blob: 3b156df0f232c9aadc05a08e80189ff97c89aa8e [file] [log] [blame]
/*
* Copyright (C) 2011-2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGSpeculativeJIT.h"
#if ENABLE(DFG_JIT)
#include "AtomicsObject.h"
#include "CallFrameShuffler.h"
#include "DFGAbstractInterpreterInlines.h"
#include "DFGDoesGC.h"
#include "DFGOperations.h"
#include "DFGSlowPathGenerator.h"
#include "DateInstance.h"
#include "HasOwnPropertyCache.h"
#include "SetupVarargsFrame.h"
#include "SpillRegistersMode.h"
#include "StructureChain.h"
#include "SuperSampler.h"
#include "YarrJITRegisters.h"
namespace JSC { namespace DFG {
#if USE(JSVALUE64)
void SpeculativeJIT::boxInt52(GPRReg sourceGPR, GPRReg targetGPR, DataFormat format)
{
GPRReg tempGPR;
if (sourceGPR == targetGPR)
tempGPR = allocate();
else
tempGPR = targetGPR;
FPRReg fpr = fprAllocate();
if (format == DataFormatInt52)
m_jit.rshift64(TrustedImm32(JSValue::int52ShiftAmount), sourceGPR);
else
ASSERT(format == DataFormatStrictInt52);
m_jit.boxInt52(sourceGPR, targetGPR, tempGPR, fpr);
if (format == DataFormatInt52 && sourceGPR != targetGPR)
m_jit.lshift64(TrustedImm32(JSValue::int52ShiftAmount), sourceGPR);
if (tempGPR != targetGPR)
unlock(tempGPR);
unlock(fpr);
}
GPRReg SpeculativeJIT::fillJSValue(Edge edge)
{
VirtualRegister virtualRegister = edge->virtualRegister();
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
switch (info.registerFormat()) {
case DataFormatNone: {
GPRReg gpr = allocate();
if (edge->hasConstant()) {
JSValue jsValue = edge->asJSValue();
m_jit.move(MacroAssembler::TrustedImm64(JSValue::encode(jsValue)), gpr);
info.fillJSValue(*m_stream, gpr, DataFormatJS);
m_gprs.retain(gpr, virtualRegister, SpillOrderConstant);
} else {
DataFormat spillFormat = info.spillFormat();
m_gprs.retain(gpr, virtualRegister, SpillOrderSpilled);
switch (spillFormat) {
case DataFormatInt32: {
m_jit.load32(JITCompiler::addressFor(virtualRegister), gpr);
m_jit.or64(GPRInfo::numberTagRegister, gpr);
spillFormat = DataFormatJSInt32;
break;
}
default:
m_jit.load64(JITCompiler::addressFor(virtualRegister), gpr);
DFG_ASSERT(m_jit.graph(), m_currentNode, spillFormat & DataFormatJS, spillFormat);
break;
}
info.fillJSValue(*m_stream, gpr, spillFormat);
}
return gpr;
}
case DataFormatInt32: {
GPRReg gpr = info.gpr();
// If the register has already been locked we need to take a copy.
// If not, we'll zero extend in place, so mark on the info that this is now type DataFormatInt32, not DataFormatJSInt32.
if (m_gprs.isLocked(gpr)) {
GPRReg result = allocate();
m_jit.or64(GPRInfo::numberTagRegister, gpr, result);
return result;
}
m_gprs.lock(gpr);
m_jit.or64(GPRInfo::numberTagRegister, gpr);
info.fillJSValue(*m_stream, gpr, DataFormatJSInt32);
return gpr;
}
case DataFormatCell:
// No retag required on JSVALUE64!
case DataFormatJS:
case DataFormatJSInt32:
case DataFormatJSDouble:
case DataFormatJSCell:
case DataFormatJSBoolean:
case DataFormatJSBigInt32: {
GPRReg gpr = info.gpr();
m_gprs.lock(gpr);
return gpr;
}
case DataFormatBoolean:
case DataFormatStorage:
case DataFormatDouble:
case DataFormatInt52:
// this type currently never occurs
DFG_CRASH(m_jit.graph(), m_currentNode, "Bad data format");
default:
DFG_CRASH(m_jit.graph(), m_currentNode, "Corrupt data format");
return InvalidGPRReg;
}
}
void SpeculativeJIT::cachedGetById(CodeOrigin origin, JSValueRegs base, JSValueRegs result, GPRReg stubInfoGPR, CacheableIdentifier identifier, JITCompiler::Jump slowPathTarget , SpillRegistersMode mode, AccessType type)
{
cachedGetById(origin, base.gpr(), result.gpr(), stubInfoGPR, identifier, slowPathTarget, mode, type);
}
void SpeculativeJIT::cachedGetById(CodeOrigin codeOrigin, GPRReg baseGPR, GPRReg resultGPR, GPRReg stubInfoGPR, CacheableIdentifier identifier, JITCompiler::Jump slowPathTarget, SpillRegistersMode spillMode, AccessType type)
{
CallSiteIndex callSite = m_jit.recordCallSiteAndGenerateExceptionHandlingOSRExitIfNeeded(codeOrigin, m_stream->size());
RegisterSet usedRegisters = this->usedRegisters();
if (spillMode == DontSpill) {
// We've already flushed registers to the stack, we don't need to spill these.
usedRegisters.set(baseGPR, false);
usedRegisters.set(resultGPR, false);
if (stubInfoGPR != InvalidGPRReg)
usedRegisters.set(stubInfoGPR, false);
}
JITGetByIdGenerator gen(
m_jit.codeBlock(), &m_jit.jitCode()->common.m_stubInfos, JITType::DFGJIT, codeOrigin, callSite, usedRegisters, identifier,
JSValueRegs(baseGPR), JSValueRegs(resultGPR), stubInfoGPR, type);
gen.generateFastPath(m_jit);
JITCompiler::JumpList slowCases;
slowCases.append(slowPathTarget);
slowCases.append(gen.slowPathJump());
std::unique_ptr<SlowPathGenerator> slowPath;
if (JITCode::useDataIC(JITType::DFGJIT)) {
slowPath = slowPathICCall(
slowCases, this, gen.stubInfo(), stubInfoGPR, CCallHelpers::Address(stubInfoGPR, StructureStubInfo::offsetOfSlowOperation()), appropriateOptimizingGetByIdFunction(type),
spillMode, ExceptionCheckRequirement::CheckNeeded,
resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(codeOrigin)), stubInfoGPR, baseGPR, identifier.rawBits());
} else {
slowPath = slowPathCall(
slowCases, this, appropriateOptimizingGetByIdFunction(type),
spillMode, ExceptionCheckRequirement::CheckNeeded,
resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(codeOrigin)), gen.stubInfo(), baseGPR, identifier.rawBits());
}
m_jit.addGetById(gen, slowPath.get());
addSlowPathGenerator(WTFMove(slowPath));
}
void SpeculativeJIT::cachedGetByIdWithThis(CodeOrigin codeOrigin, GPRReg baseGPR, GPRReg thisGPR, GPRReg resultGPR, GPRReg stubInfoGPR, CacheableIdentifier identifier, const JITCompiler::JumpList& slowPathTarget)
{
CallSiteIndex callSite = m_jit.recordCallSiteAndGenerateExceptionHandlingOSRExitIfNeeded(codeOrigin, m_stream->size());
RegisterSet usedRegisters = this->usedRegisters();
// We've already flushed registers to the stack, we don't need to spill these.
usedRegisters.set(baseGPR, false);
usedRegisters.set(thisGPR, false);
usedRegisters.set(resultGPR, false);
if (stubInfoGPR != InvalidGPRReg)
usedRegisters.set(stubInfoGPR, false);
JITGetByIdWithThisGenerator gen(
m_jit.codeBlock(), &m_jit.jitCode()->common.m_stubInfos, JITType::DFGJIT, codeOrigin, callSite, usedRegisters, identifier,
JSValueRegs(resultGPR), JSValueRegs(baseGPR), JSValueRegs(thisGPR), stubInfoGPR);
gen.generateFastPath(m_jit);
JITCompiler::JumpList slowCases;
slowCases.append(slowPathTarget);
slowCases.append(gen.slowPathJump());
std::unique_ptr<SlowPathGenerator> slowPath;
if (JITCode::useDataIC(JITType::DFGJIT)) {
slowPath = slowPathICCall(
slowCases, this, gen.stubInfo(), stubInfoGPR, CCallHelpers::Address(stubInfoGPR, StructureStubInfo::offsetOfSlowOperation()), operationGetByIdWithThisOptimize,
DontSpill, ExceptionCheckRequirement::CheckNeeded,
resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(codeOrigin)), stubInfoGPR, baseGPR, thisGPR, identifier.rawBits());
} else {
slowPath = slowPathCall(
slowCases, this, operationGetByIdWithThisOptimize,
DontSpill, ExceptionCheckRequirement::CheckNeeded,
resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(codeOrigin)), gen.stubInfo(), baseGPR, thisGPR, identifier.rawBits());
}
m_jit.addGetByIdWithThis(gen, slowPath.get());
addSlowPathGenerator(WTFMove(slowPath));
}
void SpeculativeJIT::nonSpeculativeNonPeepholeCompareNullOrUndefined(Edge operand)
{
JSValueOperand arg(this, operand, ManualOperandSpeculation);
GPRReg argGPR = arg.gpr();
GPRTemporary result(this);
GPRReg resultGPR = result.gpr();
m_jit.move(TrustedImm32(0), resultGPR);
JITCompiler::JumpList done;
if (masqueradesAsUndefinedWatchpointIsStillValid()) {
if (!isKnownNotCell(operand.node()))
done.append(m_jit.branchIfCell(JSValueRegs(argGPR)));
} else {
GPRTemporary localGlobalObject(this);
GPRTemporary remoteGlobalObject(this);
GPRTemporary scratch(this);
JITCompiler::Jump notCell;
if (!isKnownCell(operand.node()))
notCell = m_jit.branchIfNotCell(JSValueRegs(argGPR));
JITCompiler::Jump isNotMasqueradesAsUndefined = m_jit.branchTest8(
JITCompiler::Zero,
JITCompiler::Address(argGPR, JSCell::typeInfoFlagsOffset()),
JITCompiler::TrustedImm32(MasqueradesAsUndefined));
done.append(isNotMasqueradesAsUndefined);
GPRReg localGlobalObjectGPR = localGlobalObject.gpr();
GPRReg remoteGlobalObjectGPR = remoteGlobalObject.gpr();
m_jit.move(TrustedImmPtr::weakPointer(m_jit.graph(), m_jit.graph().globalObjectFor(m_currentNode->origin.semantic)), localGlobalObjectGPR);
m_jit.emitLoadStructure(vm(), argGPR, resultGPR, scratch.gpr());
m_jit.loadPtr(JITCompiler::Address(resultGPR, Structure::globalObjectOffset()), remoteGlobalObjectGPR);
m_jit.comparePtr(JITCompiler::Equal, localGlobalObjectGPR, remoteGlobalObjectGPR, resultGPR);
done.append(m_jit.jump());
if (!isKnownCell(operand.node()))
notCell.link(&m_jit);
}
if (!isKnownNotOther(operand.node())) {
m_jit.move(argGPR, resultGPR);
m_jit.and64(JITCompiler::TrustedImm32(~JSValue::UndefinedTag), resultGPR);
m_jit.compare64(JITCompiler::Equal, resultGPR, JITCompiler::TrustedImm32(JSValue::ValueNull), resultGPR);
}
done.link(&m_jit);
m_jit.or32(TrustedImm32(JSValue::ValueFalse), resultGPR);
jsValueResult(resultGPR, m_currentNode, DataFormatJSBoolean);
}
void SpeculativeJIT::nonSpeculativePeepholeBranchNullOrUndefined(Edge operand, Node* branchNode)
{
BasicBlock* taken = branchNode->branchData()->taken.block;
BasicBlock* notTaken = branchNode->branchData()->notTaken.block;
JSValueOperand arg(this, operand, ManualOperandSpeculation);
GPRReg argGPR = arg.gpr();
GPRTemporary result(this, Reuse, arg);
GPRReg resultGPR = result.gpr();
// First, handle the case where "operand" is a cell.
if (masqueradesAsUndefinedWatchpointIsStillValid()) {
if (!isKnownNotCell(operand.node())) {
JITCompiler::Jump isCell = m_jit.branchIfCell(JSValueRegs(argGPR));
addBranch(isCell, notTaken);
}
} else {
GPRTemporary localGlobalObject(this);
GPRTemporary remoteGlobalObject(this);
GPRTemporary scratch(this);
JITCompiler::Jump notCell;
if (!isKnownCell(operand.node()))
notCell = m_jit.branchIfNotCell(JSValueRegs(argGPR));
branchTest8(JITCompiler::Zero,
JITCompiler::Address(argGPR, JSCell::typeInfoFlagsOffset()),
JITCompiler::TrustedImm32(MasqueradesAsUndefined), notTaken);
GPRReg localGlobalObjectGPR = localGlobalObject.gpr();
GPRReg remoteGlobalObjectGPR = remoteGlobalObject.gpr();
m_jit.move(TrustedImmPtr::weakPointer(m_jit.graph(), m_jit.graph().globalObjectFor(m_currentNode->origin.semantic)), localGlobalObjectGPR);
m_jit.emitLoadStructure(vm(), argGPR, resultGPR, scratch.gpr());
m_jit.loadPtr(JITCompiler::Address(resultGPR, Structure::globalObjectOffset()), remoteGlobalObjectGPR);
branchPtr(JITCompiler::Equal, localGlobalObjectGPR, remoteGlobalObjectGPR, taken);
if (!isKnownCell(operand.node())) {
jump(notTaken, ForceJump);
notCell.link(&m_jit);
}
}
if (isKnownNotOther(operand.node()))
jump(notTaken);
else {
JITCompiler::RelationalCondition condition = JITCompiler::Equal;
if (taken == nextBlock()) {
condition = JITCompiler::NotEqual;
std::swap(taken, notTaken);
}
m_jit.move(argGPR, resultGPR);
m_jit.and64(JITCompiler::TrustedImm32(~JSValue::UndefinedTag), resultGPR);
branch64(condition, resultGPR, JITCompiler::TrustedImm64(JSValue::ValueNull), taken);
jump(notTaken);
}
}
void SpeculativeJIT::compileNeitherDoubleNorHeapBigIntToNotDoubleStrictEquality(Node* node, Edge leftNeitherDoubleNorHeapBigIntChild, Edge rightNotDoubleChild)
{
ASSERT(leftNeitherDoubleNorHeapBigIntChild.useKind() == NeitherDoubleNorHeapBigIntUse);
ASSERT(rightNotDoubleChild.useKind() == NotDoubleUse);
JSValueOperand left(this, leftNeitherDoubleNorHeapBigIntChild, ManualOperandSpeculation);
JSValueOperand right(this, rightNotDoubleChild, ManualOperandSpeculation);
GPRTemporary temp(this);
GPRTemporary leftTemp(this);
GPRTemporary rightTemp(this);
GPRTemporary leftTemp2(this, Reuse, left);
GPRTemporary rightTemp2(this, Reuse, right);
JSValueRegs leftRegs = left.jsValueRegs();
JSValueRegs rightRegs = right.jsValueRegs();
GPRReg tempGPR = temp.gpr();
GPRReg leftTempGPR = leftTemp.gpr();
GPRReg rightTempGPR = rightTemp.gpr();
GPRReg leftTemp2GPR = leftTemp2.gpr();
GPRReg rightTemp2GPR = rightTemp2.gpr();
// We try to avoid repeated and redundant checks here, which leads to the following pseudo-code:
/*
if (left == right) {
speculateNeitherDoubleNorHeapBigInt(left);
return true;
}
speculateNotDouble(right);
speculateNotDouble(left);
if (left is not Cell)
return false;
Check that left is not HeapBigInt;
if (left is not String)
return false;
if (right is not Cell)
return false;
if (right is not String)
return false;
return stringEquality(left, right)
}
*/
// Mercifully we can often eliminate much of this soup of conditionals with the help of the abstract interpreter.
JITCompiler::JumpList trueCase;
JITCompiler::JumpList falseCase;
JITCompiler::Jump notEqual = m_jit.branch64(JITCompiler::NotEqual, leftRegs.payloadGPR(), rightRegs.payloadGPR());
// We cannot use speculateNeitherDoubleNorHeapBigInt here, because it updates the interpreter state, and we can skip over it.
// So we would always skip the speculateNotDouble that follows.
if (needsTypeCheck(leftNeitherDoubleNorHeapBigIntChild, ~SpecFullDouble)) {
if (needsTypeCheck(leftNeitherDoubleNorHeapBigIntChild, ~SpecInt32Only))
trueCase.append(m_jit.branchIfInt32(leftRegs));
speculationCheck(BadType, leftRegs, leftNeitherDoubleNorHeapBigIntChild.node(), m_jit.branchIfNumber(leftRegs, tempGPR));
}
if (needsTypeCheck(leftNeitherDoubleNorHeapBigIntChild, ~SpecHeapBigInt)) {
if (needsTypeCheck(leftNeitherDoubleNorHeapBigIntChild, SpecCell))
trueCase.append(m_jit.branchIfNotCell(leftRegs));
speculationCheck(BadType, leftRegs, leftNeitherDoubleNorHeapBigIntChild.node(), m_jit.branchIfHeapBigInt(leftRegs.payloadGPR()));
}
trueCase.append(m_jit.jump());
notEqual.link(&m_jit);
speculateNotDouble(rightNotDoubleChild, rightRegs, tempGPR);
speculateNotDouble(leftNeitherDoubleNorHeapBigIntChild, leftRegs, tempGPR);
if (needsTypeCheck(leftNeitherDoubleNorHeapBigIntChild, SpecCellCheck))
falseCase.append(m_jit.branchIfNotCell(leftRegs));
DFG_TYPE_CHECK(leftRegs, leftNeitherDoubleNorHeapBigIntChild, ~SpecHeapBigInt, m_jit.branchIfHeapBigInt(leftRegs.payloadGPR()));
if (needsTypeCheck(leftNeitherDoubleNorHeapBigIntChild, SpecString))
falseCase.append(m_jit.branchIfNotString(leftRegs.payloadGPR()));
if (needsTypeCheck(rightNotDoubleChild, SpecCellCheck))
falseCase.append(m_jit.branchIfNotCell(rightRegs));
if (needsTypeCheck(rightNotDoubleChild, SpecString))
falseCase.append(m_jit.branchIfNotString(rightRegs.payloadGPR()));
compileStringEquality(node, leftRegs.payloadGPR(), rightRegs.payloadGPR(), tempGPR, leftTempGPR, rightTempGPR, leftTemp2GPR, rightTemp2GPR, trueCase, falseCase);
}
void SpeculativeJIT::nonSpeculativePeepholeStrictEq(Node* node, Node* branchNode, bool invert)
{
BasicBlock* taken = branchNode->branchData()->taken.block;
BasicBlock* notTaken = branchNode->branchData()->notTaken.block;
// The branch instruction will branch to the taken block.
// If taken is next, switch taken with notTaken & invert the branch condition so we can fall through.
if (taken == nextBlock()) {
invert = !invert;
BasicBlock* tmp = taken;
taken = notTaken;
notTaken = tmp;
}
ASSERT(node->isBinaryUseKind(UntypedUse) || node->isBinaryUseKind(AnyBigIntUse));
JSValueOperand arg1(this, node->child1(), ManualOperandSpeculation);
JSValueOperand arg2(this, node->child2(), ManualOperandSpeculation);
speculate(node, node->child1());
speculate(node, node->child2());
GPRReg arg1GPR = arg1.gpr();
GPRReg arg2GPR = arg2.gpr();
GPRTemporary result(this);
GPRReg resultGPR = result.gpr();
arg1.use();
arg2.use();
if (isKnownCell(node->child1().node()) && isKnownCell(node->child2().node())) {
// see if we get lucky: if the arguments are cells and they reference the same
// cell, then they must be strictly equal.
branch64(JITCompiler::Equal, arg1GPR, arg2GPR, invert ? notTaken : taken);
silentSpillAllRegisters(resultGPR);
callOperation(operationCompareStrictEqCell, resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), arg1GPR, arg2GPR);
silentFillAllRegisters();
m_jit.exceptionCheck();
branchTest32(invert ? JITCompiler::Zero : JITCompiler::NonZero, resultGPR, taken);
} else {
/* At a high level we do (assuming 'invert' to be false):
If (left is Double || right is Double)
goto slowPath;
if (left == right)
goto taken;
if (left is Cell || right is Cell)
goto slowPath;
goto notTaken;
*/
JITCompiler::JumpList slowPathCases;
// This fragment implements (left is Double || right is Double), with a single branch instead of the 4 that would be naively required if we used branchIfInt32/branchIfNumber
// The trick is that if a JSValue is an Int32, then adding 1<<49 to it will make it overflow, leaving all high bits at 0
// If it is not a number at all, then 1<<49 will be its only high bit set
// Leaving only doubles above or equal 1<<50.
GPRTemporary scratch(this);
m_jit.move(arg1GPR, resultGPR);
m_jit.move(arg2GPR, scratch.gpr());
m_jit.add64(TrustedImm64(JSValue::LowestOfHighBits), resultGPR);
m_jit.add64(TrustedImm64(JSValue::LowestOfHighBits), scratch.gpr());
m_jit.or64(scratch.gpr(), resultGPR, resultGPR);
constexpr uint64_t nextLowestOfHighBits = JSValue::LowestOfHighBits << 1;
slowPathCases.append(m_jit.branch64(JITCompiler::AboveOrEqual, resultGPR, TrustedImm64(nextLowestOfHighBits)));
branch64(JITCompiler::Equal, arg1GPR, arg2GPR, invert ? notTaken : taken);
// If we support BigInt32 we must go to a slow path if at least one operand is a cell (for HeapBigInt === BigInt32)
// If we don't support BigInt32, we only have to go to a slow path if both operands are cells (for HeapBigInt === HeapBigInt and String === String)
// Instead of doing two branches, we can do a single one, by observing that
// 1. (left is Cell && right is Cell) is the same as ((left | right) is Cell)
// Both are "All high bits are 0"
// 2. Since we know that neither is a double, (left is Cell || right is Cell) is equivalent to ((left & right) is Cell)
// If both are Int32, then the top bits will be set and the test will fail
// If at least one is not Int32, then the top bits will be 0.
