blob: cadc51a972ffbb217db6a301952f070fe66bfe55 [file] [log] [blame]
/*
* Copyright (C) 2008, 2009, 2012, 2013 Apple Inc. All rights reserved.
* Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
* Copyright (C) 2012 Igalia, S.L.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef BytecodeGenerator_h
#define BytecodeGenerator_h
#include "CodeBlock.h"
#include <wtf/HashTraits.h>
#include "Instruction.h"
#include "Label.h"
#include "LabelScope.h"
#include "Interpreter.h"
#include "ParserError.h"
#include "RegisterID.h"
#include "SymbolTable.h"
#include "Debugger.h"
#include "Nodes.h"
#include "StaticPropertyAnalyzer.h"
#include "UnlinkedCodeBlock.h"
#include "VMStackBounds.h"
#include <functional>
#include <wtf/PassRefPtr.h>
#include <wtf/SegmentedVector.h>
#include <wtf/Vector.h>
namespace JSC {
class Identifier;
class Label;
enum ExpectedFunction {
NoExpectedFunction,
ExpectObjectConstructor,
ExpectArrayConstructor
};
class CallArguments {
public:
CallArguments(BytecodeGenerator&, ArgumentsNode*, unsigned additionalArguments = 0);
RegisterID* thisRegister() { return m_argv[0].get(); }
RegisterID* argumentRegister(unsigned i) { return m_argv[i + 1].get(); }
unsigned registerOffset() { return -m_argv.last()->index() + CallFrame::offsetFor(argumentCountIncludingThis()); }
unsigned argumentCountIncludingThis() { return m_argv.size(); }
RegisterID* profileHookRegister() { return m_profileHookRegister.get(); }
ArgumentsNode* argumentsNode() { return m_argumentsNode; }
private:
void newArgument(BytecodeGenerator&);
RefPtr<RegisterID> m_profileHookRegister;
ArgumentsNode* m_argumentsNode;
Vector<RefPtr<RegisterID>, 8, UnsafeVectorOverflow> m_argv;
};
struct FinallyContext {
StatementNode* finallyBlock;
unsigned scopeContextStackSize;
unsigned switchContextStackSize;
unsigned forInContextStackSize;
unsigned tryContextStackSize;
unsigned labelScopesSize;
int finallyDepth;
int dynamicScopeDepth;
};
struct ControlFlowContext {
bool isFinallyBlock;
FinallyContext finallyContext;
};
struct ForInContext {
RefPtr<RegisterID> expectedSubscriptRegister;
RefPtr<RegisterID> iterRegister;
RefPtr<RegisterID> indexRegister;
RefPtr<RegisterID> propertyRegister;
};
struct TryData {
RefPtr<Label> target;
unsigned targetScopeDepth;
};
struct TryContext {
RefPtr<Label> start;
TryData* tryData;
};
class Local {
public:
Local()
: m_local(0)
, m_attributes(0)
{
}
Local(RegisterID* local, unsigned attributes)
: m_local(local)
, m_attributes(attributes)
{
}
operator bool() { return m_local; }
RegisterID* get() { return m_local; }
bool isReadOnly() { return m_attributes & ReadOnly; }
private:
RegisterID* m_local;
unsigned m_attributes;
};
struct TryRange {
RefPtr<Label> start;
RefPtr<Label> end;
TryData* tryData;
};
class BytecodeGenerator {
WTF_MAKE_FAST_ALLOCATED;
public:
typedef DeclarationStacks::VarStack VarStack;
typedef DeclarationStacks::FunctionStack FunctionStack;
BytecodeGenerator(VM&, ProgramNode*, UnlinkedProgramCodeBlock*, DebuggerMode, ProfilerMode);
BytecodeGenerator(VM&, FunctionBodyNode*, UnlinkedFunctionCodeBlock*, DebuggerMode, ProfilerMode);
BytecodeGenerator(VM&, EvalNode*, UnlinkedEvalCodeBlock*, DebuggerMode, ProfilerMode);
~BytecodeGenerator();
VM* vm() const { return m_vm; }
const CommonIdentifiers& propertyNames() const { return *m_vm->propertyNames; }
bool isConstructor() { return m_codeBlock->isConstructor(); }
ParserError generate();
bool isArgumentNumber(const Identifier&, int);
void setIsNumericCompareFunction(bool isNumericCompareFunction);
bool willResolveToArguments(const Identifier&);
RegisterID* uncheckedRegisterForArguments();
Local local(const Identifier&);
Local constLocal(const Identifier&);
// Returns the register storing "this"
RegisterID* thisRegister() { return &m_thisRegister; }
// Returns the next available temporary register. Registers returned by
// newTemporary require a modified form of reference counting: any
// register with a refcount of 0 is considered "available", meaning that
// the next instruction may overwrite it.
