blob: e3f67e1592c8ef9c70bbd06272ed376a3b9cd32a [file] [log] [blame]
/*
* Copyright (C) 2011-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(DFG_JIT)
#include "BlockDirectory.h"
#include "DFGAbstractInterpreter.h"
#include "DFGGenerationInfo.h"
#include "DFGInPlaceAbstractState.h"
#include "DFGJITCompiler.h"
#include "DFGOSRExit.h"
#include "DFGOSRExitJumpPlaceholder.h"
#include "DFGRegisterBank.h"
#include "DFGSilentRegisterSavePlan.h"
#include "JITMathIC.h"
#include "JITOperations.h"
#include "PutKind.h"
#include "SpillRegistersMode.h"
#include "StructureStubInfo.h"
#include "ValueRecovery.h"
#include "VirtualRegister.h"
namespace JSC { namespace DFG {
class GPRTemporary;
class JSValueOperand;
class SlowPathGenerator;
class SpeculativeJIT;
class SpeculateInt32Operand;
class SpeculateStrictInt32Operand;
class SpeculateDoubleOperand;
class SpeculateCellOperand;
class SpeculateBooleanOperand;
enum GeneratedOperandType { GeneratedOperandTypeUnknown, GeneratedOperandInteger, GeneratedOperandJSValue};
// === SpeculativeJIT ===
//
// The SpeculativeJIT is used to generate a fast, but potentially
// incomplete code path for the dataflow. When code generating
// we may make assumptions about operand types, dynamically check,
// and bail-out to an alternate code path if these checks fail.
// Importantly, the speculative code path cannot be reentered once
// a speculative check has failed. This allows the SpeculativeJIT
// to propagate type information (including information that has
// only speculatively been asserted) through the dataflow.
DECLARE_ALLOCATOR_WITH_HEAP_IDENTIFIER(SpeculativeJIT);
class SpeculativeJIT {
WTF_MAKE_FAST_ALLOCATED_WITH_HEAP_IDENTIFIER(SpeculativeJIT);
friend struct OSRExit;
private:
typedef JITCompiler::TrustedImm32 TrustedImm32;
typedef JITCompiler::Imm32 Imm32;
typedef JITCompiler::ImmPtr ImmPtr;
typedef JITCompiler::TrustedImm64 TrustedImm64;
typedef JITCompiler::Imm64 Imm64;
// These constants are used to set priorities for spill order for
// the register allocator.
#if USE(JSVALUE64)
enum SpillOrder {
SpillOrderConstant = 1, // no spill, and cheap fill
SpillOrderSpilled = 2, // no spill
SpillOrderJS = 4, // needs spill
SpillOrderCell = 4, // needs spill
SpillOrderStorage = 4, // needs spill
SpillOrderInteger = 5, // needs spill and box
SpillOrderBoolean = 5, // needs spill and box
SpillOrderDouble = 6, // needs spill and convert
};
#elif USE(JSVALUE32_64)
enum SpillOrder {
SpillOrderConstant = 1, // no spill, and cheap fill
SpillOrderSpilled = 2, // no spill
SpillOrderJS = 4, // needs spill
SpillOrderStorage = 4, // needs spill
SpillOrderDouble = 4, // needs spill
SpillOrderInteger = 5, // needs spill and box
SpillOrderCell = 5, // needs spill and box
SpillOrderBoolean = 5, // needs spill and box
};
#endif
enum UseChildrenMode { CallUseChildren, UseChildrenCalledExplicitly };
public:
SpeculativeJIT(JITCompiler&);
~SpeculativeJIT();
VM& vm()
{
return m_jit.vm();
}
struct TrustedImmPtr {
template <typename T>
explicit TrustedImmPtr(T* value)
: m_value(value)
{
static_assert(!std::is_base_of<JSCell, T>::value, "To use a GC pointer, the graph must be aware of it. Use SpeculativeJIT::TrustedImmPtr::weakPointer instead.");
}
explicit TrustedImmPtr(RegisteredStructure structure)
: m_value(structure.get())
{ }
explicit TrustedImmPtr(std::nullptr_t)
: m_value(nullptr)
{ }
explicit TrustedImmPtr(FrozenValue* value)
: m_value(value->cell())
{
RELEASE_ASSERT(value->value().isCell());
}
explicit TrustedImmPtr(size_t value)
: m_value(bitwise_cast<void*>(value))
{
}
static TrustedImmPtr weakPointer(Graph& graph, JSCell* cell)
{
graph.m_plan.weakReferences().addLazily(cell);
return TrustedImmPtr(bitwise_cast<size_t>(cell));
}
operator MacroAssembler::TrustedImmPtr() const { return m_value; }
operator MacroAssembler::TrustedImm() const { return m_value; }
intptr_t asIntptr()
{
return m_value.asIntptr();
}
private:
MacroAssembler::TrustedImmPtr m_value;
};
bool compile();
void createOSREntries();
void linkOSREntries(LinkBuffer&);
BasicBlock* nextBlock()
{
for (BlockIndex resultIndex = m_block->index + 1; ; resultIndex++) {
if (resultIndex >= m_jit.graph().numBlocks())
return 0;
if (BasicBlock* result = m_jit.graph().block(resultIndex))
return result;
}
}
#if USE(JSVALUE64)
GPRReg fillJSValue(Edge);
#elif USE(JSVALUE32_64)
bool fillJSValue(Edge, GPRReg&, GPRReg&, FPRReg&);
#endif
GPRReg fillStorage(Edge);
// lock and unlock GPR & FPR registers.
void lock(GPRReg reg)
{
m_gprs.lock(reg);
}
void lock(FPRReg reg)
{
m_fprs.lock(reg);
}
void unlock(GPRReg reg)
{
m_gprs.unlock(reg);
}
void unlock(FPRReg reg)
{
m_fprs.unlock(reg);
}
// Used to check whether a child node is on its last use,
// and its machine registers may be reused.
bool canReuse(Node* node)
{
return generationInfo(node).useCount() == 1;
}
bool canReuse(Node* nodeA, Node* nodeB)
{
return nodeA == nodeB && generationInfo(nodeA).useCount() == 2;
}
bool canReuse(Edge nodeUse)
{
return canReuse(nodeUse.node());
}
GPRReg reuse(GPRReg reg)
{
m_gprs.lock(reg);
return reg;
}
FPRReg reuse(FPRReg reg)
{
m_fprs.lock(reg);
return reg;
}
// Allocate a gpr/fpr.
GPRReg allocate()
{
#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset());
#endif
VirtualRegister spillMe;
GPRReg gpr = m_gprs.allocate(spillMe);
if (spillMe.isValid()) {
#if USE(JSVALUE32_64)
GenerationInfo& info = generationInfoFromVirtualRegister(spillMe);
if ((info.registerFormat() & DataFormatJS))
m_gprs.release(info.tagGPR() == gpr ? info.payloadGPR() : info.tagGPR());
#endif
spill(spillMe);
}
return gpr;
}
GPRReg allocate(GPRReg specific)
{
#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset());
#endif
VirtualRegister spillMe = m_gprs.allocateSpecific(specific);
if (spillMe.isValid()) {
#if USE(JSVALUE32_64)
GenerationInfo& info = generationInfoFromVirtualRegister(spillMe);
RELEASE_ASSERT(info.registerFormat() != DataFormatJSDouble);
if ((info.registerFormat() & DataFormatJS))
m_gprs.release(info.tagGPR() == specific ? info.payloadGPR() : info.tagGPR());
#endif
spill(spillMe);
}
return specific;
}
GPRReg tryAllocate()
{
return m_gprs.tryAllocate();
}
FPRReg fprAllocate()
{
#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset());
#endif
VirtualRegister spillMe;
FPRReg fpr = m_fprs.allocate(spillMe);
if (spillMe.isValid())
spill(spillMe);
return fpr;
}
// Check whether a VirtualRegsiter is currently in a machine register.
// We use this when filling operands to fill those that are already in
// machine registers first (by locking VirtualRegsiters that are already
// in machine register before filling those that are not we attempt to
// avoid spilling values we will need immediately).
bool isFilled(Node* node)
{
return generationInfo(node).registerFormat() != DataFormatNone;
}
bool isFilledDouble(Node* node)
{
return generationInfo(node).registerFormat() == DataFormatDouble;
}
// Called on an operand once it has been consumed by a parent node.
void use(Node* node)
{
if (!node->hasResult())
return;
GenerationInfo& info = generationInfo(node);
// use() returns true when the value becomes dead, and any
// associated resources may be freed.
if (!info.use(*m_stream))
return;
// Release the associated machine registers.
DataFormat registerFormat = info.registerFormat();
#if USE(JSVALUE64)
if (registerFormat == DataFormatDouble)
m_fprs.release(info.fpr());
else if (registerFormat != DataFormatNone)
m_gprs.release(info.gpr());
#elif USE(JSVALUE32_64)
if (registerFormat == DataFormatDouble)
m_fprs.release(info.fpr());
else if (registerFormat & DataFormatJS) {
m_gprs.release(info.tagGPR());
m_gprs.release(info.payloadGPR());
} else if (registerFormat != DataFormatNone)
m_gprs.release(info.gpr());
#endif
}
void use(Edge nodeUse)
{
use(nodeUse.node());
}
RegisterSet usedRegisters();
bool masqueradesAsUndefinedWatchpointIsStillValid(const CodeOrigin& codeOrigin)
{
return m_jit.graph().masqueradesAsUndefinedWatchpointIsStillValid(codeOrigin);
}
bool masqueradesAsUndefinedWatchpointIsStillValid()
{
return masqueradesAsUndefinedWatchpointIsStillValid(m_currentNode->origin.semantic);
}
void compileStoreBarrier(Node*);
// Called by the speculative operand types, below, to fill operand to
// machine registers, implicitly generating speculation checks as needed.