// And if at least one is a cell, then the 'Other' tag will also be 0, making the test succeed
#if USE(BIGINT32)
m_jit.and64(arg1GPR, arg2GPR, resultGPR);
#else
m_jit.or64(arg1GPR, arg2GPR, resultGPR);
#endif
slowPathCases.append(m_jit.branchIfCell(resultGPR));
jump(invert ? taken : notTaken, ForceJump);
addSlowPathGenerator(slowPathCall(slowPathCases, this, operationCompareStrictEq, resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), arg1GPR, arg2GPR));
branchTest32(invert ? JITCompiler::Zero : JITCompiler::NonZero, resultGPR, taken);
}
jump(notTaken);
}
void SpeculativeJIT::genericJSValueNonPeepholeStrictEq(Node* node, bool invert)
{
// FIXME: some of this code should be shareable with nonSpeculativePeepholeStrictEq
JSValueOperand arg1(this, node->child1(), ManualOperandSpeculation);
JSValueOperand arg2(this, node->child2(), ManualOperandSpeculation);
speculate(node, node->child1());
speculate(node, node->child2());
JSValueRegs arg1Regs = arg1.jsValueRegs();
JSValueRegs arg2Regs = arg2.jsValueRegs();
GPRReg arg1GPR = arg1.gpr();
GPRReg arg2GPR = arg2.gpr();
GPRTemporary result(this);
GPRReg resultGPR = result.gpr();
arg1.use();
arg2.use();
if (isKnownCell(node->child1().node()) && isKnownCell(node->child2().node())) {
// see if we get lucky: if the arguments are cells and they reference the same
// cell, then they must be strictly equal.
// FIXME: this should flush registers instead of silent spill/fill.
JITCompiler::Jump notEqualCase = m_jit.branch64(JITCompiler::NotEqual, arg1Regs.gpr(), arg2Regs.gpr());
m_jit.move(JITCompiler::TrustedImm64(!invert), resultGPR);
JITCompiler::Jump done = m_jit.jump();
notEqualCase.link(&m_jit);
silentSpillAllRegisters(resultGPR);
callOperation(operationCompareStrictEqCell, resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), arg1Regs, arg2Regs);
silentFillAllRegisters();
m_jit.exceptionCheck();
done.link(&m_jit);
unblessedBooleanResult(resultGPR, m_currentNode, UseChildrenCalledExplicitly);
return;
}
/* At a high level we do (assuming 'invert' to be false):
If (left is Double || right is Double)
goto slowPath;
result = (left == right);
if (result)
goto done;
if (left is Cell || right is Cell)
goto slowPath;
done:
return result;
*/
JITCompiler::JumpList slowPathCases;
// This fragment implements (left is Double || right is Double), with a single branch instead of the 4 that would be naively required if we used branchIfInt32/branchIfNumber
// The trick is that if a JSValue is an Int32, then adding 1<<49 to it will make it overflow, leaving all high bits at 0
// If it is not a number at all, then 1<<49 will be its only high bit set
// Leaving only doubles above or equal 1<<50.
GPRTemporary scratch(this);
m_jit.move(arg1GPR, resultGPR);
m_jit.move(arg2GPR, scratch.gpr());
m_jit.add64(TrustedImm64(JSValue::LowestOfHighBits), resultGPR);
m_jit.add64(TrustedImm64(JSValue::LowestOfHighBits), scratch.gpr());
m_jit.or64(scratch.gpr(), resultGPR, resultGPR);
constexpr uint64_t nextLowestOfHighBits = JSValue::LowestOfHighBits << 1;
slowPathCases.append(m_jit.branch64(JITCompiler::AboveOrEqual, resultGPR, TrustedImm64(nextLowestOfHighBits)));
m_jit.compare64(JITCompiler::Equal, arg1GPR, arg2GPR, resultGPR);
JITCompiler::Jump done = m_jit.branchTest64(JITCompiler::NonZero, resultGPR);
// If we support BigInt32 we must go to a slow path if at least one operand is a cell (for HeapBigInt === BigInt32)
// If we don't support BigInt32, we only have to go to a slow path if both operands are cells (for HeapBigInt === HeapBigInt and String === String)
// Instead of doing two branches, we can do a single one, by observing that
// 1. (left is Cell && right is Cell) is the same as ((left | right) is Cell)
// Both are "All high bits are 0"
// 2. Since we know that neither is a double, (left is Cell || right is Cell) is equivalent to ((left & right) is Cell)
// If both are Int32, then the top bits will be set and the test will fail
// If at least one is not Int32, then the top bits will be 0.
// And if at least one is a cell, then the 'Other' tag will also be 0, making the test succeed
#if USE(BIGINT32)
m_jit.and64(arg1GPR, arg2GPR, resultGPR);
#else
m_jit.or64(arg1GPR, arg2GPR, resultGPR);
#endif
slowPathCases.append(m_jit.branchIfCell(resultGPR));
m_jit.move(TrustedImm64(0), resultGPR);
addSlowPathGenerator(slowPathCall(slowPathCases, this, operationCompareStrictEq, resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), arg1Regs, arg2Regs));
done.link(&m_jit);
m_jit.xor64(TrustedImm64(invert), resultGPR);
unblessedBooleanResult(resultGPR, m_currentNode, UseChildrenCalledExplicitly);
}
void SpeculativeJIT::emitCall(Node* node)
{
CallLinkInfo::CallType callType;
bool isVarargs = false;
bool isForwardVarargs = false;
bool isTail = false;
bool isEmulatedTail = false;
bool isDirect = false;
switch (node->op()) {
case Call:
case CallEval:
callType = CallLinkInfo::Call;
break;
case TailCall:
callType = CallLinkInfo::TailCall;
isTail = true;
break;
case TailCallInlinedCaller:
callType = CallLinkInfo::Call;
isEmulatedTail = true;
break;
case Construct:
callType = CallLinkInfo::Construct;
break;
case CallVarargs:
callType = CallLinkInfo::CallVarargs;
isVarargs = true;
break;
case TailCallVarargs:
callType = CallLinkInfo::TailCallVarargs;
isVarargs = true;
isTail = true;
break;
case TailCallVarargsInlinedCaller:
callType = CallLinkInfo::CallVarargs;
isVarargs = true;
isEmulatedTail = true;
break;
case ConstructVarargs:
callType = CallLinkInfo::ConstructVarargs;
isVarargs = true;
break;
case CallForwardVarargs:
callType = CallLinkInfo::CallVarargs;
isForwardVarargs = true;
break;
case ConstructForwardVarargs:
callType = CallLinkInfo::ConstructVarargs;
isForwardVarargs = true;
break;
case TailCallForwardVarargs:
callType = CallLinkInfo::TailCallVarargs;
isTail = true;
isForwardVarargs = true;
break;
case TailCallForwardVarargsInlinedCaller:
callType = CallLinkInfo::CallVarargs;
isEmulatedTail = true;
isForwardVarargs = true;
break;
case DirectCall:
callType = CallLinkInfo::DirectCall;
isDirect = true;
break;
case DirectConstruct:
callType = CallLinkInfo::DirectConstruct;
isDirect = true;
break;
case DirectTailCall:
callType = CallLinkInfo::DirectTailCall;
isTail = true;
isDirect = true;
break;
case DirectTailCallInlinedCaller:
callType = CallLinkInfo::DirectCall;
isEmulatedTail = true;
isDirect = true;
break;
default:
DFG_CRASH(m_jit.graph(), node, "bad node type");
break;
}
GPRReg calleeGPR = InvalidGPRReg;
CallFrameShuffleData shuffleData;
JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic);
ExecutableBase* executable = nullptr;
FunctionExecutable* functionExecutable = nullptr;
if (isDirect) {
executable = node->castOperand<ExecutableBase*>();
functionExecutable = jsDynamicCast<FunctionExecutable*>(vm(), executable);
}
unsigned numPassedArgs = 0;
unsigned numAllocatedArgs = 0;
// Gotta load the arguments somehow. Varargs is trickier.
if (isVarargs || isForwardVarargs) {
RELEASE_ASSERT(!isDirect);
CallVarargsData* data = node->callVarargsData();
int numUsedStackSlots = m_jit.graph().m_nextMachineLocal;
if (isForwardVarargs) {
flushRegisters();
if (node->child3())
use(node->child3());
GPRReg scratchGPR1;
GPRReg scratchGPR2;
GPRReg scratchGPR3;
scratchGPR1 = JITCompiler::selectScratchGPR();
scratchGPR2 = JITCompiler::selectScratchGPR(scratchGPR1);
scratchGPR3 = JITCompiler::selectScratchGPR(scratchGPR1, scratchGPR2);
m_jit.move(TrustedImm32(numUsedStackSlots), scratchGPR2);
JITCompiler::JumpList slowCase;
InlineCallFrame* inlineCallFrame;
if (node->child3())
inlineCallFrame = node->child3()->origin.semantic.inlineCallFrame();
else
inlineCallFrame = node->origin.semantic.inlineCallFrame();
// emitSetupVarargsFrameFastCase modifies the stack pointer if it succeeds.
emitSetupVarargsFrameFastCase(vm(), m_jit, scratchGPR2, scratchGPR1, scratchGPR2, scratchGPR3, inlineCallFrame, data->firstVarArgOffset, slowCase);
JITCompiler::Jump done = m_jit.jump();
slowCase.link(&m_jit);
callOperation(operationThrowStackOverflowForVarargs, TrustedImmPtr::weakPointer(m_graph, globalObject));
m_jit.exceptionCheck();
m_jit.abortWithReason(DFGVarargsThrowingPathDidNotThrow);
done.link(&m_jit);
} else {
GPRReg argumentsGPR;
GPRReg scratchGPR1;
GPRReg scratchGPR2;
GPRReg scratchGPR3;
auto loadArgumentsGPR = [&] (GPRReg reservedGPR) {
if (reservedGPR != InvalidGPRReg)
lock(reservedGPR);
JSValueOperand arguments(this, node->child3());
argumentsGPR = arguments.gpr();
if (reservedGPR != InvalidGPRReg)
unlock(reservedGPR);
flushRegisters();
scratchGPR1 = JITCompiler::selectScratchGPR(argumentsGPR, reservedGPR);
scratchGPR2 = JITCompiler::selectScratchGPR(argumentsGPR, scratchGPR1, reservedGPR);
scratchGPR3 = JITCompiler::selectScratchGPR(argumentsGPR, scratchGPR1, scratchGPR2, reservedGPR);
};
loadArgumentsGPR(InvalidGPRReg);
DFG_ASSERT(m_jit.graph(), node, isFlushed());
// Right now, arguments is in argumentsGPR and the register file is flushed.
callOperation(operationSizeFrameForVarargs, GPRInfo::returnValueGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), argumentsGPR, numUsedStackSlots, data->firstVarArgOffset);
m_jit.exceptionCheck();
// Now we have the argument count of the callee frame, but we've lost the arguments operand.
// Reconstruct the arguments operand while preserving the callee frame.
loadArgumentsGPR(GPRInfo::returnValueGPR);
m_jit.move(TrustedImm32(numUsedStackSlots), scratchGPR1);
emitSetVarargsFrame(m_jit, GPRInfo::returnValueGPR, false, scratchGPR1, scratchGPR1);
m_jit.addPtr(TrustedImm32(-(sizeof(CallerFrameAndPC) + WTF::roundUpToMultipleOf(stackAlignmentBytes(), 5 * sizeof(void*)))), scratchGPR1, JITCompiler::stackPointerRegister);
callOperation(operationSetupVarargsFrame, GPRInfo::returnValueGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), scratchGPR1, argumentsGPR, data->firstVarArgOffset, GPRInfo::returnValueGPR);
m_jit.exceptionCheck();
m_jit.addPtr(TrustedImm32(sizeof(CallerFrameAndPC)), GPRInfo::returnValueGPR, JITCompiler::stackPointerRegister);
}
DFG_ASSERT(m_jit.graph(), node, isFlushed());
// We don't need the arguments array anymore.
if (isVarargs)
use(node->child3());
// Now set up the "this" argument.
JSValueOperand thisArgument(this, node->child2());
GPRReg thisArgumentGPR = thisArgument.gpr();
thisArgument.use();
m_jit.store64(thisArgumentGPR, JITCompiler::calleeArgumentSlot(0));
} else {
// The call instruction's first child is the function; the subsequent children are the
// arguments.
numPassedArgs = node->numChildren() - 1;
numAllocatedArgs = numPassedArgs;
if (functionExecutable) {
// Allocate more args if this would let us avoid arity checks. This is throttled by
// CallLinkInfo's limit. It's probably good to throttle it - if the callee wants a
// ginormous amount of argument space then it's better for them to do it so that when we
// make calls to other things, we don't waste space.
unsigned desiredNumAllocatedArgs = static_cast<unsigned>(functionExecutable->parameterCount()) + 1;
if (desiredNumAllocatedArgs <= Options::maximumDirectCallStackSize()) {
numAllocatedArgs = std::max(numAllocatedArgs, desiredNumAllocatedArgs);
// Whoever converts to DirectCall should do this adjustment. It's too late for us to
// do this adjustment now since we will have already emitted code that relied on the
// value of m_parameterSlots.
DFG_ASSERT(
m_jit.graph(), node,
Graph::parameterSlotsForArgCount(numAllocatedArgs)
<= m_jit.graph().m_parameterSlots);
}
}
if (isTail) {
Edge calleeEdge = m_jit.graph().child(node, 0);
JSValueOperand callee(this, calleeEdge);
calleeGPR = callee.gpr();
if (!isDirect)
callee.use();
shuffleData.numberTagRegister = GPRInfo::numberTagRegister;
shuffleData.numLocals = m_jit.graph().frameRegisterCount();
shuffleData.callee = ValueRecovery::inGPR(calleeGPR, DataFormatJS);
shuffleData.args.resize(numAllocatedArgs);
shuffleData.numPassedArgs = numPassedArgs;
shuffleData.numParameters = m_jit.codeBlock()->numParameters();
for (unsigned i = 0; i < numPassedArgs; ++i) {
Edge argEdge = m_jit.graph().varArgChild(node, i + 1);
GenerationInfo& info = generationInfo(argEdge.node());
if (!isDirect)
use(argEdge);
shuffleData.args[i] = info.recovery(argEdge->virtualRegister());
}
for (unsigned i = numPassedArgs; i < numAllocatedArgs; ++i)
shuffleData.args[i] = ValueRecovery::constant(jsUndefined());
shuffleData.setupCalleeSaveRegisters(&RegisterAtOffsetList::dfgCalleeSaveRegisters());
} else {
m_jit.store32(MacroAssembler::TrustedImm32(numPassedArgs), JITCompiler::calleeFramePayloadSlot(CallFrameSlot::argumentCountIncludingThis));
for (unsigned i = 0; i < numPassedArgs; i++) {
Edge argEdge = m_jit.graph().m_varArgChildren[node->firstChild() + 1 + i];
JSValueOperand arg(this, argEdge);
GPRReg argGPR = arg.gpr();
use(argEdge);
m_jit.store64(argGPR, JITCompiler::calleeArgumentSlot(i));
}
for (unsigned i = numPassedArgs; i < numAllocatedArgs; ++i)
m_jit.storeTrustedValue(jsUndefined(), JITCompiler::calleeArgumentSlot(i));
}
}
if (!isTail || isVarargs || isForwardVarargs) {
Edge calleeEdge = m_jit.graph().child(node, 0);
JSValueOperand callee(this, calleeEdge);
calleeGPR = callee.gpr();
callee.use();
m_jit.store64(calleeGPR, JITCompiler::calleeFrameSlot(CallFrameSlot::callee));
flushRegisters();
}
CodeOrigin staticOrigin = node->origin.semantic;
InlineCallFrame* staticInlineCallFrame = staticOrigin.inlineCallFrame();
ASSERT(!isTail || !staticInlineCallFrame || !staticInlineCallFrame->getCallerSkippingTailCalls());
ASSERT(!isEmulatedTail || (staticInlineCallFrame && staticInlineCallFrame->getCallerSkippingTailCalls()));
CodeOrigin dynamicOrigin =
isEmulatedTail ? *staticInlineCallFrame->getCallerSkippingTailCalls() : staticOrigin;
CallSiteIndex callSite = m_jit.recordCallSiteAndGenerateExceptionHandlingOSRExitIfNeeded(dynamicOrigin, m_stream->size());
auto setResultAndResetStack = [&] () {
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
m_jit.move(GPRInfo::returnValueGPR, resultGPR);
jsValueResult(resultGPR, m_currentNode, DataFormatJS, UseChildrenCalledExplicitly);
// After the calls are done, we need to reestablish our stack
// pointer. We rely on this for varargs calls, calls with arity
// mismatch (the callframe is slided) and tail calls.
m_jit.addPtr(TrustedImm32(m_jit.graph().stackPointerOffset() * sizeof(Register)), GPRInfo::callFrameRegister, JITCompiler::stackPointerRegister);
};
auto* callLinkInfo = m_jit.jitCode()->common.addCallLinkInfo(m_currentNode->origin.semantic);
callLinkInfo->setUpCall(callType, calleeGPR);
if (node->op() == CallEval) {
// We want to call operationCallEval but we don't want to overwrite the parameter area in
// which we have created a prototypical eval call frame. This means that we have to
// subtract stack to make room for the call. Lucky for us, at this point we have the whole
// register file to ourselves.
m_jit.emitStoreCallSiteIndex(callSite);
m_jit.addPtr(TrustedImm32(-static_cast<ptrdiff_t>(sizeof(CallerFrameAndPC))), JITCompiler::stackPointerRegister, GPRInfo::regT0);
m_jit.storePtr(GPRInfo::callFrameRegister, JITCompiler::Address(GPRInfo::regT0, CallFrame::callerFrameOffset()));
// Now we need to make room for:
// - The caller frame and PC of a call to operationCallEval.
// - Potentially two arguments on the stack.
unsigned requiredBytes = sizeof(CallerFrameAndPC) + sizeof(CallFrame*) * 2;
requiredBytes = WTF::roundUpToMultipleOf(stackAlignmentBytes(), requiredBytes);
m_jit.subPtr(TrustedImm32(requiredBytes), JITCompiler::stackPointerRegister);
m_jit.move(TrustedImm32(node->ecmaMode().value()), GPRInfo::regT1);
m_jit.setupArguments<decltype(operationCallEval)>(TrustedImmPtr::weakPointer(m_graph, globalObject), GPRInfo::regT0, GPRInfo::regT1);
prepareForExternalCall();
m_jit.appendCall(operationCallEval);
m_jit.exceptionCheck();
JITCompiler::Jump done = m_jit.branchIfNotEmpty(GPRInfo::returnValueGPR);
// This is the part where we meant to make a normal call. Oops.
m_jit.addPtr(TrustedImm32(requiredBytes), JITCompiler::stackPointerRegister);
m_jit.load64(JITCompiler::calleeFrameSlot(CallFrameSlot::callee), GPRInfo::regT0);
m_jit.emitVirtualCall(vm(), globalObject, callLinkInfo);
done.link(&m_jit);
setResultAndResetStack();
return;
}
if (isDirect) {
callLinkInfo->setExecutableDuringCompilation(executable);
callLinkInfo->setMaxArgumentCountIncludingThis(numAllocatedArgs);
if (isTail) {
RELEASE_ASSERT(node->op() == DirectTailCall);
JITCompiler::Label mainPath = m_jit.label();
m_jit.emitStoreCallSiteIndex(callSite);
callLinkInfo->emitDirectTailCallFastPath(m_jit, scopedLambda<void()>([&]{
callLinkInfo->setFrameShuffleData(shuffleData);
CallFrameShuffler(m_jit, shuffleData).prepareForTailCall();
}));
JITCompiler::Label slowPath = m_jit.label();
silentSpillAllRegisters(InvalidGPRReg);
callOperation(operationLinkDirectCall, callLinkInfo, calleeGPR);
silentFillAllRegisters();
m_jit.exceptionCheck();
m_jit.jump().linkTo(mainPath, &m_jit);
useChildren(node);
m_jit.addJSDirectCall(slowPath, callLinkInfo);
return;
}
JITCompiler::Label mainPath = m_jit.label();
m_jit.emitStoreCallSiteIndex(callSite);
callLinkInfo->emitDirectFastPath(m_jit);
JITCompiler::Jump done = m_jit.jump();
JITCompiler::Label slowPath = m_jit.label();
if (isX86())
m_jit.pop(JITCompiler::selectScratchGPR(calleeGPR));
callOperation(operationLinkDirectCall, callLinkInfo, calleeGPR);
m_jit.exceptionCheck();
m_jit.jump().linkTo(mainPath, &m_jit);
done.link(&m_jit);
setResultAndResetStack();
m_jit.addJSDirectCall(slowPath, callLinkInfo);
return;
}
m_jit.emitStoreCallSiteIndex(callSite);
CCallHelpers::JumpList slowCases;
if (isTail) {
slowCases = callLinkInfo->emitTailCallFastPath(m_jit, calleeGPR, scopedLambda<void()>([&]{
if (node->op() == TailCall) {
callLinkInfo->setFrameShuffleData(shuffleData);
CallFrameShuffler(m_jit, shuffleData).prepareForTailCall();
} else {
m_jit.emitRestoreCalleeSaves();
m_jit.prepareForTailCallSlow();
}
}));
} else
slowCases = callLinkInfo->emitFastPath(m_jit, calleeGPR, InvalidGPRReg, CallLinkInfo::UseDataIC::No);
JITCompiler::Jump done = m_jit.jump();
slowCases.link(&m_jit);
auto slowPathStart = m_jit.label();
if (node->op() == TailCall) {
CallFrameShuffler callFrameShuffler(m_jit, shuffleData);
callFrameShuffler.setCalleeJSValueRegs(JSValueRegs(GPRInfo::regT0));
callFrameShuffler.prepareForSlowPath();
} else {
m_jit.move(calleeGPR, GPRInfo::regT0); // Callee needs to be in regT0
if (isTail)
m_jit.emitRestoreCalleeSaves(); // This needs to happen after we moved calleeGPR to regT0
}
m_jit.move(TrustedImmPtr::weakPointer(m_graph, globalObject), GPRInfo::regT3); // JSGlobalObject needs to be in regT3
callLinkInfo->emitSlowPath(vm(), m_jit);
done.link(&m_jit);
auto doneLocation = m_jit.label();
if (isTail)
m_jit.abortWithReason(JITDidReturnFromTailCall);
else
setResultAndResetStack();
m_jit.addJSCall(slowPathStart, doneLocation, callLinkInfo);
}
// Clang should allow unreachable [[clang::fallthrough]] in template functions if any template expansion uses it
// http://llvm.org/bugs/show_bug.cgi?id=18619
IGNORE_WARNINGS_BEGIN("implicit-fallthrough")
template<bool strict>
GPRReg SpeculativeJIT::fillSpeculateInt32Internal(Edge edge, DataFormat& returnFormat)
{
AbstractValue& value = m_state.forNode(edge);
SpeculatedType type = value.m_type;
ASSERT(edge.useKind() != KnownInt32Use || !(value.m_type & ~SpecInt32Only));
m_interpreter.filter(value, SpecInt32Only);
if (value.isClear()) {
if (mayHaveTypeCheck(edge.useKind()))
terminateSpeculativeExecution(Uncountable, JSValueRegs(), nullptr);
returnFormat = DataFormatInt32;
return allocate();
}
VirtualRegister virtualRegister = edge->virtualRegister();
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
switch (info.registerFormat()) {
case DataFormatNone: {
GPRReg gpr = allocate();
if (edge->hasConstant()) {
m_gprs.retain(gpr, virtualRegister, SpillOrderConstant);
ASSERT(edge->isInt32Constant());
m_jit.move(MacroAssembler::Imm32(edge->asInt32()), gpr);
info.fillInt32(*m_stream, gpr);
returnFormat = DataFormatInt32;
return gpr;
}
DataFormat spillFormat = info.spillFormat();
DFG_ASSERT(m_jit.graph(), m_currentNode, (spillFormat & DataFormatJS) || spillFormat == DataFormatInt32, spillFormat);
m_gprs.retain(gpr, virtualRegister, SpillOrderSpilled);
if (spillFormat == DataFormatJSInt32 || spillFormat == DataFormatInt32) {
// If we know this was spilled as an integer we can fill without checking.
if (strict) {
m_jit.load32(JITCompiler::addressFor(virtualRegister), gpr);
info.fillInt32(*m_stream, gpr);
returnFormat = DataFormatInt32;
return gpr;
}
if (spillFormat == DataFormatInt32) {
m_jit.load32(JITCompiler::addressFor(virtualRegister), gpr);
info.fillInt32(*m_stream, gpr);
returnFormat = DataFormatInt32;
} else {
m_jit.load64(JITCompiler::addressFor(virtualRegister), gpr);
info.fillJSValue(*m_stream, gpr, DataFormatJSInt32);
returnFormat = DataFormatJSInt32;
}
return gpr;
}
m_jit.load64(JITCompiler::addressFor(virtualRegister), gpr);
// Fill as JSValue, and fall through.
info.fillJSValue(*m_stream, gpr, DataFormatJSInt32);
m_gprs.unlock(gpr);
FALLTHROUGH;
}
case DataFormatJS: {
DFG_ASSERT(m_jit.graph(), m_currentNode, !(type & SpecInt52Any));
// Check the value is an integer.
