| /* |
| * Copyright (C) 2012 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "RenderMultiColumnSet.h" |
| |
| #include "FrameView.h" |
| #include "HitTestResult.h" |
| #include "PaintInfo.h" |
| #include "RenderBoxFragmentInfo.h" |
| #include "RenderLayer.h" |
| #include "RenderMultiColumnFlow.h" |
| #include "RenderMultiColumnSpannerPlaceholder.h" |
| #include "RenderView.h" |
| #include <wtf/IsoMallocInlines.h> |
| |
| namespace WebCore { |
| |
| WTF_MAKE_ISO_ALLOCATED_IMPL(RenderMultiColumnSet); |
| |
| RenderMultiColumnSet::RenderMultiColumnSet(RenderFragmentedFlow& fragmentedFlow, RenderStyle&& style) |
| : RenderFragmentContainerSet(fragmentedFlow.document(), WTFMove(style), fragmentedFlow) |
| , m_computedColumnCount(1) |
| , m_computedColumnWidth(0) |
| , m_computedColumnHeight(0) |
| , m_availableColumnHeight(0) |
| , m_columnHeightComputed(false) |
| , m_maxColumnHeight(RenderFragmentedFlow::maxLogicalHeight()) |
| , m_minSpaceShortage(RenderFragmentedFlow::maxLogicalHeight()) |
| , m_minimumColumnHeight(0) |
| { |
| } |
| |
| RenderMultiColumnSet* RenderMultiColumnSet::nextSiblingMultiColumnSet() const |
| { |
| for (RenderObject* sibling = nextSibling(); sibling; sibling = sibling->nextSibling()) { |
| if (is<RenderMultiColumnSet>(*sibling)) |
| return downcast<RenderMultiColumnSet>(sibling); |
| } |
| return nullptr; |
| } |
| |
| RenderMultiColumnSet* RenderMultiColumnSet::previousSiblingMultiColumnSet() const |
| { |
| for (RenderObject* sibling = previousSibling(); sibling; sibling = sibling->previousSibling()) { |
| if (is<RenderMultiColumnSet>(*sibling)) |
| return downcast<RenderMultiColumnSet>(sibling); |
| } |
| return nullptr; |
| } |
| |
| RenderObject* RenderMultiColumnSet::firstRendererInFragmentedFlow() const |
| { |
| if (RenderBox* sibling = RenderMultiColumnFlow::previousColumnSetOrSpannerSiblingOf(this)) { |
| // Adjacent sets should not occur. Currently we would have no way of figuring out what each |
| // of them contains then. |
| ASSERT(!sibling->isRenderMultiColumnSet()); |
| if (RenderMultiColumnSpannerPlaceholder* placeholder = multiColumnFlow()->findColumnSpannerPlaceholder(sibling)) |
| return placeholder->nextInPreOrderAfterChildren(); |
| ASSERT_NOT_REACHED(); |
| } |
| return fragmentedFlow()->firstChild(); |
| } |
| |
| RenderObject* RenderMultiColumnSet::lastRendererInFragmentedFlow() const |
| { |
| if (RenderBox* sibling = RenderMultiColumnFlow::nextColumnSetOrSpannerSiblingOf(this)) { |
| // Adjacent sets should not occur. Currently we would have no way of figuring out what each |
| // of them contains then. |
| ASSERT(!sibling->isRenderMultiColumnSet()); |
| if (RenderMultiColumnSpannerPlaceholder* placeholder = multiColumnFlow()->findColumnSpannerPlaceholder(sibling)) |
| return placeholder->previousInPreOrder(); |
| ASSERT_NOT_REACHED(); |
| } |
| return fragmentedFlow()->lastLeafChild(); |
| } |
| |
| static bool precedesRenderer(const RenderObject* renderer, const RenderObject* boundary) |
| { |
| for (; renderer; renderer = renderer->nextInPreOrder()) { |
| if (renderer == boundary) |
| return true; |
| } |
| return false; |
| } |
| |
| bool RenderMultiColumnSet::containsRendererInFragmentedFlow(const RenderObject& renderer) const |
| { |
| if (!previousSiblingMultiColumnSet() && !nextSiblingMultiColumnSet()) { |
| // There is only one set. This is easy, then. |
| return renderer.isDescendantOf(m_fragmentedFlow); |
| } |
| |
| RenderObject* firstRenderer = firstRendererInFragmentedFlow(); |
| RenderObject* lastRenderer = lastRendererInFragmentedFlow(); |
| ASSERT(firstRenderer); |
| ASSERT(lastRenderer); |
| |
| // This is SLOW! But luckily very uncommon. |
| return precedesRenderer(firstRenderer, &renderer) && precedesRenderer(&renderer, lastRenderer); |
| } |
| |
| void RenderMultiColumnSet::setLogicalTopInFragmentedFlow(LayoutUnit logicalTop) |
| { |
| LayoutRect rect = fragmentedFlowPortionRect(); |
| if (isHorizontalWritingMode()) |
| rect.setY(logicalTop); |
| else |
| rect.setX(logicalTop); |
| setFragmentedFlowPortionRect(rect); |
| } |
| |
| void RenderMultiColumnSet::setLogicalBottomInFragmentedFlow(LayoutUnit logicalBottom) |
| { |
| LayoutRect rect = fragmentedFlowPortionRect(); |
| if (isHorizontalWritingMode()) |
| rect.shiftMaxYEdgeTo(logicalBottom); |
| else |
| rect.shiftMaxXEdgeTo(logicalBottom); |
| setFragmentedFlowPortionRect(rect); |
| } |
| |
| LayoutUnit RenderMultiColumnSet::heightAdjustedForSetOffset(LayoutUnit height) const |
| { |
| RenderBlockFlow& multicolBlock = downcast<RenderBlockFlow>(*parent()); |
| LayoutUnit contentLogicalTop = logicalTop() - multicolBlock.borderAndPaddingBefore(); |
| |
| height -= contentLogicalTop; |
| return std::max(height, 1_lu); // Let's avoid zero height, as that would probably cause an infinite amount of columns to be created. |
| } |
| |
| LayoutUnit RenderMultiColumnSet::pageLogicalTopForOffset(LayoutUnit offset) const |
| { |
| unsigned columnIndex = columnIndexAtOffset(offset, AssumeNewColumns); |
| return logicalTopInFragmentedFlow() + columnIndex * computedColumnHeight(); |
| } |
| |
| void RenderMultiColumnSet::setAndConstrainColumnHeight(LayoutUnit newHeight) |
| { |
| m_computedColumnHeight = newHeight; |
| if (m_computedColumnHeight > m_maxColumnHeight) |
| m_computedColumnHeight = m_maxColumnHeight; |
| |