RegisterID* newTemporary();
// The same as newTemporary(), but this function returns "suggestion" if
// "suggestion" is a temporary. This function is helpful in situations
// where you've put "suggestion" in a RefPtr, but you'd like to allow
// the next instruction to overwrite it anyway.
RegisterID* newTemporaryOr(RegisterID* suggestion) { return suggestion->isTemporary() ? suggestion : newTemporary(); }
// Functions for handling of dst register
RegisterID* ignoredResult() { return &m_ignoredResultRegister; }
// Returns a place to write intermediate values of an operation
// which reuses dst if it is safe to do so.
RegisterID* tempDestination(RegisterID* dst)
{
return (dst && dst != ignoredResult() && dst->isTemporary()) ? dst : newTemporary();
}
// Returns the place to write the final output of an operation.
RegisterID* finalDestination(RegisterID* originalDst, RegisterID* tempDst = 0)
{
if (originalDst && originalDst != ignoredResult())
return originalDst;
ASSERT(tempDst != ignoredResult());
if (tempDst && tempDst->isTemporary())
return tempDst;
return newTemporary();
}
RegisterID* destinationForAssignResult(RegisterID* dst)
{
if (dst && dst != ignoredResult() && m_codeBlock->needsFullScopeChain())
return dst->isTemporary() ? dst : newTemporary();
return 0;
}
// Moves src to dst if dst is not null and is different from src, otherwise just returns src.
RegisterID* moveToDestinationIfNeeded(RegisterID* dst, RegisterID* src)
{
return dst == ignoredResult() ? 0 : (dst && dst != src) ? emitMove(dst, src) : src;
}
LabelScopePtr newLabelScope(LabelScope::Type, const Identifier* = 0);
PassRefPtr<Label> newLabel();
void emitNode(RegisterID* dst, StatementNode* n)
{
// Node::emitCode assumes that dst, if provided, is either a local or a referenced temporary.
ASSERT(!dst || dst == ignoredResult() || !dst->isTemporary() || dst->refCount());
if (!m_stack.isSafeToRecurse()) {
emitThrowExpressionTooDeepException();
return;
}
n->emitBytecode(*this, dst);
}
void emitNode(StatementNode* n)
{
emitNode(0, n);
}
RegisterID* emitNode(RegisterID* dst, ExpressionNode* n)
{
// Node::emitCode assumes that dst, if provided, is either a local or a referenced temporary.
