegister()); |
| return branchTest64(cond, scratchRegister(), mask); |
| } |
| |
| Jump branchTest64(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| if (mask.m_value == -1) |
| m_assembler.cmpq_im(0, address.offset, address.base); |
| else |
| m_assembler.testq_i32m(mask.m_value, address.offset, address.base); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| Jump branchTest64(ResultCondition cond, Address address, RegisterID reg) |
| { |
| m_assembler.testq_rm(reg, address.offset, address.base); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| Jump branchTest64(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| if (mask.m_value == -1) |
| m_assembler.cmpq_im(0, address.offset, address.base, address.index, address.scale); |
| else |
| m_assembler.testq_i32m(mask.m_value, address.offset, address.base, address.index, address.scale); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| |
| Jump branchAdd64(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
| { |
| add64(imm, dest); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| Jump branchAdd64(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest) |
| { |
| if (src1 == dest) |
| return branchAdd64(cond, src2, dest); |
| move(src2, dest); |
| return branchAdd64(cond, src1, dest); |
| } |
| |
| Jump branchAdd64(ResultCondition cond, Address op1, RegisterID op2, RegisterID dest) |
| { |
| if (op2 == dest) |
| return branchAdd64(cond, op1, dest); |
| if (op1.base == dest) { |
| load32(op1, dest); |
| return branchAdd64(cond, op2, dest); |
| } |
| move(op2, dest); |
| return branchAdd64(cond, op1, dest); |
| } |
| |
| Jump branchAdd64(ResultCondition cond, RegisterID src1, Address src2, RegisterID dest) |
| { |
| return branchAdd64(cond, src2, src1, dest); |
| } |
| |
| Jump branchAdd64(ResultCondition cond, RegisterID src, RegisterID dest) |
| { |
| add64(src, dest); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| Jump branchAdd64(ResultCondition cond, Address src, RegisterID dest) |
| { |
| add64(src, dest); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| Jump branchMul64(ResultCondition cond, RegisterID src, RegisterID dest) |
| { |
| mul64(src, dest); |
| if (cond != Overflow) |
| m_assembler.testq_rr(dest, dest); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| Jump branchMul64(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest) |
| { |
| if (src1 == dest) |
| return branchMul64(cond, src2, dest); |
| move(src2, dest); |
| return branchMul64(cond, src1, dest); |
| } |
| |
| Jump branchSub64(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
| { |
| sub64(imm, dest); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| Jump branchSub64(ResultCondition cond, RegisterID src, RegisterID dest) |
| { |
| sub64(src, dest); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| Jump branchSub64(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest) |
| { |
| move(src1, dest); |
| return branchSub64(cond, src2, dest); |
| } |
| |
| Jump branchNeg64(ResultCondition cond, RegisterID srcDest) |
| { |
| neg64(srcDest); |
| return Jump(m_assembler.jCC(x86Condition(cond))); |
| } |
| |
| void moveConditionally64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID src, RegisterID dest) |
| { |
| m_assembler.cmpq_rr(right, left); |
| cmov(x86Condition(cond), src, dest); |
| } |
| |
| void moveConditionally64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID thenCase, RegisterID elseCase, RegisterID dest) |
| { |