| // FIXME: The available column height is not the same as the constrained height specified |
| // by the pagination API. The column set in this case is allowed to be bigger than the |
| // height of a single column. We cache available column height in order to use it |
| // in computeLogicalHeight later. This is pretty gross, and maybe there's a better way |
| // to formalize the idea of clamped column heights without having a view dependency |
| // here. |
| m_availableColumnHeight = m_computedColumnHeight; |
| if (multiColumnFlow() && !multiColumnFlow()->progressionIsInline() && parent()->isRenderView()) { |
| int pageLength = view().frameView().pagination().pageLength; |
| if (pageLength) |
| m_computedColumnHeight = pageLength; |
| } |
| |
| m_columnHeightComputed = true; |
| |
| // FIXME: the height may also be affected by the enclosing pagination context, if any. |
| } |
| |
| unsigned RenderMultiColumnSet::findRunWithTallestColumns() const |
| { |
| unsigned indexWithLargestHeight = 0; |
| LayoutUnit largestHeight; |
| LayoutUnit previousOffset; |
| size_t runCount = m_contentRuns.size(); |
| ASSERT(runCount); |
| for (size_t i = 0; i < runCount; i++) { |
| const ContentRun& run = m_contentRuns[i]; |
| LayoutUnit height = run.columnLogicalHeight(previousOffset); |
| if (largestHeight < height) { |
| largestHeight = height; |
| indexWithLargestHeight = i; |
| } |
| previousOffset = run.breakOffset(); |
| } |
| return indexWithLargestHeight; |
| } |
| |
| void RenderMultiColumnSet::distributeImplicitBreaks() |
| { |
| #ifndef NDEBUG |
| // There should be no implicit breaks assumed at this point. |
| for (unsigned i = 0; i < forcedBreaksCount(); i++) |
| ASSERT(!m_contentRuns[i].assumedImplicitBreaks()); |
| #endif // NDEBUG |
| |
| // Insert a final content run to encompass all content. This will include overflow if this is |
| // the last set. |
| addForcedBreak(logicalBottomInFragmentedFlow()); |
| unsigned breakCount = forcedBreaksCount(); |
| |
| // If there is room for more breaks (to reach the used value of column-count), imagine that we |
| // insert implicit breaks at suitable locations. At any given time, the content run with the |
| // currently tallest columns will get another implicit break "inserted", which will increase its |
| // column count by one and shrink its columns' height. Repeat until we have the desired total |
| // number of breaks. The largest column height among the runs will then be the initial column |
| // height for the balancer to use. |
| while (breakCount < m_computedColumnCount) { |
| unsigned index = findRunWithTallestColumns(); |
| m_contentRuns[index].assumeAnotherImplicitBreak(); |
| breakCount++; |
| } |
| } |
| |
| LayoutUnit RenderMultiColumnSet::calculateBalancedHeight(bool initial) const |
| { |
| if (initial) { |
| // Start with the lowest imaginable column height. |
| unsigned index = findRunWithTallestColumns(); |
| LayoutUnit startOffset = index > 0 ? m_contentRuns[index - 1].breakOffset() : logicalTopInFragmentedFlow(); |
| return std::max<LayoutUnit>(m_contentRuns[index].columnLogicalHeight(startOffset), m_minimumColumnHeight); |
| } |
| |
| if (columnCount() <= computedColumnCount()) { |
| // With the current column height, the content fits without creating overflowing columns. We're done. |
| return m_computedColumnHeight; |
| } |
| |
| if (forcedBreaksCount() >= computedColumnCount()) { |
| // Too many forced breaks to allow any implicit breaks. Initial balancing should already |
| // have set a good height. There's nothing more we should do. |
| return m_computedColumnHeight; |
| } |
| |
| // If the initial guessed column height wasn't enough, stretch it now. Stretch by the lowest |
| // amount of space shortage found during layout. |
| |
| ASSERT(m_minSpaceShortage > 0); // We should never _shrink_ the height! |
| // ASSERT(m_minSpaceShortage != RenderFragmentedFlow::maxLogicalHeight()); // If this happens, we probably have a bug. |
| if (m_minSpaceShortage == RenderFragmentedFlow::maxLogicalHeight()) |
| return m_computedColumnHeight; // So bail out rather than looping infinitely. |
| |
| return m_computedColumnHeight + m_minSpaceShortage; |
| } |
| |
| void RenderMultiColumnSet::clearForcedBreaks() |
| { |
| m_contentRuns.clear(); |
| } |
| |
| void RenderMultiColumnSet::addForcedBreak(LayoutUnit offsetFromFirstPage) |
| { |
| if (!requiresBalancing()) |
| return; |
| if (!m_contentRuns.isEmpty() && offsetFromFirstPage <= m_contentRuns.last().breakOffset()) |
| return; |
| // Append another item as long as we haven't exceeded used column count. What ends up in the |
| // overflow area shouldn't affect column balancing. |
| if (m_contentRuns.size() < m_computedColumnCount) |
| m_contentRuns.append(ContentRun(offsetFromFirstPage)); |
| } |
| |
| bool RenderMultiColumnSet::recalculateColumnHeight(bool initial) |
| { |
| LayoutUnit oldColumnHeight = m_computedColumnHeight; |
| if (requiresBalancing()) { |
| if (initial) |
| distributeImplicitBreaks(); |
| LayoutUnit newColumnHeight = calculateBalancedHeight(initial); |
| setAndConstrainColumnHeight(newColumnHeight); |
| // After having calculated an initial column height, the multicol container typically needs at |
| // least one more layout pass with a new column height, but if a height was specified, we only |
| // need to do this if we think that we need less space than specified. Conversely, if we |
