blob: 0f6a714f01a2de709543183da38ea0c2043714d8 [file] [log] [blame]
/*
* Copyright (C) 2008-2018 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(ASSEMBLER) && CPU(X86_64)
#include "MacroAssemblerX86Common.h"
#define REPATCH_OFFSET_CALL_R11 3
inline bool CAN_SIGN_EXTEND_32_64(int64_t value) { return value == (int64_t)(int32_t)value; }
namespace JSC {
class MacroAssemblerX86_64 : public MacroAssemblerX86Common {
public:
static const unsigned numGPRs = 16;
static const unsigned numFPRs = 16;
static const Scale ScalePtr = TimesEight;
using MacroAssemblerX86Common::add32;
using MacroAssemblerX86Common::and32;
using MacroAssemblerX86Common::branch32;
using MacroAssemblerX86Common::branchAdd32;
using MacroAssemblerX86Common::or32;
using MacroAssemblerX86Common::sub32;
using MacroAssemblerX86Common::load8;
using MacroAssemblerX86Common::load32;
using MacroAssemblerX86Common::store32;
using MacroAssemblerX86Common::store8;
using MacroAssemblerX86Common::call;
using MacroAssemblerX86Common::jump;
using MacroAssemblerX86Common::addDouble;
using MacroAssemblerX86Common::loadDouble;
using MacroAssemblerX86Common::convertInt32ToDouble;
void add32(TrustedImm32 imm, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister());
add32(imm, Address(scratchRegister()));
}
void and32(TrustedImm32 imm, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister());
and32(imm, Address(scratchRegister()));
}
void add32(AbsoluteAddress address, RegisterID dest)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister());
add32(Address(scratchRegister()), dest);
}
void or32(TrustedImm32 imm, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister());
or32(imm, Address(scratchRegister()));
}
void or32(RegisterID reg, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister());
or32(reg, Address(scratchRegister()));
}
void sub32(TrustedImm32 imm, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister());
sub32(imm, Address(scratchRegister()));
}
void load8(const void* address, RegisterID dest)
{
move(TrustedImmPtr(address), dest);
load8(dest, dest);
}
void load16(ExtendedAddress address, RegisterID dest)
{
TrustedImmPtr addr(reinterpret_cast<void*>(address.offset));
MacroAssemblerX86Common::move(addr, scratchRegister());
MacroAssemblerX86Common::load16(BaseIndex(scratchRegister(), address.base, TimesTwo), dest);
}
void load16(BaseIndex address, RegisterID dest)
{
MacroAssemblerX86Common::load16(address, dest);
}
void load16(Address address, RegisterID dest)
{
MacroAssemblerX86Common::load16(address, dest);
}
void load32(const void* address, RegisterID dest)
{
if (dest == X86Registers::eax)
m_assembler.movl_mEAX(address);
else {
move(TrustedImmPtr(address), dest);
load32(dest, dest);
}
}
void addDouble(AbsoluteAddress address, FPRegisterID dest)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister());
m_assembler.addsd_mr(0, scratchRegister(), dest);
}
void convertInt32ToDouble(TrustedImm32 imm, FPRegisterID dest)
{
move(imm, scratchRegister());
m_assembler.cvtsi2sd_rr(scratchRegister(), dest);
}
void store32(TrustedImm32 imm, void* address)
{
move(TrustedImmPtr(address), scratchRegister());
store32(imm, scratchRegister());
}
void store32(RegisterID source, void* address)
{
if (source == X86Registers::eax)
m_assembler.movl_EAXm(address);
else {
move(TrustedImmPtr(address), scratchRegister());
store32(source, scratchRegister());
}
}
void store8(TrustedImm32 imm, void* address)
{
TrustedImm32 imm8(static_cast<int8_t>(imm.m_value));
move(TrustedImmPtr(address), scratchRegister());
store8(imm8, Address(scratchRegister()));
}
void store8(RegisterID reg, void* address)
{
move(TrustedImmPtr(address), scratchRegister());
store8(reg, Address(scratchRegister()));
}
#if OS(WINDOWS)
Call callWithSlowPathReturnType(PtrTag)
{
// On Win64, when the return type is larger than 8 bytes, we need to allocate space on the stack for the return value.
// On entry, rcx should contain a pointer to this stack space. The other parameters are shifted to the right,
// rdx should contain the first argument, r8 should contain the second argument, and r9 should contain the third argument.
// On return, rax contains a pointer to this stack value. See http://msdn.microsoft.com/en-us/library/7572ztz4.aspx.
// We then need to copy the 16 byte return value into rax and rdx, since JIT expects the return value to be split between the two.
// It is assumed that the parameters are already shifted to the right, when entering this method.
// Note: this implementation supports up to 3 parameters.
// JIT relies on the CallerFrame (frame pointer) being put on the stack,
// On Win64 we need to manually copy the frame pointer to the stack, since MSVC may not maintain a frame pointer on 64-bit.
// See http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx where it's stated that rbp MAY be used as a frame pointer.
store64(X86Registers::ebp, Address(X86Registers::esp, -16));
// We also need to allocate the shadow space on the stack for the 4 parameter registers.
// In addition, we need to allocate 16 bytes for the return value.
// Also, we should allocate 16 bytes for the frame pointer, and return address (not populated).
sub64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);
// The first parameter register should contain a pointer to the stack allocated space for the return value.
move(X86Registers::esp, X86Registers::ecx);
add64(TrustedImm32(4 * sizeof(int64_t)), X86Registers::ecx);
DataLabelPtr label = moveWithPatch(TrustedImmPtr(nullptr), scratchRegister());
Call result = Call(m_assembler.call(scratchRegister()), Call::Linkable);
add64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);
// Copy the return value into rax and rdx.
load64(Address(X86Registers::eax, sizeof(int64_t)), X86Registers::edx);
load64(Address(X86Registers::eax), X86Registers::eax);
ASSERT_UNUSED(label, differenceBetween(label, result) == REPATCH_OFFSET_CALL_R11);
return result;
}
#endif
Call call(PtrTag)
{
#if OS(WINDOWS)
// JIT relies on the CallerFrame (frame pointer) being put on the stack,
// On Win64 we need to manually copy the frame pointer to the stack, since MSVC may not maintain a frame pointer on 64-bit.
// See http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx where it's stated that rbp MAY be used as a frame pointer.
store64(X86Registers::ebp, Address(X86Registers::esp, -16));
// On Windows we need to copy the arguments that don't fit in registers to the stack location where the callee expects to find them.
// We don't know the number of arguments at this point, so the arguments (5, 6, ...) should always be copied.
// Copy argument 5
load64(Address(X86Registers::esp, 4 * sizeof(int64_t)), scratchRegister());
store64(scratchRegister(), Address(X86Registers::esp, -4 * static_cast<int32_t>(sizeof(int64_t))));
// Copy argument 6
load64(Address(X86Registers::esp, 5 * sizeof(int64_t)), scratchRegister());
store64(scratchRegister(), Address(X86Registers::esp, -3 * static_cast<int32_t>(sizeof(int64_t))));
// We also need to allocate the shadow space on the stack for the 4 parameter registers.
// Also, we should allocate 16 bytes for the frame pointer, and return address (not populated).