| m_assembler.cmpq_rr(right, left); |
| |
| if (thenCase != dest && elseCase != dest) { |
| move(elseCase, dest); |
| elseCase = dest; |
| } |
| |
| if (elseCase == dest) |
| cmov(x86Condition(cond), thenCase, dest); |
| else |
| cmov(x86Condition(invert(cond)), elseCase, dest); |
| } |
| |
| void moveConditionally64(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID thenCase, RegisterID elseCase, RegisterID dest) |
| { |
| if (!right.m_value) { |
| if (auto resultCondition = commuteCompareToZeroIntoTest(cond)) { |
| moveConditionallyTest64(*resultCondition, left, left, thenCase, elseCase, dest); |
| return; |
| } |
| } |
| |
| m_assembler.cmpq_ir(right.m_value, left); |
| |
| if (thenCase != dest && elseCase != dest) { |
| move(elseCase, dest); |
| elseCase = dest; |
| } |
| |
| if (elseCase == dest) |
| cmov(x86Condition(cond), thenCase, dest); |
| else |
| cmov(x86Condition(invert(cond)), elseCase, dest); |
| } |
| |
| void moveConditionallyTest64(ResultCondition cond, RegisterID testReg, RegisterID mask, RegisterID src, RegisterID dest) |
| { |
| m_assembler.testq_rr(testReg, mask); |
| cmov(x86Condition(cond), src, dest); |
| } |
| |
| void moveConditionallyTest64(ResultCondition cond, RegisterID left, RegisterID right, RegisterID thenCase, RegisterID elseCase, RegisterID dest) |
| { |
| ASSERT(isInvertible(cond)); |
| ASSERT_WITH_MESSAGE(cond != Overflow, "TEST does not set the Overflow Flag."); |
| |
| m_assembler.testq_rr(right, left); |
| |
| if (thenCase != dest && elseCase != dest) { |
| move(elseCase, dest); |
| elseCase = dest; |
| } |
| |
| if (elseCase == dest) |
| cmov(x86Condition(cond), thenCase, dest); |
| else |
| cmov(x86Condition(invert(cond)), elseCase, dest); |
| } |
| |
| void moveConditionallyTest64(ResultCondition cond, RegisterID testReg, TrustedImm32 mask, RegisterID src, RegisterID dest) |
| { |
| // if we are only interested in the low seven bits, this can be tested with a testb |
| if (mask.m_value == -1) |
| m_assembler.testq_rr(testReg, testReg); |
| else if ((mask.m_value & ~0x7f) == 0) |
| m_assembler.testb_i8r(mask.m_value, testReg); |
| else |
| m_assembler.testq_i32r(mask.m_value, testReg); |
| cmov(x86Condition(cond), src, dest); |
| } |
| |
| void moveConditionallyTest64(ResultCondition cond, RegisterID testReg, TrustedImm32 mask, RegisterID thenCase, RegisterID elseCase, RegisterID dest) |
| { |
| ASSERT(isInvertible(cond)); |
| ASSERT_WITH_MESSAGE(cond != Overflow, "TEST does not set the Overflow Flag."); |
| |
| if (mask.m_value == -1) |
| m_assembler.testq_rr(testReg, testReg); |
| else if (!(mask.m_value & ~0x7f)) |
| m_assembler.testb_i8r(mask.m_value, testReg); |
| else |
| m_assembler.testq_i32r(mask.m_value, testReg); |
| |
| if (thenCase != dest && elseCase != dest) { |
| move(elseCase, dest); |
| elseCase = dest; |
| } |
| |
| if (elseCase == dest) |
| cmov(x86Condition(cond), thenCase, dest); |
| else |
| cmov(x86Condition(invert(cond)), elseCase, dest); |
| } |
| |
| template<typename LeftType, typename RightType> |
| void moveDoubleConditionally64(RelationalCondition cond, LeftType left, RightType right, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest) |
| { |
| static_assert(!std::is_same<LeftType, FPRegisterID>::value && !std::is_same<RightType, FPRegisterID>::value, "One of the tested argument could be aliased on dest. Use moveDoubleConditionallyDouble()."); |
| |
| if (thenCase != dest && elseCase != dest) { |
| moveDouble(elseCase, dest); |
| elseCase = dest; |