| // determined that the columns need to be as tall as the specified height of the container, we |
| // have already laid it out correctly, and there's no need for another pass. |
| } else { |
| // The position of the column set may have changed, in which case height available for |
| // columns may have changed as well. |
| setAndConstrainColumnHeight(m_computedColumnHeight); |
| } |
| if (m_computedColumnHeight == oldColumnHeight) |
| return false; // No change. We're done. |
| |
| m_minSpaceShortage = RenderFragmentedFlow::maxLogicalHeight(); |
| return true; // Need another pass. |
| } |
| |
| void RenderMultiColumnSet::recordSpaceShortage(LayoutUnit spaceShortage) |
| { |
| if (spaceShortage >= m_minSpaceShortage) |
| return; |
| |
| // The space shortage is what we use as our stretch amount. We need a positive number here in |
| // order to get anywhere. Some lines actually have zero height. Ignore them. |
| if (spaceShortage > 0) |
| m_minSpaceShortage = spaceShortage; |
| } |
| |
| void RenderMultiColumnSet::updateLogicalWidth() |
| { |
| setComputedColumnWidthAndCount(multiColumnFlow()->columnWidth(), multiColumnFlow()->columnCount()); // FIXME: This will eventually vary if we are contained inside fragments. |
| |
| // FIXME: When we add fragments support, we'll start it off at the width of the multi-column |
| // block in that particular fragment. |
| setLogicalWidth(multiColumnBlockFlow()->contentLogicalWidth()); |
| } |
| |
| bool RenderMultiColumnSet::requiresBalancing() const |
| { |
| if (!multiColumnFlow()->progressionIsInline()) |
| return false; |
| |
| if (RenderBox* next = RenderMultiColumnFlow::nextColumnSetOrSpannerSiblingOf(this)) { |
| if (!next->isRenderMultiColumnSet() && !next->isLegend()) { |
| // If we're followed by a spanner, we need to balance. |
| ASSERT(multiColumnFlow()->findColumnSpannerPlaceholder(next)); |
| return true; |
| } |
| } |
| RenderBlockFlow* container = multiColumnBlockFlow(); |
| if (container->style().columnFill() == ColumnFill::Balance) |
| return true; |
| return !multiColumnFlow()->columnHeightAvailable(); |
| } |
| |
| void RenderMultiColumnSet::prepareForLayout(bool initial) |
| { |
| // Guess box logical top. This might eliminate the need for another layout pass. |
| if (RenderBox* previous = RenderMultiColumnFlow::previousColumnSetOrSpannerSiblingOf(this)) |
| setLogicalTop(previous->logicalBottom() + previous->marginAfter()); |
| else |
| setLogicalTop(multiColumnBlockFlow()->borderAndPaddingBefore()); |
| |
| if (initial) |
| m_maxColumnHeight = calculateMaxColumnHeight(); |
| if (requiresBalancing()) { |
| if (initial) { |
| m_computedColumnHeight = 0; |
| m_availableColumnHeight = 0; |
| m_columnHeightComputed = false; |
| } |
| } else |
| setAndConstrainColumnHeight(heightAdjustedForSetOffset(multiColumnFlow()->columnHeightAvailable())); |
| |
| // Set box width. |
| updateLogicalWidth(); |
| |
| // Any breaks will be re-inserted during layout, so get rid of what we already have. |
| clearForcedBreaks(); |
| |
| // Nuke previously stored minimum column height. Contents may have changed for all we know. |
| m_minimumColumnHeight = 0; |
| |
| // Start with "infinite" flow thread portion height until height is known. |
| setLogicalBottomInFragmentedFlow(RenderFragmentedFlow::maxLogicalHeight()); |
| |
| setNeedsLayout(MarkOnlyThis); |
| } |
| |
| void RenderMultiColumnSet::beginFlow(RenderBlock* container) |
| { |
| RenderMultiColumnFlow* fragmentedFlow = multiColumnFlow(); |
| |
| // At this point layout is exactly at the beginning of this set. Store block offset from flow |
| // thread start. |
| LayoutUnit logicalTopInFragmentedFlow = fragmentedFlow->offsetFromLogicalTopOfFirstFragment(container) + container->logicalHeight(); |
| setLogicalTopInFragmentedFlow(logicalTopInFragmentedFlow); |
| } |
| |
| void RenderMultiColumnSet::endFlow(RenderBlock* container, LayoutUnit bottomInContainer) |
| { |
| RenderMultiColumnFlow* fragmentedFlow = multiColumnFlow(); |
| |
| // At this point layout is exactly at the end of this set. Store block offset from flow thread |
| // start. Also note that a new column height may have affected the height used in the flow |
| // thread (because of struts), which may affect the number of columns. So we also need to update |
| // the flow thread portion height in order to be able to calculate actual column-count. |
| LayoutUnit logicalBottomInFragmentedFlow = fragmentedFlow->offsetFromLogicalTopOfFirstFragment(container) + bottomInContainer; |
| setLogicalBottomInFragmentedFlow(logicalBottomInFragmentedFlow); |
| container->setLogicalHeight(bottomInContainer); |
| } |
| |
| void RenderMultiColumnSet::layout() |
| { |
| RenderBlockFlow::layout(); |
| |
| // At this point the logical top and bottom of the column set are known. Update maximum column |
| // height (multicol height may be constrained). |
| m_maxColumnHeight = calculateMaxColumnHeight(); |
| |
| if (!nextSiblingMultiColumnSet()) { |
| // This is the last set, i.e. the last fragment. Seize the opportunity to validate them. |
| multiColumnFlow()->validateFragments(); |
| } |
| } |
| |
| RenderBox::LogicalExtentComputedValues RenderMultiColumnSet::computeLogicalHeight(LayoutUnit, LayoutUnit logicalTop) const |
| { |
| return { m_availableColumnHeight, logicalTop, ComputedMarginValues() }; |
| } |
| |