GPRReg fillSpeculateInt32(Edge, DataFormat& returnFormat);
GPRReg fillSpeculateInt32Strict(Edge);
GPRReg fillSpeculateInt52(Edge, DataFormat desiredFormat);
FPRReg fillSpeculateDouble(Edge);
GPRReg fillSpeculateCell(Edge);
GPRReg fillSpeculateBoolean(Edge);
GeneratedOperandType checkGeneratedTypeForToInt32(Node*);
void addSlowPathGenerator(std::unique_ptr<SlowPathGenerator>);
void addSlowPathGeneratorLambda(Function<void()>&&);
void runSlowPathGenerators(PCToCodeOriginMapBuilder&);
void compile(Node*);
void noticeOSRBirth(Node*);
void bail(AbortReason);
void compileCurrentBlock();
void checkArgumentTypes();
void clearGenerationInfo();
// These methods are used when generating 'unexpected'
// calls out from JIT code to C++ helper routines -
// they spill all live values to the appropriate
// slots in the JSStack without changing any state
// in the GenerationInfo.
SilentRegisterSavePlan silentSavePlanForGPR(VirtualRegister spillMe, GPRReg source);
SilentRegisterSavePlan silentSavePlanForFPR(VirtualRegister spillMe, FPRReg source);
void silentSpill(const SilentRegisterSavePlan&);
void silentFill(const SilentRegisterSavePlan&);
template<typename CollectionType>
void silentSpill(const CollectionType& savePlans)
{
for (unsigned i = 0; i < savePlans.size(); ++i)
silentSpill(savePlans[i]);
}
template<typename CollectionType>
void silentFill(const CollectionType& savePlans)
{
for (unsigned i = savePlans.size(); i--;)
silentFill(savePlans[i]);
}
template<typename CollectionType>
void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, GPRReg exclude, GPRReg exclude2 = InvalidGPRReg, FPRReg fprExclude = InvalidFPRReg)
{
ASSERT(plans.isEmpty());
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
GPRReg gpr = iter.regID();
if (iter.name().isValid() && gpr != exclude && gpr != exclude2) {
SilentRegisterSavePlan plan = silentSavePlanForGPR(iter.name(), gpr);
if (doSpill)
silentSpill(plan);
plans.append(plan);
}
}
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name().isValid() && iter.regID() != fprExclude) {
SilentRegisterSavePlan plan = silentSavePlanForFPR(iter.name(), iter.regID());
if (doSpill)
silentSpill(plan);
plans.append(plan);
}
}
}
template<typename CollectionType>
void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, NoResultTag)
{
silentSpillAllRegistersImpl(doSpill, plans, InvalidGPRReg, InvalidGPRReg, InvalidFPRReg);
}
template<typename CollectionType>
void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, FPRReg exclude)
{
silentSpillAllRegistersImpl(doSpill, plans, InvalidGPRReg, InvalidGPRReg, exclude);
}
template<typename CollectionType>
void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, JSValueRegs exclude)
{
#if USE(JSVALUE32_64)
silentSpillAllRegistersImpl(doSpill, plans, exclude.tagGPR(), exclude.payloadGPR());
#else
silentSpillAllRegistersImpl(doSpill, plans, exclude.gpr());
#endif
}
void silentSpillAllRegisters(GPRReg exclude, GPRReg exclude2 = InvalidGPRReg, FPRReg fprExclude = InvalidFPRReg)
{
silentSpillAllRegistersImpl(true, m_plans, exclude, exclude2, fprExclude);
}
void silentSpillAllRegisters(FPRReg exclude)
{
silentSpillAllRegisters(InvalidGPRReg, InvalidGPRReg, exclude);
}
void silentSpillAllRegisters(JSValueRegs exclude)
{
#if USE(JSVALUE64)
silentSpillAllRegisters(exclude.payloadGPR());
#else
silentSpillAllRegisters(exclude.payloadGPR(), exclude.tagGPR());
#endif
}
void silentFillAllRegisters()
{
while (!m_plans.isEmpty()) {
SilentRegisterSavePlan& plan = m_plans.last();
silentFill(plan);
m_plans.removeLast();
}
}
// These methods convert between doubles, and doubles boxed and JSValues.
#if USE(JSVALUE64)
GPRReg boxDouble(FPRReg fpr, GPRReg gpr)
{
return m_jit.boxDouble(fpr, gpr);
}
FPRReg unboxDouble(GPRReg gpr, GPRReg resultGPR, FPRReg fpr)
{
return m_jit.unboxDouble(gpr, resultGPR, fpr);
}
GPRReg boxDouble(FPRReg fpr)
{
return boxDouble(fpr, allocate());
}
void boxInt52(GPRReg sourceGPR, GPRReg targetGPR, DataFormat);
#elif USE(JSVALUE32_64)
void boxDouble(FPRReg fpr, GPRReg tagGPR, GPRReg payloadGPR)
{
m_jit.boxDouble(fpr, tagGPR, payloadGPR);
}
void unboxDouble(GPRReg tagGPR, GPRReg payloadGPR, FPRReg fpr, FPRReg scratchFPR)
{
m_jit.unboxDouble(tagGPR, payloadGPR, fpr, scratchFPR);
}
#endif
void boxDouble(FPRReg fpr, JSValueRegs regs)
{
m_jit.boxDouble(fpr, regs);
}
// Spill a VirtualRegister to the JSStack.
void spill(VirtualRegister spillMe)
{
GenerationInfo& info = generationInfoFromVirtualRegister(spillMe);
#if USE(JSVALUE32_64)
if (info.registerFormat() == DataFormatNone) // it has been spilled. JS values which have two GPRs can reach here
return;
#endif
// Check the GenerationInfo to see if this value need writing
// to the JSStack - if not, mark it as spilled & return.
if (!info.needsSpill()) {
info.setSpilled(*m_stream, spillMe);
return;
}
DataFormat spillFormat = info.registerFormat();
switch (spillFormat) {
case DataFormatStorage: {
// This is special, since it's not a JS value - as in it's not visible to JS
// code.
m_jit.storePtr(info.gpr(), JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, DataFormatStorage);
return;
}
case DataFormatInt32: {
m_jit.store32(info.gpr(), JITCompiler::payloadFor(spillMe));
info.spill(*m_stream, spillMe, DataFormatInt32);
return;
}
#if USE(JSVALUE64)
case DataFormatDouble: {
m_jit.storeDouble(info.fpr(), JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, DataFormatDouble);
return;
}
case DataFormatInt52:
case DataFormatStrictInt52: {
m_jit.store64(info.gpr(), JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, spillFormat);
return;
}
default:
// The following code handles JSValues, int32s, and cells.
RELEASE_ASSERT(spillFormat == DataFormatCell || spillFormat & DataFormatJS);
GPRReg reg = info.gpr();
// We need to box int32 and cell values ...
// but on JSVALUE64 boxing a cell is a no-op!
if (spillFormat == DataFormatInt32)
m_jit.or64(GPRInfo::numberTagRegister, reg);
// Spill the value, and record it as spilled in its boxed form.
m_jit.store64(reg, JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, (DataFormat)(spillFormat | DataFormatJS));
return;
#elif USE(JSVALUE32_64)
case DataFormatCell:
case DataFormatBoolean: {
m_jit.store32(info.gpr(), JITCompiler::payloadFor(spillMe));
info.spill(*m_stream, spillMe, spillFormat);
return;
}
case DataFormatDouble: {
// On JSVALUE32_64 boxing a double is a no-op.
m_jit.storeDouble(info.fpr(), JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, DataFormatDouble);
return;
}
default:
// The following code handles JSValues.
RELEASE_ASSERT(spillFormat & DataFormatJS);
m_jit.store32(info.tagGPR(), JITCompiler::tagFor(spillMe));
m_jit.store32(info.payloadGPR(), JITCompiler::payloadFor(spillMe));
info.spill(*m_stream, spillMe, spillFormat);
return;
#endif
}
}
bool isKnownInteger(Node* node) { return m_state.forNode(node).isType(SpecInt32Only); }
bool isKnownCell(Node* node) { return m_state.forNode(node).isType(SpecCell); }
bool isKnownNotInteger(Node* node) { return !(m_state.forNode(node).m_type & SpecInt32Only); }
bool isKnownNotNumber(Node* node) { return !(m_state.forNode(node).m_type & SpecFullNumber); }
bool isKnownNotCell(Node* node) { return !(m_state.forNode(node).m_type & SpecCell); }
bool isKnownNotOther(Node* node) { return !(m_state.forNode(node).m_type & SpecOther); }
bool canBeRope(Edge&);
UniquedStringImpl* identifierUID(unsigned index)
{
return m_jit.graph().identifiers()[index];
}
// Spill all VirtualRegisters back to the JSStack.
void flushRegisters()
{
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
if (iter.name().isValid()) {
spill(iter.name());
iter.release();
}
}
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name().isValid()) {
spill(iter.name());
iter.release();
}
}
}
// Used to ASSERT flushRegisters() has been called prior to
// calling out from JIT code to a C helper function.
bool isFlushed()
{
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
if (iter.name().isValid())
return false;
}
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name().isValid())
return false;
}
return true;
}
#if USE(JSVALUE64)
static MacroAssembler::Imm64 valueOfJSConstantAsImm64(Node* node)
{
return MacroAssembler::Imm64(JSValue::encode(node->asJSValue()));
}
#endif
// Helper functions to enable code sharing in implementations of bit/shift ops.
void bitOp(NodeType op, int32_t imm, GPRReg op1, GPRReg result)
{
switch (op) {
case ArithBitAnd:
m_jit.and32(Imm32(imm), op1, result);
break;
case ArithBitOr:
m_jit.or32(Imm32(imm), op1, result);
break;
case ArithBitXor:
m_jit.xor32(Imm32(imm), op1, result);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void bitOp(NodeType op, GPRReg op1, GPRReg op2, GPRReg result)
{
switch (op) {
case ArithBitAnd:
m_jit.and32(op1, op2, result);
break;
case ArithBitOr:
m_jit.or32(op1, op2, result);
break;
case ArithBitXor:
m_jit.xor32(op1, op2, result);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void shiftOp(NodeType op, GPRReg op1, int32_t shiftAmount, GPRReg result)
{
switch (op) {
case ArithBitRShift:
m_jit.rshift32(op1, Imm32(shiftAmount), result);
break;
case ArithBitLShift:
m_jit.lshift32(op1, Imm32(shiftAmount), result);
break;
case BitURShift:
m_jit.urshift32(op1, Imm32(shiftAmount), result);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void shiftOp(NodeType op, GPRReg op1, GPRReg shiftAmount, GPRReg result)
{
switch (op) {
case ArithBitRShift:
m_jit.rshift32(op1, shiftAmount, result);
break;
case ArithBitLShift:
m_jit.lshift32(op1, shiftAmount, result);
break;
case BitURShift:
m_jit.urshift32(op1, shiftAmount, result);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
// Returns the index of the branch node if peephole is okay, UINT_MAX otherwise.
unsigned detectPeepHoleBranch()
{
// Check that no intervening nodes will be generated.
for (unsigned index = m_indexInBlock + 1; index < m_block->size() - 1; ++index) {
Node* node = m_block->at(index);
if (!node->shouldGenerate())
continue;
// Check if it's a Phantom that can be safely ignored.
if (node->op() == Phantom && !node->child1())
continue;
return UINT_MAX;
}
// Check if the lastNode is a branch on this node.