| } |
| |
| if (elseCase == dest) { |
| Jump falseCase = branch64(invert(cond), left, right); |
| moveDouble(thenCase, dest); |
| falseCase.link(this); |
| } else { |
| Jump trueCase = branch64(cond, left, right); |
| moveDouble(elseCase, dest); |
| trueCase.link(this); |
| } |
| } |
| |
| template<typename TestType, typename MaskType> |
| void moveDoubleConditionallyTest64(ResultCondition cond, TestType test, MaskType mask, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest) |
| { |
| static_assert(!std::is_same<TestType, FPRegisterID>::value && !std::is_same<MaskType, FPRegisterID>::value, "One of the tested argument could be aliased on dest. Use moveDoubleConditionallyDouble()."); |
| |
| if (elseCase == dest && isInvertible(cond)) { |
| Jump falseCase = branchTest64(invert(cond), test, mask); |
| moveDouble(thenCase, dest); |
| falseCase.link(this); |
| } else if (thenCase == dest) { |
| Jump trueCase = branchTest64(cond, test, mask); |
| moveDouble(elseCase, dest); |
| trueCase.link(this); |
| } |
| |
| Jump trueCase = branchTest64(cond, test, mask); |
| moveDouble(elseCase, dest); |
| Jump falseCase = jump(); |
| trueCase.link(this); |
| moveDouble(thenCase, dest); |
| falseCase.link(this); |
| } |
| |
| void abortWithReason(AbortReason reason) |
| { |
| move(TrustedImm32(reason), X86Registers::r11); |
| breakpoint(); |
| } |
| |
| void abortWithReason(AbortReason reason, intptr_t misc) |
| { |
| move(TrustedImm64(misc), X86Registers::r10); |
| abortWithReason(reason); |
| } |
| |
| ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest) |
| { |
| ConvertibleLoadLabel result = ConvertibleLoadLabel(this); |
| m_assembler.movq_mr(address.offset, address.base, dest); |
| return result; |
| } |
| |
| DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest) |
| { |
| padBeforePatch(); |
| m_assembler.movq_i64r(initialValue.asIntptr(), dest); |
| return DataLabelPtr(this); |
| } |
| |
| DataLabelPtr moveWithPatch(TrustedImm32 initialValue, RegisterID dest) |
| { |
| padBeforePatch(); |
| m_assembler.movq_i64r(initialValue.m_value, dest); |
| return DataLabelPtr(this); |
| } |
| |
| Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(nullptr)) |
| { |
| dataLabel = moveWithPatch(initialRightValue, scratchRegister()); |
| return branch64(cond, left, scratchRegister()); |
| } |
| |
| Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(nullptr)) |
| { |
| dataLabel = moveWithPatch(initialRightValue, scratchRegister()); |
| return branch64(cond, left, scratchRegister()); |
| } |
| |
| Jump branch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0)) |
| { |
| padBeforePatch(); |
| m_assembler.movl_i32r(initialRightValue.m_value, scratchRegister()); |
| dataLabel = DataLabel32(this); |
| return branch32(cond, left, scratchRegister()); |
| } |
| |
| DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address) |
| { |
| DataLabelPtr label = moveWithPatch(initialValue, scratchRegister()); |
| store64(scratchRegister(), address); |
| return label; |
| } |
| |
| PatchableJump patchableBranch64(RelationalCondition cond, RegisterID reg, TrustedImm64 imm) |
| { |
| return PatchableJump(branch64(cond, reg, imm)); |
| } |
| |
| PatchableJump patchableBranch64(RelationalCondition cond, RegisterID left, RegisterID right) |
| { |
| return PatchableJump(branch64(cond, left, right)); |
| } |
| |
| using MacroAssemblerX86Common::branch8; |
| Jump branch8(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right) |
| { |