| LayoutUnit RenderMultiColumnSet::calculateMaxColumnHeight() const |
| { |
| RenderBlockFlow* multicolBlock = multiColumnBlockFlow(); |
| const RenderStyle& multicolStyle = multicolBlock->style(); |
| LayoutUnit availableHeight = multiColumnFlow()->columnHeightAvailable(); |
| LayoutUnit maxColumnHeight = availableHeight ? availableHeight : RenderFragmentedFlow::maxLogicalHeight(); |
| if (!multicolStyle.logicalMaxHeight().isUndefined()) |
| maxColumnHeight = std::min(maxColumnHeight, multicolBlock->computeContentLogicalHeight(MaxSize, multicolStyle.logicalMaxHeight(), WTF::nullopt).valueOr(maxColumnHeight)); |
| return heightAdjustedForSetOffset(maxColumnHeight); |
| } |
| |
| LayoutUnit RenderMultiColumnSet::columnGap() const |
| { |
| // FIXME: Eventually we will cache the column gap when the widths of columns start varying, but for now we just |
| // go to the parent block to get the gap. |
| RenderBlockFlow& parentBlock = downcast<RenderBlockFlow>(*parent()); |
| if (parentBlock.style().columnGap().isNormal()) |
| return parentBlock.style().fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches <p> margins. |
| return valueForLength(parentBlock.style().columnGap().length(), parentBlock.availableLogicalWidth()); |
| } |
| |
| unsigned RenderMultiColumnSet::columnCount() const |
| { |
| // We must always return a value of 1 or greater. Column count = 0 is a meaningless situation, |
| // and will confuse and cause problems in other parts of the code. |
| if (!computedColumnHeight()) |
| return 1; |
| |
| // Our portion rect determines our column count. We have as many columns as needed to fit all the content. |
| LayoutUnit logicalHeightInColumns = fragmentedFlow()->isHorizontalWritingMode() ? fragmentedFlowPortionRect().height() : fragmentedFlowPortionRect().width(); |
| if (!logicalHeightInColumns) |
| return 1; |
| |
| unsigned count = ceil(static_cast<float>(logicalHeightInColumns) / computedColumnHeight()); |
| ASSERT(count >= 1); |
| return count; |
| } |
| |
| LayoutUnit RenderMultiColumnSet::columnLogicalLeft(unsigned index) const |
| { |
| LayoutUnit colLogicalWidth = computedColumnWidth(); |
| LayoutUnit colLogicalLeft = borderAndPaddingLogicalLeft(); |
| LayoutUnit colGap = columnGap(); |
| |
| bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
| bool progressionInline = multiColumnFlow()->progressionIsInline(); |
| |
| if (progressionInline) { |
| if (style().isLeftToRightDirection() ^ progressionReversed) |
| colLogicalLeft += index * (colLogicalWidth + colGap); |
| else |
| colLogicalLeft += contentLogicalWidth() - colLogicalWidth - index * (colLogicalWidth + colGap); |
| } |
| |
| return colLogicalLeft; |
| } |
| |
| LayoutUnit RenderMultiColumnSet::columnLogicalTop(unsigned index) const |
| { |
| LayoutUnit colLogicalHeight = computedColumnHeight(); |
| LayoutUnit colLogicalTop = borderAndPaddingBefore(); |
| LayoutUnit colGap = columnGap(); |
| |
| bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
| bool progressionInline = multiColumnFlow()->progressionIsInline(); |
| |
| if (!progressionInline) { |
| if (!progressionReversed) |
| colLogicalTop += index * (colLogicalHeight + colGap); |
| else |
| colLogicalTop += contentLogicalHeight() - colLogicalHeight - index * (colLogicalHeight + colGap); |
| } |
| |
| return colLogicalTop; |
| } |
| |
| LayoutRect RenderMultiColumnSet::columnRectAt(unsigned index) const |
| { |
| LayoutUnit colLogicalWidth = computedColumnWidth(); |
| LayoutUnit colLogicalHeight = computedColumnHeight(); |
| |
| if (isHorizontalWritingMode()) |
| return LayoutRect(columnLogicalLeft(index), columnLogicalTop(index), colLogicalWidth, colLogicalHeight); |
| return LayoutRect(columnLogicalTop(index), columnLogicalLeft(index), colLogicalHeight, colLogicalWidth); |
| } |
| |
| unsigned RenderMultiColumnSet::columnIndexAtOffset(LayoutUnit offset, ColumnIndexCalculationMode mode) const |
| { |
| LayoutRect portionRect(fragmentedFlowPortionRect()); |
| |
| // Handle the offset being out of range. |
| LayoutUnit fragmentedFlowLogicalTop = isHorizontalWritingMode() ? portionRect.y() : portionRect.x(); |
| if (offset < fragmentedFlowLogicalTop) |
| return 0; |
| // If we're laying out right now, we cannot constrain against some logical bottom, since it |
| // isn't known yet. Otherwise, just return the last column if we're past the logical bottom. |
| if (mode == ClampToExistingColumns) { |
| LayoutUnit fragmentedFlowLogicalBottom = isHorizontalWritingMode() ? portionRect.maxY() : portionRect.maxX(); |
| if (offset >= fragmentedFlowLogicalBottom) |
| return columnCount() - 1; |
| } |
| |
| // Sometimes computedColumnHeight() is 0 here: see https://bugs.webkit.org/show_bug.cgi?id=132884 |
| if (!computedColumnHeight()) |
| return 0; |
| |
| // Just divide by the column height to determine the correct column. |
| return static_cast<float>(offset - fragmentedFlowLogicalTop) / computedColumnHeight(); |
| } |
| |
| LayoutRect RenderMultiColumnSet::fragmentedFlowPortionRectAt(unsigned index) const |
| { |
| LayoutRect portionRect = fragmentedFlowPortionRect(); |
| if (isHorizontalWritingMode()) |
| portionRect = LayoutRect(portionRect.x(), portionRect.y() + index * computedColumnHeight(), portionRect.width(), computedColumnHeight()); |
| else |
| portionRect = LayoutRect(portionRect.x() + index * computedColumnHeight(), portionRect.y(), computedColumnHeight(), portionRect.height()); |