Node* lastNode = m_block->terminal();
return lastNode->op() == Branch && lastNode->child1() == m_currentNode ? m_block->size() - 1 : UINT_MAX;
}
void compileCheckTraps(Node*);
void compileMovHint(Node*);
void compileMovHintAndCheck(Node*);
void compileCheckNeutered(Node*);
void cachedGetById(CodeOrigin, JSValueRegs base, JSValueRegs result, CacheableIdentifier, JITCompiler::Jump slowPathTarget, SpillRegistersMode, AccessType);
void cachedPutById(CodeOrigin, GPRReg baseGPR, JSValueRegs valueRegs, GPRReg scratchGPR, CacheableIdentifier, PutKind, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill);
void cachedGetByVal(CodeOrigin, JSValueRegs base, JSValueRegs property, JSValueRegs result, JITCompiler::Jump slowPathTarget);
#if USE(JSVALUE64)
void cachedGetById(CodeOrigin, GPRReg baseGPR, GPRReg resultGPR, CacheableIdentifier, JITCompiler::Jump slowPathTarget, SpillRegistersMode, AccessType);
void cachedGetByIdWithThis(CodeOrigin, GPRReg baseGPR, GPRReg thisGPR, GPRReg resultGPR, CacheableIdentifier, const JITCompiler::JumpList& slowPathTarget = JITCompiler::JumpList());
#elif USE(JSVALUE32_64)
void cachedGetById(CodeOrigin, GPRReg baseTagGPROrNone, GPRReg basePayloadGPR, GPRReg resultTagGPR, GPRReg resultPayloadGPR, CacheableIdentifier, JITCompiler::Jump slowPathTarget, SpillRegistersMode, AccessType);
void cachedGetByIdWithThis(CodeOrigin, GPRReg baseTagGPROrNone, GPRReg basePayloadGPR, GPRReg thisTagGPROrNone, GPRReg thisPayloadGPR, GPRReg resultTagGPR, GPRReg resultPayloadGPR, CacheableIdentifier, const JITCompiler::JumpList& slowPathTarget = JITCompiler::JumpList());
#endif
void compileDeleteById(Node*);
void compileDeleteByVal(Node*);
void compilePushWithScope(Node*);
void compileGetById(Node*, AccessType);
void compileGetByIdFlush(Node*, AccessType);
void compileInById(Node*);
void compileInByVal(Node*);
void nonSpeculativeNonPeepholeCompareNullOrUndefined(Edge operand);
void nonSpeculativePeepholeBranchNullOrUndefined(Edge operand, Node* branchNode);
void nonSpeculativePeepholeBranch(Node*, Node* branchNode, MacroAssembler::RelationalCondition, S_JITOperation_GJJ helperFunction);
void nonSpeculativeNonPeepholeCompare(Node*, MacroAssembler::RelationalCondition, S_JITOperation_GJJ helperFunction);
void nonSpeculativePeepholeStrictEq(Node*, Node* branchNode, bool invert = false);
void nonSpeculativeNonPeepholeStrictEq(Node*, bool invert = false);
bool nonSpeculativeStrictEq(Node*, bool invert = false);
void compileInstanceOfForCells(Node*, JSValueRegs valueGPR, JSValueRegs prototypeGPR, GPRReg resultGPT, GPRReg scratchGPR, GPRReg scratch2GPR, JITCompiler::Jump slowCase = JITCompiler::Jump());
void compileInstanceOf(Node*);
void compileInstanceOfCustom(Node*);
void compileOverridesHasInstance(Node*);
void compileIsCellWithType(Node*);
void compileIsTypedArrayView(Node*);
void emitCall(Node*);
void emitAllocateButterfly(GPRReg storageGPR, GPRReg sizeGPR, GPRReg scratch1, GPRReg scratch2, GPRReg scratch3, MacroAssembler::JumpList& slowCases);
void emitInitializeButterfly(GPRReg storageGPR, GPRReg sizeGPR, JSValueRegs emptyValueRegs, GPRReg scratchGPR);
void compileAllocateNewArrayWithSize(JSGlobalObject*, GPRReg resultGPR, GPRReg sizeGPR, IndexingType, bool shouldConvertLargeSizeToArrayStorage = true);
// Called once a node has completed code generation but prior to setting
// its result, to free up its children. (This must happen prior to setting
// the nodes result, since the node may have the same VirtualRegister as
// a child, and as such will use the same GeneratioInfo).
void useChildren(Node*);
// These method called to initialize the GenerationInfo
// to describe the result of an operation.
void strictInt32Result(GPRReg reg, Node* node, DataFormat format = DataFormatInt32, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
if (format == DataFormatInt32) {
m_jit.jitAssertIsInt32(reg);
m_gprs.retain(reg, virtualRegister, SpillOrderInteger);
info.initInt32(node, node->refCount(), reg);
} else {
#if USE(JSVALUE64)
RELEASE_ASSERT(format == DataFormatJSInt32);
m_jit.jitAssertIsJSInt32(reg);
m_gprs.retain(reg, virtualRegister, SpillOrderJS);
info.initJSValue(node, node->refCount(), reg, format);
#elif USE(JSVALUE32_64)
RELEASE_ASSERT_NOT_REACHED();
#endif
}
}
void strictInt32Result(GPRReg reg, Node* node, UseChildrenMode mode)
{
strictInt32Result(reg, node, DataFormatInt32, mode);
}
void int52Result(GPRReg reg, Node* node, DataFormat format, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
m_gprs.retain(reg, virtualRegister, SpillOrderJS);
info.initInt52(node, node->refCount(), reg, format);
}
void int52Result(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
int52Result(reg, node, DataFormatInt52, mode);
}
void strictInt52Result(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
int52Result(reg, node, DataFormatStrictInt52, mode);
}
void noResult(Node* node, UseChildrenMode mode = CallUseChildren)
{
if (mode == UseChildrenCalledExplicitly)
return;
useChildren(node);
}
void cellResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderCell);
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
info.initCell(node, node->refCount(), reg);
}
void blessedBooleanResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
#if USE(JSVALUE64)
jsValueResult(reg, node, DataFormatJSBoolean, mode);
#else
booleanResult(reg, node, mode);
#endif
}
void unblessedBooleanResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
#if USE(JSVALUE64)
blessBoolean(reg);
#endif
blessedBooleanResult(reg, node, mode);
}
#if USE(JSVALUE64)
void jsValueResult(GPRReg reg, Node* node, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren)
{
if (format == DataFormatJSInt32)
m_jit.jitAssertIsJSInt32(reg);
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderJS);
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
info.initJSValue(node, node->refCount(), reg, format);
}
void jsValueResult(GPRReg reg, Node* node, UseChildrenMode mode)
{
jsValueResult(reg, node, DataFormatJS, mode);
}
#elif USE(JSVALUE32_64)
void booleanResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderBoolean);
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
info.initBoolean(node, node->refCount(), reg);
}
void jsValueResult(GPRReg tag, GPRReg payload, Node* node, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(tag, virtualRegister, SpillOrderJS);
m_gprs.retain(payload, virtualRegister, SpillOrderJS);
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
info.initJSValue(node, node->refCount(), tag, payload, format);
}
void jsValueResult(GPRReg tag, GPRReg payload, Node* node, UseChildrenMode mode)
{
jsValueResult(tag, payload, node, DataFormatJS, mode);
}
#endif
void jsValueResult(JSValueRegs regs, Node* node, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren)
{
#if USE(JSVALUE64)
jsValueResult(regs.gpr(), node, format, mode);
#else
jsValueResult(regs.tagGPR(), regs.payloadGPR(), node, format, mode);
#endif
}
void storageResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderStorage);
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
info.initStorage(node, node->refCount(), reg);
}
void doubleResult(FPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_fprs.retain(reg, virtualRegister, SpillOrderDouble);
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
info.initDouble(node, node->refCount(), reg);
}
void initConstantInfo(Node* node)
{
ASSERT(node->hasConstant());
generationInfo(node).initConstant(node, node->refCount());
}
template<typename OperationType, typename ResultRegType, typename... Args>
std::enable_if_t<
FunctionTraits<OperationType>::hasResult,
JITCompiler::Call>
callOperation(OperationType operation, ResultRegType result, Args... args)
{
m_jit.setupArguments<OperationType>(args...);
return appendCallSetResult(operation, result);
}
template<typename OperationType, typename... Args>
std::enable_if_t<
!FunctionTraits<OperationType>::hasResult,
JITCompiler::Call>
callOperation(OperationType operation, Args... args)
{
m_jit.setupArguments<OperationType>(args...);
return appendCall(operation);
}
JITCompiler::Call callOperationWithCallFrameRollbackOnException(V_JITOperation_Cb operation, CodeBlock* codeBlock)
{
// Do not register CodeBlock* as a weak-pointer.
m_jit.setupArguments<V_JITOperation_Cb>(TrustedImmPtr(static_cast<void*>(codeBlock)));
return appendCallWithCallFrameRollbackOnException(operation);
}
JITCompiler::Call callOperationWithCallFrameRollbackOnException(Z_JITOperation_G operation, GPRReg result, JSGlobalObject* globalObject)
{
m_jit.setupArguments<Z_JITOperation_G>(TrustedImmPtr::weakPointer(m_graph, globalObject));
return appendCallWithCallFrameRollbackOnExceptionSetResult(operation, result);
}
void prepareForExternalCall()
{
#if !defined(NDEBUG) && !CPU(ARM_THUMB2) && !CPU(MIPS)
// We're about to call out to a "native" helper function. The helper
// function is expected to set topCallFrame itself with the CallFrame
// that is passed to it.