ASSERT(!dst || dst == ignoredResult() || !dst->isTemporary() || dst->refCount());
if (!m_stack.isSafeToRecurse())
return emitThrowExpressionTooDeepException();
return n->emitBytecode(*this, dst);
}
RegisterID* emitNode(ExpressionNode* n)
{
return emitNode(0, n);
}
void emitNodeInConditionContext(ExpressionNode* n, Label* trueTarget, Label* falseTarget, FallThroughMode fallThroughMode)
{
if (!m_stack.isSafeToRecurse()) {
emitThrowExpressionTooDeepException();
return;
}
n->emitBytecodeInConditionContext(*this, trueTarget, falseTarget, fallThroughMode);
}
void emitExpressionInfo(const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd)
{
ASSERT(divot.offset >= divotStart.offset);
ASSERT(divotEnd.offset >= divot.offset);
int sourceOffset = m_scopeNode->source().startOffset();
unsigned firstLine = m_scopeNode->source().firstLine();
int divotOffset = divot.offset - sourceOffset;
int startOffset = divot.offset - divotStart.offset;
int endOffset = divotEnd.offset - divot.offset;
unsigned line = divot.line;
ASSERT(line >= firstLine);
line -= firstLine;
int lineStart = divot.lineStartOffset;
if (lineStart > sourceOffset)
lineStart -= sourceOffset;
else
lineStart = 0;
if (divotOffset < lineStart)
return;
unsigned column = divotOffset - lineStart;
unsigned instructionOffset = instructions().size();
m_codeBlock->addExpressionInfo(instructionOffset, divotOffset, startOffset, endOffset, line, column);
}
ALWAYS_INLINE bool leftHandSideNeedsCopy(bool rightHasAssignments, bool rightIsPure)
{
return (m_codeType != FunctionCode || m_codeBlock->needsFullScopeChain() || rightHasAssignments) && !rightIsPure;
}
ALWAYS_INLINE PassRefPtr<RegisterID> emitNodeForLeftHandSide(ExpressionNode* n, bool rightHasAssignments, bool rightIsPure)
{
if (leftHandSideNeedsCopy(rightHasAssignments, rightIsPure)) {
PassRefPtr<RegisterID> dst = newTemporary();
emitNode(dst.get(), n);
return dst;
}
return emitNode(n);
}
RegisterID* emitLoad(RegisterID* dst, bool);
RegisterID* emitLoad(RegisterID* dst, double);
RegisterID* emitLoad(RegisterID* dst, const Identifier&);
RegisterID* emitLoad(RegisterID* dst, JSValue);
RegisterID* emitLoadGlobalObject(RegisterID* dst);
RegisterID* emitUnaryOp(OpcodeID, RegisterID* dst, RegisterID* src);
RegisterID* emitBinaryOp(OpcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2, OperandTypes);
RegisterID* emitEqualityOp(OpcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2);
RegisterID* emitUnaryNoDstOp(OpcodeID, RegisterID* src);
RegisterID* emitCreateThis(RegisterID* dst);
RegisterID* emitNewObject(RegisterID* dst);
RegisterID* emitNewArray(RegisterID* dst, ElementNode*, unsigned length); // stops at first elision
RegisterID* emitNewFunction(RegisterID* dst, FunctionBodyNode* body);
RegisterID* emitLazyNewFunction(RegisterID* dst, FunctionBodyNode* body);
RegisterID* emitNewFunctionInternal(RegisterID* dst, unsigned index, bool shouldNullCheck);
RegisterID* emitNewFunctionExpression(RegisterID* dst, FuncExprNode* func);
RegisterID* emitNewRegExp(RegisterID* dst, RegExp*);
RegisterID* emitMove(RegisterID* dst, RegisterID* src);
RegisterID* emitToNumber(RegisterID* dst, RegisterID* src) { return emitUnaryOp(op_to_number, dst, src); }
RegisterID* emitInc(RegisterID* srcDst);
RegisterID* emitDec(RegisterID* srcDst);
void emitCheckHasInstance(RegisterID* dst, RegisterID* value, RegisterID* base, Label* target);
RegisterID* emitInstanceOf(RegisterID* dst, RegisterID* value, RegisterID* basePrototype);
RegisterID* emitTypeOf(RegisterID* dst, RegisterID* src) { return emitUnaryOp(op_typeof, dst, src); }