| return portionRect; |
| } |
| |
| LayoutRect RenderMultiColumnSet::fragmentedFlowPortionOverflowRect(const LayoutRect& portionRect, unsigned index, unsigned colCount, LayoutUnit colGap) |
| { |
| // This function determines the portion of the flow thread that paints for the column. Along the inline axis, columns are |
| // unclipped at outside edges (i.e., the first and last column in the set), and they clip to half the column |
| // gap along interior edges. |
| // |
| // In the block direction, we will not clip overflow out of the top of the first column, or out of the bottom of |
| // the last column. This applies only to the true first column and last column across all column sets. |
| // |
| // FIXME: Eventually we will know overflow on a per-column basis, but we can't do this until we have a painting |
| // mode that understands not to paint contents from a previous column in the overflow area of a following column. |
| // This problem applies to fragments and pages as well and is not unique to columns. |
| |
| bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
| |
| bool isFirstColumn = !index; |
| bool isLastColumn = index == colCount - 1; |
| bool isLeftmostColumn = style().isLeftToRightDirection() ^ progressionReversed ? isFirstColumn : isLastColumn; |
| bool isRightmostColumn = style().isLeftToRightDirection() ^ progressionReversed ? isLastColumn : isFirstColumn; |
| |
| // Calculate the overflow rectangle, based on the flow thread's, clipped at column logical |
| // top/bottom unless it's the first/last column. |
| LayoutRect overflowRect = overflowRectForFragmentedFlowPortion(portionRect, isFirstColumn && isFirstFragment(), isLastColumn && isLastFragment(), VisualOverflow); |
| |
| // For RenderViews only (i.e., iBooks), avoid overflowing into neighboring columns, by clipping in the middle of adjacent column gaps. Also make sure that we avoid rounding errors. |
| if (&view() == parent()) { |
| if (isHorizontalWritingMode()) { |
| if (!isLeftmostColumn) |
| overflowRect.shiftXEdgeTo(portionRect.x() - colGap / 2); |
| if (!isRightmostColumn) |
| overflowRect.shiftMaxXEdgeTo(portionRect.maxX() + colGap - colGap / 2); |
| } else { |
| if (!isLeftmostColumn) |
| overflowRect.shiftYEdgeTo(portionRect.y() - colGap / 2); |
| if (!isRightmostColumn) |
| overflowRect.shiftMaxYEdgeTo(portionRect.maxY() + colGap - colGap / 2); |
| } |
| } |
| return overflowRect; |
| } |
| |
| void RenderMultiColumnSet::paintColumnRules(PaintInfo& paintInfo, const LayoutPoint& paintOffset) |
| { |
| if (paintInfo.context().paintingDisabled()) |
| return; |
| |
| RenderMultiColumnFlow* fragmentedFlow = multiColumnFlow(); |
| const RenderStyle& blockStyle = parent()->style(); |
| const Color& ruleColor = blockStyle.visitedDependentColorWithColorFilter(CSSPropertyColumnRuleColor); |
| bool ruleTransparent = blockStyle.columnRuleIsTransparent(); |
| BorderStyle ruleStyle = collapsedBorderStyle(blockStyle.columnRuleStyle()); |
| LayoutUnit ruleThickness { blockStyle.columnRuleWidth() }; |
| LayoutUnit colGap = columnGap(); |
| bool renderRule = ruleStyle > BorderStyle::Hidden && !ruleTransparent; |
| if (!renderRule) |
| return; |
| |
| unsigned colCount = columnCount(); |
| if (colCount <= 1) |
| return; |
| |
| bool antialias = shouldAntialiasLines(paintInfo.context()); |
| |
| if (fragmentedFlow->progressionIsInline()) { |
| bool leftToRight = style().isLeftToRightDirection() ^ fragmentedFlow->progressionIsReversed(); |
| LayoutUnit currLogicalLeftOffset = leftToRight ? 0_lu : contentLogicalWidth(); |
| LayoutUnit ruleAdd = logicalLeftOffsetForContent(); |
| LayoutUnit ruleLogicalLeft = leftToRight ? 0_lu : contentLogicalWidth(); |
| LayoutUnit inlineDirectionSize = computedColumnWidth(); |
| BoxSide boxSide = isHorizontalWritingMode() |
| ? leftToRight ? BSLeft : BSRight |
| : leftToRight ? BSTop : BSBottom; |
| |
| for (unsigned i = 0; i < colCount; i++) { |
| // Move to the next position. |
| if (leftToRight) { |
| ruleLogicalLeft += inlineDirectionSize + colGap / 2; |
| currLogicalLeftOffset += inlineDirectionSize + colGap; |
| } else { |
| ruleLogicalLeft -= (inlineDirectionSize + colGap / 2); |
| currLogicalLeftOffset -= (inlineDirectionSize + colGap); |
| } |
| |
| // Now paint the column rule. |
| if (i < colCount - 1) { |
| LayoutUnit ruleLeft = isHorizontalWritingMode() ? paintOffset.x() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd : paintOffset.x() + borderLeft() + paddingLeft(); |
| LayoutUnit ruleRight = isHorizontalWritingMode() ? ruleLeft + ruleThickness : ruleLeft + contentWidth(); |
| LayoutUnit ruleTop = isHorizontalWritingMode() ? paintOffset.y() + borderTop() + paddingTop() : paintOffset.y() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd; |
| LayoutUnit ruleBottom = isHorizontalWritingMode() ? ruleTop + contentHeight() : ruleTop + ruleThickness; |
| IntRect pixelSnappedRuleRect = snappedIntRect(ruleLeft, ruleTop, ruleRight - ruleLeft, ruleBottom - ruleTop); |
| drawLineForBoxSide(paintInfo.context(), pixelSnappedRuleRect, boxSide, ruleColor, ruleStyle, 0, 0, antialias); |
| } |
| |
| ruleLogicalLeft = currLogicalLeftOffset; |
| } |
| } else { |
| bool topToBottom = !style().isFlippedBlocksWritingMode() ^ fragmentedFlow->progressionIsReversed(); |