//
// We explicitly trash topCallFrame here so that we'll know if some of
// the helper functions are not setting topCallFrame when they should
// be doing so. Note: the previous value in topcallFrame was not valid
// anyway since it was not being updated by JIT'ed code by design.
for (unsigned i = 0; i < sizeof(void*) / 4; i++)
m_jit.store32(TrustedImm32(0xbadbeef), reinterpret_cast<char*>(&vm().topCallFrame) + i * 4);
#endif
m_jit.prepareCallOperation(vm());
}
// These methods add call instructions, optionally setting results, and optionally rolling back the call frame on an exception.
JITCompiler::Call appendCall(const FunctionPtr<CFunctionPtrTag> function)
{
prepareForExternalCall();
m_jit.emitStoreCodeOrigin(m_currentNode->origin.semantic);
return m_jit.appendCall(function);
}
JITCompiler::Call appendCallWithCallFrameRollbackOnException(const FunctionPtr<CFunctionPtrTag> function)
{
JITCompiler::Call call = appendCall(function);
m_jit.exceptionCheckWithCallFrameRollback();
return call;
}
JITCompiler::Call appendCallWithCallFrameRollbackOnExceptionSetResult(const FunctionPtr<CFunctionPtrTag> function, GPRReg result)
{
JITCompiler::Call call = appendCallWithCallFrameRollbackOnException(function);
if ((result != InvalidGPRReg) && (result != GPRInfo::returnValueGPR))
m_jit.move(GPRInfo::returnValueGPR, result);
return call;
}
JITCompiler::Call appendCallSetResult(const FunctionPtr<CFunctionPtrTag> function, GPRReg result)
{
JITCompiler::Call call = appendCall(function);
if (result != InvalidGPRReg)
m_jit.move(GPRInfo::returnValueGPR, result);
return call;
}
JITCompiler::Call appendCallSetResult(const FunctionPtr<CFunctionPtrTag> function, GPRReg result1, GPRReg result2)
{
JITCompiler::Call call = appendCall(function);
m_jit.setupResults(result1, result2);
return call;
}
JITCompiler::Call appendCallSetResult(const FunctionPtr<CFunctionPtrTag> function, JSValueRegs resultRegs)
{
#if USE(JSVALUE64)
return appendCallSetResult(function, resultRegs.gpr());
#else
return appendCallSetResult(function, resultRegs.payloadGPR(), resultRegs.tagGPR());
#endif
}
#if CPU(ARM_THUMB2) && !CPU(ARM_HARDFP)
JITCompiler::Call appendCallSetResult(const FunctionPtr<CFunctionPtrTag> function, FPRReg result)
{
JITCompiler::Call call = appendCall(function);
if (result != InvalidFPRReg)
m_jit.assembler().vmov(result, GPRInfo::returnValueGPR, GPRInfo::returnValueGPR2);
return call;
}
#else // CPU(X86_64) || (CPU(ARM_THUMB2) && CPU(ARM_HARDFP)) || CPU(ARM64) || CPU(MIPS)
JITCompiler::Call appendCallSetResult(const FunctionPtr<CFunctionPtrTag> function, FPRReg result)
{
JITCompiler::Call call = appendCall(function);
if (result != InvalidFPRReg)
m_jit.moveDouble(FPRInfo::returnValueFPR, result);
return call;
}
#endif
void branchDouble(JITCompiler::DoubleCondition cond, FPRReg left, FPRReg right, BasicBlock* destination)
{
return addBranch(m_jit.branchDouble(cond, left, right), destination);
}
void branchDoubleNonZero(FPRReg value, FPRReg scratch, BasicBlock* destination)
{
return addBranch(m_jit.branchDoubleNonZero(value, scratch), destination);
}
template<typename T, typename U>
void branch32(JITCompiler::RelationalCondition cond, T left, U right, BasicBlock* destination)
{
return addBranch(m_jit.branch32(cond, left, right), destination);
}
template<typename T, typename U>
void branchTest32(JITCompiler::ResultCondition cond, T value, U mask, BasicBlock* destination)
{
return addBranch(m_jit.branchTest32(cond, value, mask), destination);
}
template<typename T>
void branchTest32(JITCompiler::ResultCondition cond, T value, BasicBlock* destination)
{
return addBranch(m_jit.branchTest32(cond, value), destination);
}
#if USE(JSVALUE64)
template<typename T, typename U>
void branch64(JITCompiler::RelationalCondition cond, T left, U right, BasicBlock* destination)
{
return addBranch(m_jit.branch64(cond, left, right), destination);
}
#endif
template<typename T, typename U>
void branch8(JITCompiler::RelationalCondition cond, T left, U right, BasicBlock* destination)
{
return addBranch(m_jit.branch8(cond, left, right), destination);
}
template<typename T, typename U>
void branchPtr(JITCompiler::RelationalCondition cond, T left, U right, BasicBlock* destination)
{
return addBranch(m_jit.branchPtr(cond, left, right), destination);
}
template<typename T, typename U>
void branchTestPtr(JITCompiler::ResultCondition cond, T value, U mask, BasicBlock* destination)
{
return addBranch(m_jit.branchTestPtr(cond, value, mask), destination);
}
template<typename T>
void branchTestPtr(JITCompiler::ResultCondition cond, T value, BasicBlock* destination)
{
return addBranch(m_jit.branchTestPtr(cond, value), destination);
}
template<typename T, typename U>
void branchTest8(JITCompiler::ResultCondition cond, T value, U mask, BasicBlock* destination)
{
return addBranch(m_jit.branchTest8(cond, value, mask), destination);
}
template<typename T>
void branchTest8(JITCompiler::ResultCondition cond, T value, BasicBlock* destination)
{
return addBranch(m_jit.branchTest8(cond, value), destination);
}
enum FallThroughMode {
AtFallThroughPoint,
ForceJump
};
void jump(BasicBlock* destination, FallThroughMode fallThroughMode = AtFallThroughPoint)
{
if (destination == nextBlock()
&& fallThroughMode == AtFallThroughPoint)
return;
addBranch(m_jit.jump(), destination);
}
void addBranch(const MacroAssembler::Jump& jump, BasicBlock* destination)
{
m_branches.append(BranchRecord(jump, destination));
}
void addBranch(const MacroAssembler::JumpList& jump, BasicBlock* destination);
void linkBranches();
void dump(const char* label = 0);
bool betterUseStrictInt52(Node* node)
{
return !generationInfo(node).isInt52();
}
bool betterUseStrictInt52(Edge edge)
{
return betterUseStrictInt52(edge.node());
}
bool compare(Node*, MacroAssembler::RelationalCondition, MacroAssembler::DoubleCondition, S_JITOperation_GJJ);
void compileCompareUnsigned(Node*, MacroAssembler::RelationalCondition);
bool compilePeepHoleBranch(Node*, MacroAssembler::RelationalCondition, MacroAssembler::DoubleCondition, S_JITOperation_GJJ);
void compilePeepHoleInt32Branch(Node*, Node* branchNode, JITCompiler::RelationalCondition);
void compilePeepHoleInt52Branch(Node*, Node* branchNode, JITCompiler::RelationalCondition);
void compilePeepHoleBooleanBranch(Node*, Node* branchNode, JITCompiler::RelationalCondition);
void compilePeepHoleDoubleBranch(Node*, Node* branchNode, JITCompiler::DoubleCondition);
void compilePeepHoleObjectEquality(Node*, Node* branchNode);
void compilePeepHoleObjectStrictEquality(Edge objectChild, Edge otherChild, Node* branchNode);
void compilePeepHoleObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild, Node* branchNode);
void compileObjectEquality(Node*);
void compileObjectStrictEquality(Edge objectChild, Edge otherChild);
void compileObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild);
void compileObjectOrOtherLogicalNot(Edge value);
void compileLogicalNot(Node*);
void compileLogicalNotStringOrOther(Node*);
void compileStringEquality(
Node*, GPRReg leftGPR, GPRReg rightGPR, GPRReg lengthGPR,
GPRReg leftTempGPR, GPRReg rightTempGPR, GPRReg leftTemp2GPR,
GPRReg rightTemp2GPR, const JITCompiler::JumpList& fastTrue,
const JITCompiler::JumpList& fastSlow);
void compileStringEquality(Node*);
void compileStringIdentEquality(Node*);
void compileStringToUntypedEquality(Node*, Edge stringEdge, Edge untypedEdge);
void compileStringIdentToNotStringVarEquality(Node*, Edge stringEdge, Edge notStringVarEdge);
void compileStringZeroLength(Node*);
void compileMiscStrictEq(Node*);
void compileSymbolEquality(Node*);
void compileBigIntEquality(Node*);
void compilePeepHoleSymbolEquality(Node*, Node* branchNode);
void compileSymbolUntypedEquality(Node*, Edge symbolEdge, Edge untypedEdge);
void emitObjectOrOtherBranch(Edge value, BasicBlock* taken, BasicBlock* notTaken);
void emitStringBranch(Edge value, BasicBlock* taken, BasicBlock* notTaken);
void emitStringOrOtherBranch(Edge value, BasicBlock* taken, BasicBlock* notTaken);
void emitBranch(Node*);
struct StringSwitchCase {
StringSwitchCase() { }
StringSwitchCase(StringImpl* string, BasicBlock* target)
: string(string)
, target(target)
{
}
bool operator<(const StringSwitchCase& other) const
{
return stringLessThan(*string, *other.string);
}
StringImpl* string;
BasicBlock* target;
};
void emitSwitchIntJump(SwitchData*, GPRReg value, GPRReg scratch);
void emitSwitchImm(Node*, SwitchData*);
void emitSwitchCharStringJump(Node*, SwitchData*, GPRReg value, GPRReg scratch);
void emitSwitchChar(Node*, SwitchData*);
void emitBinarySwitchStringRecurse(
SwitchData*, const Vector<StringSwitchCase>&, unsigned numChecked,
unsigned begin, unsigned end, GPRReg buffer, GPRReg length, GPRReg temp,
unsigned alreadyCheckedLength, bool checkedExactLength);
void emitSwitchStringOnString(Node*, SwitchData*, GPRReg string);
void emitSwitchString(Node*, SwitchData*);
void emitSwitch(Node*);
void compileToStringOrCallStringConstructorOrStringValueOf(Node*);
void compileNumberToStringWithRadix(Node*);
void compileNumberToStringWithValidRadixConstant(Node*);
void compileNumberToStringWithValidRadixConstant(Node*, int32_t radix);
void compileNewStringObject(Node*);
void compileNewSymbol(Node*);
void compileNewTypedArrayWithSize(Node*);
void compileInt32Compare(Node*, MacroAssembler::RelationalCondition);
void compileInt52Compare(Node*, MacroAssembler::RelationalCondition);
void compileBooleanCompare(Node*, MacroAssembler::RelationalCondition);
void compileDoubleCompare(Node*, MacroAssembler::DoubleCondition);
void compileStringCompare(Node*, MacroAssembler::RelationalCondition);
void compileStringIdentCompare(Node*, MacroAssembler::RelationalCondition);
bool compileStrictEq(Node*);
void compileSameValue(Node*);