GPRReg gpr = info.gpr();
m_gprs.lock(gpr);
if (type & ~SpecInt32Only)
speculationCheck(BadType, JSValueRegs(gpr), edge, m_jit.branchIfNotInt32(gpr));
info.fillJSValue(*m_stream, gpr, DataFormatJSInt32);
// If !strict we're done, return.
if (!strict) {
returnFormat = DataFormatJSInt32;
return gpr;
}
// else fall through & handle as DataFormatJSInt32.
m_gprs.unlock(gpr);
FALLTHROUGH;
}
case DataFormatJSInt32: {
// In a strict fill we need to strip off the value tag.
if (strict) {
GPRReg gpr = info.gpr();
GPRReg result;
// If the register has already been locked we need to take a copy.
// If not, we'll zero extend in place, so mark on the info that this is now type DataFormatInt32, not DataFormatJSInt32.
if (m_gprs.isLocked(gpr))
result = allocate();
else {
m_gprs.lock(gpr);
info.fillInt32(*m_stream, gpr);
result = gpr;
}
m_jit.zeroExtend32ToWord(gpr, result);
returnFormat = DataFormatInt32;
return result;
}
GPRReg gpr = info.gpr();
m_gprs.lock(gpr);
returnFormat = DataFormatJSInt32;
return gpr;
}
case DataFormatInt32: {
GPRReg gpr = info.gpr();
m_gprs.lock(gpr);
returnFormat = DataFormatInt32;
return gpr;
}
case DataFormatJSDouble:
case DataFormatCell:
case DataFormatBoolean:
case DataFormatJSCell:
case DataFormatJSBoolean:
case DataFormatDouble:
case DataFormatStorage:
case DataFormatInt52:
case DataFormatStrictInt52:
case DataFormatBigInt32:
case DataFormatJSBigInt32:
DFG_CRASH(m_jit.graph(), m_currentNode, "Bad data format");
default:
DFG_CRASH(m_jit.graph(), m_currentNode, "Corrupt data format");
return InvalidGPRReg;
}
}
IGNORE_WARNINGS_END
GPRReg SpeculativeJIT::fillSpeculateInt32(Edge edge, DataFormat& returnFormat)
{
return fillSpeculateInt32Internal<false>(edge, returnFormat);
}
GPRReg SpeculativeJIT::fillSpeculateInt32Strict(Edge edge)
{
DataFormat mustBeDataFormatInt32;
GPRReg result = fillSpeculateInt32Internal<true>(edge, mustBeDataFormatInt32);
DFG_ASSERT(m_jit.graph(), m_currentNode, mustBeDataFormatInt32 == DataFormatInt32, mustBeDataFormatInt32);
return result;
}
GPRReg SpeculativeJIT::fillSpeculateInt52(Edge edge, DataFormat desiredFormat)
{
ASSERT(desiredFormat == DataFormatInt52 || desiredFormat == DataFormatStrictInt52);
AbstractValue& value = m_state.forNode(edge);
m_interpreter.filter(value, SpecInt52Any);
if (value.isClear()) {
if (mayHaveTypeCheck(edge.useKind()))
terminateSpeculativeExecution(Uncountable, JSValueRegs(), nullptr);
return allocate();
}
VirtualRegister virtualRegister = edge->virtualRegister();
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
switch (info.registerFormat()) {
case DataFormatNone: {
GPRReg gpr = allocate();
if (edge->hasConstant()) {
JSValue jsValue = edge->asJSValue();
ASSERT(jsValue.isAnyInt());
m_gprs.retain(gpr, virtualRegister, SpillOrderConstant);
int64_t value = jsValue.asAnyInt();
if (desiredFormat == DataFormatInt52)
value = value << JSValue::int52ShiftAmount;
m_jit.move(MacroAssembler::Imm64(value), gpr);
info.fillGPR(*m_stream, gpr, desiredFormat);
return gpr;
}
DataFormat spillFormat = info.spillFormat();
DFG_ASSERT(m_jit.graph(), m_currentNode, spillFormat == DataFormatInt52 || spillFormat == DataFormatStrictInt52, spillFormat);
m_gprs.retain(gpr, virtualRegister, SpillOrderSpilled);
m_jit.load64(JITCompiler::addressFor(virtualRegister), gpr);
if (desiredFormat == DataFormatStrictInt52) {
if (spillFormat == DataFormatInt52)
m_jit.rshift64(TrustedImm32(JSValue::int52ShiftAmount), gpr);
info.fillStrictInt52(*m_stream, gpr);
return gpr;
}
if (spillFormat == DataFormatStrictInt52)
m_jit.lshift64(TrustedImm32(JSValue::int52ShiftAmount), gpr);
info.fillInt52(*m_stream, gpr);
return gpr;
}
case DataFormatStrictInt52: {
GPRReg gpr = info.gpr();
bool wasLocked = m_gprs.isLocked(gpr);
lock(gpr);
if (desiredFormat == DataFormatStrictInt52)
return gpr;
if (wasLocked) {
GPRReg result = allocate();
m_jit.move(gpr, result);
unlock(gpr);
gpr = result;
} else
info.fillInt52(*m_stream, gpr);
m_jit.lshift64(TrustedImm32(JSValue::int52ShiftAmount), gpr);
return gpr;
}
case DataFormatInt52: {
GPRReg gpr = info.gpr();
bool wasLocked = m_gprs.isLocked(gpr);
lock(gpr);
if (desiredFormat == DataFormatInt52)
return gpr;
if (wasLocked) {
GPRReg result = allocate();
m_jit.move(gpr, result);
unlock(gpr);
gpr = result;
} else
info.fillStrictInt52(*m_stream, gpr);
m_jit.rshift64(TrustedImm32(JSValue::int52ShiftAmount), gpr);
return gpr;
}
default:
DFG_CRASH(m_jit.graph(), m_currentNode, "Bad data format");
return InvalidGPRReg;
}
}
FPRReg SpeculativeJIT::fillSpeculateDouble(Edge edge)
{
ASSERT(edge.useKind() == DoubleRepUse || edge.useKind() == DoubleRepRealUse || edge.useKind() == DoubleRepAnyIntUse);
ASSERT(edge->hasDoubleResult());
VirtualRegister virtualRegister = edge->virtualRegister();
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
if (info.registerFormat() == DataFormatNone) {
if (edge->hasConstant()) {
if (edge->isNumberConstant()) {
FPRReg fpr = fprAllocate();
int64_t doubleAsInt = reinterpretDoubleToInt64(edge->asNumber());
if (!doubleAsInt)
m_jit.moveZeroToDouble(fpr);
else {
GPRReg gpr = allocate();
m_jit.move(MacroAssembler::Imm64(doubleAsInt), gpr);
m_jit.move64ToDouble(gpr, fpr);
unlock(gpr);
}
m_fprs.retain(fpr, virtualRegister, SpillOrderDouble);
info.fillDouble(*m_stream, fpr);
return fpr;
}
if (mayHaveTypeCheck(edge.useKind()))
terminateSpeculativeExecution(Uncountable, JSValueRegs(), nullptr);
return fprAllocate();
}
DataFormat spillFormat = info.spillFormat();
if (spillFormat != DataFormatDouble) {
DFG_CRASH(
m_jit.graph(), m_currentNode, toCString(
"Expected ", edge, " to have double format but instead it is spilled as ",
dataFormatToString(spillFormat)).data());
}
DFG_ASSERT(m_jit.graph(), m_currentNode, spillFormat == DataFormatDouble, spillFormat);
FPRReg fpr = fprAllocate();
m_jit.loadDouble(JITCompiler::addressFor(virtualRegister), fpr);
m_fprs.retain(fpr, virtualRegister, SpillOrderDouble);
info.fillDouble(*m_stream, fpr);
return fpr;
}
DFG_ASSERT(m_jit.graph(), m_currentNode, info.registerFormat() == DataFormatDouble, info.registerFormat());
FPRReg fpr = info.fpr();
m_fprs.lock(fpr);
return fpr;
}
GPRReg SpeculativeJIT::fillSpeculateCell(Edge edge)
{
AbstractValue& value = m_state.forNode(edge);
SpeculatedType type = value.m_type;
ASSERT((edge.useKind() != KnownCellUse && edge.useKind() != KnownStringUse) || !(value.m_type & ~SpecCellCheck));
m_interpreter.filter(value, SpecCellCheck);
if (value.isClear()) {
if (mayHaveTypeCheck(edge.useKind()))
terminateSpeculativeExecution(Uncountable, JSValueRegs(), nullptr);
return allocate();
}
VirtualRegister virtualRegister = edge->virtualRegister();
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
switch (info.registerFormat()) {
// FIXME: some of these cases look like they could share code.
// Look at fillSpeculateInt32Internal for an example.
case DataFormatNone: {
GPRReg gpr = allocate();
if (edge->hasConstant()) {
JSValue jsValue = edge->asJSValue();
m_gprs.retain(gpr, virtualRegister, SpillOrderConstant);
m_jit.move(MacroAssembler::TrustedImm64(JSValue::encode(jsValue)), gpr);
info.fillJSValue(*m_stream, gpr, DataFormatJSCell);
return gpr;
}
m_gprs.retain(gpr, virtualRegister, SpillOrderSpilled);
m_jit.load64(JITCompiler::addressFor(virtualRegister), gpr);
info.fillJSValue(*m_stream, gpr, DataFormatJS);
if (type & ~SpecCellCheck)
speculationCheck(BadType, JSValueRegs(gpr), edge, m_jit.branchIfNotCell(JSValueRegs(gpr)));
info.fillJSValue(*m_stream, gpr, DataFormatJSCell);
return gpr;
}
case DataFormatCell:
case DataFormatJSCell: {
GPRReg gpr = info.gpr();
m_gprs.lock(gpr);
if (ASSERT_ENABLED) {
MacroAssembler::Jump checkCell = m_jit.branchIfCell(JSValueRegs(gpr));
m_jit.abortWithReason(DFGIsNotCell);
checkCell.link(&m_jit);
}
return gpr;
}
case DataFormatJS: {
GPRReg gpr = info.gpr();
m_gprs.lock(gpr);
if (type & ~SpecCellCheck)
speculationCheck(BadType, JSValueRegs(gpr), edge, m_jit.branchIfNotCell(JSValueRegs(gpr)));
info.fillJSValue(*m_stream, gpr, DataFormatJSCell);
return gpr;
}
case DataFormatJSInt32:
case DataFormatInt32:
case DataFormatJSDouble:
case DataFormatJSBoolean:
case DataFormatBoolean:
case DataFormatDouble:
case DataFormatStorage:
case DataFormatInt52:
case DataFormatStrictInt52:
case DataFormatBigInt32:
case DataFormatJSBigInt32:
DFG_CRASH(m_jit.graph(), m_currentNode, "Bad data format");
default:
DFG_CRASH(m_jit.graph(), m_currentNode, "Corrupt data format");
return InvalidGPRReg;
}
}
GPRReg SpeculativeJIT::fillSpeculateBoolean(Edge edge)
{
AbstractValue& value = m_state.forNode(edge);
SpeculatedType type = value.m_type;
ASSERT(edge.useKind() != KnownBooleanUse || !(value.m_type & ~SpecBoolean));
m_interpreter.filter(value, SpecBoolean);
if (value.isClear()) {
if (mayHaveTypeCheck(edge.useKind()))
terminateSpeculativeExecution(Uncountable, JSValueRegs(), nullptr);
return allocate();
}
VirtualRegister virtualRegister = edge->virtualRegister();
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
switch (info.registerFormat()) {
case DataFormatNone: {
GPRReg gpr = allocate();
if (edge->hasConstant()) {
JSValue jsValue = edge->asJSValue();
m_gprs.retain(gpr, virtualRegister, SpillOrderConstant);
m_jit.move(MacroAssembler::TrustedImm64(JSValue::encode(jsValue)), gpr);
info.fillJSValue(*m_stream, gpr, DataFormatJSBoolean);
return gpr;
}
DFG_ASSERT(m_jit.graph(), m_currentNode, info.spillFormat() & DataFormatJS, info.spillFormat());
m_gprs.retain(gpr, virtualRegister, SpillOrderSpilled);
m_jit.load64(JITCompiler::addressFor(virtualRegister), gpr);
info.fillJSValue(*m_stream, gpr, DataFormatJS);
if (type & ~SpecBoolean) {
m_jit.xor64(TrustedImm32(JSValue::ValueFalse), gpr);
speculationCheck(BadType, JSValueRegs(gpr), edge, m_jit.branchTest64(MacroAssembler::NonZero, gpr, TrustedImm32(static_cast<int32_t>(~1))), SpeculationRecovery(BooleanSpeculationCheck, gpr, InvalidGPRReg));
m_jit.xor64(TrustedImm32(JSValue::ValueFalse), gpr);
}
info.fillJSValue(*m_stream, gpr, DataFormatJSBoolean);
return gpr;
}
case DataFormatBoolean:
case DataFormatJSBoolean: {
GPRReg gpr = info.gpr();
m_gprs.lock(gpr);
return gpr;
}
case DataFormatJS: {
GPRReg gpr = info.gpr();
m_gprs.lock(gpr);
if (type & ~SpecBoolean) {
m_jit.xor64(TrustedImm32(JSValue::ValueFalse), gpr);
speculationCheck(BadType, JSValueRegs(gpr), edge, m_jit.branchTest64(MacroAssembler::NonZero, gpr, TrustedImm32(static_cast<int32_t>(~1))), SpeculationRecovery(BooleanSpeculationCheck, gpr, InvalidGPRReg));
m_jit.xor64(TrustedImm32(JSValue::ValueFalse), gpr);
}
info.fillJSValue(*m_stream, gpr, DataFormatJSBoolean);
return gpr;
}
case DataFormatJSInt32:
case DataFormatInt32:
case DataFormatJSDouble:
case DataFormatJSCell:
case DataFormatCell:
case DataFormatDouble:
case DataFormatStorage:
case DataFormatInt52:
case DataFormatStrictInt52:
case DataFormatBigInt32:
case DataFormatJSBigInt32:
DFG_CRASH(m_jit.graph(), m_currentNode, "Bad data format");
default:
DFG_CRASH(m_jit.graph(), m_currentNode, "Corrupt data format");
return InvalidGPRReg;
}
}
#if USE(BIGINT32)
void SpeculativeJIT::speculateBigInt32(Edge edge)
{
if (!needsTypeCheck(edge, SpecBigInt32))
return;
(SpeculateBigInt32Operand(this, edge)).gpr();
}
void SpeculativeJIT::speculateAnyBigInt(Edge edge)
{
if (!needsTypeCheck(edge, SpecBigInt))
return;
JSValueOperand value(this, edge, ManualOperandSpeculation);
JSValueRegs valueRegs = value.jsValueRegs();
GPRTemporary temp(this);
GPRReg tempGPR = temp.gpr();
JITCompiler::Jump notCell = m_jit.branchIfNotCell(valueRegs);
// I inlined speculateHeapBigInt because it would be incorrect to call it here if it did JSValueOperand / SpeculateXXXOperand,
// as it would confuse the DFG register allocator.
DFG_TYPE_CHECK(valueRegs, edge, ~SpecCellCheck | SpecHeapBigInt, m_jit.branchIfNotHeapBigInt(valueRegs.gpr()));
auto done = m_jit.jump();
notCell.link(&m_jit);
DFG_TYPE_CHECK(valueRegs, edge, SpecCellCheck | SpecBigInt32, m_jit.branchIfNotBigInt32(valueRegs.gpr(), tempGPR));
done.link(&m_jit);
}
GPRReg SpeculativeJIT::fillSpeculateBigInt32(Edge edge)
{
AbstractValue& value = m_state.forNode(edge);
SpeculatedType type = value.m_type;
m_interpreter.filter(value, SpecBigInt32);
if (value.isClear()) {
if (mayHaveTypeCheck(edge.useKind()))
terminateSpeculativeExecution(Uncountable, JSValueRegs(), nullptr);
return allocate();
}
VirtualRegister virtualRegister = edge->virtualRegister();
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
switch (info.registerFormat()) {
case DataFormatNone: {
GPRReg gpr = allocate();
if (edge->hasConstant()) {
JSValue jsValue = edge->asJSValue();
m_gprs.retain(gpr, virtualRegister, SpillOrderConstant);
ASSERT(jsValue.isBigInt32());
m_jit.move(MacroAssembler::TrustedImm64(JSValue::encode(jsValue)), gpr);
info.fillJSValue(*m_stream, gpr, DataFormatJSBigInt32);
return gpr;
}
DataFormat spillFormat = info.spillFormat();
DFG_ASSERT(m_jit.graph(), m_currentNode, (spillFormat & DataFormatJS) || spillFormat == DataFormatBigInt32, spillFormat);
m_gprs.retain(gpr, virtualRegister, SpillOrderSpilled);
if (spillFormat == DataFormatBigInt32) {
// We have not yet implemented this
RELEASE_ASSERT_NOT_REACHED();
}
if (spillFormat == DataFormatJSBigInt32) {
m_jit.load64(JITCompiler::addressFor(virtualRegister), gpr);
info.fillJSValue(*m_stream, gpr, DataFormatJSBigInt32);
return gpr;
}
m_jit.load64(JITCompiler::addressFor(virtualRegister), gpr);
info.fillJSValue(*m_stream, gpr, DataFormatJS);
m_gprs.unlock(gpr);
FALLTHROUGH;
}
case DataFormatJS: {
GPRReg gpr = info.gpr();
m_gprs.lock(gpr);
if (type & ~SpecBigInt32) {
CCallHelpers::JumpList failureCases;
GPRReg tempGPR = allocate();
failureCases.append(m_jit.branchIfNotBigInt32(gpr, tempGPR));
speculationCheck(BadType, JSValueRegs(gpr), edge, failureCases);
unlock(tempGPR);
}
info.fillJSValue(*m_stream, gpr, DataFormatJSBigInt32);
return gpr;
}
case DataFormatJSBigInt32: {
GPRReg gpr = info.gpr();
m_gprs.lock(gpr);
return gpr;
}
case DataFormatBoolean:
case DataFormatJSBoolean:
case DataFormatJSInt32:
case DataFormatInt32:
case DataFormatJSDouble:
case DataFormatJSCell:
case DataFormatCell:
case DataFormatDouble:
case DataFormatStorage:
case DataFormatInt52:
case DataFormatStrictInt52:
case DataFormatBigInt32:
DFG_CRASH(m_jit.graph(), m_currentNode, "Bad data format");
default:
DFG_CRASH(m_jit.graph(), m_currentNode, "Corrupt data format");
return InvalidGPRReg;
}
}
#endif // USE(BIGINT32)
void SpeculativeJIT::compileObjectStrictEquality(Edge objectChild, Edge otherChild)
{
SpeculateCellOperand op1(this, objectChild);
JSValueOperand op2(this, otherChild);
GPRTemporary result(this);
GPRReg op1GPR = op1.gpr();
GPRReg op2GPR = op2.gpr();
GPRReg resultGPR = result.gpr();
DFG_TYPE_CHECK(JSValueSource::unboxedCell(op1GPR), objectChild, SpecObject, m_jit.branchIfNotObject(op1GPR));
// At this point we know that we can perform a straight-forward equality comparison on pointer
// values because we are doing strict equality.
m_jit.compare64(MacroAssembler::Equal, op1GPR, op2GPR, resultGPR);
m_jit.or32(TrustedImm32(JSValue::ValueFalse), resultGPR);
jsValueResult(resultGPR, m_currentNode, DataFormatJSBoolean);
}
void SpeculativeJIT::compilePeepHoleObjectStrictEquality(Edge objectChild, Edge otherChild, Node* branchNode)
{
BasicBlock* taken = branchNode->branchData()->taken.block;
BasicBlock* notTaken = branchNode->branchData()->notTaken.block;
SpeculateCellOperand op1(this, objectChild);
JSValueOperand op2(this, otherChild);
GPRReg op1GPR = op1.gpr();
GPRReg op2GPR = op2.gpr();
DFG_TYPE_CHECK(JSValueSource::unboxedCell(op1GPR), objectChild, SpecObject, m_jit.branchIfNotObject(op1GPR));
if (taken == nextBlock()) {
branchPtr(MacroAssembler::NotEqual, op1GPR, op2GPR, notTaken);
jump(taken);
} else {
branchPtr(MacroAssembler::Equal, op1GPR, op2GPR, taken);
jump(notTaken);
}
}
void SpeculativeJIT::compileObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild)
{
SpeculateCellOperand op1(this, leftChild);
JSValueOperand op2(this, rightChild, ManualOperandSpeculation);
GPRTemporary result(this);
GPRReg op1GPR = op1.gpr();
GPRReg op2GPR = op2.gpr();
GPRReg resultGPR = result.gpr();
bool masqueradesAsUndefinedWatchpointValid =
masqueradesAsUndefinedWatchpointIsStillValid();
if (masqueradesAsUndefinedWatchpointValid) {
DFG_TYPE_CHECK(
JSValueSource::unboxedCell(op1GPR), leftChild, SpecObject, m_jit.branchIfNotObject(op1GPR));
} else {
DFG_TYPE_CHECK(
JSValueSource::unboxedCell(op1GPR), leftChild, SpecObject, m_jit.branchIfNotObject(op1GPR));
speculationCheck(BadType, JSValueSource::unboxedCell(op1GPR), leftChild,
m_jit.branchTest8(
MacroAssembler::NonZero,
MacroAssembler::Address(op1GPR, JSCell::typeInfoFlagsOffset()),
MacroAssembler::TrustedImm32(MasqueradesAsUndefined)));
}
// It seems that most of the time when programs do a == b where b may be either null/undefined
// or an object, b is usually an object. Balance the branches to make that case fast.