| LayoutUnit ruleLeft = isHorizontalWritingMode() ? 0_lu : colGap / 2 - colGap - ruleThickness / 2; |
| LayoutUnit ruleWidth = isHorizontalWritingMode() ? contentWidth() : ruleThickness; |
| LayoutUnit ruleTop = isHorizontalWritingMode() ? colGap / 2 - colGap - ruleThickness / 2 : 0_lu; |
| LayoutUnit ruleHeight = isHorizontalWritingMode() ? ruleThickness : contentHeight(); |
| LayoutRect ruleRect(ruleLeft, ruleTop, ruleWidth, ruleHeight); |
| |
| if (!topToBottom) { |
| if (isHorizontalWritingMode()) |
| ruleRect.setY(height() - ruleRect.maxY()); |
| else |
| ruleRect.setX(width() - ruleRect.maxX()); |
| } |
| |
| ruleRect.moveBy(paintOffset); |
| |
| BoxSide boxSide = isHorizontalWritingMode() ? topToBottom ? BSTop : BSBottom : topToBottom ? BSLeft : BSRight; |
| |
| LayoutSize step(0_lu, topToBottom ? computedColumnHeight() + colGap : -(computedColumnHeight() + colGap)); |
| if (!isHorizontalWritingMode()) |
| step = step.transposedSize(); |
| |
| for (unsigned i = 1; i < colCount; i++) { |
| ruleRect.move(step); |
| IntRect pixelSnappedRuleRect = snappedIntRect(ruleRect); |
| drawLineForBoxSide(paintInfo.context(), pixelSnappedRuleRect, boxSide, ruleColor, ruleStyle, 0, 0, antialias); |
| } |
| } |
| } |
| |
| void RenderMultiColumnSet::repaintFragmentedFlowContent(const LayoutRect& repaintRect) |
| { |
| // Figure out the start and end columns and only check within that range so that we don't walk the |
| // entire column set. Put the repaint rect into flow thread coordinates by flipping it first. |
| LayoutRect fragmentedFlowRepaintRect(repaintRect); |
| fragmentedFlow()->flipForWritingMode(fragmentedFlowRepaintRect); |
| |
| // Now we can compare this rect with the flow thread portions owned by each column. First let's |
| // just see if the repaint rect intersects our flow thread portion at all. |
| LayoutRect clippedRect(fragmentedFlowRepaintRect); |
| clippedRect.intersect(RenderFragmentContainer::fragmentedFlowPortionOverflowRect()); |
| if (clippedRect.isEmpty()) |
| return; |
| |
| // Now we know we intersect at least one column. Let's figure out the logical top and logical |
| // bottom of the area we're repainting. |
| LayoutUnit repaintLogicalTop = isHorizontalWritingMode() ? fragmentedFlowRepaintRect.y() : fragmentedFlowRepaintRect.x(); |
| LayoutUnit repaintLogicalBottom = (isHorizontalWritingMode() ? fragmentedFlowRepaintRect.maxY() : fragmentedFlowRepaintRect.maxX()) - 1; |
| |
| unsigned startColumn = columnIndexAtOffset(repaintLogicalTop); |
| unsigned endColumn = columnIndexAtOffset(repaintLogicalBottom); |
| |
| LayoutUnit colGap = columnGap(); |
| unsigned colCount = columnCount(); |
| for (unsigned i = startColumn; i <= endColumn; i++) { |
| LayoutRect colRect = columnRectAt(i); |
| |
| // Get the portion of the flow thread that corresponds to this column. |
| LayoutRect fragmentedFlowPortion = fragmentedFlowPortionRectAt(i); |
| |
| // Now get the overflow rect that corresponds to the column. |
| LayoutRect fragmentedFlowOverflowPortion = fragmentedFlowPortionOverflowRect(fragmentedFlowPortion, i, colCount, colGap); |
| |
| // Do a repaint for this specific column. |
| flipForWritingMode(colRect); |
| repaintFragmentedFlowContentRectangle(repaintRect, fragmentedFlowPortion, colRect.location(), &fragmentedFlowOverflowPortion); |
| } |
| } |
| |
| LayoutUnit RenderMultiColumnSet::initialBlockOffsetForPainting() const |
| { |
| bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
| bool progressionIsInline = multiColumnFlow()->progressionIsInline(); |
| |
| LayoutUnit result; |
| if (!progressionIsInline && progressionReversed) { |
| LayoutRect colRect = columnRectAt(0); |
| result = isHorizontalWritingMode() ? colRect.y() : colRect.x(); |
| } |
| return result; |
| } |
| |
| void RenderMultiColumnSet::collectLayerFragments(LayerFragments& fragments, const LayoutRect& layerBoundingBox, const LayoutRect& dirtyRect) |
| { |
| // Let's start by introducing the different coordinate systems involved here. They are different |
| // in how they deal with writing modes and columns. RenderLayer rectangles tend to be more |
| // physical than the rectangles used in RenderObject & co. |
| // |
| // The two rectangles passed to this method are physical, except that we pretend that there's |
| // only one long column (that's the flow thread). They are relative to the top left corner of |
| // the flow thread. All rectangles being compared to the dirty rect also need to be in this |
| // coordinate system. |
| // |
| // Then there's the output from this method - the stuff we put into the list of fragments. The |
| // translationOffset point is the actual physical translation required to get from a location in |
| // the flow thread to a location in some column. The paginationClip rectangle is in the same |
| // coordinate system as the two rectangles passed to this method (i.e. physical, in flow thread |
| // coordinates, pretending that there's only one long column). |
| // |
| // All other rectangles in this method are slightly less physical, when it comes to how they are |
| // used with different writing modes, but they aren't really logical either. They are just like |
| // RenderBox::frameRect(). More precisely, the sizes are physical, and the inline direction |
| // coordinate is too, but the block direction coordinate is always "logical top". These |