void compileAllocatePropertyStorage(Node*);
void compileReallocatePropertyStorage(Node*);
void compileNukeStructureAndSetButterfly(Node*);
void compileGetButterfly(Node*);
void compileCallDOMGetter(Node*);
void compileCallDOM(Node*);
void compileCheckSubClass(Node*);
void compileNormalizeMapKey(Node*);
void compileGetMapBucketHead(Node*);
void compileGetMapBucketNext(Node*);
void compileSetAdd(Node*);
void compileMapSet(Node*);
void compileWeakMapGet(Node*);
void compileWeakSetAdd(Node*);
void compileWeakMapSet(Node*);
void compileLoadKeyFromMapBucket(Node*);
void compileLoadValueFromMapBucket(Node*);
void compileExtractValueFromWeakMapGet(Node*);
void compileGetPrototypeOf(Node*);
void compileIdentity(Node*);
#if USE(JSVALUE32_64)
template<typename BaseOperandType, typename PropertyOperandType, typename ValueOperandType, typename TagType>
void compileContiguousPutByVal(Node*, BaseOperandType&, PropertyOperandType&, ValueOperandType&, GPRReg valuePayloadReg, TagType valueTag);
#endif
void compileDoublePutByVal(Node*, SpeculateCellOperand& base, SpeculateStrictInt32Operand& property);
bool putByValWillNeedExtraRegister(ArrayMode arrayMode)
{
return arrayMode.mayStoreToHole();
}
GPRReg temporaryRegisterForPutByVal(GPRTemporary&, ArrayMode);
GPRReg temporaryRegisterForPutByVal(GPRTemporary& temporary, Node* node)
{
return temporaryRegisterForPutByVal(temporary, node->arrayMode());
}
void compileGetCharCodeAt(Node*);
void compileGetByValOnString(Node*);
void compileFromCharCode(Node*);
void compileGetByValOnDirectArguments(Node*);
void compileGetByValOnScopedArguments(Node*);
void compileGetScope(Node*);
void compileSkipScope(Node*);
void compileGetGlobalObject(Node*);
void compileGetGlobalThis(Node*);
void compileGetArrayLength(Node*);
void compileCheckTypeInfoFlags(Node*);
void compileCheckIdent(Node*);
void compileParseInt(Node*);
void compileValueRep(Node*);
void compileDoubleRep(Node*);
void compileValueToInt32(Node*);
void compileUInt32ToNumber(Node*);
void compileDoubleAsInt32(Node*);
void compileValueBitNot(Node*);
void compileBitwiseNot(Node*);
template<typename SnippetGenerator, J_JITOperation_GJJ slowPathFunction>
void emitUntypedBitOp(Node*);
void compileBitwiseOp(Node*);
void compileValueBitwiseOp(Node*);
void emitUntypedRightShiftBitOp(Node*);
void compileValueLShiftOp(Node*);
void compileValueBitRShift(Node*);
void compileShiftOp(Node*);
template <typename Generator, typename RepatchingFunction, typename NonRepatchingFunction>
void compileMathIC(Node*, JITBinaryMathIC<Generator>*, bool needsScratchGPRReg, bool needsScratchFPRReg, RepatchingFunction, NonRepatchingFunction);
template <typename Generator, typename RepatchingFunction, typename NonRepatchingFunction>
void compileMathIC(Node*, JITUnaryMathIC<Generator>*, bool needsScratchGPRReg, RepatchingFunction, NonRepatchingFunction);
void compileArithDoubleUnaryOp(Node*, double (*doubleFunction)(double), double (*operation)(JSGlobalObject*, EncodedJSValue));
void compileValueAdd(Node*);
void compileValueSub(Node*);
void compileArithAdd(Node*);
void compileMakeRope(Node*);
void compileArithAbs(Node*);
void compileArithClz32(Node*);
void compileArithSub(Node*);
void compileIncOrDec(Node*);
void compileValueNegate(Node*);
void compileArithNegate(Node*);
void compileValueMul(Node*);
void compileArithMul(Node*);
void compileValueDiv(Node*);
void compileArithDiv(Node*);
void compileArithFRound(Node*);
void compileValueMod(Node*);
void compileArithMod(Node*);
void compileArithPow(Node*);
void compileValuePow(Node*);
void compileArithRounding(Node*);
void compileArithRandom(Node*);
void compileArithUnary(Node*);
void compileArithSqrt(Node*);
void compileArithMinMax(Node*);
void compileConstantStoragePointer(Node*);
void compileGetIndexedPropertyStorage(Node*);
JITCompiler::Jump jumpForTypedArrayOutOfBounds(Node*, GPRReg baseGPR, GPRReg indexGPR);
JITCompiler::Jump jumpForTypedArrayIsNeuteredIfOutOfBounds(Node*, GPRReg baseGPR, JITCompiler::Jump outOfBounds);
void emitTypedArrayBoundsCheck(Node*, GPRReg baseGPR, GPRReg indexGPR);
void compileGetTypedArrayByteOffset(Node*);
void compileGetByValOnIntTypedArray(Node*, TypedArrayType);
void compilePutByValForIntTypedArray(GPRReg base, GPRReg property, Node*, TypedArrayType);
void compileGetByValOnFloatTypedArray(Node*, TypedArrayType);
void compilePutByValForFloatTypedArray(GPRReg base, GPRReg property, Node*, TypedArrayType);
void compileGetByValForObjectWithString(Node*);
void compileGetByValForObjectWithSymbol(Node*);
void compilePutByValForCellWithString(Node*, Edge& child1, Edge& child2, Edge& child3);
void compilePutByValForCellWithSymbol(Node*, Edge& child1, Edge& child2, Edge& child3);
void compileGetByValWithThis(Node*);
void compileGetByOffset(Node*);
void compilePutByOffset(Node*);
void compileMatchStructure(Node*);
// If this returns false it means that we terminated speculative execution.
bool getIntTypedArrayStoreOperand(
GPRTemporary& value,
GPRReg property,
#if USE(JSVALUE32_64)
GPRTemporary& propertyTag,
GPRTemporary& valueTag,
#endif
Edge valueUse, JITCompiler::JumpList& slowPathCases, bool isClamped = false);
void loadFromIntTypedArray(GPRReg storageReg, GPRReg propertyReg, GPRReg resultReg, TypedArrayType);
void setIntTypedArrayLoadResult(Node*, GPRReg resultReg, TypedArrayType, bool canSpeculate = false);
template <typename ClassType> void compileNewFunctionCommon(GPRReg, RegisteredStructure, GPRReg, GPRReg, GPRReg, MacroAssembler::JumpList&, size_t, FunctionExecutable*);
void compileNewFunction(Node*);
void compileSetFunctionName(Node*);
void compileNewRegexp(Node*);
void compileForwardVarargs(Node*);
void compileVarargsLength(Node*);
void compileLoadVarargs(Node*);
void compileCreateActivation(Node*);
void compileCreateDirectArguments(Node*);
void compileGetFromArguments(Node*);
void compilePutToArguments(Node*);
void compileGetArgument(Node*);
void compileCreateScopedArguments(Node*);
void compileCreateClonedArguments(Node*);
void compileCreateArgumentsButterfly(Node*);
void compileCreateRest(Node*);
void compileSpread(Node*);
void compileNewArray(Node*);
void compileNewArrayWithSpread(Node*);
void compileGetRestLength(Node*);
void compileArraySlice(Node*);
void compileArrayIndexOf(Node*);
void compileArrayPush(Node*);
void compileNotifyWrite(Node*);
void compileRegExpExec(Node*);
void compileRegExpExecNonGlobalOrSticky(Node*);
void compileRegExpMatchFast(Node*);
void compileRegExpMatchFastGlobal(Node*);
void compileRegExpTest(Node*);
void compileStringReplace(Node*);
void compileIsObject(Node*);
void compileIsObjectOrNull(Node*);
void compileIsFunction(Node*);
void compileTypeOf(Node*);
void compileCheckCell(Node*);
void compileCheckNotEmpty(Node*);
void compileCheckStructure(Node*);
void emitStructureCheck(Node*, GPRReg cellGPR, GPRReg tempGPR);
void compilePutAccessorById(Node*);
void compilePutGetterSetterById(Node*);
void compilePutAccessorByVal(Node*);
void compileGetRegExpObjectLastIndex(Node*);
void compileSetRegExpObjectLastIndex(Node*);
void compileLazyJSConstant(Node*);
void compileMaterializeNewObject(Node*);
void compileRecordRegExpCachedResult(Node*);
void compileToObjectOrCallObjectConstructor(Node*);
void compileResolveScope(Node*);
void compileResolveScopeForHoistingFuncDeclInEval(Node*);
void compileGetGlobalVariable(Node*);
void compilePutGlobalVariable(Node*);
void compileGetDynamicVar(Node*);
void compilePutDynamicVar(Node*);
void compileGetClosureVar(Node*);
void compilePutClosureVar(Node*);
void compileGetInternalField(Node*);
void compilePutInternalField(Node*);
void compileCompareEqPtr(Node*);
void compileDefineDataProperty(Node*);
void compileDefineAccessorProperty(Node*);
void compileStringSlice(Node*);
void compileToLowerCase(Node*);
void compileThrow(Node*);
void compileThrowStaticError(Node*);
void compileGetEnumerableLength(Node*);
void compileHasGenericProperty(Node*);
void compileToIndexString(Node*);
void compilePutByIdFlush(Node*);
void compilePutById(Node*);
void compilePutByIdDirect(Node*);
void compilePutByIdWithThis(Node*);
void compileHasStructureProperty(Node*);
void compileGetDirectPname(Node*);
void compileGetPropertyEnumerator(Node*);
void compileGetEnumeratorPname(Node*);
void compileGetExecutable(Node*);
void compileGetGetter(Node*);
void compileGetSetter(Node*);
void compileGetCallee(Node*);
void compileSetCallee(Node*);
void compileGetArgumentCountIncludingThis(Node*);
void compileSetArgumentCountIncludingThis(Node*);
void compileStrCat(Node*);
void compileNewArrayBuffer(Node*);
void compileNewArrayWithSize(Node*);
void compileNewTypedArray(Node*);
void compileToThis(Node*);
void compileObjectKeys(Node*);
void compileObjectCreate(Node*);
void compileCreateThis(Node*);
void compileCreatePromise(Node*);
void compileCreateGenerator(Node*);
void compileCreateAsyncGenerator(Node*);
void compileNewObject(Node*);
void compileNewPromise(Node*);
void compileNewGenerator(Node*);
void compileNewAsyncGenerator(Node*);
void compileNewArrayIterator(Node*);
void compileToPrimitive(Node*);
void compileToPropertyKey(Node*);
void compileToNumeric(Node*);
void compileLogShadowChickenPrologue(Node*);
void compileLogShadowChickenTail(Node*);
void compileHasIndexedProperty(Node*);
void compileExtractCatchLocal(Node*);
void compileClearCatchLocals(Node*);
void compileProfileType(Node*);
void compileStringCodePointAt(Node*);
void compileDateGet(Node*);
template<typename JSClass, typename Operation>
void compileCreateInternalFieldObject(Node*, Operation);
template<typename JSClass, typename Operation>
void compileNewInternalFieldObject(Node*, Operation);
void moveTrueTo(GPRReg);
void moveFalseTo(GPRReg);
void blessBoolean(GPRReg);
// Allocator for a cell of a specific size.