MacroAssembler::Jump rightNotCell = m_jit.branchIfNotCell(JSValueRegs(op2GPR));
// We know that within this branch, rightChild must be a cell.
if (masqueradesAsUndefinedWatchpointValid) {
DFG_TYPE_CHECK(
JSValueRegs(op2GPR), rightChild, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(op2GPR));
} else {
DFG_TYPE_CHECK(
JSValueRegs(op2GPR), rightChild, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(op2GPR));
speculationCheck(BadType, JSValueRegs(op2GPR), rightChild,
m_jit.branchTest8(
MacroAssembler::NonZero,
MacroAssembler::Address(op2GPR, JSCell::typeInfoFlagsOffset()),
MacroAssembler::TrustedImm32(MasqueradesAsUndefined)));
}
// At this point we know that we can perform a straight-forward equality comparison on pointer
// values because both left and right are pointers to objects that have no special equality
// protocols.
m_jit.compare64(MacroAssembler::Equal, op1GPR, op2GPR, resultGPR);
MacroAssembler::Jump done = m_jit.jump();
rightNotCell.link(&m_jit);
// We know that within this branch, rightChild must not be a cell. Check if that is enough to
// prove that it is either null or undefined.
if (needsTypeCheck(rightChild, SpecCellCheck | SpecOther)) {
m_jit.move(op2GPR, resultGPR);
m_jit.and64(MacroAssembler::TrustedImm32(~JSValue::UndefinedTag), resultGPR);
typeCheck(
JSValueRegs(op2GPR), rightChild, SpecCellCheck | SpecOther,
m_jit.branch64(
MacroAssembler::NotEqual, resultGPR,
MacroAssembler::TrustedImm64(JSValue::ValueNull)));
}
m_jit.move(TrustedImm32(0), result.gpr());
done.link(&m_jit);
m_jit.or32(TrustedImm32(JSValue::ValueFalse), resultGPR);
jsValueResult(resultGPR, m_currentNode, DataFormatJSBoolean);
}
void SpeculativeJIT::compilePeepHoleObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild, Node* branchNode)
{
BasicBlock* taken = branchNode->branchData()->taken.block;
BasicBlock* notTaken = branchNode->branchData()->notTaken.block;
SpeculateCellOperand op1(this, leftChild);
JSValueOperand op2(this, rightChild, ManualOperandSpeculation);
GPRTemporary result(this);
GPRReg op1GPR = op1.gpr();
GPRReg op2GPR = op2.gpr();
GPRReg resultGPR = result.gpr();
bool masqueradesAsUndefinedWatchpointValid =
masqueradesAsUndefinedWatchpointIsStillValid();
if (masqueradesAsUndefinedWatchpointValid) {
DFG_TYPE_CHECK(
JSValueSource::unboxedCell(op1GPR), leftChild, SpecObject, m_jit.branchIfNotObject(op1GPR));
} else {
DFG_TYPE_CHECK(
JSValueSource::unboxedCell(op1GPR), leftChild, SpecObject, m_jit.branchIfNotObject(op1GPR));
speculationCheck(BadType, JSValueSource::unboxedCell(op1GPR), leftChild,
m_jit.branchTest8(
MacroAssembler::NonZero,
MacroAssembler::Address(op1GPR, JSCell::typeInfoFlagsOffset()),
MacroAssembler::TrustedImm32(MasqueradesAsUndefined)));
}
// It seems that most of the time when programs do a == b where b may be either null/undefined
// or an object, b is usually an object. Balance the branches to make that case fast.
MacroAssembler::Jump rightNotCell = m_jit.branchIfNotCell(JSValueRegs(op2GPR));
// We know that within this branch, rightChild must be a cell.
if (masqueradesAsUndefinedWatchpointValid) {
DFG_TYPE_CHECK(
JSValueRegs(op2GPR), rightChild, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(op2GPR));
} else {
DFG_TYPE_CHECK(
JSValueRegs(op2GPR), rightChild, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(op2GPR));
speculationCheck(BadType, JSValueRegs(op2GPR), rightChild,
m_jit.branchTest8(
MacroAssembler::NonZero,
MacroAssembler::Address(op2GPR, JSCell::typeInfoFlagsOffset()),
MacroAssembler::TrustedImm32(MasqueradesAsUndefined)));
}
// At this point we know that we can perform a straight-forward equality comparison on pointer
// values because both left and right are pointers to objects that have no special equality
// protocols.
branch64(MacroAssembler::Equal, op1GPR, op2GPR, taken);
// We know that within this branch, rightChild must not be a cell. Check if that is enough to
// prove that it is either null or undefined.
if (!needsTypeCheck(rightChild, SpecCellCheck | SpecOther))
rightNotCell.link(&m_jit);
else {
jump(notTaken, ForceJump);
rightNotCell.link(&m_jit);
m_jit.move(op2GPR, resultGPR);
m_jit.and64(MacroAssembler::TrustedImm32(~JSValue::UndefinedTag), resultGPR);
typeCheck(
JSValueRegs(op2GPR), rightChild, SpecCellCheck | SpecOther, m_jit.branch64(
MacroAssembler::NotEqual, resultGPR,
MacroAssembler::TrustedImm64(JSValue::ValueNull)));
}
jump(notTaken);
}
void SpeculativeJIT::compileSymbolUntypedEquality(Node* node, Edge symbolEdge, Edge untypedEdge)
{
SpeculateCellOperand symbol(this, symbolEdge);
JSValueOperand untyped(this, untypedEdge);
GPRTemporary result(this, Reuse, symbol, untyped);
GPRReg symbolGPR = symbol.gpr();
GPRReg untypedGPR = untyped.gpr();
GPRReg resultGPR = result.gpr();
speculateSymbol(symbolEdge, symbolGPR);
// At this point we know that we can perform a straight-forward equality comparison on pointer
// values because we are doing strict equality.
m_jit.compare64(MacroAssembler::Equal, symbolGPR, untypedGPR, resultGPR);
unblessedBooleanResult(resultGPR, node);
}
void SpeculativeJIT::compileInt52Compare(Node* node, MacroAssembler::RelationalCondition condition)
{
SpeculateWhicheverInt52Operand op1(this, node->child1());
SpeculateWhicheverInt52Operand op2(this, node->child2(), op1);
GPRTemporary result(this, Reuse, op1, op2);
m_jit.compare64(condition, op1.gpr(), op2.gpr(), result.gpr());
// If we add a DataFormatBool, we should use it here.
m_jit.or32(TrustedImm32(JSValue::ValueFalse), result.gpr());
jsValueResult(result.gpr(), m_currentNode, DataFormatJSBoolean);
}
void SpeculativeJIT::compilePeepHoleInt52Branch(Node* node, Node* branchNode, JITCompiler::RelationalCondition condition)
{
BasicBlock* taken = branchNode->branchData()->taken.block;
BasicBlock* notTaken = branchNode->branchData()->notTaken.block;
// The branch instruction will branch to the taken block.
// If taken is next, switch taken with notTaken & invert the branch condition so we can fall through.
if (taken == nextBlock()) {
condition = JITCompiler::invert(condition);
BasicBlock* tmp = taken;
taken = notTaken;
notTaken = tmp;
}
SpeculateWhicheverInt52Operand op1(this, node->child1());
SpeculateWhicheverInt52Operand op2(this, node->child2(), op1);
branch64(condition, op1.gpr(), op2.gpr(), taken);
jump(notTaken);
}
#if USE(BIGINT32)
void SpeculativeJIT::compileBigInt32Compare(Node* node, MacroAssembler::RelationalCondition condition)
{
SpeculateBigInt32Operand op1(this, node->child1());
SpeculateBigInt32Operand op2(this, node->child2());
GPRTemporary result(this, Reuse, op1, op2);
GPRReg op1GPR = op1.gpr();
GPRReg op2GPR = op2.gpr();
GPRReg resultGPR = result.gpr();
if (condition == MacroAssembler::Equal || condition == MacroAssembler::NotEqual) {
// No need to unbox the operands, since the tag bits are identical
m_jit.compare64(condition, op1GPR, op2GPR, resultGPR);
} else {
GPRTemporary temp(this);
GPRReg tempGPR = temp.gpr();
m_jit.unboxBigInt32(op1GPR, tempGPR);
m_jit.unboxBigInt32(op2GPR, resultGPR);
m_jit.compare32(condition, tempGPR, resultGPR, resultGPR);
}
unblessedBooleanResult(resultGPR, node);
}
void SpeculativeJIT::compilePeepHoleBigInt32Branch(Node* node, Node* branchNode, JITCompiler::RelationalCondition condition)
{
BasicBlock* taken = branchNode->branchData()->taken.block;
BasicBlock* notTaken = branchNode->branchData()->notTaken.block;
// The branch instruction will branch to the taken block.
// If taken is next, switch taken with notTaken & invert the branch condition so we can fall through.
if (taken == nextBlock()) {
condition = JITCompiler::invert(condition);
std::swap(taken, notTaken);
}
SpeculateBigInt32Operand op1(this, node->child1());
SpeculateBigInt32Operand op2(this, node->child2());
GPRReg op1GPR = op1.gpr();
GPRReg op2GPR = op2.gpr();
if (condition == MacroAssembler::Equal || condition == MacroAssembler::NotEqual) {
branch64(condition, op1GPR, op2GPR, taken);
jump(notTaken);
} else {
GPRTemporary lhs(this, Reuse, op1);
GPRTemporary rhs(this, Reuse, op2);
GPRReg lhsGPR = lhs.gpr();
GPRReg rhsGPR = rhs.gpr();
m_jit.unboxBigInt32(op1GPR, lhsGPR);
m_jit.unboxBigInt32(op2GPR, rhsGPR);
branch32(condition, lhsGPR, rhsGPR, taken);
jump(notTaken);
}
}
#endif // USE(BIGINT32)
void SpeculativeJIT::compileCompareEqPtr(Node* node)
{
JSValueOperand value(this, node->child1());
GPRTemporary result(this);
GPRReg valueGPR = value.gpr();
GPRReg resultGPR = result.gpr();
m_jit.move(TrustedImmPtr::weakPointer(m_jit.graph(), node->cellOperand()->cell()), resultGPR);
m_jit.compare64(MacroAssembler::Equal, valueGPR, resultGPR, resultGPR);
unblessedBooleanResult(resultGPR, node);
}
void SpeculativeJIT::compileToBooleanObjectOrOther(Edge nodeUse, bool invert)
{
JSValueOperand value(this, nodeUse, ManualOperandSpeculation);
GPRTemporary result(this);
GPRReg valueGPR = value.gpr();
GPRReg resultGPR = result.gpr();
GPRTemporary structure;
GPRReg structureGPR = InvalidGPRReg;
GPRTemporary scratch;
GPRReg scratchGPR = InvalidGPRReg;
bool masqueradesAsUndefinedWatchpointValid =
masqueradesAsUndefinedWatchpointIsStillValid();
if (!masqueradesAsUndefinedWatchpointValid) {
// The masquerades as undefined case will use the structure register, so allocate it here.
// Do this at the top of the function to avoid branching around a register allocation.
GPRTemporary realStructure(this);
GPRTemporary realScratch(this);
structure.adopt(realStructure);
scratch.adopt(realScratch);
structureGPR = structure.gpr();
scratchGPR = scratch.gpr();
}
MacroAssembler::Jump notCell = m_jit.branchIfNotCell(JSValueRegs(valueGPR));
if (masqueradesAsUndefinedWatchpointValid) {
DFG_TYPE_CHECK(
JSValueRegs(valueGPR), nodeUse, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(valueGPR));
} else {
DFG_TYPE_CHECK(
JSValueRegs(valueGPR), nodeUse, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(valueGPR));
MacroAssembler::Jump isNotMasqueradesAsUndefined =
m_jit.branchTest8(
MacroAssembler::Zero,
MacroAssembler::Address(valueGPR, JSCell::typeInfoFlagsOffset()),
MacroAssembler::TrustedImm32(MasqueradesAsUndefined));
m_jit.emitLoadStructure(vm(), valueGPR, structureGPR, scratchGPR);
speculationCheck(BadType, JSValueRegs(valueGPR), nodeUse,
m_jit.branchPtr(
MacroAssembler::Equal,
MacroAssembler::Address(structureGPR, Structure::globalObjectOffset()),
TrustedImmPtr::weakPointer(m_jit.graph(), m_jit.graph().globalObjectFor(m_currentNode->origin.semantic))));
isNotMasqueradesAsUndefined.link(&m_jit);
}
m_jit.move(invert ? TrustedImm32(JSValue::ValueFalse) : TrustedImm32(JSValue::ValueTrue), resultGPR);
MacroAssembler::Jump done = m_jit.jump();
notCell.link(&m_jit);
if (needsTypeCheck(nodeUse, SpecCellCheck | SpecOther)) {
m_jit.move(valueGPR, resultGPR);
m_jit.and64(MacroAssembler::TrustedImm32(~JSValue::UndefinedTag), resultGPR);
typeCheck(
JSValueRegs(valueGPR), nodeUse, SpecCellCheck | SpecOther, m_jit.branch64(
MacroAssembler::NotEqual,
resultGPR,
MacroAssembler::TrustedImm64(JSValue::ValueNull)));
}
m_jit.move(invert ? TrustedImm32(JSValue::ValueTrue) : TrustedImm32(JSValue::ValueFalse), resultGPR);
done.link(&m_jit);
jsValueResult(resultGPR, m_currentNode, DataFormatJSBoolean);
}
void SpeculativeJIT::compileToBoolean(Node* node, bool invert)
{
switch (node->child1().useKind()) {
case ObjectOrOtherUse: {
compileToBooleanObjectOrOther(node->child1(), invert);
return;
}
case Int32Use: {
SpeculateInt32Operand value(this, node->child1());
GPRTemporary result(this, Reuse, value);
m_jit.compare32(invert ? MacroAssembler::Equal : MacroAssembler::NotEqual, value.gpr(), MacroAssembler::TrustedImm32(0), result.gpr());
m_jit.or32(TrustedImm32(JSValue::ValueFalse), result.gpr());
jsValueResult(result.gpr(), node, DataFormatJSBoolean);
return;
}
case DoubleRepUse: {
SpeculateDoubleOperand value(this, node->child1());
FPRTemporary scratch(this);
GPRTemporary result(this);
m_jit.move(invert ? TrustedImm32(JSValue::ValueFalse) : TrustedImm32(JSValue::ValueTrue), result.gpr());
MacroAssembler::Jump nonZero = m_jit.branchDoubleNonZero(value.fpr(), scratch.fpr());
m_jit.move(invert ? TrustedImm32(JSValue::ValueTrue) : TrustedImm32(JSValue::ValueFalse), result.gpr());
nonZero.link(&m_jit);
jsValueResult(result.gpr(), node, DataFormatJSBoolean);
return;
}
case BooleanUse:
case KnownBooleanUse: {
if (!needsTypeCheck(node->child1(), SpecBoolean)) {
SpeculateBooleanOperand value(this, node->child1());
GPRTemporary result(this, Reuse, value);
if (invert)
m_jit.xor32(TrustedImm32(1), value.gpr(), result.gpr());
else
m_jit.move(value.gpr(), result.gpr());
jsValueResult(result.gpr(), node, DataFormatJSBoolean);
return;
}
JSValueOperand value(this, node->child1(), ManualOperandSpeculation);
GPRTemporary result(this); // FIXME: We could reuse, but on speculation fail would need recovery to restore tag (akin to add).
m_jit.move(value.gpr(), result.gpr());
m_jit.xor64(TrustedImm32(JSValue::ValueFalse), result.gpr());
typeCheck(
JSValueRegs(value.gpr()), node->child1(), SpecBoolean, m_jit.branchTest64(
JITCompiler::NonZero, result.gpr(), TrustedImm32(static_cast<int32_t>(~1))));
m_jit.xor64(invert ? TrustedImm32(JSValue::ValueTrue) : TrustedImm32(JSValue::ValueFalse), result.gpr());
// If we add a DataFormatBool, we should use it here.
jsValueResult(result.gpr(), node, DataFormatJSBoolean);
return;
}
case UntypedUse: {
JSValueOperand arg1(this, node->child1());
GPRTemporary result(this);
GPRReg arg1GPR = arg1.gpr();
GPRReg resultGPR = result.gpr();
FPRTemporary valueFPR(this);
FPRTemporary tempFPR(this);
bool shouldCheckMasqueradesAsUndefined = !masqueradesAsUndefinedWatchpointIsStillValid();
JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
std::optional<GPRTemporary> scratch;
GPRReg scratchGPR = InvalidGPRReg;
if (shouldCheckMasqueradesAsUndefined) {
scratch.emplace(this);
scratchGPR = scratch->gpr();
}
m_jit.emitConvertValueToBoolean(vm(), JSValueRegs(arg1GPR), resultGPR, scratchGPR, valueFPR.fpr(), tempFPR.fpr(), shouldCheckMasqueradesAsUndefined, globalObject, invert);
m_jit.or32(TrustedImm32(JSValue::ValueFalse), resultGPR);
jsValueResult(resultGPR, node, DataFormatJSBoolean);
return;
}
case StringUse:
compileToBooleanString(node, invert);
return;
case StringOrOtherUse:
compileToBooleanStringOrOther(node, invert);
return;
default:
DFG_CRASH(m_jit.graph(), node, "Bad use kind");
break;
}
}
void SpeculativeJIT::emitObjectOrOtherBranch(Edge nodeUse, BasicBlock* taken, BasicBlock* notTaken)
{
JSValueOperand value(this, nodeUse, ManualOperandSpeculation);
GPRTemporary scratch(this);
GPRTemporary structure;
GPRReg valueGPR = value.gpr();
GPRReg scratchGPR = scratch.gpr();
GPRReg structureGPR = InvalidGPRReg;
bool objectMayMasqueradeAsUndefined = !masqueradesAsUndefinedWatchpointIsStillValid();
if (objectMayMasqueradeAsUndefined) {
GPRTemporary realStructure(this);
structure.adopt(realStructure);
structureGPR = structure.gpr();
}
MacroAssembler::Jump notCell = m_jit.branchIfNotCell(JSValueRegs(valueGPR));
if (!objectMayMasqueradeAsUndefined) {
DFG_TYPE_CHECK(
JSValueRegs(valueGPR), nodeUse, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(valueGPR));
} else {
DFG_TYPE_CHECK(
JSValueRegs(valueGPR), nodeUse, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(valueGPR));
JITCompiler::Jump isNotMasqueradesAsUndefined = m_jit.branchTest8(
JITCompiler::Zero,
MacroAssembler::Address(valueGPR, JSCell::typeInfoFlagsOffset()),
TrustedImm32(MasqueradesAsUndefined));
m_jit.emitLoadStructure(vm(), valueGPR, structureGPR, scratchGPR);
speculationCheck(BadType, JSValueRegs(valueGPR), nodeUse,
m_jit.branchPtr(
MacroAssembler::Equal,
MacroAssembler::Address(structureGPR, Structure::globalObjectOffset()),
TrustedImmPtr::weakPointer(m_jit.graph(), m_jit.graph().globalObjectFor(m_currentNode->origin.semantic))));
isNotMasqueradesAsUndefined.link(&m_jit);
}
jump(taken, ForceJump);
notCell.link(&m_jit);
if (needsTypeCheck(nodeUse, SpecCellCheck | SpecOther)) {
m_jit.move(valueGPR, scratchGPR);
m_jit.and64(MacroAssembler::TrustedImm32(~JSValue::UndefinedTag), scratchGPR);
typeCheck(
JSValueRegs(valueGPR), nodeUse, SpecCellCheck | SpecOther, m_jit.branch64(
MacroAssembler::NotEqual, scratchGPR, MacroAssembler::TrustedImm64(JSValue::ValueNull)));
}
jump(notTaken);
noResult(m_currentNode);
}
void SpeculativeJIT::emitUntypedBranch(Edge nodeUse, BasicBlock* taken, BasicBlock* notTaken)
{
// Implements the following control flow structure, inspired by branchIfValue():
// if (value is cell) {
// if (value is string or value is HeapBigInt)
// result = !!value->length
// else {
// do evil things for masquerades-as-undefined
// result = true
// }
// } else if (value is Boolean) {
// result = value == jsTrue
// } else if (value is int32) {
// result = !!unboxInt32(value)
// } else if (value is number) {
// result = !!unboxDouble(value)
// } else if (value is BigInt32) {
// result = !!unboxBigInt32(value)
// } else {
// result = false
// }
JSValueOperand value(this, nodeUse, ManualOperandSpeculation);
GPRReg valueGPR = value.gpr();
JSValueRegs valueRegs = JSValueRegs(valueGPR);
GPRTemporary temp1(this);
GPRTemporary temp2(this);
FPRTemporary fprValue(this);
FPRTemporary fprTemp(this);
GPRReg temp1GPR = temp1.gpr();
GPRReg temp2GPR = temp2.gpr();
FPRReg valueFPR = fprValue.fpr();
FPRReg tempFPR = fprTemp.fpr();
if (needsTypeCheck(nodeUse, ~SpecCell)) {
bool isDefinitelyCell = !needsTypeCheck(nodeUse, SpecCell);
JITCompiler::Jump skipCellCase;
if (!isDefinitelyCell)
skipCellCase = m_jit.branchIfNotCell(valueRegs);
if (needsTypeCheck(nodeUse, ~SpecString)) {
bool isDefinitelyString = !needsTypeCheck(nodeUse, SpecString | ~SpecCellCheck);
JITCompiler::Jump skipStringCase;
if (!isDefinitelyString)
skipStringCase = m_jit.branchIfNotString(valueGPR);
branchPtr(MacroAssembler::Equal, valueGPR, TrustedImmPtr::weakPointer(m_jit.graph(), jsEmptyString(vm())), notTaken);
jump(taken, ForceJump);
if (!isDefinitelyString)
skipStringCase.link(&m_jit);
}
if (needsTypeCheck(nodeUse, ~SpecHeapBigInt)) {
bool isDefinitelyHeapBigInt = !needsTypeCheck(nodeUse, SpecHeapBigInt | ~SpecCellCheck);
JITCompiler::Jump skipHeapBigIntCase;
if (!isDefinitelyHeapBigInt)
skipHeapBigIntCase = m_jit.branchIfNotHeapBigInt(valueGPR);
branchTest32(MacroAssembler::NonZero, MacroAssembler::Address(valueGPR, JSBigInt::offsetOfLength()), taken);
jump(notTaken, ForceJump);
if (!isDefinitelyHeapBigInt)
skipHeapBigIntCase.link(&m_jit);
}
bool shouldCheckMasqueradesAsUndefined = !masqueradesAsUndefinedWatchpointIsStillValid();
if (shouldCheckMasqueradesAsUndefined) {
branchTest8(MacroAssembler::Zero, MacroAssembler::Address(valueGPR, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined), taken);
m_jit.emitLoadStructure(vm(), valueGPR, temp1GPR, temp2GPR);
JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(m_currentNode->origin.semantic);
m_jit.move(TrustedImmPtr::weakPointer(m_jit.graph(), globalObject), temp2GPR);
branchPtr(MacroAssembler::NotEqual, MacroAssembler::Address(temp1GPR, Structure::globalObjectOffset()), temp2GPR, taken);
jump(notTaken, ForceJump);
} else
jump(taken, ForceJump);
if (!isDefinitelyCell)
skipCellCase.link(&m_jit);
}
if (needsTypeCheck(nodeUse, ~SpecBoolean)) {
branch64(MacroAssembler::Equal, valueGPR, MacroAssembler::TrustedImm64(JSValue::encode(jsBoolean(false))), notTaken);
branch64(MacroAssembler::Equal, valueGPR, MacroAssembler::TrustedImm64(JSValue::encode(jsBoolean(true))), taken);
}
if (needsTypeCheck(nodeUse, ~SpecInt32Only)) {
branch64(MacroAssembler::Above, valueGPR, GPRInfo::numberTagRegister, taken);
branch64(MacroAssembler::Equal, valueGPR, GPRInfo::numberTagRegister, notTaken);
}
if (needsTypeCheck(nodeUse, ~SpecFullDouble)) {
bool isDefinitelyDouble = !needsTypeCheck(nodeUse, SpecCell | SpecBoolean | SpecInt32Only | SpecFullDouble);
JITCompiler::Jump skipDoubleCase;
if (!isDefinitelyDouble)
skipDoubleCase = m_jit.branchIfNotNumber(valueGPR);
unboxDouble(valueGPR, temp1GPR, valueFPR);
branchDoubleZeroOrNaN(valueFPR, tempFPR, notTaken);
jump(taken, ForceJump);
if (!isDefinitelyDouble)
skipDoubleCase.link(&m_jit);
}
#if USE(BIGINT32)
if (needsTypeCheck(nodeUse, ~SpecBigInt32)) {
bool isDefinitelyBigInt32 = !needsTypeCheck(nodeUse, SpecCell | SpecBoolean | SpecInt32Only | SpecFullDouble | SpecBigInt32);
JITCompiler::Jump skipBigInt32Case;
if (!isDefinitelyBigInt32)
skipBigInt32Case = m_jit.branchIfNotBigInt32(valueGPR, tempGPR);
m_jit.move(valueGPR, tempGPR);
m_jit.urshift64(MacroAssembler::TrustedImm32(16), tempGPR);
branchTest32(MacroAssembler::NonZero, tempGPR, taken);
// Here we fallthrough to the jump(notTaken) below and outside this branch.