| // rectangles also pretend that there's only one long column, i.e. they are for the flow thread. |
| // |
| // To sum up: input and output from this method are "physical" RenderLayer-style rectangles and |
| // points, while inside this method we mostly use the RenderObject-style rectangles (with the |
| // block direction coordinate always being logical top). |
| |
| // Put the layer bounds into flow thread-local coordinates by flipping it first. Since we're in |
| // a renderer, most rectangles are represented this way. |
| LayoutRect layerBoundsInFragmentedFlow(layerBoundingBox); |
| fragmentedFlow()->flipForWritingMode(layerBoundsInFragmentedFlow); |
| |
| // Now we can compare with the flow thread portions owned by each column. First let's |
| // see if the rect intersects our flow thread portion at all. |
| LayoutRect clippedRect(layerBoundsInFragmentedFlow); |
| clippedRect.intersect(RenderFragmentContainer::fragmentedFlowPortionOverflowRect()); |
| if (clippedRect.isEmpty()) |
| return; |
| |
| // Now we know we intersect at least one column. Let's figure out the logical top and logical |
| // bottom of the area we're checking. |
| LayoutUnit layerLogicalTop = isHorizontalWritingMode() ? layerBoundsInFragmentedFlow.y() : layerBoundsInFragmentedFlow.x(); |
| LayoutUnit layerLogicalBottom = (isHorizontalWritingMode() ? layerBoundsInFragmentedFlow.maxY() : layerBoundsInFragmentedFlow.maxX()) - 1; |
| |
| // Figure out the start and end columns and only check within that range so that we don't walk the |
| // entire column set. |
| unsigned startColumn = columnIndexAtOffset(layerLogicalTop); |
| unsigned endColumn = columnIndexAtOffset(layerLogicalBottom); |
| |
| LayoutUnit colLogicalWidth = computedColumnWidth(); |
| LayoutUnit colGap = columnGap(); |
| unsigned colCount = columnCount(); |
| |
| bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
| bool progressionIsInline = multiColumnFlow()->progressionIsInline(); |
| |
| LayoutUnit initialBlockOffset = initialBlockOffsetForPainting(); |
| |
| for (unsigned i = startColumn; i <= endColumn; i++) { |
| // Get the portion of the flow thread that corresponds to this column. |
| LayoutRect fragmentedFlowPortion = fragmentedFlowPortionRectAt(i); |
| |
| // Now get the overflow rect that corresponds to the column. |
| LayoutRect fragmentedFlowOverflowPortion = fragmentedFlowPortionOverflowRect(fragmentedFlowPortion, i, colCount, colGap); |
| |
| // In order to create a fragment we must intersect the portion painted by this column. |
| LayoutRect clippedRect(layerBoundsInFragmentedFlow); |
| clippedRect.intersect(fragmentedFlowOverflowPortion); |
| if (clippedRect.isEmpty()) |
| continue; |
| |
| // We also need to intersect the dirty rect. We have to apply a translation and shift based off |
| // our column index. |
| LayoutSize translationOffset; |
| LayoutUnit inlineOffset = progressionIsInline ? i * (colLogicalWidth + colGap) : 0_lu; |
| |
| bool leftToRight = style().isLeftToRightDirection() ^ progressionReversed; |
| if (!leftToRight) { |
| inlineOffset = -inlineOffset; |
| if (progressionReversed) |
| inlineOffset += contentLogicalWidth() - colLogicalWidth; |
| } |
| translationOffset.setWidth(inlineOffset); |
| |
| LayoutUnit blockOffset = initialBlockOffset + logicalTop() - fragmentedFlow()->logicalTop() + (isHorizontalWritingMode() ? -fragmentedFlowPortion.y() : -fragmentedFlowPortion.x()); |
| if (!progressionIsInline) { |
| if (!progressionReversed) |
| blockOffset = i * colGap; |
| else |
| blockOffset -= i * (computedColumnHeight() + colGap); |
| } |
| if (isFlippedWritingMode(style().writingMode())) |
| blockOffset = -blockOffset; |
| translationOffset.setHeight(blockOffset); |
| if (!isHorizontalWritingMode()) |
| translationOffset = translationOffset.transposedSize(); |
| |
| // Shift the dirty rect to be in flow thread coordinates with this translation applied. |
| LayoutRect translatedDirtyRect(dirtyRect); |
| translatedDirtyRect.move(-translationOffset); |
| |
| // See if we intersect the dirty rect. |
| clippedRect = layerBoundingBox; |
| clippedRect.intersect(translatedDirtyRect); |
| if (clippedRect.isEmpty()) |
| continue; |
| |
| // Something does need to paint in this column. Make a fragment now and supply the physical translation |
| // offset and the clip rect for the column with that offset applied. |
| LayerFragment fragment; |
| fragment.paginationOffset = translationOffset; |
| |
| LayoutRect flippedFragmentedFlowOverflowPortion(fragmentedFlowOverflowPortion); |
| // Flip it into more a physical (RenderLayer-style) rectangle. |
| fragmentedFlow()->flipForWritingMode(flippedFragmentedFlowOverflowPortion); |
| fragment.paginationClip = flippedFragmentedFlowOverflowPortion; |
| fragments.append(fragment); |
| } |
| } |
| |
| LayoutPoint RenderMultiColumnSet::columnTranslationForOffset(const LayoutUnit& offset) const |
| { |
| unsigned startColumn = columnIndexAtOffset(offset); |
| |
| LayoutUnit colGap = columnGap(); |
| |
| LayoutRect fragmentedFlowPortion = fragmentedFlowPortionRectAt(startColumn); |
| LayoutPoint translationOffset; |
| |
| bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
| bool progressionIsInline = multiColumnFlow()->progressionIsInline(); |
| |
| LayoutUnit initialBlockOffset = initialBlockOffsetForPainting(); |
| |
| translationOffset.setX(columnLogicalLeft(startColumn)); |
| |