template <typename StructureType> // StructureType can be GPR or ImmPtr.
void emitAllocateJSCell(
GPRReg resultGPR, const JITAllocator& allocator, GPRReg allocatorGPR, StructureType structure,
GPRReg scratchGPR, MacroAssembler::JumpList& slowPath)
{
m_jit.emitAllocateJSCell(resultGPR, allocator, allocatorGPR, structure, scratchGPR, slowPath);
}
// Allocator for an object of a specific size.
template <typename StructureType, typename StorageType> // StructureType and StorageType can be GPR or ImmPtr.
void emitAllocateJSObject(
GPRReg resultGPR, const JITAllocator& allocator, GPRReg allocatorGPR, StructureType structure,
StorageType storage, GPRReg scratchGPR, MacroAssembler::JumpList& slowPath)
{
m_jit.emitAllocateJSObject(
resultGPR, allocator, allocatorGPR, structure, storage, scratchGPR, slowPath);
}
template <typename ClassType, typename StructureType, typename StorageType> // StructureType and StorageType can be GPR or ImmPtr.
void emitAllocateJSObjectWithKnownSize(
GPRReg resultGPR, StructureType structure, StorageType storage, GPRReg scratchGPR1,
GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath, size_t size)
{
m_jit.emitAllocateJSObjectWithKnownSize<ClassType>(vm(), resultGPR, structure, storage, scratchGPR1, scratchGPR2, slowPath, size);
}
// Convenience allocator for a built-in object.
template <typename ClassType, typename StructureType, typename StorageType> // StructureType and StorageType can be GPR or ImmPtr.
void emitAllocateJSObject(GPRReg resultGPR, StructureType structure, StorageType storage,
GPRReg scratchGPR1, GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath)
{
m_jit.emitAllocateJSObject<ClassType>(vm(), resultGPR, structure, storage, scratchGPR1, scratchGPR2, slowPath);
}
template <typename ClassType, typename StructureType> // StructureType and StorageType can be GPR or ImmPtr.
void emitAllocateVariableSizedJSObject(GPRReg resultGPR, StructureType structure, GPRReg allocationSize, GPRReg scratchGPR1, GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath)
{
m_jit.emitAllocateVariableSizedJSObject<ClassType>(vm(), resultGPR, structure, allocationSize, scratchGPR1, scratchGPR2, slowPath);
}
template<typename ClassType>
void emitAllocateDestructibleObject(GPRReg resultGPR, RegisteredStructure structure,
GPRReg scratchGPR1, GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath)
{
m_jit.emitAllocateDestructibleObject<ClassType>(vm(), resultGPR, structure.get(), scratchGPR1, scratchGPR2, slowPath);
}
void emitAllocateRawObject(GPRReg resultGPR, RegisteredStructure, GPRReg storageGPR, unsigned numElements, unsigned vectorLength);
void emitGetLength(InlineCallFrame*, GPRReg lengthGPR, bool includeThis = false);
void emitGetLength(CodeOrigin, GPRReg lengthGPR, bool includeThis = false);
void emitGetCallee(CodeOrigin, GPRReg calleeGPR);
void emitGetArgumentStart(CodeOrigin, GPRReg startGPR);
void emitPopulateSliceIndex(Edge&, Optional<GPRReg> indexGPR, GPRReg lengthGPR, GPRReg resultGPR);
// Generate an OSR exit fuzz check. Returns Jump() if OSR exit fuzz is not enabled, or if
// it's in training mode.
MacroAssembler::Jump emitOSRExitFuzzCheck();
// Add a speculation check.
void speculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail);
void speculationCheck(ExitKind, JSValueSource, Node*, const MacroAssembler::JumpList& jumpsToFail);
// Add a speculation check without additional recovery, and with a promise to supply a jump later.
OSRExitJumpPlaceholder speculationCheck(ExitKind, JSValueSource, Node*);
OSRExitJumpPlaceholder speculationCheck(ExitKind, JSValueSource, Edge);
void speculationCheck(ExitKind, JSValueSource, Edge, MacroAssembler::Jump jumpToFail);
void speculationCheck(ExitKind, JSValueSource, Edge, const MacroAssembler::JumpList& jumpsToFail);
// Add a speculation check with additional recovery.
void speculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&);
void speculationCheck(ExitKind, JSValueSource, Edge, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&);
void emitInvalidationPoint(Node*);
void unreachable(Node*);
// Called when we statically determine that a speculation will fail.
void terminateSpeculativeExecution(ExitKind, JSValueRegs, Node*);
void terminateSpeculativeExecution(ExitKind, JSValueRegs, Edge);
// Helpers for performing type checks on an edge stored in the given registers.
bool needsTypeCheck(Edge edge, SpeculatedType typesPassedThrough) { return m_interpreter.needsTypeCheck(edge, typesPassedThrough); }
void typeCheck(JSValueSource, Edge, SpeculatedType typesPassedThrough, MacroAssembler::Jump jumpToFail, ExitKind = BadType);
void speculateCellTypeWithoutTypeFiltering(Edge, GPRReg cellGPR, JSType);
void speculateCellType(Edge, GPRReg cellGPR, SpeculatedType, JSType);
void speculateInt32(Edge);
#if USE(JSVALUE64)
void convertAnyInt(Edge, GPRReg resultGPR);
void speculateAnyInt(Edge);
void speculateInt32(Edge, JSValueRegs);
void speculateDoubleRepAnyInt(Edge);
#endif // USE(JSVALUE64)
void speculateNumber(Edge);
void speculateRealNumber(Edge);
void speculateDoubleRepReal(Edge);
void speculateBoolean(Edge);
void speculateCell(Edge);
void speculateCellOrOther(Edge);
void speculateObject(Edge, GPRReg cell);
void speculateObject(Edge);
void speculateArray(Edge, GPRReg cell);
void speculateArray(Edge);
void speculateFunction(Edge, GPRReg cell);
void speculateFunction(Edge);
void speculateFinalObject(Edge, GPRReg cell);
void speculateFinalObject(Edge);
void speculateRegExpObject(Edge, GPRReg cell);
void speculateRegExpObject(Edge);
void speculatePromiseObject(Edge);
void speculatePromiseObject(Edge, GPRReg cell);
void speculateProxyObject(Edge, GPRReg cell);
void speculateProxyObject(Edge);
void speculateDerivedArray(Edge, GPRReg cell);
void speculateDerivedArray(Edge);
void speculateDateObject(Edge);
void speculateDateObject(Edge, GPRReg cell);
void speculateMapObject(Edge);
void speculateMapObject(Edge, GPRReg cell);
void speculateSetObject(Edge);
void speculateSetObject(Edge, GPRReg cell);
void speculateWeakMapObject(Edge);
void speculateWeakMapObject(Edge, GPRReg cell);
void speculateWeakSetObject(Edge);
void speculateWeakSetObject(Edge, GPRReg cell);
void speculateDataViewObject(Edge);
void speculateDataViewObject(Edge, GPRReg cell);
void speculateObjectOrOther(Edge);
void speculateString(Edge edge, GPRReg cell);
void speculateStringIdentAndLoadStorage(Edge edge, GPRReg string, GPRReg storage);
void speculateStringIdent(Edge edge, GPRReg string);
void speculateStringIdent(Edge);
void speculateString(Edge);
void speculateStringOrOther(Edge, JSValueRegs, GPRReg scratch);
void speculateStringOrOther(Edge);
void speculateNotStringVar(Edge);
void speculateNotSymbol(Edge);
void speculateStringObject(Edge, GPRReg);
void speculateStringObject(Edge);
void speculateStringOrStringObject(Edge);
void speculateSymbol(Edge, GPRReg cell);
void speculateSymbol(Edge);
void speculateBigInt(Edge, GPRReg cell);
void speculateBigInt(Edge);
void speculateNotCell(Edge, JSValueRegs);
void speculateNotCell(Edge);
void speculateOther(Edge, JSValueRegs, GPRReg temp);
void speculateOther(Edge, JSValueRegs);
void speculateOther(Edge);
void speculateMisc(Edge, JSValueRegs);
void speculateMisc(Edge);
void speculate(Node*, Edge);
JITCompiler::JumpList jumpSlowForUnwantedArrayMode(GPRReg tempWithIndexingTypeReg, ArrayMode);
void checkArray(Node*);
void arrayify(Node*, GPRReg baseReg, GPRReg propertyReg);
void arrayify(Node*);
template<bool strict>
GPRReg fillSpeculateInt32Internal(Edge, DataFormat& returnFormat);
void cageTypedArrayStorage(GPRReg, GPRReg);
void recordSetLocal(
Operand bytecodeReg, VirtualRegister machineReg, DataFormat format)
{
ASSERT(!bytecodeReg.isArgument() || bytecodeReg.virtualRegister().toArgument() >= 0);
m_stream->appendAndLog(VariableEvent::setLocal(bytecodeReg, machineReg, format));
}
void recordSetLocal(DataFormat format)
{
VariableAccessData* variable = m_currentNode->variableAccessData();
recordSetLocal(variable->operand(), variable->machineLocal(), format);
}
GenerationInfo& generationInfoFromVirtualRegister(VirtualRegister virtualRegister)
{
return m_generationInfo[virtualRegister.toLocal()];
}
GenerationInfo& generationInfo(Node* node)
{
return generationInfoFromVirtualRegister(node->virtualRegister());
}
GenerationInfo& generationInfo(Edge edge)
{
return generationInfo(edge.node());
}
// The JIT, while also provides MacroAssembler functionality.