if (!isDefinitelyBigInt32)
skipBigInt32Case.link(&m_jit);
}
#endif // USE(BIGINT32)
jump(notTaken);
value.use();
noResult(m_currentNode, UseChildrenCalledExplicitly);
return;
}
void SpeculativeJIT::emitBranch(Node* node)
{
BasicBlock* taken = node->branchData()->taken.block;
BasicBlock* notTaken = node->branchData()->notTaken.block;
switch (node->child1().useKind()) {
case ObjectOrOtherUse: {
emitObjectOrOtherBranch(node->child1(), taken, notTaken);
return;
}
case Int32Use: {
MacroAssembler::ResultCondition condition = MacroAssembler::NonZero;
if (taken == nextBlock()) {
condition = MacroAssembler::Zero;
BasicBlock* tmp = taken;
taken = notTaken;
notTaken = tmp;
}
SpeculateInt32Operand value(this, node->child1());
branchTest32(condition, value.gpr(), taken);
jump(notTaken);
noResult(node);
return;
}
case DoubleRepUse: {
SpeculateDoubleOperand value(this, node->child1());
FPRTemporary scratch(this);
branchDoubleNonZero(value.fpr(), scratch.fpr(), taken);
jump(notTaken);
noResult(node);
return;
}
case StringUse: {
emitStringBranch(node->child1(), taken, notTaken);
return;
}
case StringOrOtherUse: {
emitStringOrOtherBranch(node->child1(), taken, notTaken);
return;
}
case BooleanUse:
case KnownBooleanUse: {
JSValueOperand value(this, node->child1(), ManualOperandSpeculation);
GPRReg valueGPR = value.gpr();
if (!needsTypeCheck(node->child1(), SpecBoolean)) {
MacroAssembler::ResultCondition condition = MacroAssembler::NonZero;
if (taken == nextBlock()) {
condition = MacroAssembler::Zero;
BasicBlock* tmp = taken;
taken = notTaken;
notTaken = tmp;
}
branchTest32(condition, valueGPR, TrustedImm32(true), taken);
jump(notTaken);
} else {
branch64(MacroAssembler::Equal, valueGPR, MacroAssembler::TrustedImm64(JSValue::encode(jsBoolean(false))), notTaken);
branch64(MacroAssembler::Equal, valueGPR, MacroAssembler::TrustedImm64(JSValue::encode(jsBoolean(true))), taken);
typeCheck(JSValueRegs(valueGPR), node->child1(), SpecBoolean, m_jit.jump());
}
value.use();
noResult(node, UseChildrenCalledExplicitly);
return;
}
case UntypedUse: {
emitUntypedBranch(node->child1(), taken, notTaken);
return;
}
default:
DFG_CRASH(m_jit.graph(), m_currentNode, "Bad use kind");
}
}
void SpeculativeJIT::compileGetByVal(Node* node, const ScopedLambda<std::tuple<JSValueRegs, DataFormat, CanUseFlush>(DataFormat preferredFormat)>& prefix)
{
switch (node->arrayMode().type()) {
case Array::AnyTypedArray:
case Array::ForceExit:
case Array::SelectUsingArguments:
case Array::SelectUsingPredictions:
case Array::Unprofiled:
DFG_CRASH(m_jit.graph(), node, "Bad array mode type");
break;
case Array::Undecided: {
SpeculateStrictInt32Operand index(this, m_graph.varArgChild(node, 1));
GPRReg indexGPR = index.gpr();
JSValueRegs resultRegs;
std::tie(resultRegs, std::ignore, std::ignore) = prefix(DataFormatJS);
speculationCheck(OutOfBounds, JSValueRegs(), node,
m_jit.branch32(MacroAssembler::LessThan, indexGPR, MacroAssembler::TrustedImm32(0)));
m_jit.move(MacroAssembler::TrustedImm64(JSValue::ValueUndefined), resultRegs.gpr());
jsValueResult(resultRegs, node);
break;
}
case Array::BigInt64Array:
case Array::BigUint64Array:
case Array::Generic: {
if (m_graph.m_slowGetByVal.contains(node)) {
if (m_graph.varArgChild(node, 0).useKind() == ObjectUse) {
if (m_graph.varArgChild(node, 1).useKind() == StringUse) {
compileGetByValForObjectWithString(node, prefix);
return;
}
if (m_graph.varArgChild(node, 1).useKind() == SymbolUse) {
compileGetByValForObjectWithSymbol(node, prefix);
return;
}
}
JSValueOperand base(this, m_graph.varArgChild(node, 0));
JSValueOperand property(this, m_graph.varArgChild(node, 1));
GPRReg baseGPR = base.gpr();
GPRReg propertyGPR = property.gpr();
JSValueRegs resultRegs;
CanUseFlush canUseFlush = CanUseFlush::Yes;
std::tie(resultRegs, std::ignore, canUseFlush) = prefix(DataFormatJS);
if (canUseFlush == CanUseFlush::No)
silentSpillAllRegisters(resultRegs);
else
flushRegisters();
callOperation(operationGetByVal, resultRegs, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), baseGPR, propertyGPR);
if (canUseFlush == CanUseFlush::No)
silentFillAllRegisters();
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
return;
}
JSValueOperand base(this, m_graph.varArgChild(node, 0), ManualOperandSpeculation);
JSValueOperand property(this, m_graph.varArgChild(node, 1), ManualOperandSpeculation);
GPRReg baseGPR = base.gpr();
GPRReg propertyGPR = property.gpr();
GPRTemporary stubInfo;
GPRReg stubInfoGPR = InvalidGPRReg;
if (JITCode::useDataIC(JITType::DFGJIT)) {
stubInfo = GPRTemporary(this);
stubInfoGPR = stubInfo.gpr();
}
speculate(node, m_graph.varArgChild(node, 0));
speculate(node, m_graph.varArgChild(node, 1));
JSValueRegs resultRegs;
std::tie(resultRegs, std::ignore, std::ignore) = prefix(DataFormatJS);
GPRReg resultGPR = resultRegs.gpr();
CodeOrigin codeOrigin = node->origin.semantic;
CallSiteIndex callSite = m_jit.recordCallSiteAndGenerateExceptionHandlingOSRExitIfNeeded(codeOrigin, m_stream->size());
RegisterSet usedRegisters = this->usedRegisters();
JITCompiler::JumpList slowCases;
if (!m_state.forNode(m_graph.varArgChild(node, 0)).isType(SpecCell))
slowCases.append(m_jit.branchIfNotCell(baseGPR));
JITGetByValGenerator gen(
m_jit.codeBlock(), &m_jit.jitCode()->common.m_stubInfos, JITType::DFGJIT, codeOrigin, callSite, AccessType::GetByVal, usedRegisters,
JSValueRegs(baseGPR), JSValueRegs(propertyGPR), JSValueRegs(resultGPR), stubInfoGPR);
if (m_state.forNode(m_graph.varArgChild(node, 1)).isType(SpecString))
gen.stubInfo()->propertyIsString = true;
else if (m_state.forNode(m_graph.varArgChild(node, 1)).isType(SpecInt32Only))
gen.stubInfo()->propertyIsInt32 = true;
else if (m_state.forNode(m_graph.varArgChild(node, 1)).isType(SpecSymbol))
gen.stubInfo()->propertyIsSymbol = true;
gen.generateFastPath(m_jit);
if (!JITCode::useDataIC(JITType::DFGJIT))
slowCases.append(gen.slowPathJump());
std::unique_ptr<SlowPathGenerator> slowPath;
if (JITCode::useDataIC(JITType::DFGJIT)) {
slowPath = slowPathICCall(
slowCases, this, gen.stubInfo(), stubInfoGPR, CCallHelpers::Address(stubInfoGPR, StructureStubInfo::offsetOfSlowOperation()), operationGetByValOptimize,
resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(codeOrigin)), stubInfoGPR, nullptr, baseGPR, propertyGPR);
} else {
slowPath = slowPathCall(
slowCases, this, operationGetByValOptimize,
resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(codeOrigin)), gen.stubInfo(), nullptr, baseGPR, propertyGPR);
}
m_jit.addGetByVal(gen, slowPath.get());
addSlowPathGenerator(WTFMove(slowPath));
jsValueResult(resultGPR, node);
break;
}
case Array::Int32:
case Array::Contiguous: {
if (node->arrayMode().isInBounds()) {
SpeculateStrictInt32Operand property(this, m_graph.varArgChild(node, 1));
StorageOperand storage(this, m_graph.varArgChild(node, 2));
GPRReg propertyReg = property.gpr();
GPRReg storageReg = storage.gpr();
if (!m_compileOkay)
return;
JSValueRegs resultRegs;
DataFormat format;
std::tie(resultRegs, format, std::ignore) = prefix(node->arrayMode().type() == Array::Int32 ? DataFormatJSInt32 : DataFormatJS);
GPRReg result = resultRegs.gpr();
speculationCheck(OutOfBounds, JSValueRegs(), nullptr, m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, Butterfly::offsetOfPublicLength())));
m_jit.load64(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight), result);
if (node->arrayMode().isInBoundsSaneChain()) {
ASSERT(node->arrayMode().type() == Array::Contiguous);
JITCompiler::Jump notHole = m_jit.branchIfNotEmpty(result);
m_jit.move(TrustedImm64(JSValue::encode(jsUndefined())), result);
notHole.link(&m_jit);
} else {
speculationCheck(
LoadFromHole, JSValueRegs(), nullptr,
m_jit.branchIfEmpty(result));
}
jsValueResult(result, node, format);
break;
}
SpeculateCellOperand base(this, m_graph.varArgChild(node, 0));
SpeculateStrictInt32Operand property(this, m_graph.varArgChild(node, 1));
StorageOperand storage(this, m_graph.varArgChild(node, 2));
GPRReg baseReg = base.gpr();
GPRReg propertyReg = property.gpr();
GPRReg storageReg = storage.gpr();
if (!m_compileOkay)
return;
JSValueRegs resultRegs;
std::tie(resultRegs, std::ignore, std::ignore) = prefix(DataFormatJS);
GPRReg resultReg = resultRegs.gpr();
MacroAssembler::JumpList slowCases;
slowCases.append(m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, Butterfly::offsetOfPublicLength())));
m_jit.load64(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight), resultReg);
if (node->arrayMode().isOutOfBoundsSaneChain()) {
auto done = m_jit.branchIfNotEmpty(resultReg);
slowCases.link(&m_jit);
speculationCheck(NegativeIndex, JSValueRegs(), nullptr, m_jit.branch32(MacroAssembler::LessThan, propertyReg, CCallHelpers::TrustedImm32(0)));
m_jit.move(CCallHelpers::TrustedImm64(JSValue::encode(jsUndefined())), resultReg);
done.link(&m_jit);
} else {
slowCases.append(m_jit.branchIfEmpty(resultReg));
addSlowPathGenerator(
slowPathCall(
slowCases, this, operationGetByValObjectInt,
resultReg, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), baseReg, propertyReg));
}
jsValueResult(resultReg, node);
break;
}
case Array::Double: {
if (node->arrayMode().isInBounds()) {
SpeculateStrictInt32Operand property(this, m_graph.varArgChild(node, 1));
StorageOperand storage(this, m_graph.varArgChild(node, 2));
GPRReg propertyReg = property.gpr();
GPRReg storageReg = storage.gpr();
if (!m_compileOkay)
return;
FPRTemporary result(this);
FPRReg resultReg = result.fpr();
JSValueRegs resultRegs;
DataFormat format;
std::tie(resultRegs, format, std::ignore) = prefix(DataFormatDouble);
speculationCheck(OutOfBounds, JSValueRegs(), nullptr, m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, Butterfly::offsetOfPublicLength())));
m_jit.loadDouble(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight), resultReg);
if (!node->arrayMode().isInBoundsSaneChain())
speculationCheck(LoadFromHole, JSValueRegs(), nullptr, m_jit.branchIfNaN(resultReg));
if (format == DataFormatJS) {
boxDouble(resultReg, resultRegs);
jsValueResult(resultRegs, node);
} else {
ASSERT(format == DataFormatDouble && !resultRegs);
doubleResult(resultReg, node);
}
break;
}
bool resultIsUnboxed = node->arrayMode().isOutOfBoundsSaneChain() && !(node->flags() & NodeBytecodeUsesAsOther);
SpeculateCellOperand base(this, m_graph.varArgChild(node, 0));
SpeculateStrictInt32Operand property(this, m_graph.varArgChild(node, 1));
StorageOperand storage(this, m_graph.varArgChild(node, 2));
GPRReg baseReg = base.gpr();
GPRReg propertyReg = property.gpr();
GPRReg storageReg = storage.gpr();
if (!m_compileOkay)
return;
FPRTemporary temp(this);
FPRReg tempReg = temp.fpr();
JSValueRegs resultRegs;
DataFormat format;
std::tie(resultRegs, format, std::ignore) = prefix(resultIsUnboxed ? DataFormatDouble : DataFormatJS);
MacroAssembler::JumpList slowCases;
slowCases.append(m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, Butterfly::offsetOfPublicLength())));
m_jit.loadDouble(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight), tempReg);
if (node->arrayMode().isOutOfBoundsSaneChain()) {
if (format == DataFormatDouble) {
auto done = m_jit.jump();
slowCases.link(&m_jit);
speculationCheck(NegativeIndex, JSValueRegs(), nullptr, m_jit.branch32(MacroAssembler::LessThan, propertyReg, CCallHelpers::TrustedImm32(0)));
static const double NaN = PNaN;
m_jit.loadDouble(TrustedImmPtr(&NaN), tempReg);
done.link(&m_jit);
ASSERT(!resultRegs);
doubleResult(tempReg, node);
} else {
slowCases.append(m_jit.branchIfNaN(tempReg));
boxDouble(tempReg, resultRegs.gpr());
auto done = m_jit.jump();
slowCases.link(&m_jit);
speculationCheck(NegativeIndex, JSValueRegs(), nullptr, m_jit.branch32(MacroAssembler::LessThan, propertyReg, CCallHelpers::TrustedImm32(0)));
m_jit.move(CCallHelpers::TrustedImm64(JSValue::encode(jsUndefined())), resultRegs.gpr());
done.link(&m_jit);
jsValueResult(resultRegs.gpr(), node);
}
} else {
slowCases.append(m_jit.branchIfNaN(tempReg));
boxDouble(tempReg, resultRegs.gpr());
addSlowPathGenerator(
slowPathCall(
slowCases, this, operationGetByValObjectInt,
resultRegs.gpr(), TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), baseReg, propertyReg));
jsValueResult(resultRegs.gpr(), node);
}
break;
}
case Array::ArrayStorage:
case Array::SlowPutArrayStorage: {
if (node->arrayMode().isInBounds()) {
SpeculateStrictInt32Operand property(this, m_graph.varArgChild(node, 1));
StorageOperand storage(this, m_graph.varArgChild(node, 2));
GPRReg propertyReg = property.gpr();
GPRReg storageReg = storage.gpr();
if (!m_compileOkay)
return;
JSValueRegs resultRegs;
std::tie(resultRegs, std::ignore, std::ignore) = prefix(DataFormatJS);
GPRReg resultGPR = resultRegs.gpr();
speculationCheck(OutOfBounds, JSValueRegs(), nullptr, m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, ArrayStorage::vectorLengthOffset())));
m_jit.load64(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight, ArrayStorage::vectorOffset()), resultGPR);
speculationCheck(LoadFromHole, JSValueRegs(), nullptr, m_jit.branchIfEmpty(resultGPR));
jsValueResult(resultGPR, node);
break;
}
SpeculateCellOperand base(this, m_graph.varArgChild(node, 0));
SpeculateStrictInt32Operand property(this, m_graph.varArgChild(node, 1));
StorageOperand storage(this, m_graph.varArgChild(node, 2));
GPRReg baseReg = base.gpr();
GPRReg propertyReg = property.gpr();
GPRReg storageReg = storage.gpr();
if (!m_compileOkay)
return;
JSValueRegs resultRegs;
std::tie(resultRegs, std::ignore, std::ignore) = prefix(DataFormatJS);
GPRReg resultReg = resultRegs.gpr();
MacroAssembler::JumpList slowCases;
slowCases.append(m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, ArrayStorage::vectorLengthOffset())));
m_jit.load64(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight, ArrayStorage::vectorOffset()), resultReg);
slowCases.append(m_jit.branchIfEmpty(resultReg));
addSlowPathGenerator(
slowPathCall(
slowCases, this, operationGetByValObjectInt,
resultReg, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), baseReg, propertyReg));
jsValueResult(resultReg, node);
break;
}
case Array::String:
compileGetByValOnString(node, prefix);
break;
case Array::DirectArguments:
compileGetByValOnDirectArguments(node, prefix);
break;
case Array::ScopedArguments:
compileGetByValOnScopedArguments(node, prefix);
break;
case Array::Int8Array:
case Array::Int16Array:
case Array::Int32Array:
case Array::Uint8Array:
case Array::Uint8ClampedArray:
case Array::Uint16Array:
case Array::Uint32Array:
case Array::Float32Array:
case Array::Float64Array: {
TypedArrayType type = node->arrayMode().typedArrayType();
if (isInt(type))
compileGetByValOnIntTypedArray(node, type, prefix);
else
compileGetByValOnFloatTypedArray(node, type, prefix);
} }
}
#if ENABLE(YARR_JIT_REGEXP_TEST_INLINE)
void SpeculativeJIT::compileRegExpTestInline(Node* node)
{
RegExp* regExp = jsCast<RegExp*>(node->cellOperand2()->value());
ASSERT(!regExp->globalOrSticky());
SpeculateCellOperand globalObject(this, node->child1());
SpeculateCellOperand base(this, node->child2());
GPRReg globalObjectGPR = globalObject.gpr();
GPRReg baseGPR = base.gpr();
GPRReg argumentGPR;
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
GPRTemporary stringImpl(this);
GPRTemporary stringData(this);
GPRTemporary strLength(this);
GPRTemporary output(this);
GPRTemporary result2(this);
GPRTemporary temp0(this);
GPRTemporary temp1(this);
GPRTemporary temp2;
GPRReg stringImplGPR = stringImpl.gpr();
GPRReg stringDataGPR = stringData.gpr();
GPRReg outputGPR = output.gpr();
GPRReg strLengthGPR = strLength.gpr();
GPRReg result2GPR = result2.gpr();
GPRReg temp0GPR = temp0.gpr();
GPRReg temp1GPR = temp1.gpr();
GPRReg temp2GPR = InvalidGPRReg;
GPRReg swapReg = InvalidGPRReg;
auto jitCodeBlock = regExp->getRegExpJITCodeBlock();
ASSERT(jitCodeBlock);
auto inlineCodeStats8Bit = jitCodeBlock->get8BitInlineStats();
#if !CPU(X86_64)
if (inlineCodeStats8Bit.needsTemp2()) {
GPRTemporary realTemp2(this);
temp2.adopt(realTemp2);
temp2GPR = temp2.gpr();
}
#endif
speculateRegExpObject(node->child2(), baseGPR);
MacroAssembler::JumpList done;
MacroAssembler::JumpList operationCases;
auto swapRegIfNeeded = [&] {
if (globalObjectGPR == resultGPR) {
swapReg = allocate();
m_jit.move(globalObjectGPR, swapReg);
globalObjectGPR = swapReg;
} else if (baseGPR == resultGPR) {
swapReg = allocate();
m_jit.move(baseGPR, swapReg);
baseGPR = swapReg;
} else if (argumentGPR == resultGPR) {
swapReg = allocate();
m_jit.move(argumentGPR, swapReg);
argumentGPR = swapReg;
}
};
auto regExpTestInlineCase = [&] {
m_jit.loadPtr(MacroAssembler::Address(stringImplGPR, StringImpl::dataOffset()), stringDataGPR);
m_jit.load32(MacroAssembler::Address(stringImplGPR, StringImpl::lengthMemoryOffset()), strLengthGPR);
GPRReg indexGPR = stringImplGPR;
m_jit.move(TrustedImm32(0), indexGPR);
Yarr::YarrJITRegisters yarrRegisters;
yarrRegisters.input = stringDataGPR;
yarrRegisters.index = indexGPR;
yarrRegisters.length = strLengthGPR;
yarrRegisters.output = outputGPR;
yarrRegisters.regT0 = temp0GPR;
yarrRegisters.regT1 = temp1GPR;
#if CPU(X86_64)
temp2GPR = globalObjectGPR;
#endif
if (inlineCodeStats8Bit.needsTemp2())
yarrRegisters.regT2 = temp2GPR;
yarrRegisters.returnRegister = resultGPR;
yarrRegisters.returnRegister2 = result2GPR;
auto commonData = m_jit.jitCode()->dfgCommon();
Yarr::jitCompileInlinedTest(&m_graph.m_stackChecker, regExp->pattern(), regExp->flags(), Yarr::CharSize::Char8, &vm(), commonData->m_boyerMooreData, m_jit, yarrRegisters);
auto failedMatch = m_jit.branch32(MacroAssembler::LessThan, resultGPR, TrustedImm32(0));
// Saved cached result
#if CPU(X86_64)
if (inlineCodeStats8Bit.needsTemp2()) {
// Since we reused globalObjectGPR for temp2, let's restore the global object.