// In addition, we need to allocate 16 bytes for two more parameters, since the call can have up to 6 parameters.
sub64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);
#endif
DataLabelPtr label = moveWithPatch(TrustedImmPtr(nullptr), scratchRegister());
Call result = Call(m_assembler.call(scratchRegister()), Call::Linkable);
#if OS(WINDOWS)
add64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);
#endif
ASSERT_UNUSED(label, differenceBetween(label, result) == REPATCH_OFFSET_CALL_R11);
return result;
}
ALWAYS_INLINE Call call(RegisterID callTag) { return UNUSED_PARAM(callTag), call(NoPtrTag); }
// Address is a memory location containing the address to jump to
void jump(AbsoluteAddress address, PtrTag tag)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister());
jump(Address(scratchRegister()), tag);
}
ALWAYS_INLINE void jump(AbsoluteAddress address, RegisterID jumpTag) { UNUSED_PARAM(jumpTag), jump(address, NoPtrTag); }
Call tailRecursiveCall()
{
DataLabelPtr label = moveWithPatch(TrustedImmPtr(nullptr), scratchRegister());
Jump newJump = Jump(m_assembler.jmp_r(scratchRegister()));
ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPATCH_OFFSET_CALL_R11);
return Call::fromTailJump(newJump);
}
Call makeTailRecursiveCall(Jump oldJump)
{
oldJump.link(this);
DataLabelPtr label = moveWithPatch(TrustedImmPtr(nullptr), scratchRegister());
Jump newJump = Jump(m_assembler.jmp_r(scratchRegister()));
ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPATCH_OFFSET_CALL_R11);
return Call::fromTailJump(newJump);
}
Call threadSafePatchableNearCall()
{
const size_t nearCallOpcodeSize = 1;
const size_t nearCallRelativeLocationSize = sizeof(int32_t);
// We want to make sure the 32-bit near call immediate is 32-bit aligned.
size_t codeSize = m_assembler.codeSize();
size_t alignedSize = WTF::roundUpToMultipleOf<nearCallRelativeLocationSize>(codeSize + nearCallOpcodeSize);
emitNops(alignedSize - (codeSize + nearCallOpcodeSize));
DataLabelPtr label = DataLabelPtr(this);
Call result = nearCall();
ASSERT_UNUSED(label, differenceBetween(label, result) == (nearCallOpcodeSize + nearCallRelativeLocationSize));
return result;
}
Jump branchAdd32(ResultCondition cond, TrustedImm32 src, AbsoluteAddress dest)
{
move(TrustedImmPtr(dest.m_ptr), scratchRegister());
add32(src, Address(scratchRegister()));
return Jump(m_assembler.jCC(x86Condition(cond)));
}
void add64(RegisterID src, RegisterID dest)
{
m_assembler.addq_rr(src, dest);
}
void add64(Address src, RegisterID dest)
{
m_assembler.addq_mr(src.offset, src.base, dest);
}
void add64(BaseIndex src, RegisterID dest)
{
m_assembler.addq_mr(src.offset, src.base, src.index, src.scale, dest);
}
void add64(RegisterID src, Address dest)
{
m_assembler.addq_rm(src, dest.offset, dest.base);
}
void add64(RegisterID src, BaseIndex dest)
{
m_assembler.addq_rm(src, dest.offset, dest.base, dest.index, dest.scale);
}
void add64(AbsoluteAddress src, RegisterID dest)
{
move(TrustedImmPtr(src.m_ptr), scratchRegister());
add64(Address(scratchRegister()), dest);
}
void add64(TrustedImm32 imm, RegisterID srcDest)
{
if (imm.m_value == 1)
m_assembler.incq_r(srcDest);
else
m_assembler.addq_ir(imm.m_value, srcDest);
}
void add64(TrustedImm64 imm, RegisterID dest)
{
if (imm.m_value == 1)
m_assembler.incq_r(dest);
else {
move(imm, scratchRegister());
add64(scratchRegister(), dest);
}
}
void add64(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
m_assembler.leaq_mr(imm.m_value, src, dest);
}
void add64(TrustedImm32 imm, Address address)
{
if (imm.m_value == 1)
m_assembler.incq_m(address.offset, address.base);
else
m_assembler.addq_im(imm.m_value, address.offset, address.base);
}
void add64(TrustedImm32 imm, BaseIndex address)
{
if (imm.m_value == 1)
m_assembler.incq_m(address.offset, address.base, address.index, address.scale);
else
m_assembler.addq_im(imm.m_value, address.offset, address.base, address.index, address.scale);
}
void add64(TrustedImm32 imm, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister());
add64(imm, Address(scratchRegister()));
}
void add64(RegisterID a, RegisterID b, RegisterID dest)
{
x86Lea64(BaseIndex(a, b, TimesOne), dest);
}
void x86Lea64(BaseIndex index, RegisterID dest)
{
if (!index.scale && !index.offset) {
if (index.base == dest) {
add64(index.index, dest);
return;
}
if (index.index == dest) {
add64(index.base, dest);
return;
}
}
m_assembler.leaq_mr(index.offset, index.base, index.index, index.scale, dest);
}
void getEffectiveAddress(BaseIndex address, RegisterID dest)
{
return x86Lea64(address, dest);
}
void addPtrNoFlags(TrustedImm32 imm, RegisterID srcDest)
{
m_assembler.leaq_mr(imm.m_value, srcDest, srcDest);
}
void and64(RegisterID src, RegisterID dest)
{
m_assembler.andq_rr(src, dest);
}
void and64(RegisterID src, Address dest)
{
m_assembler.andq_rm(src, dest.offset, dest.base);
}
void and64(RegisterID src, BaseIndex dest)
{
m_assembler.andq_rm(src, dest.offset, dest.base, dest.index, dest.scale);
}
void and64(Address src, RegisterID dest)
{
m_assembler.andq_mr(src.offset, src.base, dest);
}
void and64(BaseIndex src, RegisterID dest)
{
m_assembler.andq_mr(src.offset, src.base, src.index, src.scale, dest);
}
void and64(TrustedImm32 imm, RegisterID srcDest)
{
m_assembler.andq_ir(imm.m_value, srcDest);
}
void and64(TrustedImm32 imm, Address dest)
{
m_assembler.andq_im(imm.m_value, dest.offset, dest.base);
}
void and64(TrustedImm32 imm, BaseIndex dest)
{
m_assembler.andq_im(imm.m_value, dest.offset, dest.base, dest.index, dest.scale);
}
void and64(TrustedImmPtr imm, RegisterID srcDest)
{
intptr_t intValue = imm.asIntptr();
if (intValue <= std::numeric_limits<int32_t>::max()
&& intValue >= std::numeric_limits<int32_t>::min()) {
and64(TrustedImm32(static_cast<int32_t>(intValue)), srcDest);
return;
}
move(imm, scratchRegister());
and64(scratchRegister(), srcDest);
}
void and64(RegisterID op1, RegisterID op2, RegisterID dest)
{
if (op1 == op2 && op1 != dest && op2 != dest)
move(op1, dest);
else if (op1 == dest)
and64(op2, dest);
else {
move(op2, dest);
and64(op1, dest);
}
}
void countLeadingZeros64(RegisterID src, RegisterID dst)
{
if (supportsLZCNT()) {
m_assembler.lzcntq_rr(src, dst);
return;
}
m_assembler.bsrq_rr(src, dst);
clz64AfterBsr(dst);
}
void countLeadingZeros64(Address src, RegisterID dst)
{
if (supportsLZCNT()) {
m_assembler.lzcntq_mr(src.offset, src.base, dst);
return;
}
m_assembler.bsrq_mr(src.offset, src.base, dst);
clz64AfterBsr(dst);
}
void countTrailingZeros64(RegisterID src, RegisterID dst)
{
if (supportsBMI1()) {
m_assembler.tzcntq_rr(src, dst);
return;
}
m_assembler.bsfq_rr(src, dst);
ctzAfterBsf<64>(dst);
}
void countPopulation64(RegisterID src, RegisterID dst)
{
ASSERT(supportsCountPopulation());
m_assembler.popcntq_rr(src, dst);
}
void countPopulation64(Address src, RegisterID dst)
{
ASSERT(supportsCountPopulation());
m_assembler.popcntq_mr(src.offset, src.base, dst);
}
void lshift64(TrustedImm32 imm, RegisterID dest)
{
m_assembler.shlq_i8r(imm.m_value, dest);
}
void lshift64(RegisterID src, RegisterID dest)
{
if (src == X86Registers::ecx)
m_assembler.shlq_CLr(dest);
else {
ASSERT(src != dest);
// Can only shift by ecx, so we do some swapping if we see anything else.