JITCompiler& m_jit;
Graph& m_graph;
// The current node being generated.
BasicBlock* m_block;
Node* m_currentNode;
NodeType m_lastGeneratedNode;
unsigned m_indexInBlock;
// Virtual and physical register maps.
Vector<GenerationInfo, 32> m_generationInfo;
RegisterBank<GPRInfo> m_gprs;
RegisterBank<FPRInfo> m_fprs;
// It is possible, during speculative generation, to reach a situation in which we
// can statically determine a speculation will fail (for example, when two nodes
// will make conflicting speculations about the same operand). In such cases this
// flag is cleared, indicating no further code generation should take place.
bool m_compileOkay;
Vector<MacroAssembler::Label> m_osrEntryHeads;
struct BranchRecord {
BranchRecord(MacroAssembler::Jump jump, BasicBlock* destination)
: jump(jump)
, destination(destination)
{
}
MacroAssembler::Jump jump;
BasicBlock* destination;
};
Vector<BranchRecord, 8> m_branches;
NodeOrigin m_origin;
InPlaceAbstractState m_state;
AbstractInterpreter<InPlaceAbstractState> m_interpreter;
VariableEventStream* m_stream;
MinifiedGraph* m_minifiedGraph;
Vector<std::unique_ptr<SlowPathGenerator>, 8> m_slowPathGenerators;
struct SlowPathLambda {
Function<void()> generator;
Node* currentNode;
unsigned streamIndex;
};
Vector<SlowPathLambda> m_slowPathLambdas;
Vector<SilentRegisterSavePlan> m_plans;
Optional<unsigned> m_outOfLineStreamIndex;
};
// === Operand types ===
//
// These classes are used to lock the operands to a node into machine
// registers. These classes implement of pattern of locking a value
// into register at the point of construction only if it is already in
// registers, and otherwise loading it lazily at the point it is first
// used. We do so in order to attempt to avoid spilling one operand
// in order to make space available for another.
class JSValueOperand {
WTF_MAKE_FAST_ALLOCATED;
public:
explicit JSValueOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
#if USE(JSVALUE64)
, m_gprOrInvalid(InvalidGPRReg)
#elif USE(JSVALUE32_64)
, m_isDouble(false)
#endif
{
ASSERT(m_jit);
if (!edge)
return;
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == UntypedUse);
#if USE(JSVALUE64)
if (jit->isFilled(node()))
gpr();
#elif USE(JSVALUE32_64)
m_register.pair.tagGPR = InvalidGPRReg;
m_register.pair.payloadGPR = InvalidGPRReg;
if (jit->isFilled(node()))
fill();
#endif
}
explicit JSValueOperand(JSValueOperand&& other)
: m_jit(other.m_jit)
, m_edge(other.m_edge)
{
#if USE(JSVALUE64)
m_gprOrInvalid = other.m_gprOrInvalid;
#elif USE(JSVALUE32_64)
m_register.pair.tagGPR = InvalidGPRReg;
m_register.pair.payloadGPR = InvalidGPRReg;
m_isDouble = other.m_isDouble;
if (m_edge) {
if (m_isDouble)
m_register.fpr = other.m_register.fpr;
else
m_register.pair = other.m_register.pair;
}
#endif
other.m_edge = Edge();
#if USE(JSVALUE64)
other.m_gprOrInvalid = InvalidGPRReg;
#elif USE(JSVALUE32_64)
other.m_isDouble = false;
#endif
}
~JSValueOperand()
{
if (!m_edge)
return;
#if USE(JSVALUE64)
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
#elif USE(JSVALUE32_64)
if (m_isDouble) {
ASSERT(m_register.fpr != InvalidFPRReg);
m_jit->unlock(m_register.fpr);
} else {
ASSERT(m_register.pair.tagGPR != InvalidGPRReg && m_register.pair.payloadGPR != InvalidGPRReg);
m_jit->unlock(m_register.pair.tagGPR);
m_jit->unlock(m_register.pair.payloadGPR);
}
#endif
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
#if USE(JSVALUE64)
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillJSValue(m_edge);
return m_gprOrInvalid;
}
JSValueRegs jsValueRegs()
{
return JSValueRegs(gpr());
}
#elif USE(JSVALUE32_64)
bool isDouble() { return m_isDouble; }
void fill()
{
if (m_register.pair.tagGPR == InvalidGPRReg && m_register.pair.payloadGPR == InvalidGPRReg)
m_isDouble = !m_jit->fillJSValue(m_edge, m_register.pair.tagGPR, m_register.pair.payloadGPR, m_register.fpr);
}
GPRReg tagGPR()
{
fill();
ASSERT(!m_isDouble);
return m_register.pair.tagGPR;
}
GPRReg payloadGPR()
{
fill();
ASSERT(!m_isDouble);
return m_register.pair.payloadGPR;
}
JSValueRegs jsValueRegs()
{
return JSValueRegs(tagGPR(), payloadGPR());
}
GPRReg gpr(WhichValueWord which)
{
return jsValueRegs().gpr(which);
}
FPRReg fpr()
{
fill();
ASSERT(m_isDouble);
return m_register.fpr;
}
#endif
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
#if USE(JSVALUE64)
GPRReg m_gprOrInvalid;
#elif USE(JSVALUE32_64)
union {
struct {
GPRReg tagGPR;
GPRReg payloadGPR;
} pair;
FPRReg fpr;
} m_register;
bool m_isDouble;
#endif
};
class StorageOperand {
WTF_MAKE_FAST_ALLOCATED;
public:
explicit StorageOperand(SpeculativeJIT* jit, Edge edge)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
{
ASSERT(m_jit);
ASSERT(edge.useKind() == UntypedUse || edge.useKind() == KnownCellUse);
if (jit->isFilled(node()))
gpr();
}
~StorageOperand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillStorage(edge());
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
};
// === Temporaries ===
//
// These classes are used to allocate temporary registers.
// A mechanism is provided to attempt to reuse the registers
// currently allocated to child nodes whose value is consumed
// by, and not live after, this operation.
enum ReuseTag { Reuse };
class GPRTemporary {
WTF_MAKE_FAST_ALLOCATED;
public:
GPRTemporary();
GPRTemporary(SpeculativeJIT*);
GPRTemporary(SpeculativeJIT*, GPRReg specific);
template<typename T>
GPRTemporary(SpeculativeJIT* jit, ReuseTag, T& operand)
: m_jit(jit)
, m_gpr(InvalidGPRReg)
{
if (m_jit->canReuse(operand.node()))
m_gpr = m_jit->reuse(operand.gpr());
else
m_gpr = m_jit->allocate();
}
template<typename T1, typename T2>
GPRTemporary(SpeculativeJIT* jit, ReuseTag, T1& op1, T2& op2)
: m_jit(jit)
, m_gpr(InvalidGPRReg)
{
if (m_jit->canReuse(op1.node()))
m_gpr = m_jit->reuse(op1.gpr());
else if (m_jit->canReuse(op2.node()))
m_gpr = m_jit->reuse(op2.gpr());
else if (m_jit->canReuse(op1.node(), op2.node()) && op1.gpr() == op2.gpr())
m_gpr = m_jit->reuse(op1.gpr());
else
m_gpr = m_jit->allocate();
}
GPRTemporary(SpeculativeJIT*, ReuseTag, JSValueOperand&, WhichValueWord);
GPRTemporary(GPRTemporary& other) = delete;
GPRTemporary(GPRTemporary&& other)
{
ASSERT(other.m_jit);
ASSERT(other.m_gpr != InvalidGPRReg);
m_jit = other.m_jit;
m_gpr = other.m_gpr;
other.m_jit = nullptr;
other.m_gpr = InvalidGPRReg;
}
GPRTemporary& operator=(GPRTemporary&& other)
{
ASSERT(!m_jit);
ASSERT(m_gpr == InvalidGPRReg);
std::swap(m_jit, other.m_jit);
std::swap(m_gpr, other.m_gpr);
return *this;
}
void adopt(GPRTemporary&);
~GPRTemporary()
{
if (m_jit && m_gpr != InvalidGPRReg)
m_jit->unlock(gpr());
}
GPRReg gpr()
{
return m_gpr;
}
private:
SpeculativeJIT* m_jit;
GPRReg m_gpr;
};
class JSValueRegsTemporary {
WTF_MAKE_FAST_ALLOCATED;
public:
JSValueRegsTemporary();
JSValueRegsTemporary(SpeculativeJIT*);
template<typename T>
JSValueRegsTemporary(SpeculativeJIT*, ReuseTag, T& operand, WhichValueWord resultRegWord = PayloadWord);
JSValueRegsTemporary(SpeculativeJIT*, ReuseTag, JSValueOperand&);
~JSValueRegsTemporary();
JSValueRegs regs();
private:
#if USE(JSVALUE64)
GPRTemporary m_gpr;
#else
GPRTemporary m_payloadGPR;
GPRTemporary m_tagGPR;
#endif
};
class FPRTemporary {
WTF_MAKE_FAST_ALLOCATED;
public:
FPRTemporary(FPRTemporary&&);
FPRTemporary(SpeculativeJIT*);
FPRTemporary(SpeculativeJIT*, SpeculateDoubleOperand&);
FPRTemporary(SpeculativeJIT*, SpeculateDoubleOperand&, SpeculateDoubleOperand&);
#if USE(JSVALUE32_64)
FPRTemporary(SpeculativeJIT*, JSValueOperand&);
#endif
~FPRTemporary()
{
if (LIKELY(m_jit))
m_jit->unlock(fpr());
}
FPRReg fpr() const
{
ASSERT(m_jit);
ASSERT(m_fpr != InvalidFPRReg);
return m_fpr;
}
protected:
FPRTemporary(SpeculativeJIT* jit, FPRReg lockedFPR)
: m_jit(jit)
, m_fpr(lockedFPR)
{
}
private:
SpeculativeJIT* m_jit;
FPRReg m_fpr;
};
// === Results ===
//
// These classes lock the result of a call to a C++ helper function.