RegisterID* emitIn(RegisterID* dst, RegisterID* property, RegisterID* base) { return emitBinaryOp(op_in, dst, property, base, OperandTypes()); }
RegisterID* emitInitGlobalConst(const Identifier&, RegisterID* value);
RegisterID* emitGetById(RegisterID* dst, RegisterID* base, const Identifier& property);
RegisterID* emitGetArgumentsLength(RegisterID* dst, RegisterID* base);
RegisterID* emitPutById(RegisterID* base, const Identifier& property, RegisterID* value);
RegisterID* emitDirectPutById(RegisterID* base, const Identifier& property, RegisterID* value);
RegisterID* emitDeleteById(RegisterID* dst, RegisterID* base, const Identifier&);
RegisterID* emitGetByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
RegisterID* emitGetArgumentByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
RegisterID* emitPutByVal(RegisterID* base, RegisterID* property, RegisterID* value);
RegisterID* emitDirectPutByVal(RegisterID* base, RegisterID* property, RegisterID* value);
RegisterID* emitDeleteByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
RegisterID* emitPutByIndex(RegisterID* base, unsigned index, RegisterID* value);
void emitPutGetterSetter(RegisterID* base, const Identifier& property, RegisterID* getter, RegisterID* setter);
ExpectedFunction expectedFunctionForIdentifier(const Identifier&);
RegisterID* emitCall(RegisterID* dst, RegisterID* func, ExpectedFunction, CallArguments&, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd);
RegisterID* emitCallEval(RegisterID* dst, RegisterID* func, CallArguments&, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd);
RegisterID* emitCallVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, RegisterID* profileHookRegister, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd);
void emitEnumeration(ThrowableExpressionData* enumerationNode, ExpressionNode* subjectNode, const std::function<void(BytecodeGenerator&, RegisterID*)>& callBack);
RegisterID* emitReturn(RegisterID* src);
RegisterID* emitEnd(RegisterID* src) { return emitUnaryNoDstOp(op_end, src); }
RegisterID* emitConstruct(RegisterID* dst, RegisterID* func, ExpectedFunction, CallArguments&, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd);
RegisterID* emitStrcat(RegisterID* dst, RegisterID* src, int count);
void emitToPrimitive(RegisterID* dst, RegisterID* src);
ResolveType resolveType();
RegisterID* emitResolveScope(RegisterID* dst, const Identifier&);
RegisterID* emitGetFromScope(RegisterID* dst, RegisterID* scope, const Identifier&, ResolveMode);
RegisterID* emitPutToScope(RegisterID* scope, const Identifier&, RegisterID* value, ResolveMode);
PassRefPtr<Label> emitLabel(Label*);
void emitLoopHint();
PassRefPtr<Label> emitJump(Label* target);
PassRefPtr<Label> emitJumpIfTrue(RegisterID* cond, Label* target);
PassRefPtr<Label> emitJumpIfFalse(RegisterID* cond, Label* target);
PassRefPtr<Label> emitJumpIfNotFunctionCall(RegisterID* cond, Label* target);
PassRefPtr<Label> emitJumpIfNotFunctionApply(RegisterID* cond, Label* target);
void emitPopScopes(int targetScopeDepth);
RegisterID* emitGetPropertyNames(RegisterID* dst, RegisterID* base, RegisterID* i, RegisterID* size, Label* breakTarget);
RegisterID* emitNextPropertyName(RegisterID* dst, RegisterID* base, RegisterID* i, RegisterID* size, RegisterID* iter, Label* target);
void emitReadOnlyExceptionIfNeeded();
// Start a try block. 'start' must have been emitted.
TryData* pushTry(Label* start);
// End a try block. 'end' must have been emitted.