swap(src, X86Registers::ecx);
m_assembler.shlq_CLr(dest == X86Registers::ecx ? src : dest);
swap(src, X86Registers::ecx);
}
}
void rshift64(TrustedImm32 imm, RegisterID dest)
{
m_assembler.sarq_i8r(imm.m_value, dest);
}
void rshift64(RegisterID src, RegisterID dest)
{
if (src == X86Registers::ecx)
m_assembler.sarq_CLr(dest);
else {
ASSERT(src != dest);
// Can only shift by ecx, so we do some swapping if we see anything else.
swap(src, X86Registers::ecx);
m_assembler.sarq_CLr(dest == X86Registers::ecx ? src : dest);
swap(src, X86Registers::ecx);
}
}
void urshift64(TrustedImm32 imm, RegisterID dest)
{
m_assembler.shrq_i8r(imm.m_value, dest);
}
void urshift64(RegisterID src, RegisterID dest)
{
if (src == X86Registers::ecx)
m_assembler.shrq_CLr(dest);
else {
ASSERT(src != dest);
// Can only shift by ecx, so we do some swapping if we see anything else.
swap(src, X86Registers::ecx);
m_assembler.shrq_CLr(dest == X86Registers::ecx ? src : dest);
swap(src, X86Registers::ecx);
}
}
void rotateRight64(TrustedImm32 imm, RegisterID dest)
{
m_assembler.rorq_i8r(imm.m_value, dest);
}
void rotateRight64(RegisterID src, RegisterID dest)
{
if (src == X86Registers::ecx)
m_assembler.rorq_CLr(dest);
else {
ASSERT(src != dest);
// Can only rotate by ecx, so we do some swapping if we see anything else.
swap(src, X86Registers::ecx);
m_assembler.rorq_CLr(dest == X86Registers::ecx ? src : dest);
swap(src, X86Registers::ecx);
}
}
void rotateLeft64(TrustedImm32 imm, RegisterID dest)
{
m_assembler.rolq_i8r(imm.m_value, dest);
}
void rotateLeft64(RegisterID src, RegisterID dest)
{
if (src == X86Registers::ecx)
m_assembler.rolq_CLr(dest);
else {
ASSERT(src != dest);
// Can only rotate by ecx, so we do some swapping if we see anything else.
swap(src, X86Registers::ecx);
m_assembler.rolq_CLr(dest == X86Registers::ecx ? src : dest);
swap(src, X86Registers::ecx);
}
}
void mul64(RegisterID src, RegisterID dest)
{
m_assembler.imulq_rr(src, dest);
}
void mul64(RegisterID src1, RegisterID src2, RegisterID dest)
{
if (src2 == dest) {
m_assembler.imulq_rr(src1, dest);
return;
}
move(src1, dest);
m_assembler.imulq_rr(src2, dest);
}
void x86ConvertToQuadWord64()
{
m_assembler.cqo();
}
void x86ConvertToQuadWord64(RegisterID rax, RegisterID rdx)
{
ASSERT_UNUSED(rax, rax == X86Registers::eax);
ASSERT_UNUSED(rdx, rdx == X86Registers::edx);
x86ConvertToQuadWord64();
}
void x86Div64(RegisterID denominator)
{
m_assembler.idivq_r(denominator);
}
void x86Div64(RegisterID rax, RegisterID rdx, RegisterID denominator)
{
ASSERT_UNUSED(rax, rax == X86Registers::eax);
ASSERT_UNUSED(rdx, rdx == X86Registers::edx);
x86Div64(denominator);
}
void x86UDiv64(RegisterID denominator)
{
m_assembler.divq_r(denominator);
}
void x86UDiv64(RegisterID rax, RegisterID rdx, RegisterID denominator)
{
ASSERT_UNUSED(rax, rax == X86Registers::eax);
ASSERT_UNUSED(rdx, rdx == X86Registers::edx);
x86UDiv64(denominator);
}
void neg64(RegisterID dest)
{
m_assembler.negq_r(dest);
}
void neg64(RegisterID src, RegisterID dest)
{
move(src, dest);
m_assembler.negq_r(dest);
}
void neg64(Address dest)
{
m_assembler.negq_m(dest.offset, dest.base);
}
void neg64(BaseIndex dest)
{
m_assembler.negq_m(dest.offset, dest.base, dest.index, dest.scale);
}
void or64(RegisterID src, RegisterID dest)
{
m_assembler.orq_rr(src, dest);
}
void or64(RegisterID src, Address dest)
{
m_assembler.orq_rm(src, dest.offset, dest.base);
}
void or64(RegisterID src, BaseIndex dest)
{
m_assembler.orq_rm(src, dest.offset, dest.base, dest.index, dest.scale);
}
void or64(Address src, RegisterID dest)
{
m_assembler.orq_mr(src.offset, src.base, dest);
}
void or64(BaseIndex src, RegisterID dest)
{
m_assembler.orq_mr(src.offset, src.base, src.index, src.scale, dest);
}
void or64(TrustedImm32 imm, Address dest)
{
m_assembler.orq_im(imm.m_value, dest.offset, dest.base);
}
void or64(TrustedImm32 imm, BaseIndex dest)
{
m_assembler.orq_im(imm.m_value, dest.offset, dest.base, dest.index, dest.scale);
}
void or64(TrustedImm64 imm, RegisterID srcDest)
{
if (imm.m_value <= std::numeric_limits<int32_t>::max()
&& imm.m_value >= std::numeric_limits<int32_t>::min()) {
or64(TrustedImm32(static_cast<int32_t>(imm.m_value)), srcDest);
return;
}
move(imm, scratchRegister());
or64(scratchRegister(), srcDest);
}
void or64(TrustedImm32 imm, RegisterID dest)
{
m_assembler.orq_ir(imm.m_value, dest);
}
void or64(RegisterID op1, RegisterID op2, RegisterID dest)
{
if (op1 == op2)
move(op1, dest);
else if (op1 == dest)
or64(op2, dest);
else {
move(op2, dest);
or64(op1, dest);
}
}
void or64(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
move(src, dest);
or64(imm, dest);
}
void sub64(RegisterID src, RegisterID dest)
{
m_assembler.subq_rr(src, dest);
}
void sub64(TrustedImm32 imm, RegisterID dest)
{
if (imm.m_value == 1)
m_assembler.decq_r(dest);
else
m_assembler.subq_ir(imm.m_value, dest);
}
void sub64(TrustedImm64 imm, RegisterID dest)
{
if (imm.m_value == 1)
m_assembler.decq_r(dest);
else {
move(imm, scratchRegister());
sub64(scratchRegister(), dest);
}
}
void sub64(TrustedImm32 imm, Address address)
{
m_assembler.subq_im(imm.m_value, address.offset, address.base);
}
void sub64(TrustedImm32 imm, BaseIndex address)
{
m_assembler.subq_im(imm.m_value, address.offset, address.base, address.index, address.scale);
}
void sub64(Address src, RegisterID dest)
{
m_assembler.subq_mr(src.offset, src.base, dest);
}
void sub64(BaseIndex src, RegisterID dest)
{
m_assembler.subq_mr(src.offset, src.base, src.index, src.scale, dest);
}
void sub64(RegisterID src, Address dest)
{
m_assembler.subq_rm(src, dest.offset, dest.base);
}
void sub64(RegisterID src, BaseIndex dest)
{
m_assembler.subq_rm(src, dest.offset, dest.base, dest.index, dest.scale);
}
void xor64(RegisterID src, RegisterID dest)
{
m_assembler.xorq_rr(src, dest);
}
void xor64(RegisterID op1, RegisterID op2, RegisterID dest)
{
if (op1 == op2)
move(TrustedImm32(0), dest);
else if (op1 == dest)
xor64(op2, dest);
else {
move(op2, dest);
xor64(op1, dest);
}
}
void xor64(RegisterID src, Address dest)
{
m_assembler.xorq_rm(src, dest.offset, dest.base);
}
void xor64(RegisterID src, BaseIndex dest)
{
m_assembler.xorq_rm(src, dest.offset, dest.base, dest.index, dest.scale);
}
void xor64(Address src, RegisterID dest)
{
m_assembler.xorq_mr(src.offset, src.base, dest);
}
void xor64(BaseIndex src, RegisterID dest)
{
m_assembler.xorq_mr(src.offset, src.base, src.index, src.scale, dest);