| MacroAssemblerX86Common::move(TrustedImmPtr(left.m_ptr), scratchRegister()); |
| return MacroAssemblerX86Common::branch8(cond, Address(scratchRegister()), right); |
| } |
| |
| using MacroAssemblerX86Common::branchTest8; |
| Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| TrustedImm32 mask8(static_cast<int8_t>(mask.m_value)); |
| TrustedImmPtr addr(reinterpret_cast<void*>(address.offset)); |
| MacroAssemblerX86Common::move(addr, scratchRegister()); |
| return MacroAssemblerX86Common::branchTest8(cond, BaseIndex(scratchRegister(), address.base, TimesOne), mask8); |
| } |
| |
| Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| TrustedImm32 mask8(static_cast<int8_t>(mask.m_value)); |
| MacroAssemblerX86Common::move(TrustedImmPtr(address.m_ptr), scratchRegister()); |
| return MacroAssemblerX86Common::branchTest8(cond, Address(scratchRegister()), mask8); |
| } |
| |
| void xchg64(RegisterID reg, Address address) |
| { |
| m_assembler.xchgq_rm(reg, address.offset, address.base); |
| } |
| |
| void xchg64(RegisterID reg, BaseIndex address) |
| { |
| m_assembler.xchgq_rm(reg, address.offset, address.base, address.index, address.scale); |
| } |
| |
| void atomicStrongCAS64(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, Address address, RegisterID result) |
| { |
| atomicStrongCAS(cond, expectedAndResult, result, address, [&] { m_assembler.cmpxchgq_rm(newValue, address.offset, address.base); }); |
| } |
| |
| void atomicStrongCAS64(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, BaseIndex address, RegisterID result) |
| { |
| atomicStrongCAS(cond, expectedAndResult, result, address, [&] { m_assembler.cmpxchgq_rm(newValue, address.offset, address.base, address.index, address.scale); }); |
| } |
| |
| void atomicStrongCAS64(RegisterID expectedAndResult, RegisterID newValue, Address address) |
| { |
| atomicStrongCAS(expectedAndResult, address, [&] { m_assembler.cmpxchgq_rm(newValue, address.offset, address.base); }); |
| } |
| |
| void atomicStrongCAS64(RegisterID expectedAndResult, RegisterID newValue, BaseIndex address) |
| { |
| atomicStrongCAS(expectedAndResult, address, [&] { m_assembler.cmpxchgq_rm(newValue, address.offset, address.base, address.index, address.scale); }); |
| } |
| |
| Jump branchAtomicStrongCAS64(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, Address address) |
| { |
| return branchAtomicStrongCAS(cond, expectedAndResult, address, [&] { m_assembler.cmpxchgq_rm(newValue, address.offset, address.base); }); |
| } |
| |
| Jump branchAtomicStrongCAS64(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, BaseIndex address) |
| { |
| return branchAtomicStrongCAS(cond, expectedAndResult, address, [&] { m_assembler.cmpxchgq_rm(newValue, address.offset, address.base, address.index, address.scale); }); |
| } |
| |
| void atomicWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, Address address, RegisterID result) |
| { |
| atomicStrongCAS64(cond, expectedAndClobbered, newValue, address, result); |
| } |
| |
| void atomicWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, BaseIndex address, RegisterID result) |
| { |
| atomicStrongCAS64(cond, expectedAndClobbered, newValue, address, result); |
| } |
| |
| Jump branchAtomicWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, Address address) |
| { |
| return branchAtomicStrongCAS64(cond, expectedAndClobbered, newValue, address); |
| } |
| |
| Jump branchAtomicWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, BaseIndex address) |