JSGlobalObject* globalObjectConst = jsCast<JSGlobalObject*>(node->cellOperand()->value());
m_jit.move(CCallHelpers::TrustedImmPtr(globalObjectConst), globalObjectGPR);
}
#endif
ptrdiff_t offset = JSGlobalObject::regExpGlobalDataOffset() + RegExpGlobalData::offsetOfCachedResult();
m_jit.storePtr(TrustedImmPtr::weakPointer(m_graph, regExp), JITCompiler::Address(globalObjectGPR, offset + RegExpCachedResult::offsetOfLastRegExp()));
m_jit.storePtr(argumentGPR, JITCompiler::Address(globalObjectGPR, offset + RegExpCachedResult::offsetOfLastInput()));
m_jit.store32(resultGPR, JITCompiler::Address(globalObjectGPR, offset + RegExpCachedResult::offsetOfResult() + OBJECT_OFFSETOF(MatchResult, start)));
m_jit.store32(result2GPR, JITCompiler::Address(globalObjectGPR, offset + RegExpCachedResult::offsetOfResult() + OBJECT_OFFSETOF(MatchResult, end)));
m_jit.store8(TrustedImm32(0), JITCompiler::Address(globalObjectGPR, offset + RegExpCachedResult::offsetOfReified()));
if (swapReg != InvalidGPRReg)
unlock(swapReg);
m_jit.move(TrustedImm32(1), resultGPR);
done.append(m_jit.jump());
failedMatch.link(&m_jit);
m_jit.move(TrustedImm32(0), resultGPR);
done.append(m_jit.jump());
};
if (node->child3().useKind() == StringUse) {
SpeculateCellOperand argument(this, node->child3());
argumentGPR = argument.gpr();
speculateString(node->child3(), argumentGPR);
flushRegisters();
swapRegIfNeeded();
m_jit.loadPtr(MacroAssembler::Address(argumentGPR, JSString::offsetOfValue()), stringImplGPR);
// If the string is a rope or 16 bit, we call the operation.
operationCases.append(m_jit.branchIfRopeStringImpl(stringImplGPR));
operationCases.append(m_jit.branchTest32(
MacroAssembler::Zero,
MacroAssembler::Address(stringImplGPR, StringImpl::flagsOffset()),
TrustedImm32(StringImpl::flagIs8Bit())));
regExpTestInlineCase();
operationCases.link(&m_jit);
callOperation(operationRegExpTestString, resultGPR, globalObjectGPR, baseGPR, argumentGPR);
m_jit.exceptionCheck();
done.link(&m_jit);
unblessedBooleanResult(resultGPR, node);
return;
}
JSValueOperand argument(this, node->child3());
argumentGPR = argument.gpr();
flushRegisters();
swapRegIfNeeded();
operationCases.append(m_jit.branchIfNotCell(argumentGPR));
operationCases.append(m_jit.branchIfNotString(argumentGPR));
m_jit.loadPtr(MacroAssembler::Address(argumentGPR, JSString::offsetOfValue()), stringImplGPR);
// If the string is a rope or 16 bit, we call the operation.
operationCases.append(m_jit.branchIfRopeStringImpl(stringImplGPR));
operationCases.append(m_jit.branchTest32(
MacroAssembler::Zero,
MacroAssembler::Address(stringImplGPR, StringImpl::flagsOffset()),
TrustedImm32(StringImpl::flagIs8Bit())));
regExpTestInlineCase();
operationCases.link(&m_jit);
callOperation(operationRegExpTest, resultGPR, globalObjectGPR, baseGPR, argumentGPR);
done.link(&m_jit);
m_jit.exceptionCheck();
unblessedBooleanResult(resultGPR, node);
}
#else
void SpeculativeJIT::compileRegExpTestInline(Node* node)
{
UNUSED_PARAM(node);
ASSERT_NOT_REACHED();
compileRegExpTest(node);
}
#endif
#if USE(LARGE_TYPED_ARRAYS)
void SpeculativeJIT::compileNewTypedArrayWithInt52Size(Node* node)
{
JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
auto typedArrayType = node->typedArrayType();
RegisteredStructure structure = m_jit.graph().registerStructure(globalObject->typedArrayStructureConcurrently(typedArrayType));
RELEASE_ASSERT(structure.get());
SpeculateStrictInt52Operand size(this, node->child1());
GPRReg sizeGPR = size.gpr();
emitNewTypedArrayWithSizeInRegister(node, typedArrayType, structure, sizeGPR);
}
void SpeculativeJIT::compileGetTypedArrayLengthAsInt52(Node* node)
{
// If arrayMode is ForceExit, we would not compile this node and hence, should not have arrived here.
DFG_ASSERT(m_graph, node, node->arrayMode().isSomeTypedArrayView());
SpeculateCellOperand base(this, node->child1());
GPRTemporary result(this, Reuse, base);
GPRReg baseGPR = base.gpr();
GPRReg resultGPR = result.gpr();
m_jit.load64(MacroAssembler::Address(baseGPR, JSArrayBufferView::offsetOfLength()), resultGPR);
static_assert(MAX_ARRAY_BUFFER_SIZE < (1ull << 52), "there is a risk that the size of a typed array won't fit in an Int52");
strictInt52Result(resultGPR, node);
}
void SpeculativeJIT::compileGetTypedArrayByteOffsetAsInt52(Node* node)
{
SpeculateCellOperand base(this, node->child1());
GPRTemporary vector(this);
GPRTemporary data(this);
GPRReg baseGPR = base.gpr();
GPRReg vectorGPR = vector.gpr();
GPRReg dataGPR = data.gpr();
GPRReg arrayBufferGPR = dataGPR;
JITCompiler::Jump emptyByteOffset = m_jit.branch32(
MacroAssembler::NotEqual,
MacroAssembler::Address(baseGPR, JSArrayBufferView::offsetOfMode()),
TrustedImm32(WastefulTypedArray));
m_jit.loadPtr(MacroAssembler::Address(baseGPR, JSArrayBufferView::offsetOfVector()), vectorGPR);
JITCompiler::Jump nullVector = m_jit.branchPtr(JITCompiler::Equal, vectorGPR, TrustedImmPtr(JSArrayBufferView::nullVectorPtr()));
m_jit.loadPtr(MacroAssembler::Address(baseGPR, JSObject::butterflyOffset()), dataGPR);
m_jit.cageWithoutUntagging(Gigacage::JSValue, dataGPR);
cageTypedArrayStorage(baseGPR, vectorGPR);
m_jit.loadPtr(MacroAssembler::Address(dataGPR, Butterfly::offsetOfArrayBuffer()), arrayBufferGPR);
// FIXME: This needs caging.
// https://bugs.webkit.org/show_bug.cgi?id=175515
m_jit.loadPtr(MacroAssembler::Address(arrayBufferGPR, ArrayBuffer::offsetOfData()), dataGPR);
#if CPU(ARM64E)
m_jit.removeArrayPtrTag(dataGPR);
#endif
m_jit.subPtr(dataGPR, vectorGPR);
JITCompiler::Jump done = m_jit.jump();
#if CPU(ARM64E)
nullVector.link(&m_jit);
#endif
emptyByteOffset.link(&m_jit);
m_jit.move(TrustedImmPtr(nullptr), vectorGPR);
done.link(&m_jit);
#if !CPU(ARM64E)
ASSERT(!JSArrayBufferView::nullVectorPtr());
nullVector.link(&m_jit);
#endif
strictInt52Result(vectorGPR, node);
}
#endif // USE(LARGE_TYPED_ARRAYS)
void SpeculativeJIT::compile(Node* node)
{
NodeType op = node->op();
if constexpr (validateDFGDoesGC) {
if (Options::validateDoesGC()) {
bool expectDoesGC = doesGC(m_jit.graph(), node);
m_jit.store64(TrustedImm64(DoesGCCheck::encode(expectDoesGC, node->index(), node->op())), vm().addressOfDoesGC());
}
}
#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
m_jit.clearRegisterAllocationOffsets();
#endif
switch (op) {
case JSConstant:
case DoubleConstant:
case Int52Constant:
case PhantomDirectArguments:
case PhantomClonedArguments:
initConstantInfo(node);
break;
case LazyJSConstant:
compileLazyJSConstant(node);
break;
case Identity: {
compileIdentity(node);
break;
}
case Inc:
case Dec:
compileIncOrDec(node);
break;
case GetLocal: {
AbstractValue& value = m_state.operand(node->operand());
// If the CFA is tracking this variable and it found that the variable
// cannot have been assigned, then don't attempt to proceed.
if (value.isClear()) {
m_compileOkay = false;
break;
}
switch (node->variableAccessData()->flushFormat()) {
case FlushedDouble: {
FPRTemporary result(this);
m_jit.loadDouble(JITCompiler::addressFor(node->machineLocal()), result.fpr());
VirtualRegister virtualRegister = node->virtualRegister();
m_fprs.retain(result.fpr(), virtualRegister, SpillOrderDouble);
generationInfoFromVirtualRegister(virtualRegister).initDouble(node, node->refCount(), result.fpr());
break;
}
case FlushedInt32: {
GPRTemporary result(this);
m_jit.load32(JITCompiler::payloadFor(node->machineLocal()), result.gpr());
// Like strictInt32Result, but don't useChildren - our children are phi nodes,
// and don't represent values within this dataflow with virtual registers.
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(result.gpr(), virtualRegister, SpillOrderInteger);
generationInfoFromVirtualRegister(virtualRegister).initInt32(node, node->refCount(), result.gpr());
break;
}
case FlushedInt52: {
GPRTemporary result(this);
m_jit.load64(JITCompiler::addressFor(node->machineLocal()), result.gpr());
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(result.gpr(), virtualRegister, SpillOrderJS);
generationInfoFromVirtualRegister(virtualRegister).initInt52(node, node->refCount(), result.gpr());
break;
}
default:
GPRTemporary result(this);
m_jit.load64(JITCompiler::addressFor(node->machineLocal()), result.gpr());
// Like jsValueResult, but don't useChildren - our children are phi nodes,
// and don't represent values within this dataflow with virtual registers.
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(result.gpr(), virtualRegister, SpillOrderJS);
DataFormat format;
if (isCellSpeculation(value.m_type))
format = DataFormatJSCell;
else if (isBooleanSpeculation(value.m_type))
format = DataFormatJSBoolean;
else
format = DataFormatJS;
generationInfoFromVirtualRegister(virtualRegister).initJSValue(node, node->refCount(), result.gpr(), format);
break;
}
break;
}
case MovHint: {
compileMovHint(m_currentNode);
noResult(node);
break;
}
case ExitOK: {
noResult(node);
break;
}
case SetLocal: {
switch (node->variableAccessData()->flushFormat()) {
case FlushedDouble: {
SpeculateDoubleOperand value(this, node->child1());
m_jit.storeDouble(value.fpr(), JITCompiler::addressFor(node->machineLocal()));
noResult(node);
// Indicate that it's no longer necessary to retrieve the value of
// this bytecode variable from registers or other locations in the stack,
// but that it is stored as a double.
recordSetLocal(DataFormatDouble);
break;
}
case FlushedInt32: {
SpeculateInt32Operand value(this, node->child1());
m_jit.store32(value.gpr(), JITCompiler::payloadFor(node->machineLocal()));
noResult(node);
recordSetLocal(DataFormatInt32);
break;
}
case FlushedInt52: {
SpeculateInt52Operand value(this, node->child1());
m_jit.store64(value.gpr(), JITCompiler::addressFor(node->machineLocal()));
noResult(node);
recordSetLocal(DataFormatInt52);
break;
}
case FlushedCell: {
SpeculateCellOperand cell(this, node->child1());
GPRReg cellGPR = cell.gpr();
m_jit.store64(cellGPR, JITCompiler::addressFor(node->machineLocal()));
noResult(node);
recordSetLocal(DataFormatCell);
break;
}
case FlushedBoolean: {
SpeculateBooleanOperand boolean(this, node->child1());
m_jit.store64(boolean.gpr(), JITCompiler::addressFor(node->machineLocal()));
noResult(node);
recordSetLocal(DataFormatBoolean);
break;
}
case FlushedJSValue: {
JSValueOperand value(this, node->child1());
m_jit.store64(value.gpr(), JITCompiler::addressFor(node->machineLocal()));
noResult(node);
recordSetLocal(dataFormatFor(node->variableAccessData()->flushFormat()));
break;
}
default:
DFG_CRASH(m_jit.graph(), node, "Bad flush format");
break;
}
break;
}
case SetArgumentDefinitely:
case SetArgumentMaybe:
// This is a no-op; it just marks the fact that the argument is being used.
// But it may be profitable to use this as a hook to run speculation checks
// on arguments, thereby allowing us to trivially eliminate such checks if
// the argument is not used.
recordSetLocal(dataFormatFor(node->variableAccessData()->flushFormat()));
break;
case ValueBitNot:
compileValueBitNot(node);
break;
case ArithBitNot:
compileBitwiseNot(node);
break;
case ValueBitAnd:
case ValueBitXor:
case ValueBitOr:
compileValueBitwiseOp(node);
break;
case ArithBitAnd:
case ArithBitOr:
case ArithBitXor:
compileBitwiseOp(node);
break;
case ValueBitLShift:
compileValueLShiftOp(node);
break;
case ValueBitRShift:
compileValueBitRShift(node);
break;
case ArithBitRShift:
case ArithBitLShift:
case BitURShift:
compileShiftOp(node);
break;
case UInt32ToNumber: {
compileUInt32ToNumber(node);
break;
}
case DoubleAsInt32: {
compileDoubleAsInt32(node);
break;
}
case ValueToInt32: {
compileValueToInt32(node);
break;
}
case DoubleRep: {
compileDoubleRep(node);
break;
}
case ValueRep: {
compileValueRep(node);
break;
}
case Int52Rep: {
switch (node->child1().useKind()) {
case Int32Use: {
SpeculateInt32Operand operand(this, node->child1());
GPRTemporary result(this, Reuse, operand);
m_jit.signExtend32ToPtr(operand.gpr(), result.gpr());
strictInt52Result(result.gpr(), node);
break;
}
case AnyIntUse: {
GPRTemporary result(this);
GPRReg resultGPR = result.gpr();
convertAnyInt(node->child1(), resultGPR);
strictInt52Result(resultGPR, node);
break;
}
case DoubleRepAnyIntUse: {
SpeculateDoubleOperand value(this, node->child1());
FPRReg valueFPR = value.fpr();
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationConvertDoubleToInt52, resultGPR, valueFPR);
DFG_TYPE_CHECK_WITH_EXIT_KIND(Int52Overflow,
JSValueRegs(), node->child1(), SpecAnyIntAsDouble,
m_jit.branch64(
JITCompiler::Equal, resultGPR,
JITCompiler::TrustedImm64(JSValue::notInt52)));
strictInt52Result(resultGPR, node);
break;
}
default:
DFG_CRASH(m_jit.graph(), node, "Bad use kind");
}
break;
}
case ValueNegate:
compileValueNegate(node);
break;
case ValueAdd:
compileValueAdd(node);
break;
case ValueSub:
compileValueSub(node);
break;
case StrCat: {
compileStrCat(node);
break;
}
case ArithAdd:
compileArithAdd(node);
break;
case ArithClz32:
compileArithClz32(node);
break;
case MakeRope:
compileMakeRope(node);
break;
case ArithSub:
compileArithSub(node);
break;
case ArithNegate:
compileArithNegate(node);
break;
case ArithMul:
compileArithMul(node);
break;
case ValueMul:
compileValueMul(node);
break;
case ValueDiv: {
compileValueDiv(node);
break;
}
case ArithDiv: {
compileArithDiv(node);
break;
}
case ValueMod: {
compileValueMod(node);
break;
}
case ArithMod: {
compileArithMod(node);
break;
}
case ArithAbs:
compileArithAbs(node);
break;
case ArithMin:
case ArithMax: {
compileArithMinMax(node);
break;
}
case ValuePow:
compileValuePow(node);
break;
case ArithPow:
compileArithPow(node);
break;
case ArithSqrt:
compileArithSqrt(node);
break;
case ArithFRound:
compileArithFRound(node);
break;
case ArithRandom:
compileArithRandom(node);
break;
case ArithRound:
case ArithFloor:
case ArithCeil:
case ArithTrunc:
compileArithRounding(node);
break;
case ArithUnary:
compileArithUnary(node);
break;
case ToBoolean: {
bool invert = false;
compileToBoolean(node, invert);
break;
}
case LogicalNot: {
bool invert = true;
compileToBoolean(node, invert);
break;
}
case CompareLess:
if (compare(node, JITCompiler::LessThan, JITCompiler::DoubleLessThanAndOrdered, operationCompareLess))
return;
break;
case CompareLessEq:
if (compare(node, JITCompiler::LessThanOrEqual, JITCompiler::DoubleLessThanOrEqualAndOrdered, operationCompareLessEq))
return;
break;
case CompareGreater:
if (compare(node, JITCompiler::GreaterThan, JITCompiler::DoubleGreaterThanAndOrdered, operationCompareGreater))
return;
break;
case CompareGreaterEq:
if (compare(node, JITCompiler::GreaterThanOrEqual, JITCompiler::DoubleGreaterThanOrEqualAndOrdered, operationCompareGreaterEq))
return;
break;
case CompareBelow:
compileCompareUnsigned(node, JITCompiler::Below);
break;
case CompareBelowEq:
compileCompareUnsigned(node, JITCompiler::BelowOrEqual);
break;
case CompareEq:
if (compare(node, JITCompiler::Equal, JITCompiler::DoubleEqualAndOrdered, operationCompareEq))
return;
break;
case CompareStrictEq:
if (compileStrictEq(node))
return;
break;
case CompareEqPtr:
compileCompareEqPtr(node);
break;
case SameValue:
compileSameValue(node);
break;
case StringCharCodeAt: {
compileGetCharCodeAt(node);
break;
}
case StringCodePointAt: {
compileStringCodePointAt(node);
break;
}
case StringCharAt: {
// Relies on StringCharAt node having same basic layout as GetByVal
JSValueRegsTemporary result;
compileGetByValOnString(node, scopedLambda<std::tuple<JSValueRegs, DataFormat, CanUseFlush>(DataFormat preferredFormat)>([&] (DataFormat preferredFormat) {
result = JSValueRegsTemporary(this);
ASSERT(preferredFormat == DataFormatJS || preferredFormat == DataFormatCell);
return std::tuple { result.regs(), preferredFormat, CanUseFlush::Yes };
}));
break;
}
case StringFromCharCode: {
compileFromCharCode(node);
break;
}
case CheckDetached: {
compileCheckDetached(node);
break;
}
case CheckArrayOrEmpty:
case CheckArray: {
checkArray(node);
break;
}
case Arrayify:
case ArrayifyToStructure: {
arrayify(node);
break;
}
case GetPrivateName: {
compileGetPrivateName(node);
break;
}
case GetPrivateNameById: {
compileGetPrivateNameById(node);
break;
}
case GetByVal: {
JSValueRegsTemporary result;
compileGetByVal(node, scopedLambda<std::tuple<JSValueRegs, DataFormat, CanUseFlush>(DataFormat preferredFormat)>([&] (DataFormat preferredFormat) {
JSValueRegs resultRegs;
switch (preferredFormat) {
case DataFormatDouble:
break;
default: {
result = JSValueRegsTemporary(this);
resultRegs = result.regs();
break;
}
};
return std::tuple { resultRegs, preferredFormat, CanUseFlush::Yes };
}));
break;
}
case GetByValWithThis: {
compileGetByValWithThis(node);
break;
}
case PutPrivateName: {
compilePutPrivateName(node);
break;
}
case PutPrivateNameById: {
compilePutPrivateNameById(node);
break;
}
case CheckPrivateBrand: {
compileCheckPrivateBrand(node);
break;
}
case SetPrivateBrand: {
compileSetPrivateBrand(node);
break;
}
case PutByValDirect:
case PutByVal:
case PutByValAlias: {
compilePutByVal(node);
break;
}
case AtomicsAdd:
case AtomicsAnd:
case AtomicsCompareExchange:
case AtomicsExchange:
case AtomicsLoad:
case AtomicsOr:
case AtomicsStore:
case AtomicsSub:
case AtomicsXor: {
unsigned numExtraArgs = numExtraAtomicsArgs(node->op());
Edge baseEdge = m_jit.graph().child(node, 0);
Edge indexEdge = m_jit.graph().child(node, 1);
Edge argEdges[maxNumExtraAtomicsArgs];
for (unsigned i = numExtraArgs; i--;)
argEdges[i] = m_jit.graph().child(node, 2 + i);
Edge storageEdge = m_jit.graph().child(node, 2 + numExtraArgs);
GPRReg baseGPR;
GPRReg indexGPR;
GPRReg argGPRs[2];
GPRReg resultGPR;
if (!storageEdge) {
auto callSlowPath = [&] () {
auto globalObjectImmPtr = TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic));
switch (node->op()) {
case AtomicsAdd:
callOperation(operationAtomicsAdd, resultGPR, globalObjectImmPtr, baseGPR, indexGPR, argGPRs[0]);
break;
case AtomicsAnd:
callOperation(operationAtomicsAnd, resultGPR, globalObjectImmPtr, baseGPR, indexGPR, argGPRs[0]);
break;
case AtomicsCompareExchange:
callOperation(operationAtomicsCompareExchange, resultGPR, globalObjectImmPtr, baseGPR, indexGPR, argGPRs[0], argGPRs[1]);
break;
case AtomicsExchange:
callOperation(operationAtomicsExchange, resultGPR, globalObjectImmPtr, baseGPR, indexGPR, argGPRs[0]);
break;
case AtomicsLoad:
callOperation(operationAtomicsLoad, resultGPR, globalObjectImmPtr, baseGPR, indexGPR);
break;
case AtomicsOr:
callOperation(operationAtomicsOr, resultGPR, globalObjectImmPtr, baseGPR, indexGPR, argGPRs[0]);
break;
case AtomicsStore:
callOperation(operationAtomicsStore, resultGPR, globalObjectImmPtr, baseGPR, indexGPR, argGPRs[0]);
break;
case AtomicsSub:
callOperation(operationAtomicsSub, resultGPR, globalObjectImmPtr, baseGPR, indexGPR, argGPRs[0]);
break;
case AtomicsXor:
callOperation(operationAtomicsXor, resultGPR, globalObjectImmPtr, baseGPR, indexGPR, argGPRs[0]);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
};
// We are in generic mode!