}
void xor64(TrustedImm32 imm, Address dest)
{
m_assembler.xorq_im(imm.m_value, dest.offset, dest.base);
}
void xor64(TrustedImm32 imm, BaseIndex dest)
{
m_assembler.xorq_im(imm.m_value, dest.offset, dest.base, dest.index, dest.scale);
}
void xor64(TrustedImm32 imm, RegisterID srcDest)
{
m_assembler.xorq_ir(imm.m_value, srcDest);
}
void xor64(TrustedImm64 imm, RegisterID srcDest)
{
move(imm, scratchRegister());
xor64(scratchRegister(), srcDest);
}
void not64(RegisterID srcDest)
{
m_assembler.notq_r(srcDest);
}
void not64(Address dest)
{
m_assembler.notq_m(dest.offset, dest.base);
}
void not64(BaseIndex dest)
{
m_assembler.notq_m(dest.offset, dest.base, dest.index, dest.scale);
}
void load64(ImplicitAddress address, RegisterID dest)
{
m_assembler.movq_mr(address.offset, address.base, dest);
}
void load64(BaseIndex address, RegisterID dest)
{
m_assembler.movq_mr(address.offset, address.base, address.index, address.scale, dest);
}
void load64(const void* address, RegisterID dest)
{
if (dest == X86Registers::eax)
m_assembler.movq_mEAX(address);
else {
move(TrustedImmPtr(address), dest);
load64(dest, dest);
}
}
DataLabel32 load64WithAddressOffsetPatch(Address address, RegisterID dest)
{
padBeforePatch();
m_assembler.movq_mr_disp32(address.offset, address.base, dest);
return DataLabel32(this);
}
DataLabelCompact load64WithCompactAddressOffsetPatch(Address address, RegisterID dest)
{
padBeforePatch();
m_assembler.movq_mr_disp8(address.offset, address.base, dest);
return DataLabelCompact(this);
}
void store64(RegisterID src, ImplicitAddress address)
{
m_assembler.movq_rm(src, address.offset, address.base);
}
void store64(RegisterID src, BaseIndex address)
{
m_assembler.movq_rm(src, address.offset, address.base, address.index, address.scale);
}
void store64(RegisterID src, void* address)
{
if (src == X86Registers::eax)
m_assembler.movq_EAXm(address);
else {
move(TrustedImmPtr(address), scratchRegister());
store64(src, scratchRegister());
}
}
void store64(TrustedImm32 imm, ImplicitAddress address)
{
m_assembler.movq_i32m(imm.m_value, address.offset, address.base);
}
void store64(TrustedImm32 imm, BaseIndex address)
{
m_assembler.movq_i32m(imm.m_value, address.offset, address.base, address.index, address.scale);
}
void store64(TrustedImm64 imm, ImplicitAddress address)
{
if (CAN_SIGN_EXTEND_32_64(imm.m_value)) {
store64(TrustedImm32(static_cast<int32_t>(imm.m_value)), address);
return;
}
move(imm, scratchRegister());
store64(scratchRegister(), address);
}
void store64(TrustedImm64 imm, BaseIndex address)
{
move(imm, scratchRegister());
m_assembler.movq_rm(scratchRegister(), address.offset, address.base, address.index, address.scale);
}
void storeZero64(ImplicitAddress address)
{
store64(TrustedImm32(0), address);
}
void storeZero64(BaseIndex address)
{
store64(TrustedImm32(0), address);
}
DataLabel32 store64WithAddressOffsetPatch(RegisterID src, Address address)
{
padBeforePatch();
m_assembler.movq_rm_disp32(src, address.offset, address.base);
return DataLabel32(this);
}
void swap64(RegisterID src, RegisterID dest)
{
m_assembler.xchgq_rr(src, dest);
}
void swap64(RegisterID src, Address dest)
{
m_assembler.xchgq_rm(src, dest.offset, dest.base);
}
void move64ToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.movq_rr(src, dest);
}
void moveDoubleTo64(FPRegisterID src, RegisterID dest)
{
m_assembler.movq_rr(src, dest);
}
void compare64(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
{
if (!right.m_value) {
if (auto resultCondition = commuteCompareToZeroIntoTest(cond)) {
test64(*resultCondition, left, left, dest);
return;
}
}
m_assembler.cmpq_ir(right.m_value, left);
set32(x86Condition(cond), dest);
}
void compare64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest)
{
m_assembler.cmpq_rr(right, left);
set32(x86Condition(cond), dest);
}
Jump branch64(RelationalCondition cond, RegisterID left, RegisterID right)
{
m_assembler.cmpq_rr(right, left);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branch64(RelationalCondition cond, RegisterID left, TrustedImm32 right)
{
if (!right.m_value) {
if (auto resultCondition = commuteCompareToZeroIntoTest(cond))
return branchTest64(*resultCondition, left, left);
}
m_assembler.cmpq_ir(right.m_value, left);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branch64(RelationalCondition cond, RegisterID left, TrustedImm64 right)
{
if (((cond == Equal) || (cond == NotEqual)) && !right.m_value) {
m_assembler.testq_rr(left, left);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
move(right, scratchRegister());
return branch64(cond, left, scratchRegister());
}
Jump branch64(RelationalCondition cond, RegisterID left, Address right)
{
m_assembler.cmpq_mr(right.offset, right.base, left);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branch64(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
{
move(TrustedImmPtr(left.m_ptr), scratchRegister());
return branch64(cond, Address(scratchRegister()), right);
}
Jump branch64(RelationalCondition cond, Address left, RegisterID right)
{
m_assembler.cmpq_rm(right, left.offset, left.base);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branch64(RelationalCondition cond, Address left, TrustedImm32 right)
{
m_assembler.cmpq_im(right.m_value, left.offset, left.base);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branch64(RelationalCondition cond, Address left, TrustedImm64 right)
{
move(right, scratchRegister());
return branch64(cond, left, scratchRegister());
}
Jump branch64(RelationalCondition cond, BaseIndex address, RegisterID right)
{
m_assembler.cmpq_rm(right, address.offset, address.base, address.index, address.scale);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branch32(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
{
load32(left.m_ptr, scratchRegister());
return branch32(cond, scratchRegister(), right);
}
Jump branchPtr(RelationalCondition cond, BaseIndex left, RegisterID right)
{
return branch64(cond, left, right);
}
Jump branchPtr(RelationalCondition cond, BaseIndex left, TrustedImmPtr right)
{
move(right, scratchRegister());
return branchPtr(cond, left, scratchRegister());
}
Jump branchTest64(ResultCondition cond, RegisterID reg, RegisterID mask)
{
m_assembler.testq_rr(reg, mask);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchTest64(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
{
// if we are only interested in the low seven bits, this can be tested with a testb