| { |
| return branchAtomicStrongCAS64(cond, expectedAndClobbered, newValue, address); |
| } |
| |
| void atomicRelaxedWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, Address address, RegisterID result) |
| { |
| atomicStrongCAS64(cond, expectedAndClobbered, newValue, address, result); |
| } |
| |
| void atomicRelaxedWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, BaseIndex address, RegisterID result) |
| { |
| atomicStrongCAS64(cond, expectedAndClobbered, newValue, address, result); |
| } |
| |
| Jump branchAtomicRelaxedWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, Address address) |
| { |
| return branchAtomicStrongCAS64(cond, expectedAndClobbered, newValue, address); |
| } |
| |
| Jump branchAtomicRelaxedWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, BaseIndex address) |
| { |
| return branchAtomicStrongCAS64(cond, expectedAndClobbered, newValue, address); |
| } |
| |
| void atomicAdd64(TrustedImm32 imm, Address address) |
| { |
| m_assembler.lock(); |
| add64(imm, address); |
| } |
| |
| void atomicAdd64(TrustedImm32 imm, BaseIndex address) |
| { |
| m_assembler.lock(); |
| add64(imm, address); |
| } |
| |
| void atomicAdd64(RegisterID reg, Address address) |
| { |
| m_assembler.lock(); |
| add64(reg, address); |
| } |
| |
| void atomicAdd64(RegisterID reg, BaseIndex address) |
| { |
| m_assembler.lock(); |
| add64(reg, address); |
| } |
| |
| void atomicSub64(TrustedImm32 imm, Address address) |
| { |
| m_assembler.lock(); |
| sub64(imm, address); |
| } |
| |
| void atomicSub64(TrustedImm32 imm, BaseIndex address) |
| { |
| m_assembler.lock(); |
| sub64(imm, address); |
| } |
| |
| void atomicSub64(RegisterID reg, Address address) |
| { |
| m_assembler.lock(); |
| sub64(reg, address); |
| } |
| |
| void atomicSub64(RegisterID reg, BaseIndex address) |
| { |
| m_assembler.lock(); |
| sub64(reg, address); |
| } |
| |
| void atomicAnd64(TrustedImm32 imm, Address address) |
| { |
| m_assembler.lock(); |
| and64(imm, address); |
| } |
| |
| void atomicAnd64(TrustedImm32 imm, BaseIndex address) |
| { |
| m_assembler.lock(); |
| and64(imm, address); |
| } |
| |
| void atomicAnd64(RegisterID reg, Address address) |
| { |
| m_assembler.lock(); |
| and64(reg, address); |
| } |
| |
| void atomicAnd64(RegisterID reg, BaseIndex address) |
| { |
| m_assembler.lock(); |
| and64(reg, address); |
| } |
| |
| void atomicOr64(TrustedImm32 imm, Address address) |
| { |
| m_assembler.lock(); |
| or64(imm, address); |
| } |
| |
| void atomicOr64(TrustedImm32 imm, BaseIndex address) |
| { |
| m_assembler.lock(); |
| or64(imm, address); |
| } |
| |
| void atomicOr64(RegisterID reg, Address address) |
| { |
| m_assembler.lock(); |
| or64(reg, address); |
| } |
| |
| void atomicOr64(RegisterID reg, BaseIndex address) |
| { |
| m_assembler.lock(); |
| or64(reg, address); |
| } |
| |
| void atomicXor64(TrustedImm32 imm, Address address) |
| { |
| m_assembler.lock(); |
| xor64(imm, address); |
| } |
| |
| void atomicXor64(TrustedImm32 imm, BaseIndex address) |
| { |
| m_assembler.lock(); |
| xor64(imm, address); |
| } |
| |
| void atomicXor64(RegisterID reg, Address address) |
| { |
| m_assembler.lock(); |
| xor64(reg, address); |
| } |
| |
| void atomicXor64(RegisterID reg, BaseIndex address) |
| { |
| m_assembler.lock(); |
| xor64(reg, address); |
| } |
| |
| void atomicNeg64(Address address) |
| { |
| m_assembler.lock(); |
| neg64(address); |
| } |
| |
| void atomicNeg64(BaseIndex address) |
| { |