class GPRFlushedCallResult : public GPRTemporary {
public:
GPRFlushedCallResult(SpeculativeJIT* jit)
: GPRTemporary(jit, GPRInfo::returnValueGPR)
{
}
};
#if USE(JSVALUE32_64)
class GPRFlushedCallResult2 : public GPRTemporary {
public:
GPRFlushedCallResult2(SpeculativeJIT* jit)
: GPRTemporary(jit, GPRInfo::returnValueGPR2)
{
}
};
#endif
class FPRResult : public FPRTemporary {
public:
FPRResult(SpeculativeJIT* jit)
: FPRTemporary(jit, lockedResult(jit))
{
}
private:
static FPRReg lockedResult(SpeculativeJIT* jit)
{
jit->lock(FPRInfo::returnValueFPR);
return FPRInfo::returnValueFPR;
}
};
class JSValueRegsFlushedCallResult {
WTF_MAKE_FAST_ALLOCATED;
public:
JSValueRegsFlushedCallResult(SpeculativeJIT* jit)
#if USE(JSVALUE64)
: m_gpr(jit)
#else
: m_payloadGPR(jit)
, m_tagGPR(jit)
#endif
{
}
JSValueRegs regs()
{
#if USE(JSVALUE64)
return JSValueRegs { m_gpr.gpr() };
#else
return JSValueRegs { m_tagGPR.gpr(), m_payloadGPR.gpr() };
#endif
}
private:
#if USE(JSVALUE64)
GPRFlushedCallResult m_gpr;
#else
GPRFlushedCallResult m_payloadGPR;
GPRFlushedCallResult2 m_tagGPR;
#endif
};
// === Speculative Operand types ===
//
// SpeculateInt32Operand, SpeculateStrictInt32Operand and SpeculateCellOperand.
//
// These are used to lock the operands to a node into machine registers within the
// SpeculativeJIT. The classes operate like those above, however these will
// perform a speculative check for a more restrictive type than we can statically
// determine the operand to have. If the operand does not have the requested type,
// a bail-out to the non-speculative path will be taken.
class SpeculateInt32Operand {
WTF_MAKE_FAST_ALLOCATED;
public:
explicit SpeculateInt32Operand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
#ifndef NDEBUG
, m_format(DataFormatNone)
#endif
{
ASSERT(m_jit);
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == Int32Use || edge.useKind() == KnownInt32Use));
if (jit->isFilled(node()))
gpr();
}
~SpeculateInt32Operand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
DataFormat format()
{
gpr(); // m_format is set when m_gpr is locked.
ASSERT(m_format == DataFormatInt32 || m_format == DataFormatJSInt32);
return m_format;
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateInt32(edge(), m_format);
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
DataFormat m_format;
};
class SpeculateStrictInt32Operand {
WTF_MAKE_FAST_ALLOCATED;
public:
explicit SpeculateStrictInt32Operand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
{
ASSERT(m_jit);
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == Int32Use || edge.useKind() == KnownInt32Use));
if (jit->isFilled(node()))
gpr();
}
~SpeculateStrictInt32Operand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateInt32Strict(edge());
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
};
// Gives you a canonical Int52 (i.e. it's left-shifted by 16, low bits zero).
class SpeculateInt52Operand {
WTF_MAKE_FAST_ALLOCATED;
public:
explicit SpeculateInt52Operand(SpeculativeJIT* jit, Edge edge)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
{
RELEASE_ASSERT(edge.useKind() == Int52RepUse);
if (jit->isFilled(node()))
gpr();
}
~SpeculateInt52Operand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateInt52(edge(), DataFormatInt52);
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
};
// Gives you a strict Int52 (i.e. the payload is in the low 48 bits, high 16 bits are sign-extended).
class SpeculateStrictInt52Operand {
WTF_MAKE_FAST_ALLOCATED;
public:
explicit SpeculateStrictInt52Operand(SpeculativeJIT* jit, Edge edge)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
{
RELEASE_ASSERT(edge.useKind() == Int52RepUse);
if (jit->isFilled(node()))
gpr();
}
~SpeculateStrictInt52Operand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateInt52(edge(), DataFormatStrictInt52);
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
};
enum OppositeShiftTag { OppositeShift };
class SpeculateWhicheverInt52Operand {
WTF_MAKE_FAST_ALLOCATED;
public:
explicit SpeculateWhicheverInt52Operand(SpeculativeJIT* jit, Edge edge)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
, m_strict(jit->betterUseStrictInt52(edge))
{
RELEASE_ASSERT(edge.useKind() == Int52RepUse);
if (jit->isFilled(node()))
gpr();
}
explicit SpeculateWhicheverInt52Operand(SpeculativeJIT* jit, Edge edge, const SpeculateWhicheverInt52Operand& other)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
, m_strict(other.m_strict)
{
RELEASE_ASSERT(edge.useKind() == Int52RepUse);
if (jit->isFilled(node()))
gpr();
}
explicit SpeculateWhicheverInt52Operand(SpeculativeJIT* jit, Edge edge, OppositeShiftTag, const SpeculateWhicheverInt52Operand& other)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
, m_strict(!other.m_strict)
{
RELEASE_ASSERT(edge.useKind() == Int52RepUse);
if (jit->isFilled(node()))
gpr();
}
~SpeculateWhicheverInt52Operand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg) {
m_gprOrInvalid = m_jit->fillSpeculateInt52(
edge(), m_strict ? DataFormatStrictInt52 : DataFormatInt52);
}
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
DataFormat format() const
{
return m_strict ? DataFormatStrictInt52 : DataFormatInt52;
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
bool m_strict;
};
class SpeculateDoubleOperand {
WTF_MAKE_FAST_ALLOCATED;
public:
explicit SpeculateDoubleOperand(SpeculativeJIT* jit, Edge edge)
: m_jit(jit)
, m_edge(edge)
, m_fprOrInvalid(InvalidFPRReg)
{
ASSERT(m_jit);
RELEASE_ASSERT(isDouble(edge.useKind()));
if (jit->isFilled(node()))
fpr();
}
~SpeculateDoubleOperand()
{
ASSERT(m_fprOrInvalid != InvalidFPRReg);
m_jit->unlock(m_fprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
FPRReg fpr()
{
if (m_fprOrInvalid == InvalidFPRReg)
m_fprOrInvalid = m_jit->fillSpeculateDouble(edge());
return m_fprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
FPRReg m_fprOrInvalid;
};
class SpeculateCellOperand {
WTF_MAKE_FAST_ALLOCATED;
public:
explicit SpeculateCellOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
{
ASSERT(m_jit);
if (!edge)
return;
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || isCell(edge.useKind()));
if (jit->isFilled(node()))
gpr();
}
explicit SpeculateCellOperand(SpeculateCellOperand&& other)
{
m_jit = other.m_jit;
m_edge = other.m_edge;
m_gprOrInvalid = other.m_gprOrInvalid;
other.m_gprOrInvalid = InvalidGPRReg;
other.m_edge = Edge();
}
~SpeculateCellOperand()
{
if (!m_edge)
return;
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
ASSERT(m_edge);
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateCell(edge());
return m_gprOrInvalid;
}
void use()
{
ASSERT(m_edge);
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
};
class SpeculateBooleanOperand {
WTF_MAKE_FAST_ALLOCATED;
public:
explicit SpeculateBooleanOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
{
ASSERT(m_jit);
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == BooleanUse || edge.useKind() == KnownBooleanUse);
if (jit->isFilled(node()))
gpr();
}
~SpeculateBooleanOperand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateBoolean(edge());
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
};
#define DFG_TYPE_CHECK_WITH_EXIT_KIND(exitKind, source, edge, typesPassedThrough, jumpToFail) do { \
JSValueSource _dtc_source = (source); \
Edge _dtc_edge = (edge); \
SpeculatedType _dtc_typesPassedThrough = typesPassedThrough; \
if (!needsTypeCheck(_dtc_edge, _dtc_typesPassedThrough)) \
break; \
typeCheck(_dtc_source, _dtc_edge, _dtc_typesPassedThrough, (jumpToFail), exitKind); \
} while (0)
#define DFG_TYPE_CHECK(source, edge, typesPassedThrough, jumpToFail) \
DFG_TYPE_CHECK_WITH_EXIT_KIND(BadType, source, edge, typesPassedThrough, jumpToFail)
} } // namespace JSC::DFG
#endif