if (mask.m_value == -1)
m_assembler.testq_rr(reg, reg);
else if ((mask.m_value & ~0x7f) == 0)
m_assembler.testb_i8r(mask.m_value, reg);
else
m_assembler.testq_i32r(mask.m_value, reg);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchTest64(ResultCondition cond, RegisterID reg, TrustedImm64 mask)
{
move(mask, scratchRegister());
return branchTest64(cond, reg, scratchRegister());
}
void test64(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest)
{
if (mask.m_value == -1)
m_assembler.testq_rr(reg, reg);
else if ((mask.m_value & ~0x7f) == 0)
m_assembler.testb_i8r(mask.m_value, reg);
else
m_assembler.testq_i32r(mask.m_value, reg);
set32(x86Condition(cond), dest);
}
void test64(ResultCondition cond, RegisterID reg, RegisterID mask, RegisterID dest)
{
m_assembler.testq_rr(reg, mask);
set32(x86Condition(cond), dest);
}
Jump branchTest64(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
load64(address.m_ptr, scratchRegister());
return branchTest64(cond, scratchRegister(), mask);
}
Jump branchTest64(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
{
if (mask.m_value == -1)
m_assembler.cmpq_im(0, address.offset, address.base);
else
m_assembler.testq_i32m(mask.m_value, address.offset, address.base);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchTest64(ResultCondition cond, Address address, RegisterID reg)
{
m_assembler.testq_rm(reg, address.offset, address.base);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchTest64(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
{
if (mask.m_value == -1)
m_assembler.cmpq_im(0, address.offset, address.base, address.index, address.scale);
else
m_assembler.testq_i32m(mask.m_value, address.offset, address.base, address.index, address.scale);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchAdd64(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
add64(imm, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchAdd64(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest)
{
if (src1 == dest)
return branchAdd64(cond, src2, dest);
move(src2, dest);
return branchAdd64(cond, src1, dest);
}
Jump branchAdd64(ResultCondition cond, Address op1, RegisterID op2, RegisterID dest)
{
if (op2 == dest)
return branchAdd64(cond, op1, dest);
if (op1.base == dest) {
load32(op1, dest);
return branchAdd64(cond, op2, dest);
}
move(op2, dest);
return branchAdd64(cond, op1, dest);
}
Jump branchAdd64(ResultCondition cond, RegisterID src1, Address src2, RegisterID dest)
{
return branchAdd64(cond, src2, src1, dest);
}
Jump branchAdd64(ResultCondition cond, RegisterID src, RegisterID dest)
{
add64(src, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchAdd64(ResultCondition cond, Address src, RegisterID dest)
{
add64(src, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchMul64(ResultCondition cond, RegisterID src, RegisterID dest)
{
mul64(src, dest);
if (cond != Overflow)
m_assembler.testq_rr(dest, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchMul64(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest)
{
if (src1 == dest)
return branchMul64(cond, src2, dest);
move(src2, dest);
return branchMul64(cond, src1, dest);
}
Jump branchSub64(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
sub64(imm, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchSub64(ResultCondition cond, RegisterID src, RegisterID dest)
{
sub64(src, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchSub64(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest)
{
move(src1, dest);
return branchSub64(cond, src2, dest);
}
Jump branchNeg64(ResultCondition cond, RegisterID srcDest)
{
neg64(srcDest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
void moveConditionally64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID src, RegisterID dest)
{
m_assembler.cmpq_rr(right, left);
cmov(x86Condition(cond), src, dest);
}
void moveConditionally64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
{
m_assembler.cmpq_rr(right, left);
if (thenCase != dest && elseCase != dest) {
move(elseCase, dest);
elseCase = dest;
}
if (elseCase == dest)
cmov(x86Condition(cond), thenCase, dest);
else
cmov(x86Condition(invert(cond)), elseCase, dest);
}
void moveConditionally64(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
{
if (!right.m_value) {
if (auto resultCondition = commuteCompareToZeroIntoTest(cond)) {
moveConditionallyTest64(*resultCondition, left, left, thenCase, elseCase, dest);
return;
}
}
m_assembler.cmpq_ir(right.m_value, left);
if (thenCase != dest && elseCase != dest) {
move(elseCase, dest);
elseCase = dest;
}
if (elseCase == dest)
cmov(x86Condition(cond), thenCase, dest);
else
cmov(x86Condition(invert(cond)), elseCase, dest);
}
void moveConditionallyTest64(ResultCondition cond, RegisterID testReg, RegisterID mask, RegisterID src, RegisterID dest)
{
m_assembler.testq_rr(testReg, mask);
cmov(x86Condition(cond), src, dest);
}
void moveConditionallyTest64(ResultCondition cond, RegisterID left, RegisterID right, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
{
ASSERT(isInvertible(cond));
ASSERT_WITH_MESSAGE(cond != Overflow, "TEST does not set the Overflow Flag.");
m_assembler.testq_rr(right, left);
if (thenCase != dest && elseCase != dest) {
move(elseCase, dest);
elseCase = dest;
}
if (elseCase == dest)
cmov(x86Condition(cond), thenCase, dest);
else
cmov(x86Condition(invert(cond)), elseCase, dest);
}
void moveConditionallyTest64(ResultCondition cond, RegisterID testReg, TrustedImm32 mask, RegisterID src, RegisterID dest)
{
// if we are only interested in the low seven bits, this can be tested with a testb
if (mask.m_value == -1)
m_assembler.testq_rr(testReg, testReg);
else if ((mask.m_value & ~0x7f) == 0)
m_assembler.testb_i8r(mask.m_value, testReg);
else
m_assembler.testq_i32r(mask.m_value, testReg);
cmov(x86Condition(cond), src, dest);
}
void moveConditionallyTest64(ResultCondition cond, RegisterID testReg, TrustedImm32 mask, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
{
ASSERT(isInvertible(cond));
ASSERT_WITH_MESSAGE(cond != Overflow, "TEST does not set the Overflow Flag.");
if (mask.m_value == -1)
m_assembler.testq_rr(testReg, testReg);
else if (!(mask.m_value & ~0x7f))
m_assembler.testb_i8r(mask.m_value, testReg);
else
m_assembler.testq_i32r(mask.m_value, testReg);
if (thenCase != dest && elseCase != dest) {
move(elseCase, dest);
elseCase = dest;
}
if (elseCase == dest)
cmov(x86Condition(cond), thenCase, dest);