RegisterID* popTryAndEmitCatch(TryData*, RegisterID* targetRegister, Label* end);
void emitThrow(RegisterID* exc)
{
m_usesExceptions = true;
emitUnaryNoDstOp(op_throw, exc);
}
void emitThrowReferenceError(const String& message);
void emitPushNameScope(const Identifier& property, RegisterID* value, unsigned attributes);
RegisterID* emitPushWithScope(RegisterID* scope);
void emitPopScope();
void emitDebugHook(DebugHookID, unsigned line, unsigned charOffset, unsigned lineStart);
int scopeDepth() { return m_localScopeDepth + m_finallyDepth; }
bool hasFinaliser() { return m_finallyDepth != 0; }
void pushFinallyContext(StatementNode* finallyBlock);
void popFinallyContext();
void pushOptimisedForIn(RegisterID* expectedBase, RegisterID* iter, RegisterID* index, RegisterID* propertyRegister)
{
ForInContext context = { expectedBase, iter, index, propertyRegister };
m_forInContextStack.append(context);
}
void popOptimisedForIn()
{
m_forInContextStack.removeLast();
}
LabelScope* breakTarget(const Identifier&);
LabelScope* continueTarget(const Identifier&);
void beginSwitch(RegisterID*, SwitchInfo::SwitchType);
void endSwitch(uint32_t clauseCount, RefPtr<Label>*, ExpressionNode**, Label* defaultLabel, int32_t min, int32_t range);
CodeType codeType() const { return m_codeType; }
bool shouldEmitProfileHooks() { return m_shouldEmitProfileHooks; }
bool shouldEmitDebugHooks() { return m_shouldEmitDebugHooks; }
bool isStrictMode() const { return m_codeBlock->isStrictMode(); }
private:
friend class Label;
void emitOpcode(OpcodeID);
UnlinkedArrayAllocationProfile newArrayAllocationProfile();
UnlinkedObjectAllocationProfile newObjectAllocationProfile();
UnlinkedArrayProfile newArrayProfile();
UnlinkedValueProfile emitProfiledOpcode(OpcodeID);
int kill(RegisterID* dst)
{
int index = dst->index();
m_staticPropertyAnalyzer.kill(index);
return index;
}
void retrieveLastBinaryOp(int& dstIndex, int& src1Index, int& src2Index);
void retrieveLastUnaryOp(int& dstIndex, int& srcIndex);
ALWAYS_INLINE void rewindBinaryOp();
ALWAYS_INLINE void rewindUnaryOp();
void emitComplexPopScopes(ControlFlowContext* topScope, ControlFlowContext* bottomScope);
typedef HashMap<double, JSValue> NumberMap;
typedef HashMap<StringImpl*, JSString*, IdentifierRepHash> IdentifierStringMap;
// Helper for emitCall() and emitConstruct(). This works because the set of
// expected functions have identical behavior for both call and construct
// (i.e. "Object()" is identical to "new Object()").
ExpectedFunction emitExpectedFunctionSnippet(RegisterID* dst, RegisterID* func, ExpectedFunction, CallArguments&, Label* done);
RegisterID* emitCall(OpcodeID, RegisterID* dst, RegisterID* func, ExpectedFunction, CallArguments&, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd);
RegisterID* newRegister();
// Adds a var slot and maps it to the name ident in symbolTable().
RegisterID* addVar(const Identifier& ident, bool isConstant)
{
RegisterID* local;
addVar(ident, isConstant, local);
return local;
}
// Ditto. Returns true if a new RegisterID was added, false if a pre-existing RegisterID was re-used.
bool addVar(const Identifier&, bool isConstant, RegisterID*&);
// Adds an anonymous var slot. To give this slot a name, add it to symbolTable().
RegisterID* addVar()
{
++m_codeBlock->m_numVars;
return newRegister();
}
// Returns the index of the added var.