| m_assembler.lock(); |
| neg64(address); |
| } |
| |
| void atomicNot64(Address address) |
| { |
| m_assembler.lock(); |
| not64(address); |
| } |
| |
| void atomicNot64(BaseIndex address) |
| { |
| m_assembler.lock(); |
| not64(address); |
| } |
| |
| void atomicXchgAdd64(RegisterID reg, Address address) |
| { |
| m_assembler.lock(); |
| m_assembler.xaddq_rm(reg, address.offset, address.base); |
| } |
| |
| void atomicXchgAdd64(RegisterID reg, BaseIndex address) |
| { |
| m_assembler.lock(); |
| m_assembler.xaddq_rm(reg, address.offset, address.base, address.index, address.scale); |
| } |
| |
| void atomicXchg64(RegisterID reg, Address address) |
| { |
| m_assembler.lock(); |
| m_assembler.xchgq_rm(reg, address.offset, address.base); |
| } |
| |
| void atomicXchg64(RegisterID reg, BaseIndex address) |
| { |
| m_assembler.lock(); |
| m_assembler.xchgq_rm(reg, address.offset, address.base, address.index, address.scale); |
| } |
| |
| #if ENABLE(FAST_TLS_JIT) |
| void loadFromTLS64(uint32_t offset, RegisterID dst) |
| { |
| m_assembler.gs(); |
| m_assembler.movq_mr(offset, dst); |
| } |
| |
| void storeToTLS64(RegisterID src, uint32_t offset) |
| { |
| m_assembler.gs(); |
| m_assembler.movq_rm(src, offset); |
| } |
| #endif |
| |
| void truncateDoubleToUint32(FPRegisterID src, RegisterID dest) |
| { |
| m_assembler.cvttsd2siq_rr(src, dest); |
| } |
| |
| void truncateDoubleToInt64(FPRegisterID src, RegisterID dest) |
| { |
| m_assembler.cvttsd2siq_rr(src, dest); |
| } |
| |
| // int64Min should contain exactly 0x43E0000000000000 == static_cast<double>(int64_t::min()). scratch may |
| // be the same FPR as src. |
| void truncateDoubleToUint64(FPRegisterID src, RegisterID dest, FPRegisterID scratch, FPRegisterID int64Min) |
| { |
| ASSERT(scratch != int64Min); |
| |
| // Since X86 does not have a floating point to unsigned integer instruction, we need to use the signed |
| // integer conversion instruction. If the src is less than int64_t::min() then the results of the two |
| // instructions are the same. Otherwise, we need to: subtract int64_t::min(); truncate double to |
| // uint64_t; then add back int64_t::min() in the destination gpr. |
| |
| Jump large = branchDouble(DoubleGreaterThanOrEqual, src, int64Min); |
| m_assembler.cvttsd2siq_rr(src, dest); |
| Jump done = jump(); |
| large.link(this); |
| moveDouble(src, scratch); |
| m_assembler.subsd_rr(int64Min, scratch); |
| m_assembler.movq_i64r(0x8000000000000000, scratchRegister()); |
| m_assembler.cvttsd2siq_rr(scratch, dest); |
| m_assembler.orq_rr(scratchRegister(), dest); |
| done.link(this); |
| } |
| |
| void truncateFloatToUint32(FPRegisterID src, RegisterID dest) |
| { |
| m_assembler.cvttss2siq_rr(src, dest); |
| } |
| |
| void truncateFloatToInt64(FPRegisterID src, RegisterID dest) |
| { |
| m_assembler.cvttss2siq_rr(src, dest); |
| } |
| |
| // int64Min should contain exactly 0x5f000000 == static_cast<float>(int64_t::min()). scratch may be the |
| // same FPR as src. |
| void truncateFloatToUint64(FPRegisterID src, RegisterID dest, FPRegisterID scratch, FPRegisterID int64Min) |
| { |
| ASSERT(scratch != int64Min); |
| |
| // Since X86 does not have a floating point to unsigned integer instruction, we need to use the signed |
| // integer conversion instruction. If the src is less than int64_t::min() then the results of the two |
| // instructions are the same. Otherwise, we need to: subtract int64_t::min(); truncate double to |
| // uint64_t; then add back int64_t::min() in the destination gpr. |