else
cmov(x86Condition(invert(cond)), elseCase, dest);
}
template<typename LeftType, typename RightType>
void moveDoubleConditionally64(RelationalCondition cond, LeftType left, RightType right, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest)
{
static_assert(!std::is_same<LeftType, FPRegisterID>::value && !std::is_same<RightType, FPRegisterID>::value, "One of the tested argument could be aliased on dest. Use moveDoubleConditionallyDouble().");
if (thenCase != dest && elseCase != dest) {
moveDouble(elseCase, dest);
elseCase = dest;
}
if (elseCase == dest) {
Jump falseCase = branch64(invert(cond), left, right);
moveDouble(thenCase, dest);
falseCase.link(this);
} else {
Jump trueCase = branch64(cond, left, right);
moveDouble(elseCase, dest);
trueCase.link(this);
}
}
template<typename TestType, typename MaskType>
void moveDoubleConditionallyTest64(ResultCondition cond, TestType test, MaskType mask, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest)
{
static_assert(!std::is_same<TestType, FPRegisterID>::value && !std::is_same<MaskType, FPRegisterID>::value, "One of the tested argument could be aliased on dest. Use moveDoubleConditionallyDouble().");
if (elseCase == dest && isInvertible(cond)) {
Jump falseCase = branchTest64(invert(cond), test, mask);
moveDouble(thenCase, dest);
falseCase.link(this);
} else if (thenCase == dest) {
Jump trueCase = branchTest64(cond, test, mask);
moveDouble(elseCase, dest);
trueCase.link(this);
}
Jump trueCase = branchTest64(cond, test, mask);
moveDouble(elseCase, dest);
Jump falseCase = jump();
trueCase.link(this);
moveDouble(thenCase, dest);
falseCase.link(this);
}
void abortWithReason(AbortReason reason)
{
move(TrustedImm32(reason), X86Registers::r11);
breakpoint();
}
void abortWithReason(AbortReason reason, intptr_t misc)
{
move(TrustedImm64(misc), X86Registers::r10);
abortWithReason(reason);
}
ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest)
{
ConvertibleLoadLabel result = ConvertibleLoadLabel(this);
m_assembler.movq_mr(address.offset, address.base, dest);
return result;
}
DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest)
{
padBeforePatch();
m_assembler.movq_i64r(initialValue.asIntptr(), dest);
return DataLabelPtr(this);
}
DataLabelPtr moveWithPatch(TrustedImm32 initialValue, RegisterID dest)
{
padBeforePatch();
m_assembler.movq_i64r(initialValue.m_value, dest);
return DataLabelPtr(this);
}
Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(nullptr))
{
dataLabel = moveWithPatch(initialRightValue, scratchRegister());
return branch64(cond, left, scratchRegister());
}
Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(nullptr))
{
dataLabel = moveWithPatch(initialRightValue, scratchRegister());
return branch64(cond, left, scratchRegister());
}
Jump branch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0))
{
padBeforePatch();
m_assembler.movl_i32r(initialRightValue.m_value, scratchRegister());
dataLabel = DataLabel32(this);
return branch32(cond, left, scratchRegister());
}
DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address)
{
DataLabelPtr label = moveWithPatch(initialValue, scratchRegister());
store64(scratchRegister(), address);
return label;
}
PatchableJump patchableBranch64(RelationalCondition cond, RegisterID reg, TrustedImm64 imm)
{
return PatchableJump(branch64(cond, reg, imm));
}
PatchableJump patchableBranch64(RelationalCondition cond, RegisterID left, RegisterID right)
{
return PatchableJump(branch64(cond, left, right));
}
using MacroAssemblerX86Common::branch8;
Jump branch8(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right)
{
MacroAssemblerX86Common::move(TrustedImmPtr(left.m_ptr), scratchRegister());
return MacroAssemblerX86Common::branch8(cond, Address(scratchRegister()), right);
}
using MacroAssemblerX86Common::branchTest8;
Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
TrustedImm32 mask8(static_cast<int8_t>(mask.m_value));
TrustedImmPtr addr(reinterpret_cast<void*>(address.offset));
MacroAssemblerX86Common::move(addr, scratchRegister());
return MacroAssemblerX86Common::branchTest8(cond, BaseIndex(scratchRegister(), address.base, TimesOne), mask8);
}
Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
TrustedImm32 mask8(static_cast<int8_t>(mask.m_value));
MacroAssemblerX86Common::move(TrustedImmPtr(address.m_ptr), scratchRegister());
return MacroAssemblerX86Common::branchTest8(cond, Address(scratchRegister()), mask8);
}
void xchg64(RegisterID reg, Address address)
{
m_assembler.xchgq_rm(reg, address.offset, address.base);
}
void xchg64(RegisterID reg, BaseIndex address)
{
m_assembler.xchgq_rm(reg, address.offset, address.base, address.index, address.scale);
}
void atomicStrongCAS64(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, Address address, RegisterID result)
{
atomicStrongCAS(cond, expectedAndResult, result, address, [&] { m_assembler.cmpxchgq_rm(newValue, address.offset, address.base); });
}
void atomicStrongCAS64(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, BaseIndex address, RegisterID result)
{
atomicStrongCAS(cond, expectedAndResult, result, address, [&] { m_assembler.cmpxchgq_rm(newValue, address.offset, address.base, address.index, address.scale); });
}
void atomicStrongCAS64(RegisterID expectedAndResult, RegisterID newValue, Address address)
{
atomicStrongCAS(expectedAndResult, address, [&] { m_assembler.cmpxchgq_rm(newValue, address.offset, address.base); });
}
void atomicStrongCAS64(RegisterID expectedAndResult, RegisterID newValue, BaseIndex address)
{
atomicStrongCAS(expectedAndResult, address, [&] { m_assembler.cmpxchgq_rm(newValue, address.offset, address.base, address.index, address.scale); });
}
Jump branchAtomicStrongCAS64(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, Address address)
{
return branchAtomicStrongCAS(cond, expectedAndResult, address, [&] { m_assembler.cmpxchgq_rm(newValue, address.offset, address.base); });
}
Jump branchAtomicStrongCAS64(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, BaseIndex address)
{
return branchAtomicStrongCAS(cond, expectedAndResult, address, [&] { m_assembler.cmpxchgq_rm(newValue, address.offset, address.base, address.index, address.scale); });
}
void atomicWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, Address address, RegisterID result)
{
atomicStrongCAS64(cond, expectedAndClobbered, newValue, address, result);
}
void atomicWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, BaseIndex address, RegisterID result)
{
atomicStrongCAS64(cond, expectedAndClobbered, newValue, address, result);
}
Jump branchAtomicWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, Address address)
{
return branchAtomicStrongCAS64(cond, expectedAndClobbered, newValue, address);
}
Jump branchAtomicWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, BaseIndex address)
{
return branchAtomicStrongCAS64(cond, expectedAndClobbered, newValue, address);
}
void atomicRelaxedWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, Address address, RegisterID result)
{
atomicStrongCAS64(cond, expectedAndClobbered, newValue, address, result);
}
void atomicRelaxedWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, BaseIndex address, RegisterID result)
{
atomicStrongCAS64(cond, expectedAndClobbered, newValue, address, result);
}
Jump branchAtomicRelaxedWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, Address address)
{
return branchAtomicStrongCAS64(cond, expectedAndClobbered, newValue, address);
}
Jump branchAtomicRelaxedWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, BaseIndex address)
{
return branchAtomicStrongCAS64(cond, expectedAndClobbered, newValue, address);
}
void atomicAdd64(TrustedImm32 imm, Address address)
{
m_assembler.lock();
add64(imm, address);
}
void atomicAdd64(TrustedImm32 imm, BaseIndex address)
{
m_assembler.lock();
add64(imm, address);
}
void atomicAdd64(RegisterID reg, Address address)
{
m_assembler.lock();
add64(reg, address);
}
void atomicAdd64(RegisterID reg, BaseIndex address)
{
m_assembler.lock();
add64(reg, address);
}
void atomicSub64(TrustedImm32 imm, Address address)
{
m_assembler.lock();
sub64(imm, address);
}
void atomicSub64(TrustedImm32 imm, BaseIndex address)
{
m_assembler.lock();
sub64(imm, address);
}
void atomicSub64(RegisterID reg, Address address)
{
m_assembler.lock();
sub64(reg, address);
}
void atomicSub64(RegisterID reg, BaseIndex address)
{
m_assembler.lock();
sub64(reg, address);
}
void atomicAnd64(TrustedImm32 imm, Address address)
{
m_assembler.lock();
and64(imm, address);
}
void atomicAnd64(TrustedImm32 imm, BaseIndex address)
{
m_assembler.lock();
and64(imm, address);
}
void atomicAnd64(RegisterID reg, Address address)
{
m_assembler.lock();
and64(reg, address);
}
void atomicAnd64(RegisterID reg, BaseIndex address)
{
m_assembler.lock();
and64(reg, address);
}
void atomicOr64(TrustedImm32 imm, Address address)
{
m_assembler.lock();
or64(imm, address);
}
void atomicOr64(TrustedImm32 imm, BaseIndex address)
{
m_assembler.lock();
or64(imm, address);
}
void atomicOr64(RegisterID reg, Address address)
{
m_assembler.lock();
or64(reg, address);
}
void atomicOr64(RegisterID reg, BaseIndex address)
{
m_assembler.lock();
or64(reg, address);
}
void atomicXor64(TrustedImm32 imm, Address address)
{
m_assembler.lock();
xor64(imm, address);
}
void atomicXor64(TrustedImm32 imm, BaseIndex address)
{
m_assembler.lock();
xor64(imm, address);
}
void atomicXor64(RegisterID reg, Address address)
{
m_assembler.lock();
xor64(reg, address);
}
void atomicXor64(RegisterID reg, BaseIndex address)
{
m_assembler.lock();
xor64(reg, address);
}
void atomicNeg64(Address address)
{
m_assembler.lock();
neg64(address);
}
void atomicNeg64(BaseIndex address)
{
m_assembler.lock();
neg64(address);
}
void atomicNot64(Address address)
{
m_assembler.lock();
not64(address);
}
void atomicNot64(BaseIndex address)
{
m_assembler.lock();
not64(address);
}
void atomicXchgAdd64(RegisterID reg, Address address)
{
m_assembler.lock();
m_assembler.xaddq_rm(reg, address.offset, address.base);
}
void atomicXchgAdd64(RegisterID reg, BaseIndex address)
{
m_assembler.lock();
m_assembler.xaddq_rm(reg, address.offset, address.base, address.index, address.scale);
}
void atomicXchg64(RegisterID reg, Address address)
{
m_assembler.lock();
m_assembler.xchgq_rm(reg, address.offset, address.base);
}
void atomicXchg64(RegisterID reg, BaseIndex address)
{
m_assembler.lock();
m_assembler.xchgq_rm(reg, address.offset, address.base, address.index, address.scale);
}
#if ENABLE(FAST_TLS_JIT)
void loadFromTLS64(uint32_t offset, RegisterID dst)
{
m_assembler.gs();
m_assembler.movq_mr(offset, dst);
}
void storeToTLS64(RegisterID src, uint32_t offset)
{
m_assembler.gs();
m_assembler.movq_rm(src, offset);
}
#endif
void truncateDoubleToUint32(FPRegisterID src, RegisterID dest)
{
m_assembler.cvttsd2siq_rr(src, dest);
}
void truncateDoubleToInt64(FPRegisterID src, RegisterID dest)
{
m_assembler.cvttsd2siq_rr(src, dest);
}
// int64Min should contain exactly 0x43E0000000000000 == static_cast<double>(int64_t::min()). scratch may
// be the same FPR as src.
void truncateDoubleToUint64(FPRegisterID src, RegisterID dest, FPRegisterID scratch, FPRegisterID int64Min)
{
ASSERT(scratch != int64Min);
// Since X86 does not have a floating point to unsigned integer instruction, we need to use the signed
// integer conversion instruction. If the src is less than int64_t::min() then the results of the two
// instructions are the same. Otherwise, we need to: subtract int64_t::min(); truncate double to
// uint64_t; then add back int64_t::min() in the destination gpr.
Jump large = branchDouble(DoubleGreaterThanOrEqual, src, int64Min);
m_assembler.cvttsd2siq_rr(src, dest);
Jump done = jump();
large.link(this);
moveDouble(src, scratch);
m_assembler.subsd_rr(int64Min, scratch);
m_assembler.movq_i64r(0x8000000000000000, scratchRegister());
m_assembler.cvttsd2siq_rr(scratch, dest);
m_assembler.orq_rr(scratchRegister(), dest);
done.link(this);
}
void truncateFloatToUint32(FPRegisterID src, RegisterID dest)
{
m_assembler.cvttss2siq_rr(src, dest);
}
void truncateFloatToInt64(FPRegisterID src, RegisterID dest)
{
m_assembler.cvttss2siq_rr(src, dest);
}
// int64Min should contain exactly 0x5f000000 == static_cast<float>(int64_t::min()). scratch may be the
// same FPR as src.
void truncateFloatToUint64(FPRegisterID src, RegisterID dest, FPRegisterID scratch, FPRegisterID int64Min)
{
ASSERT(scratch != int64Min);
// Since X86 does not have a floating point to unsigned integer instruction, we need to use the signed
// integer conversion instruction. If the src is less than int64_t::min() then the results of the two
// instructions are the same. Otherwise, we need to: subtract int64_t::min(); truncate double to
// uint64_t; then add back int64_t::min() in the destination gpr.