JSValueOperand base(this, baseEdge);
JSValueOperand index(this, indexEdge);
std::optional<JSValueOperand> args[2];
baseGPR = base.gpr();
indexGPR = index.gpr();
for (unsigned i = numExtraArgs; i--;) {
args[i].emplace(this, argEdges[i]);
argGPRs[i] = args[i]->gpr();
}
flushRegisters();
GPRFlushedCallResult result(this);
resultGPR = result.gpr();
callSlowPath();
m_jit.exceptionCheck();
jsValueResult(resultGPR, node);
break;
}
TypedArrayType type = node->arrayMode().typedArrayType();
SpeculateCellOperand base(this, baseEdge);
SpeculateStrictInt32Operand index(this, indexEdge);
GPRTemporary scratch (this);
baseGPR = base.gpr();
indexGPR = index.gpr();
emitTypedArrayBoundsCheck(node, baseGPR, indexGPR, scratch.gpr());
GPRTemporary args[2];
bool ok = true;
for (unsigned i = numExtraArgs; i--;) {
if (!getIntTypedArrayStoreOperandForAtomics(args[i], indexGPR, argEdges[i])) {
noResult(node);
ok = false;
}
argGPRs[i] = args[i].gpr();
}
if (!ok)
break;
StorageOperand storage(this, storageEdge);
GPRTemporary oldValue(this);
GPRTemporary result(this);
GPRTemporary newValue(this);
GPRReg storageGPR = storage.gpr();
GPRReg oldValueGPR = oldValue.gpr();
resultGPR = result.gpr();
GPRReg newValueGPR = newValue.gpr();
std::optional<FPRTemporary> fprTemp;
FPRReg resultFPR = InvalidFPRReg;
if (elementSize(type) == 4 && !isSigned(type)) {
fprTemp.emplace(this);
resultFPR = fprTemp->fpr();
}
// FIXME: It shouldn't be necessary to nop-pad between register allocation and a jump label.
// https://bugs.webkit.org/show_bug.cgi?id=170974
m_jit.nop();
JITCompiler::Label loop = m_jit.label();
loadFromIntTypedArray(storageGPR, indexGPR, oldValueGPR, type);
m_jit.move(oldValueGPR, newValueGPR);
m_jit.move(oldValueGPR, resultGPR);
switch (node->op()) {
case AtomicsAdd:
m_jit.add32(argGPRs[0], newValueGPR);
break;
case AtomicsAnd:
m_jit.and32(argGPRs[0], newValueGPR);
break;
case AtomicsCompareExchange: {
switch (elementSize(type)) {
case 1:
if (isSigned(type))
m_jit.signExtend8To32(argGPRs[0], argGPRs[0]);
else
m_jit.and32(TrustedImm32(0xff), argGPRs[0]);
break;
case 2:
if (isSigned(type))
m_jit.signExtend16To32(argGPRs[0], argGPRs[0]);
else
m_jit.and32(TrustedImm32(0xffff), argGPRs[0]);
break;
case 4:
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
JITCompiler::Jump fail = m_jit.branch32(JITCompiler::NotEqual, oldValueGPR, argGPRs[0]);
m_jit.move(argGPRs[1], newValueGPR);
fail.link(&m_jit);
break;
}
case AtomicsExchange:
m_jit.move(argGPRs[0], newValueGPR);
break;
case AtomicsLoad:
break;
case AtomicsOr:
m_jit.or32(argGPRs[0], newValueGPR);
break;
case AtomicsStore:
m_jit.move(argGPRs[0], newValueGPR);
m_jit.move(argGPRs[0], resultGPR);
break;
case AtomicsSub:
m_jit.sub32(argGPRs[0], newValueGPR);
break;
case AtomicsXor:
m_jit.xor32(argGPRs[0], newValueGPR);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
JITCompiler::JumpList success;
switch (elementSize(type)) {
case 1:
success = m_jit.branchAtomicWeakCAS8(JITCompiler::Success, oldValueGPR, newValueGPR, JITCompiler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesOne));
break;
case 2:
success = m_jit.branchAtomicWeakCAS16(JITCompiler::Success, oldValueGPR, newValueGPR, JITCompiler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesTwo));
break;
case 4:
success = m_jit.branchAtomicWeakCAS32(JITCompiler::Success, oldValueGPR, newValueGPR, JITCompiler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesFour));
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
m_jit.jump().linkTo(loop, &m_jit);
success.link(&m_jit);
if (node->op() == AtomicsStore) {
Edge operand = argEdges[0];
switch (operand.useKind()) {
case Int32Use:
m_jit.zeroExtend32ToWord(resultGPR, resultGPR);
strictInt32Result(resultGPR, node);
break;
case Int52RepUse:
strictInt52Result(resultGPR, node);
break;
default:
DFG_CRASH(m_graph, node, "Bad result type");
break;
}
break;
}
constexpr bool canSpeculate = false;
constexpr bool shouldBox = false;
setIntTypedArrayLoadResult(node, JSValueRegs(resultGPR), type, canSpeculate, shouldBox, resultFPR);
break;
}
case AtomicsIsLockFree: {
Edge child1 = m_graph.child(node, 0);
if (child1.useKind() != Int32Use) {
JSValueOperand operand(this, child1);
GPRReg operandGPR = operand.gpr();
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationAtomicsIsLockFree, resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), operandGPR);
m_jit.exceptionCheck();
jsValueResult(resultGPR, node);
break;
}
SpeculateInt32Operand operand(this, child1);
GPRTemporary result(this);
GPRReg operandGPR = operand.gpr();
GPRReg resultGPR = result.gpr();
m_jit.move(TrustedImm32(JSValue::ValueTrue), resultGPR);
JITCompiler::JumpList done;
done.append(m_jit.branch32(JITCompiler::Equal, operandGPR, TrustedImm32(8)));
done.append(m_jit.branch32(JITCompiler::Equal, operandGPR, TrustedImm32(4)));
done.append(m_jit.branch32(JITCompiler::Equal, operandGPR, TrustedImm32(1)));
done.append(m_jit.branch32(JITCompiler::Equal, operandGPR, TrustedImm32(2)));
m_jit.move(TrustedImm32(JSValue::ValueFalse), resultGPR);
done.link(&m_jit);
jsValueResult(resultGPR, node);
break;
}
case RegExpExec: {
compileRegExpExec(node);
break;
}
case RegExpExecNonGlobalOrSticky: {
compileRegExpExecNonGlobalOrSticky(node);
break;
}
case RegExpMatchFastGlobal: {
compileRegExpMatchFastGlobal(node);
break;
}
case RegExpTest: {
compileRegExpTest(node);
break;
}
case RegExpTestInline: {
compileRegExpTestInline(node);
break;
}
case RegExpMatchFast: {
compileRegExpMatchFast(node);
break;
}
case StringReplace:
case StringReplaceRegExp: {
compileStringReplace(node);
break;
}
case GetRegExpObjectLastIndex: {
compileGetRegExpObjectLastIndex(node);
break;
}
case SetRegExpObjectLastIndex: {
compileSetRegExpObjectLastIndex(node);
break;
}
case RecordRegExpCachedResult: {
compileRecordRegExpCachedResult(node);
break;
}
case ArrayPush: {
compileArrayPush(node);
break;
}
case ArraySlice: {
compileArraySlice(node);
break;
}
case ArrayIndexOf: {
compileArrayIndexOf(node);
break;
}
case ArrayPop: {
ASSERT(node->arrayMode().isJSArray());
SpeculateCellOperand base(this, node->child1());
StorageOperand storage(this, node->child2());
GPRTemporary value(this);
GPRTemporary storageLength(this);
FPRTemporary temp(this); // This is kind of lame, since we don't always need it. I'm relying on the fact that we don't have FPR pressure, especially in code that uses pop().
GPRReg baseGPR = base.gpr();
GPRReg storageGPR = storage.gpr();
GPRReg valueGPR = value.gpr();
GPRReg storageLengthGPR = storageLength.gpr();
FPRReg tempFPR = temp.fpr();
switch (node->arrayMode().type()) {
case Array::Int32:
case Array::Double:
case Array::Contiguous: {
m_jit.load32(
MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()), storageLengthGPR);
MacroAssembler::Jump undefinedCase =
m_jit.branchTest32(MacroAssembler::Zero, storageLengthGPR);
m_jit.sub32(TrustedImm32(1), storageLengthGPR);
m_jit.store32(
storageLengthGPR, MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()));
MacroAssembler::Jump slowCase;
if (node->arrayMode().type() == Array::Double) {
m_jit.loadDouble(
MacroAssembler::BaseIndex(storageGPR, storageLengthGPR, MacroAssembler::TimesEight),
tempFPR);
// FIXME: This would not have to be here if changing the publicLength also zeroed the values between the old
// length and the new length.
m_jit.store64(
MacroAssembler::TrustedImm64(bitwise_cast<int64_t>(PNaN)), MacroAssembler::BaseIndex(storageGPR, storageLengthGPR, MacroAssembler::TimesEight));
slowCase = m_jit.branchIfNaN(tempFPR);
boxDouble(tempFPR, valueGPR);
} else {
m_jit.load64(
MacroAssembler::BaseIndex(storageGPR, storageLengthGPR, MacroAssembler::TimesEight),
valueGPR);
// FIXME: This would not have to be here if changing the publicLength also zeroed the values between the old
// length and the new length.
m_jit.store64(
MacroAssembler::TrustedImm64((int64_t)0), MacroAssembler::BaseIndex(storageGPR, storageLengthGPR, MacroAssembler::TimesEight));
slowCase = m_jit.branchIfEmpty(valueGPR);
}
addSlowPathGenerator(
slowPathMove(
undefinedCase, this,
MacroAssembler::TrustedImm64(JSValue::encode(jsUndefined())), valueGPR));
addSlowPathGenerator(
slowPathCall(
slowCase, this, operationArrayPopAndRecoverLength, valueGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), baseGPR));
// We can't know for sure that the result is an int because of the slow paths. :-/
jsValueResult(valueGPR, node);
break;
}
case Array::ArrayStorage: {
m_jit.load32(MacroAssembler::Address(storageGPR, ArrayStorage::lengthOffset()), storageLengthGPR);
JITCompiler::Jump undefinedCase =
m_jit.branchTest32(MacroAssembler::Zero, storageLengthGPR);
m_jit.sub32(TrustedImm32(1), storageLengthGPR);
JITCompiler::JumpList slowCases;
slowCases.append(m_jit.branch32(MacroAssembler::AboveOrEqual, storageLengthGPR, MacroAssembler::Address(storageGPR, ArrayStorage::vectorLengthOffset())));
m_jit.load64(MacroAssembler::BaseIndex(storageGPR, storageLengthGPR, MacroAssembler::TimesEight, ArrayStorage::vectorOffset()), valueGPR);
slowCases.append(m_jit.branchIfEmpty(valueGPR));
m_jit.store32(storageLengthGPR, MacroAssembler::Address(storageGPR, ArrayStorage::lengthOffset()));
m_jit.store64(MacroAssembler::TrustedImm64((int64_t)0), MacroAssembler::BaseIndex(storageGPR, storageLengthGPR, MacroAssembler::TimesEight, ArrayStorage::vectorOffset()));
m_jit.sub32(MacroAssembler::TrustedImm32(1), MacroAssembler::Address(storageGPR, OBJECT_OFFSETOF(ArrayStorage, m_numValuesInVector)));
addSlowPathGenerator(
slowPathMove(
undefinedCase, this,
MacroAssembler::TrustedImm64(JSValue::encode(jsUndefined())), valueGPR));
addSlowPathGenerator(
slowPathCall(
slowCases, this, operationArrayPop, valueGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), baseGPR));
jsValueResult(valueGPR, node);
break;
}
default:
CRASH();
break;
}
break;
}
case DFG::Jump: {
jump(node->targetBlock());
noResult(node);
break;
}
case Branch:
emitBranch(node);
break;
case Switch:
emitSwitch(node);
break;
case Return: {
ASSERT(GPRInfo::callFrameRegister != GPRInfo::regT1);
ASSERT(GPRInfo::regT1 != GPRInfo::returnValueGPR);
ASSERT(GPRInfo::returnValueGPR != GPRInfo::callFrameRegister);
// Return the result in returnValueGPR.
JSValueOperand op1(this, node->child1());
m_jit.move(op1.gpr(), GPRInfo::returnValueGPR);
m_jit.emitRestoreCalleeSaves();
m_jit.emitFunctionEpilogue();
m_jit.ret();
noResult(node);
break;
}
case Throw: {
compileThrow(node);
break;
}
case ThrowStaticError: {
compileThrowStaticError(node);
break;
}
case BooleanToNumber: {
switch (node->child1().useKind()) {
case BooleanUse: {
JSValueOperand value(this, node->child1(), ManualOperandSpeculation);
GPRTemporary result(this); // FIXME: We could reuse, but on speculation fail would need recovery to restore tag (akin to add).
m_jit.move(value.gpr(), result.gpr());
m_jit.xor64(TrustedImm32(JSValue::ValueFalse), result.gpr());
DFG_TYPE_CHECK(
JSValueRegs(value.gpr()), node->child1(), SpecBoolean, m_jit.branchTest64(
JITCompiler::NonZero, result.gpr(), TrustedImm32(static_cast<int32_t>(~1))));
strictInt32Result(result.gpr(), node);
break;
}
case UntypedUse: {
JSValueOperand value(this, node->child1());
GPRTemporary result(this);
if (!m_interpreter.needsTypeCheck(node->child1(), SpecBoolInt32 | SpecBoolean)) {
m_jit.move(value.gpr(), result.gpr());
m_jit.and32(TrustedImm32(1), result.gpr());
strictInt32Result(result.gpr(), node);
break;
}
m_jit.move(value.gpr(), result.gpr());
m_jit.xor64(TrustedImm32(JSValue::ValueFalse), result.gpr());
JITCompiler::Jump isBoolean = m_jit.branchTest64(
JITCompiler::Zero, result.gpr(), TrustedImm32(static_cast<int32_t>(~1)));
m_jit.move(value.gpr(), result.gpr());
JITCompiler::Jump done = m_jit.jump();
isBoolean.link(&m_jit);
m_jit.or64(GPRInfo::numberTagRegister, result.gpr());
done.link(&m_jit);
jsValueResult(result.gpr(), node);
break;
}
default:
DFG_CRASH(m_jit.graph(), node, "Bad use kind");
break;
}
break;
}
case ToPrimitive: {
compileToPrimitive(node);
break;
}
case ToPropertyKey: {
compileToPropertyKey(node);
break;
}
case ToNumber: {
JSValueOperand argument(this, node->child1());
GPRTemporary result(this, Reuse, argument);
GPRReg argumentGPR = argument.gpr();
GPRReg resultGPR = result.gpr();
argument.use();
// We have several attempts to remove ToNumber. But ToNumber still exists.
// It means that converting non-numbers to numbers by this ToNumber is not rare.
// Instead of the slow path generator, we emit callOperation here.
if (!(m_state.forNode(node->child1()).m_type & SpecBytecodeNumber)) {
flushRegisters();
callOperation(operationToNumber, resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), argumentGPR);
m_jit.exceptionCheck();
} else {
MacroAssembler::Jump notNumber = m_jit.branchIfNotNumber(argumentGPR);
m_jit.move(argumentGPR, resultGPR);
MacroAssembler::Jump done = m_jit.jump();
notNumber.link(&m_jit);
silentSpillAllRegisters(resultGPR);
callOperation(operationToNumber, resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), argumentGPR);
silentFillAllRegisters();
m_jit.exceptionCheck();
done.link(&m_jit);
}
jsValueResult(resultGPR, node, UseChildrenCalledExplicitly);
break;
}
case ToNumeric: {
compileToNumeric(node);
break;
}
case CallNumberConstructor:
compileCallNumberConstructor(node);
break;
case ToString:
case CallStringConstructor:
case StringValueOf: {
compileToStringOrCallStringConstructorOrStringValueOf(node);
break;
}
case FunctionToString:
compileFunctionToString(node);
break;
case NewStringObject: {
compileNewStringObject(node);
break;
}
case NewSymbol: {
compileNewSymbol(node);
break;
}
case NewArray: {
compileNewArray(node);
break;
}
case NewArrayWithSpread: {
compileNewArrayWithSpread(node);
break;
}
case Spread: {
compileSpread(node);
break;
}
case NewArrayWithSize: {
compileNewArrayWithSize(node);
break;
}
case NewArrayBuffer: {
compileNewArrayBuffer(node);
break;
}
case NewTypedArray: {
compileNewTypedArray(node);
break;
}
case NewRegexp: {
compileNewRegexp(node);
break;
}
case ToObject:
case CallObjectConstructor: {
compileToObjectOrCallObjectConstructor(node);
break;
}
case ToThis: {
compileToThis(node);
break;
}
case ObjectAssign: {
compileObjectAssign(node);
break;
}
case ObjectCreate: {
compileObjectCreate(node);
break;
}
case ObjectKeys:
case ObjectGetOwnPropertyNames: {
compileObjectKeysOrObjectGetOwnPropertyNames(node);
break;
}
case CreateThis: {
compileCreateThis(node);
break;
}
case CreatePromise: {
compileCreatePromise(node);
break;
}
case CreateGenerator: {
compileCreateGenerator(node);
break;
}
case CreateAsyncGenerator: {
compileCreateAsyncGenerator(node);
break;
}
case NewObject: {
compileNewObject(node);
break;
}
case NewGenerator: {
compileNewGenerator(node);
break;
}
case NewAsyncGenerator: {
compileNewAsyncGenerator(node);
break;
}
case NewInternalFieldObject: {
compileNewInternalFieldObject(node);
break;
}
case GetCallee: {
compileGetCallee(node);
break;
}
case SetCallee: {
compileSetCallee(node);
break;
}
case GetArgumentCountIncludingThis: {
compileGetArgumentCountIncludingThis(node);
break;
}
case SetArgumentCountIncludingThis:
compileSetArgumentCountIncludingThis(node);
break;
case GetRestLength: {
compileGetRestLength(node);
break;
}
case GetScope:
compileGetScope(node);
break;
case SkipScope:
compileSkipScope(node);
break;
case GetGlobalObject:
compileGetGlobalObject(node);
break;
case GetGlobalThis:
compileGetGlobalThis(node);
break;
case GetClosureVar: {
compileGetClosureVar(node);
break;
}
case PutClosureVar: {
compilePutClosureVar(node);
break;
}
case GetInternalField: {
compileGetInternalField(node);
break;
}
case PutInternalField: {
compilePutInternalField(node);
break;
}
case TryGetById: {
compileGetById(node, AccessType::TryGetById);
break;
}
case GetByIdDirect: {
compileGetById(node, AccessType::GetByIdDirect);
break;
}
case GetByIdDirectFlush: {
compileGetByIdFlush(node, AccessType::GetByIdDirect);
break;
}
case GetById: {
compileGetById(node, AccessType::GetById);
break;
}
case GetByIdFlush: {
compileGetByIdFlush(node, AccessType::GetById);
break;
}
case GetByIdWithThis: {
if (node->child1().useKind() == CellUse && node->child2().useKind() == CellUse) {
std::optional<GPRTemporary> stubInfo;
SpeculateCellOperand base(this, node->child1());
SpeculateCellOperand thisValue(this, node->child2());
GPRReg stubInfoGPR = InvalidGPRReg;
if (JITCode::useDataIC(JITType::DFGJIT)) {
stubInfo.emplace(this);
stubInfoGPR = stubInfo->gpr();
}
GPRReg baseGPR = base.gpr();
GPRReg thisValueGPR = thisValue.gpr();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
flushRegisters();
cachedGetByIdWithThis(node->origin.semantic, baseGPR, thisValueGPR, resultGPR, stubInfoGPR, node->cacheableIdentifier(), JITCompiler::JumpList());
jsValueResult(resultGPR, node);
} else {
std::optional<GPRTemporary> stubInfo;
JSValueOperand base(this, node->child1());
JSValueOperand thisValue(this, node->child2());
GPRReg stubInfoGPR = InvalidGPRReg;
if (JITCode::useDataIC(JITType::DFGJIT)) {
stubInfo.emplace(this);
stubInfoGPR = stubInfo->gpr();
}
GPRReg baseGPR = base.gpr();
GPRReg thisValueGPR = thisValue.gpr();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
flushRegisters();
JITCompiler::JumpList notCellList;
notCellList.append(m_jit.branchIfNotCell(JSValueRegs(baseGPR)));
notCellList.append(m_jit.branchIfNotCell(JSValueRegs(thisValueGPR)));
cachedGetByIdWithThis(node->origin.semantic, baseGPR, thisValueGPR, resultGPR, stubInfoGPR, node->cacheableIdentifier(), notCellList);
jsValueResult(resultGPR, node);
}
break;
}
case GetArrayLength:
compileGetArrayLength(node);
break;
case GetTypedArrayLengthAsInt52:
#if USE(LARGE_TYPED_ARRAYS)
compileGetTypedArrayLengthAsInt52(node);
#else
RELEASE_ASSERT_NOT_REACHED();
#endif
break;
case DeleteById: {
compileDeleteById(node);
break;
}
case DeleteByVal: {
compileDeleteByVal(node);
break;
}
case CheckIsConstant: {
compileCheckIsConstant(node);
break;
}
case CheckNotEmpty: {
compileCheckNotEmpty(node);
break;
}
case AssertNotEmpty: {
if (validationEnabled()) {
JSValueOperand operand(this, node->child1());
GPRReg input = operand.gpr();
auto done = m_jit.branchIfNotEmpty(input);
m_jit.breakpoint();
done.link(&m_jit);
}
noResult(node);
break;
}
case CheckIdent:
compileCheckIdent(node);
break;
case GetExecutable: {
compileGetExecutable(node);
break;
}
case CheckStructureOrEmpty: {