| |
| Jump large = branchFloat(DoubleGreaterThanOrEqual, src, int64Min); |
| m_assembler.cvttss2siq_rr(src, dest); |
| Jump done = jump(); |
| large.link(this); |
| moveDouble(src, scratch); |
| m_assembler.subss_rr(int64Min, scratch); |
| m_assembler.movq_i64r(0x8000000000000000, scratchRegister()); |
| m_assembler.cvttss2siq_rr(scratch, dest); |
| m_assembler.orq_rr(scratchRegister(), dest); |
| done.link(this); |
| } |
| |
| void convertInt64ToDouble(RegisterID src, FPRegisterID dest) |
| { |
| m_assembler.cvtsi2sdq_rr(src, dest); |
| } |
| |
| void convertInt64ToDouble(Address src, FPRegisterID dest) |
| { |
| m_assembler.cvtsi2sdq_mr(src.offset, src.base, dest); |
| } |
| |
| void convertInt64ToFloat(RegisterID src, FPRegisterID dest) |
| { |
| m_assembler.cvtsi2ssq_rr(src, dest); |
| } |
| |
| void convertInt64ToFloat(Address src, FPRegisterID dest) |
| { |
| m_assembler.cvtsi2ssq_mr(src.offset, src.base, dest); |
| } |
| |
| // One of scratch or scratch2 may be the same as src |
| void convertUInt64ToDouble(RegisterID src, FPRegisterID dest, RegisterID scratch) |
| { |
| RegisterID scratch2 = scratchRegister(); |
| |
| m_assembler.testq_rr(src, src); |
| AssemblerLabel signBitSet = m_assembler.jCC(x86Condition(Signed)); |
| m_assembler.cvtsi2sdq_rr(src, dest); |
| AssemblerLabel done = m_assembler.jmp(); |
| m_assembler.linkJump(signBitSet, m_assembler.label()); |
| if (scratch != src) |
| m_assembler.movq_rr(src, scratch); |
| m_assembler.movq_rr(src, scratch2); |
| m_assembler.shrq_i8r(1, scratch); |
| m_assembler.andq_ir(1, scratch2); |
| m_assembler.orq_rr(scratch, scratch2); |
| m_assembler.cvtsi2sdq_rr(scratch2, dest); |
| m_assembler.addsd_rr(dest, dest); |
| m_assembler.linkJump(done, m_assembler.label()); |
| } |
| |
| // One of scratch or scratch2 may be the same as src |
| void convertUInt64ToFloat(RegisterID src, FPRegisterID dest, RegisterID scratch) |
| { |
| RegisterID scratch2 = scratchRegister(); |
| m_assembler.testq_rr(src, src); |
| AssemblerLabel signBitSet = m_assembler.jCC(x86Condition(Signed)); |
| m_assembler.cvtsi2ssq_rr(src, dest); |
| AssemblerLabel done = m_assembler.jmp(); |
| m_assembler.linkJump(signBitSet, m_assembler.label()); |
| if (scratch != src) |
| m_assembler.movq_rr(src, scratch); |
| m_assembler.movq_rr(src, scratch2); |
| m_assembler.shrq_i8r(1, scratch); |
| m_assembler.andq_ir(1, scratch2); |
| m_assembler.orq_rr(scratch, scratch2); |
| m_assembler.cvtsi2ssq_rr(scratch2, dest); |
| m_assembler.addss_rr(dest, dest); |
| m_assembler.linkJump(done, m_assembler.label()); |
| } |
| |
| static bool supportsFloatingPoint() { return true; } |
| static bool supportsFloatingPointTruncate() { return true; } |
| static bool supportsFloatingPointSqrt() { return true; } |
| static bool supportsFloatingPointAbs() { return true; } |
| |
| template<PtrTag resultTag, PtrTag locationTag> |
| static FunctionPtr<resultTag> readCallTarget(CodeLocationCall<locationTag> call) |
| { |
| return FunctionPtr<resultTag>(X86Assembler::readPointer(call.dataLabelPtrAtOffset(-REPATCH_OFFSET_CALL_R11).dataLocation())); |
| } |
| |
| bool haveScratchRegisterForBlinding() { return m_allowScratchRegister; } |
| RegisterID scratchRegisterForBlinding() { return scratchRegister(); } |
| |
| static bool canJumpReplacePatchableBranchPtrWithPatch() { return true; } |
| static bool canJumpReplacePatchableBranch32WithPatch() { return true; } |
| |
| template<PtrTag tag> |