Jump large = branchFloat(DoubleGreaterThanOrEqual, src, int64Min);
m_assembler.cvttss2siq_rr(src, dest);
Jump done = jump();
large.link(this);
moveDouble(src, scratch);
m_assembler.subss_rr(int64Min, scratch);
m_assembler.movq_i64r(0x8000000000000000, scratchRegister());
m_assembler.cvttss2siq_rr(scratch, dest);
m_assembler.orq_rr(scratchRegister(), dest);
done.link(this);
}
void convertInt64ToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.cvtsi2sdq_rr(src, dest);
}
void convertInt64ToDouble(Address src, FPRegisterID dest)
{
m_assembler.cvtsi2sdq_mr(src.offset, src.base, dest);
}
void convertInt64ToFloat(RegisterID src, FPRegisterID dest)
{
m_assembler.cvtsi2ssq_rr(src, dest);
}
void convertInt64ToFloat(Address src, FPRegisterID dest)
{
m_assembler.cvtsi2ssq_mr(src.offset, src.base, dest);
}
// One of scratch or scratch2 may be the same as src
void convertUInt64ToDouble(RegisterID src, FPRegisterID dest, RegisterID scratch)
{
RegisterID scratch2 = scratchRegister();
m_assembler.testq_rr(src, src);
AssemblerLabel signBitSet = m_assembler.jCC(x86Condition(Signed));
m_assembler.cvtsi2sdq_rr(src, dest);
AssemblerLabel done = m_assembler.jmp();
m_assembler.linkJump(signBitSet, m_assembler.label());
if (scratch != src)
m_assembler.movq_rr(src, scratch);
m_assembler.movq_rr(src, scratch2);
m_assembler.shrq_i8r(1, scratch);
m_assembler.andq_ir(1, scratch2);
m_assembler.orq_rr(scratch, scratch2);
m_assembler.cvtsi2sdq_rr(scratch2, dest);
m_assembler.addsd_rr(dest, dest);
m_assembler.linkJump(done, m_assembler.label());
}
// One of scratch or scratch2 may be the same as src
void convertUInt64ToFloat(RegisterID src, FPRegisterID dest, RegisterID scratch)
{
RegisterID scratch2 = scratchRegister();
m_assembler.testq_rr(src, src);
AssemblerLabel signBitSet = m_assembler.jCC(x86Condition(Signed));
m_assembler.cvtsi2ssq_rr(src, dest);
AssemblerLabel done = m_assembler.jmp();
m_assembler.linkJump(signBitSet, m_assembler.label());
if (scratch != src)
m_assembler.movq_rr(src, scratch);
m_assembler.movq_rr(src, scratch2);
m_assembler.shrq_i8r(1, scratch);
m_assembler.andq_ir(1, scratch2);
m_assembler.orq_rr(scratch, scratch2);
m_assembler.cvtsi2ssq_rr(scratch2, dest);
m_assembler.addss_rr(dest, dest);
m_assembler.linkJump(done, m_assembler.label());
}
static bool supportsFloatingPoint() { return true; }
static bool supportsFloatingPointTruncate() { return true; }
static bool supportsFloatingPointSqrt() { return true; }
static bool supportsFloatingPointAbs() { return true; }
template<PtrTag resultTag, PtrTag locationTag>
static FunctionPtr<resultTag> readCallTarget(CodeLocationCall<locationTag> call)
{
return FunctionPtr<resultTag>(X86Assembler::readPointer(call.dataLabelPtrAtOffset(-REPATCH_OFFSET_CALL_R11).dataLocation()));
}
bool haveScratchRegisterForBlinding() { return m_allowScratchRegister; }
RegisterID scratchRegisterForBlinding() { return scratchRegister(); }
static bool canJumpReplacePatchableBranchPtrWithPatch() { return true; }
static bool canJumpReplacePatchableBranch32WithPatch() { return true; }
template<PtrTag tag>
static CodeLocationLabel<tag> startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr<tag> label)
{
const int rexBytes = 1;
const int opcodeBytes = 1;
const int immediateBytes = 8;
const int totalBytes = rexBytes + opcodeBytes + immediateBytes;
ASSERT(totalBytes >= maxJumpReplacementSize());
return label.labelAtOffset(-totalBytes);
}
template<PtrTag tag>
static CodeLocationLabel<tag> startOfBranch32WithPatchOnRegister(CodeLocationDataLabel32<tag> label)
{
const int rexBytes = 1;
const int opcodeBytes = 1;
const int immediateBytes = 4;
const int totalBytes = rexBytes + opcodeBytes + immediateBytes;
ASSERT(totalBytes >= maxJumpReplacementSize());
return label.labelAtOffset(-totalBytes);
}
template<PtrTag tag>
static CodeLocationLabel<tag> startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr<tag> label)
{
return startOfBranchPtrWithPatchOnRegister(label);
}
template<PtrTag tag>
static CodeLocationLabel<tag> startOfPatchableBranch32WithPatchOnAddress(CodeLocationDataLabel32<tag> label)
{
return startOfBranch32WithPatchOnRegister(label);
}
template<PtrTag tag>
static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel<tag> instructionStart, Address, void* initialValue)
{
X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), s_scratchRegister);
}
template<PtrTag tag>
static void revertJumpReplacementToPatchableBranch32WithPatch(CodeLocationLabel<tag> instructionStart, Address, int32_t initialValue)
{
X86Assembler::revertJumpTo_movl_i32r(instructionStart.executableAddress(), initialValue, s_scratchRegister);
}
template<PtrTag tag>
static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel<tag> instructionStart, RegisterID, void* initialValue)
{
X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), s_scratchRegister);
}
template<PtrTag callTag, PtrTag destTag>
static void repatchCall(CodeLocationCall<callTag> call, CodeLocationLabel<destTag> destination)
{
X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPATCH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress());
}
template<PtrTag callTag, PtrTag destTag>
static void repatchCall(CodeLocationCall<callTag> call, FunctionPtr<destTag> destination)
{
X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPATCH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress());
}
private:
// If lzcnt is not available, use this after BSR
// to count the leading zeros.
void clz64AfterBsr(RegisterID dst)
{
Jump srcIsNonZero = m_assembler.jCC(x86Condition(NonZero));
move(TrustedImm32(64), dst);
Jump skipNonZeroCase = jump();
srcIsNonZero.link(this);
xor64(TrustedImm32(0x3f), dst);
skipNonZeroCase.link(this);
}
friend class LinkBuffer;
template<PtrTag tag>
static void linkCall(void* code, Call call, FunctionPtr<tag> function)
{
if (!call.isFlagSet(Call::Near))
X86Assembler::linkPointer(code, call.m_label.labelAtOffset(-REPATCH_OFFSET_CALL_R11), function.executableAddress());
else if (call.isFlagSet(Call::Tail))
X86Assembler::linkJump(code, call.m_label, function.executableAddress());
else
X86Assembler::linkCall(code, call.m_label, function.executableAddress());
}
};
} // namespace JSC
#endif // ENABLE(ASSEMBLER)