void addParameter(const Identifier&, int parameterIndex);
RegisterID* resolveCallee(FunctionBodyNode*);
void addCallee(FunctionBodyNode*, RegisterID*);
void preserveLastVar();
RegisterID& registerFor(int index)
{
if (operandIsLocal(index))
return m_calleeRegisters[VirtualRegister(index).toLocal()];
if (index == JSStack::Callee)
return m_calleeRegister;
ASSERT(m_parameters.size());
return m_parameters[VirtualRegister(index).toArgument()];
}
unsigned addConstant(const Identifier&);
RegisterID* addConstantValue(JSValue);
RegisterID* addConstantEmptyValue();
unsigned addRegExp(RegExp*);
unsigned addConstantBuffer(unsigned length);
UnlinkedFunctionExecutable* makeFunction(FunctionBodyNode* body)
{
return UnlinkedFunctionExecutable::create(m_vm, m_scopeNode->source(), body);
}
RegisterID* emitInitLazyRegister(RegisterID*);
public:
JSString* addStringConstant(const Identifier&);
Vector<UnlinkedInstruction, 0, UnsafeVectorOverflow>& instructions() { return m_instructions; }
SharedSymbolTable& symbolTable() { return *m_symbolTable; }
bool shouldOptimizeLocals()
{
if (m_codeType != FunctionCode)
return false;
if (m_localScopeDepth)
return false;
return true;
}
bool canOptimizeNonLocals()
{
if (m_localScopeDepth)
return false;
if (m_codeType == EvalCode)
return false;
if (m_codeType == FunctionCode && m_codeBlock->usesEval())
return false;
return true;
}
bool shouldTearOffArgumentsEagerly()
{
return m_codeType == FunctionCode && isStrictMode() && m_scopeNode->modifiesParameter();
}
RegisterID* emitThrowExpressionTooDeepException();
void createArgumentsIfNecessary();
void createActivationIfNecessary();
RegisterID* createLazyRegisterIfNecessary(RegisterID*);
Vector<UnlinkedInstruction, 0, UnsafeVectorOverflow> m_instructions;
bool m_shouldEmitDebugHooks;
bool m_shouldEmitProfileHooks;
SharedSymbolTable* m_symbolTable;
ScopeNode* m_scopeNode;
Strong<UnlinkedCodeBlock> m_codeBlock;
// Some of these objects keep pointers to one another. They are arranged
// to ensure a sane destruction order that avoids references to freed memory.
HashSet<RefPtr<StringImpl>, IdentifierRepHash> m_functions;
RegisterID m_ignoredResultRegister;
RegisterID m_thisRegister;
RegisterID m_calleeRegister;
RegisterID* m_activationRegister;
RegisterID* m_emptyValueRegister;
RegisterID* m_globalObjectRegister;
SegmentedVector<RegisterID, 32> m_constantPoolRegisters;
SegmentedVector<RegisterID, 32> m_calleeRegisters;
SegmentedVector<RegisterID, 32> m_parameters;
SegmentedVector<Label, 32> m_labels;
LabelScopeStore m_labelScopes;
RefPtr<RegisterID> m_lastVar;
int m_finallyDepth;
int m_localScopeDepth;
CodeType m_codeType;
Vector<ControlFlowContext, 0, UnsafeVectorOverflow> m_scopeContextStack;
Vector<SwitchInfo> m_switchContextStack;
Vector<ForInContext> m_forInContextStack;
Vector<TryContext> m_tryContextStack;
Vector<TryRange> m_tryRanges;
SegmentedVector<TryData, 8> m_tryData;
int m_firstConstantIndex;
int m_nextConstantOffset;
unsigned m_globalConstantIndex;
int m_globalVarStorageOffset;
bool m_hasCreatedActivation;
int m_firstLazyFunction;
int m_lastLazyFunction;
HashMap<unsigned int, FunctionBodyNode*, WTF::IntHash<unsigned int>, WTF::UnsignedWithZeroKeyHashTraits<unsigned int>> m_lazyFunctions;
typedef HashMap<FunctionBodyNode*, unsigned> FunctionOffsetMap;
FunctionOffsetMap m_functionOffsets;
// Constant pool
IdentifierMap m_identifierMap;
JSValueMap m_jsValueMap;
NumberMap m_numberMap;
IdentifierStringMap m_stringMap;
StaticPropertyAnalyzer m_staticPropertyAnalyzer;
VM* m_vm;
OpcodeID m_lastOpcodeID;
#ifndef NDEBUG
size_t m_lastOpcodePosition;
#endif
VMStackBounds m_stack;
bool m_usesExceptions;
bool m_expressionTooDeep;
};
}
#endif // BytecodeGenerator_h