| static CodeLocationLabel<tag> startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr<tag> label) |
| { |
| const int rexBytes = 1; |
| const int opcodeBytes = 1; |
| const int immediateBytes = 8; |
| const int totalBytes = rexBytes + opcodeBytes + immediateBytes; |
| ASSERT(totalBytes >= maxJumpReplacementSize()); |
| return label.labelAtOffset(-totalBytes); |
| } |
| |
| template<PtrTag tag> |
| static CodeLocationLabel<tag> startOfBranch32WithPatchOnRegister(CodeLocationDataLabel32<tag> label) |
| { |
| const int rexBytes = 1; |
| const int opcodeBytes = 1; |
| const int immediateBytes = 4; |
| const int totalBytes = rexBytes + opcodeBytes + immediateBytes; |
| ASSERT(totalBytes >= maxJumpReplacementSize()); |
| return label.labelAtOffset(-totalBytes); |
| } |
| |
| template<PtrTag tag> |
| static CodeLocationLabel<tag> startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr<tag> label) |
| { |
| return startOfBranchPtrWithPatchOnRegister(label); |
| } |
| |
| template<PtrTag tag> |
| static CodeLocationLabel<tag> startOfPatchableBranch32WithPatchOnAddress(CodeLocationDataLabel32<tag> label) |
| { |
| return startOfBranch32WithPatchOnRegister(label); |
| } |
| |
| template<PtrTag tag> |
| static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel<tag> instructionStart, Address, void* initialValue) |
| { |
| X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), s_scratchRegister); |
| } |
| |
| template<PtrTag tag> |
| static void revertJumpReplacementToPatchableBranch32WithPatch(CodeLocationLabel<tag> instructionStart, Address, int32_t initialValue) |
| { |
| X86Assembler::revertJumpTo_movl_i32r(instructionStart.executableAddress(), initialValue, s_scratchRegister); |
| } |
| |
| template<PtrTag tag> |
| static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel<tag> instructionStart, RegisterID, void* initialValue) |
| { |
| X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), s_scratchRegister); |
| } |
| |
| template<PtrTag callTag, PtrTag destTag> |
| static void repatchCall(CodeLocationCall<callTag> call, CodeLocationLabel<destTag> destination) |
| { |
| X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPATCH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress()); |
| } |
| |
| template<PtrTag callTag, PtrTag destTag> |
| static void repatchCall(CodeLocationCall<callTag> call, FunctionPtr<destTag> destination) |
| { |
| X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPATCH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress()); |
| } |
| |
| private: |
| // If lzcnt is not available, use this after BSR |
| // to count the leading zeros. |
| void clz64AfterBsr(RegisterID dst) |
| { |
| Jump srcIsNonZero = m_assembler.jCC(x86Condition(NonZero)); |
| move(TrustedImm32(64), dst); |
| |
| Jump skipNonZeroCase = jump(); |
| srcIsNonZero.link(this); |
| xor64(TrustedImm32(0x3f), dst); |
| skipNonZeroCase.link(this); |
| } |
| |
| friend class LinkBuffer; |
| |
| template<PtrTag tag> |
| static void linkCall(void* code, Call call, FunctionPtr<tag> function) |
| { |
| if (!call.isFlagSet(Call::Near)) |
| X86Assembler::linkPointer(code, call.m_label.labelAtOffset(-REPATCH_OFFSET_CALL_R11), function.executableAddress()); |
| else if (call.isFlagSet(Call::Tail)) |
| X86Assembler::linkJump(code, call.m_label, function.executableAddress()); |
| else |
| X86Assembler::linkCall(code, call.m_label, function.executableAddress()); |
| } |
| }; |
| |
| } // namespace JSC |
| |
| #endif // ENABLE(ASSEMBLER) |