| LayoutUnit blockOffset = initialBlockOffset - (isHorizontalWritingMode() ? fragmentedFlowPortion.y() : fragmentedFlowPortion.x()); |
| if (!progressionIsInline) { |
| if (!progressionReversed) |
| blockOffset = startColumn * colGap; |
| else |
| blockOffset -= startColumn * (computedColumnHeight() + colGap); |
| } |
| if (isFlippedWritingMode(style().writingMode())) |
| blockOffset = -blockOffset; |
| translationOffset.setY(blockOffset); |
| |
| if (!isHorizontalWritingMode()) |
| translationOffset = translationOffset.transposedPoint(); |
| |
| return translationOffset; |
| } |
| |
| void RenderMultiColumnSet::adjustFragmentBoundsFromFragmentedFlowPortionRect(LayoutRect&) const |
| { |
| // This only fires for named flow thread compositing code, so let's make sure to ASSERT if this ever gets invoked. |
| ASSERT_NOT_REACHED(); |
| } |
| |
| void RenderMultiColumnSet::addOverflowFromChildren() |
| { |
| // FIXME: Need to do much better here. |
| unsigned colCount = columnCount(); |
| if (!colCount) |
| return; |
| |
| LayoutRect lastRect = columnRectAt(colCount - 1); |
| addLayoutOverflow(lastRect); |
| if (!hasOverflowClip()) |
| addVisualOverflow(lastRect); |
| } |
| |
| VisiblePosition RenderMultiColumnSet::positionForPoint(const LayoutPoint& logicalPoint, const RenderFragmentContainer*) |
| { |
| return multiColumnFlow()->positionForPoint(translateFragmentPointToFragmentedFlow(logicalPoint, ClampHitTestTranslationToColumns), this); |
| } |
| |
| LayoutPoint RenderMultiColumnSet::translateFragmentPointToFragmentedFlow(const LayoutPoint & logicalPoint, ColumnHitTestTranslationMode clampMode) const |
| { |
| // Determine which columns we intersect. |
| LayoutUnit colGap = columnGap(); |
| LayoutUnit halfColGap = colGap / 2; |
| |
| bool progressionIsInline = multiColumnFlow()->progressionIsInline(); |
| |
| LayoutPoint point = logicalPoint; |
| |
| for (unsigned i = 0; i < columnCount(); i++) { |
| // Add in half the column gap to the left and right of the rect. |
| LayoutRect colRect = columnRectAt(i); |
| if (isHorizontalWritingMode() == progressionIsInline) { |
| LayoutRect gapAndColumnRect(colRect.x() - halfColGap, colRect.y(), colRect.width() + colGap, colRect.height()); |
| if (point.x() >= gapAndColumnRect.x() && point.x() < gapAndColumnRect.maxX()) { |
| if (clampMode == ClampHitTestTranslationToColumns) { |
| if (progressionIsInline) { |
| // FIXME: The clamping that follows is not completely right for right-to-left |
| // content. |
| // Clamp everything above the column to its top left. |
| if (point.y() < gapAndColumnRect.y()) |
| point = gapAndColumnRect.location(); |
| // Clamp everything below the column to the next column's top left. If there is |
| // no next column, this still maps to just after this column. |
| else if (point.y() >= gapAndColumnRect.maxY()) { |
| point = gapAndColumnRect.location(); |
| point.move(0_lu, gapAndColumnRect.height()); |
| } |
| } else { |
| if (point.x() < colRect.x()) |
| point.setX(colRect.x()); |
| else if (point.x() >= colRect.maxX()) |
| point.setX(colRect.maxX() - 1); |
| } |
| } |
| |
| LayoutSize offsetInColumn = point - colRect.location(); |
| LayoutRect fragmentedFlowPortion = fragmentedFlowPortionRectAt(i); |
| |
| return fragmentedFlowPortion.location() + offsetInColumn; |
| } |
| } else { |
| LayoutRect gapAndColumnRect(colRect.x(), colRect.y() - halfColGap, colRect.width(), colRect.height() + colGap); |
| if (point.y() >= gapAndColumnRect.y() && point.y() < gapAndColumnRect.maxY()) { |
| if (clampMode == ClampHitTestTranslationToColumns) { |
| if (progressionIsInline) { |
| // FIXME: The clamping that follows is not completely right for right-to-left |
| // content. |
| // Clamp everything above the column to its top left. |
| if (point.x() < gapAndColumnRect.x()) |
| point = gapAndColumnRect.location(); |
| // Clamp everything below the column to the next column's top left. If there is |
| // no next column, this still maps to just after this column. |
| else if (point.x() >= gapAndColumnRect.maxX()) { |
| point = gapAndColumnRect.location(); |
| point.move(gapAndColumnRect.width(), 0_lu); |
| } |
| } else { |
| if (point.y() < colRect.y()) |
| point.setY(colRect.y()); |
| else if (point.y() >= colRect.maxY()) |
| point.setY(colRect.maxY() - 1); |
| } |
| } |
| |
| LayoutSize offsetInColumn = point - colRect.location(); |
| LayoutRect fragmentedFlowPortion = fragmentedFlowPortionRectAt(i); |
| return fragmentedFlowPortion.location() + offsetInColumn; |
| } |
| } |
| } |
| |
| return logicalPoint; |
| } |
| |
| void RenderMultiColumnSet::updateHitTestResult(HitTestResult& result, const LayoutPoint& point) |
| { |
| if (result.innerNode() || !parent()->isRenderView()) |
| return; |
| |
| // Note this does not work with column spans, but once we implement RenderPageSet, we can move this code |
| // over there instead (and spans of course won't be allowed on pages). |
| Node* node = document().documentElement(); |
| if (node) { |
| result.setInnerNode(node); |
| if (!result.innerNonSharedNode()) |
| result.setInnerNonSharedNode(node); |
| LayoutPoint adjustedPoint = translateFragmentPointToFragmentedFlow(point); |
| view().offsetForContents(adjustedPoint); |
| result.setLocalPoint(adjustedPoint); |
| } |
| } |
| |
| const char* RenderMultiColumnSet::renderName() const |
| { |
| return "RenderMultiColumnSet"; |
| } |
| |
| } |