SpeculateCellOperand cell(this, node->child1());
GPRReg cellGPR = cell.gpr();
GPRReg tempGPR = InvalidGPRReg;
std::optional<GPRTemporary> temp;
if (node->structureSet().size() > 1) {
temp.emplace(this);
tempGPR = temp->gpr();
}
MacroAssembler::Jump isEmpty;
if (m_interpreter.forNode(node->child1()).m_type & SpecEmpty)
isEmpty = m_jit.branchIfEmpty(cellGPR);
emitStructureCheck(node, cellGPR, tempGPR);
if (isEmpty.isSet())
isEmpty.link(&m_jit);
noResult(node);
break;
}
case CheckStructure: {
compileCheckStructure(node);
break;
}
case PutStructure: {
RegisteredStructure oldStructure = node->transition()->previous;
RegisteredStructure newStructure = node->transition()->next;
m_jit.graph().m_plan.transitions().addLazily(node->origin.semantic.codeOriginOwner(), oldStructure.get(), newStructure.get());
SpeculateCellOperand base(this, node->child1());
GPRReg baseGPR = base.gpr();
ASSERT_UNUSED(oldStructure, oldStructure->indexingMode() == newStructure->indexingMode());
ASSERT(oldStructure->typeInfo().type() == newStructure->typeInfo().type());
ASSERT(oldStructure->typeInfo().inlineTypeFlags() == newStructure->typeInfo().inlineTypeFlags());
m_jit.store32(MacroAssembler::TrustedImm32(newStructure->id()), MacroAssembler::Address(baseGPR, JSCell::structureIDOffset()));
noResult(node);
break;
}
case AllocatePropertyStorage:
compileAllocatePropertyStorage(node);
break;
case ReallocatePropertyStorage:
compileReallocatePropertyStorage(node);
break;
case NukeStructureAndSetButterfly:
compileNukeStructureAndSetButterfly(node);
break;
case GetButterfly:
compileGetButterfly(node);
break;
case GetIndexedPropertyStorage: {
compileGetIndexedPropertyStorage(node);
break;
}
case ConstantStoragePointer: {
compileConstantStoragePointer(node);
break;
}
case GetTypedArrayByteOffset: {
compileGetTypedArrayByteOffset(node);
break;
}
case GetTypedArrayByteOffsetAsInt52: {
#if USE(LARGE_TYPED_ARRAYS)
compileGetTypedArrayByteOffsetAsInt52(node);
#else
RELEASE_ASSERT_NOT_REACHED();
#endif
break;
}
case GetPrototypeOf: {
compileGetPrototypeOf(node);
break;
}
case GetByOffset:
case GetGetterSetterByOffset: {
compileGetByOffset(node);
break;
}
case MatchStructure: {
compileMatchStructure(node);
break;
}
case GetGetter: {
compileGetGetter(node);
break;
}
case GetSetter: {
compileGetSetter(node);
break;
}
case PutByOffset: {
compilePutByOffset(node);
break;
}
case PutByIdFlush: {
compilePutByIdFlush(node);
break;
}
case PutById: {
compilePutById(node);
break;
}
case PutByIdWithThis: {
compilePutByIdWithThis(node);
break;
}
case PutByValWithThis: {
JSValueOperand base(this, m_jit.graph().varArgChild(node, 0));
GPRReg baseGPR = base.gpr();
JSValueOperand thisValue(this, m_jit.graph().varArgChild(node, 1));
GPRReg thisValueGPR = thisValue.gpr();
JSValueOperand property(this, m_jit.graph().varArgChild(node, 2));
GPRReg propertyGPR = property.gpr();
JSValueOperand value(this, m_jit.graph().varArgChild(node, 3));
GPRReg valueGPR = value.gpr();
flushRegisters();
callOperation(node->ecmaMode().isStrict() ? operationPutByValWithThisStrict : operationPutByValWithThis, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), baseGPR, thisValueGPR, propertyGPR, valueGPR);
m_jit.exceptionCheck();
noResult(node);
break;
}
case PutByIdDirect: {
compilePutByIdDirect(node);
break;
}
case PutGetterById:
case PutSetterById: {
compilePutAccessorById(node);
break;
}
case PutGetterSetterById: {
compilePutGetterSetterById(node);
break;
}
case PutGetterByVal:
case PutSetterByVal: {
compilePutAccessorByVal(node);
break;
}
case DefineDataProperty: {
compileDefineDataProperty(node);
break;
}
case DefineAccessorProperty: {
compileDefineAccessorProperty(node);
break;
}
case GetGlobalLexicalVariable:
case GetGlobalVar: {
compileGetGlobalVariable(node);
break;
}
case PutGlobalVariable: {
compilePutGlobalVariable(node);
break;
}
case PutDynamicVar: {
compilePutDynamicVar(node);
break;
}
case GetDynamicVar: {
compileGetDynamicVar(node);
break;
}
case ResolveScopeForHoistingFuncDeclInEval: {
compileResolveScopeForHoistingFuncDeclInEval(node);
break;
}
case ResolveScope: {
compileResolveScope(node);
break;
}
case NotifyWrite: {
compileNotifyWrite(node);
break;
}
case CheckTypeInfoFlags: {
compileCheckTypeInfoFlags(node);
break;
}
case ParseInt: {
compileParseInt(node);
break;
}
case OverridesHasInstance: {
compileOverridesHasInstance(node);
break;
}
case InstanceOf: {
compileInstanceOf(node);
break;
}
case InstanceOfCustom: {
compileInstanceOfCustom(node);
break;
}
case IsEmpty: {
JSValueOperand value(this, node->child1());
GPRTemporary result(this, Reuse, value);
m_jit.comparePtr(JITCompiler::Equal, value.gpr(), TrustedImm32(JSValue::encode(JSValue())), result.gpr());
m_jit.or32(TrustedImm32(JSValue::ValueFalse), result.gpr());
jsValueResult(result.gpr(), node, DataFormatJSBoolean);
break;
}
case TypeOfIsUndefined: {
JSValueOperand value(this, node->child1());
GPRTemporary result(this);
GPRTemporary localGlobalObject(this);
GPRTemporary remoteGlobalObject(this);
GPRTemporary scratch(this);
JITCompiler::Jump isCell = m_jit.branchIfCell(value.jsValueRegs());
m_jit.compare64(JITCompiler::Equal, value.gpr(), TrustedImm32(JSValue::ValueUndefined), result.gpr());
JITCompiler::Jump done = m_jit.jump();
isCell.link(&m_jit);
JITCompiler::Jump notMasqueradesAsUndefined;
if (masqueradesAsUndefinedWatchpointIsStillValid()) {
m_jit.move(TrustedImm32(0), result.gpr());
notMasqueradesAsUndefined = m_jit.jump();
} else {
JITCompiler::Jump isMasqueradesAsUndefined = m_jit.branchTest8(
JITCompiler::NonZero,
JITCompiler::Address(value.gpr(), JSCell::typeInfoFlagsOffset()),
TrustedImm32(MasqueradesAsUndefined));
m_jit.move(TrustedImm32(0), result.gpr());
notMasqueradesAsUndefined = m_jit.jump();
isMasqueradesAsUndefined.link(&m_jit);
GPRReg localGlobalObjectGPR = localGlobalObject.gpr();
GPRReg remoteGlobalObjectGPR = remoteGlobalObject.gpr();
m_jit.move(TrustedImmPtr::weakPointer(m_jit.graph(), m_jit.globalObjectFor(node->origin.semantic)), localGlobalObjectGPR);
m_jit.emitLoadStructure(vm(), value.gpr(), result.gpr(), scratch.gpr());
m_jit.loadPtr(JITCompiler::Address(result.gpr(), Structure::globalObjectOffset()), remoteGlobalObjectGPR);
m_jit.comparePtr(JITCompiler::Equal, localGlobalObjectGPR, remoteGlobalObjectGPR, result.gpr());
}
notMasqueradesAsUndefined.link(&m_jit);
done.link(&m_jit);
m_jit.or32(TrustedImm32(JSValue::ValueFalse), result.gpr());
jsValueResult(result.gpr(), node, DataFormatJSBoolean);
break;
}
case TypeOfIsObject: {
compileTypeOfIsObject(node);
break;
}
case TypeOfIsFunction: {
compileIsCallable(node, operationTypeOfIsFunction);
break;
}
case IsUndefinedOrNull: {
JSValueOperand value(this, node->child1());
GPRTemporary result(this, Reuse, value);
GPRReg valueGPR = value.gpr();
GPRReg resultGPR = result.gpr();
m_jit.move(valueGPR, resultGPR);
m_jit.and64(CCallHelpers::TrustedImm32(~JSValue::UndefinedTag), resultGPR);
m_jit.compare64(CCallHelpers::Equal, resultGPR, CCallHelpers::TrustedImm32(JSValue::ValueNull), resultGPR);
unblessedBooleanResult(resultGPR, node);
break;
}
case IsBoolean: {
JSValueOperand value(this, node->child1());
GPRTemporary result(this, Reuse, value);
m_jit.move(value.gpr(), result.gpr());
m_jit.xor64(JITCompiler::TrustedImm32(JSValue::ValueFalse), result.gpr());
m_jit.test64(JITCompiler::Zero, result.gpr(), JITCompiler::TrustedImm32(static_cast<int32_t>(~1)), result.gpr());
m_jit.or32(TrustedImm32(JSValue::ValueFalse), result.gpr());
jsValueResult(result.gpr(), node, DataFormatJSBoolean);
break;
}
case IsNumber: {
JSValueOperand value(this, node->child1());
GPRTemporary result(this, Reuse, value);
m_jit.test64(JITCompiler::NonZero, value.gpr(), GPRInfo::numberTagRegister, result.gpr());
m_jit.or32(TrustedImm32(JSValue::ValueFalse), result.gpr());
jsValueResult(result.gpr(), node, DataFormatJSBoolean);
break;
}
case IsBigInt: {
#if USE(BIGINT32)
JSValueOperand value(this, node->child1());
GPRTemporary result(this);
GPRReg resultGPR = result.gpr();
JITCompiler::Jump isCell = m_jit.branchIfCell(value.gpr());
m_jit.move(TrustedImm64(JSValue::BigInt32Mask), resultGPR);
m_jit.and64(value.gpr(), result.gpr());
m_jit.compare64(JITCompiler::Equal, resultGPR, TrustedImm32(JSValue::BigInt32Tag), resultGPR);
JITCompiler::Jump continuation = m_jit.jump();
isCell.link(&m_jit);
JSValueRegs valueRegs = value.jsValueRegs();
m_jit.compare8(JITCompiler::Equal, JITCompiler::Address(valueRegs.payloadGPR(), JSCell::typeInfoTypeOffset()), TrustedImm32(HeapBigIntType), resultGPR);
continuation.link(&m_jit);
unblessedBooleanResult(resultGPR, node);
#else
RELEASE_ASSERT_NOT_REACHED();
#endif
break;
}
case NumberIsInteger: {
JSValueOperand value(this, node->child1());
GPRTemporary result(this, Reuse, value);
FPRTemporary temp1(this);
FPRTemporary temp2(this);
JSValueRegs valueRegs = JSValueRegs(value.gpr());
GPRReg resultGPR = result.gpr();
FPRReg tempFPR1 = temp1.fpr();
FPRReg tempFPR2 = temp2.fpr();
MacroAssembler::JumpList done;
auto isInt32 = m_jit.branchIfInt32(valueRegs);
auto notNumber = m_jit.branchIfNotDoubleKnownNotInt32(valueRegs);
// We're a double here.
m_jit.unboxDouble(valueRegs.gpr(), resultGPR, tempFPR1);
m_jit.urshift64(TrustedImm32(52), resultGPR);
m_jit.and32(TrustedImm32(0x7ff), resultGPR);
auto notNanNorInfinity = m_jit.branch32(JITCompiler::NotEqual, TrustedImm32(0x7ff), resultGPR);
m_jit.move(TrustedImm32(JSValue::ValueFalse), resultGPR);
done.append(m_jit.jump());
notNanNorInfinity.link(&m_jit);
m_jit.roundTowardZeroDouble(tempFPR1, tempFPR2);
m_jit.compareDouble(JITCompiler::DoubleEqualAndOrdered, tempFPR1, tempFPR2, resultGPR);
m_jit.or32(TrustedImm32(JSValue::ValueFalse), resultGPR);
done.append(m_jit.jump());
isInt32.link(&m_jit);
m_jit.move(TrustedImm32(JSValue::ValueTrue), resultGPR);
done.append(m_jit.jump());
notNumber.link(&m_jit);
m_jit.move(TrustedImm32(JSValue::ValueFalse), resultGPR);
done.link(&m_jit);
jsValueResult(resultGPR, node, DataFormatJSBoolean);
break;
}
case MapHash: {
switch (node->child1().useKind()) {
#if USE(BIGINT32)
case BigInt32Use:
#endif
case BooleanUse:
case Int32Use:
case SymbolUse:
case ObjectUse: {
JSValueOperand input(this, node->child1(), ManualOperandSpeculation);
GPRTemporary result(this, Reuse, input);
GPRTemporary temp(this);
GPRReg inputGPR = input.gpr();
GPRReg resultGPR = result.gpr();
GPRReg tempGPR = temp.gpr();
speculate(node, node->child1());
m_jit.move(inputGPR, resultGPR);
m_jit.wangsInt64Hash(resultGPR, tempGPR);
strictInt32Result(resultGPR, node);
break;
}
case HeapBigIntUse: {
SpeculateCellOperand input(this, node->child1());
GPRReg inputGPR = input.gpr();
speculateHeapBigInt(node->child1(), inputGPR);
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationMapHashHeapBigInt, resultGPR, &vm(), inputGPR);
strictInt32Result(resultGPR, node);
break;
}
case CellUse:
case StringUse: {
SpeculateCellOperand input(this, node->child1());
GPRTemporary result(this);
std::optional<GPRTemporary> temp;
GPRReg tempGPR = InvalidGPRReg;
if (node->child1().useKind() == CellUse) {
temp.emplace(this);
tempGPR = temp->gpr();
}
GPRReg inputGPR = input.gpr();
GPRReg resultGPR = result.gpr();
MacroAssembler::JumpList slowPath;
MacroAssembler::JumpList done;
if (node->child1().useKind() == StringUse)
speculateString(node->child1(), inputGPR);
else {
auto isString = m_jit.branchIfString(inputGPR);
auto isHeapBigInt = m_jit.branchIfHeapBigInt(inputGPR);
m_jit.move(inputGPR, resultGPR);
m_jit.wangsInt64Hash(resultGPR, tempGPR);
addSlowPathGenerator(slowPathCall(isHeapBigInt, this, operationMapHashHeapBigInt, NeedToSpill, ExceptionCheckRequirement::CheckNotNeeded, resultGPR, &vm(), inputGPR));
done.append(m_jit.jump());
isString.link(&m_jit);
}
m_jit.loadPtr(MacroAssembler::Address(inputGPR, JSString::offsetOfValue()), resultGPR);
slowPath.append(m_jit.branchIfRopeStringImpl(resultGPR));
m_jit.load32(MacroAssembler::Address(resultGPR, StringImpl::flagsOffset()), resultGPR);
m_jit.urshift32(MacroAssembler::TrustedImm32(StringImpl::s_flagCount), resultGPR);
slowPath.append(m_jit.branchTest32(MacroAssembler::Zero, resultGPR));
done.append(m_jit.jump());
slowPath.link(&m_jit);
silentSpillAllRegisters(resultGPR);
callOperation(operationMapHash, resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), JSValueRegs(inputGPR));
silentFillAllRegisters();
m_jit.exceptionCheck();
done.link(&m_jit);
strictInt32Result(resultGPR, node);
break;
}
default:
RELEASE_ASSERT(node->child1().useKind() == UntypedUse);
break;
}
if (node->child1().useKind() != UntypedUse)
break;
JSValueOperand input(this, node->child1());
GPRTemporary temp(this);
GPRTemporary result(this);
GPRReg inputGPR = input.gpr();
GPRReg resultGPR = result.gpr();
GPRReg tempGPR = temp.gpr();
MacroAssembler::JumpList straightHash;
MacroAssembler::JumpList done;
straightHash.append(m_jit.branchIfNotCell(inputGPR));
MacroAssembler::JumpList slowPath;
auto isHeapBigInt = m_jit.branchIfHeapBigInt(inputGPR);
straightHash.append(m_jit.branchIfNotString(inputGPR));
m_jit.loadPtr(MacroAssembler::Address(inputGPR, JSString::offsetOfValue()), resultGPR);
slowPath.append(m_jit.branchIfRopeStringImpl(resultGPR));
m_jit.load32(MacroAssembler::Address(resultGPR, StringImpl::flagsOffset()), resultGPR);
m_jit.urshift32(MacroAssembler::TrustedImm32(StringImpl::s_flagCount), resultGPR);
slowPath.append(m_jit.branchTest32(MacroAssembler::Zero, resultGPR));
done.append(m_jit.jump());
straightHash.link(&m_jit);
m_jit.move(inputGPR, resultGPR);
m_jit.wangsInt64Hash(resultGPR, tempGPR);
addSlowPathGenerator(slowPathCall(isHeapBigInt, this, operationMapHashHeapBigInt, NeedToSpill, ExceptionCheckRequirement::CheckNotNeeded, resultGPR, &vm(), inputGPR));
done.append(m_jit.jump());
slowPath.link(&m_jit);
silentSpillAllRegisters(resultGPR);
callOperation(operationMapHash, resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), JSValueRegs(inputGPR));
silentFillAllRegisters();
m_jit.exceptionCheck();
done.link(&m_jit);
strictInt32Result(resultGPR, node);
break;
}
case NormalizeMapKey: {
compileNormalizeMapKey(node);
break;
}
case GetMapBucket: {
SpeculateCellOperand map(this, node->child1());
JSValueOperand key(this, node->child2(), ManualOperandSpeculation);
SpeculateInt32Operand hash(this, node->child3());
GPRTemporary mask(this);
GPRTemporary index(this);
GPRTemporary buffer(this);
GPRTemporary bucket(this);
GPRTemporary result(this);
GPRReg hashGPR = hash.gpr();
GPRReg mapGPR = map.gpr();
GPRReg maskGPR = mask.gpr();
GPRReg indexGPR = index.gpr();
GPRReg bufferGPR = buffer.gpr();
GPRReg bucketGPR = bucket.gpr();
GPRReg keyGPR = key.gpr();
GPRReg resultGPR = result.gpr();
if (node->child1().useKind() == MapObjectUse)
speculateMapObject(node->child1(), mapGPR);
else if (node->child1().useKind() == SetObjectUse)
speculateSetObject(node->child1(), mapGPR);
else
RELEASE_ASSERT_NOT_REACHED();
if (node->child2().useKind() != UntypedUse)
speculate(node, node->child2());
m_jit.load32(MacroAssembler::Address(mapGPR, HashMapImpl<HashMapBucket<HashMapBucketDataKey>>::offsetOfCapacity()), maskGPR);
m_jit.loadPtr(MacroAssembler::Address(mapGPR, HashMapImpl<HashMapBucket<HashMapBucketDataKey>>::offsetOfBuffer()), bufferGPR);
m_jit.sub32(TrustedImm32(1), maskGPR);
m_jit.move(hashGPR, indexGPR);
MacroAssembler::Label loop = m_jit.label();
MacroAssembler::JumpList done;
MacroAssembler::JumpList slowPathCases;
MacroAssembler::JumpList loopAround;
m_jit.and32(maskGPR, indexGPR);
m_jit.loadPtr(MacroAssembler::BaseIndex(bufferGPR, indexGPR, MacroAssembler::TimesEight), bucketGPR);
m_jit.move(bucketGPR, resultGPR);
auto notPresentInTable = m_jit.branchPtr(MacroAssembler::Equal,
bucketGPR, TrustedImmPtr(bitwise_cast<size_t>(HashMapImpl<HashMapBucket<HashMapBucketDataKey>>::emptyValue())));
loopAround.append(m_jit.branchPtr(MacroAssembler::Equal,
bucketGPR, TrustedImmPtr(bitwise_cast<size_t>(HashMapImpl<HashMapBucket<HashMapBucketDataKey>>::deletedValue()))));
m_jit.load64(MacroAssembler::Address(bucketGPR, HashMapBucket<HashMapBucketDataKey>::offsetOfKey()), bucketGPR);
// Perform Object.is()
switch (node->child2().useKind()) {
case BooleanUse:
#if USE(BIGINT32)
case BigInt32Use:
#endif
case Int32Use:
case SymbolUse:
case ObjectUse: {
done.append(m_jit.branch64(MacroAssembler::Equal, bucketGPR, keyGPR)); // They're definitely the same value, we found the bucket we were looking for!
// Otherwise, loop around.
break;
}
case CellUse: {
// if (bucket.isString()) {
// if (key.isString())
// => slow path
// } else if (bucket.isHeapBigInt()) {
// if (key.isHeapBigInt())
// => slow path
// }
done.append(m_jit.branch64(MacroAssembler::Equal, bucketGPR, keyGPR));
loopAround.append(m_jit.branchIfNotCell(JSValueRegs(bucketGPR)));
auto bucketIsString = m_jit.branchIfString(bucketGPR);
loopAround.append(m_jit.branchIfNotHeapBigInt(bucketGPR));
// bucket is HeapBigInt.
slowPathCases.append(m_jit.branchIfHeapBigInt(keyGPR));
loopAround.append(m_jit.jump());
// bucket is String.
bucketIsString.link(&m_jit);
loopAround.append(m_jit.branchIfNotString(keyGPR));
slowPathCases.append(m_jit.jump());
break;
}
case StringUse: {
done.append(m_jit.branch64(MacroAssembler::Equal, bucketGPR, keyGPR)); // They're definitely the same value, we found the bucket we were looking for!
loopAround.append(m_jit.branchIfNotCell(JSValueRegs(bucketGPR)));
loopAround.append(m_jit.branchIfNotString(bucketGPR));
slowPathCases.append(m_jit.jump());
break;
}
case HeapBigIntUse: {
done.append(m_jit.branch64(MacroAssembler::Equal, bucketGPR, keyGPR)); // They're definitely the same value, we found the bucket we were looking for!
loopAround.append(m_jit.branchIfNotCell(JSValueRegs(bucketGPR)));
loopAround.append(m_jit.branchIfNotHeapBigInt(bucketGPR));
slowPathCases.append(m_jit.jump());
break;
}
case UntypedUse: {
done.append(m_jit.branch64(MacroAssembler::Equal, bucketGPR, keyGPR)); // They're definitely the same value, we found the bucket we were looking for!
// The input key and bucket's key are already normalized. So if 64-bit compare fails and one is not a cell, they're definitely not equal.
loopAround.append(m_jit.branchIfNotCell(JSValueRegs(bucketGPR)));
// first is a cell here.
loopAround.append(m_jit.branchIfNotCell(JSValueRegs(keyGPR)));
// Both are cells here.
auto bucketIsString = m_jit.branchIfString(bucketGPR);
// bucket is not String.
loopAround.append(m_jit.branchIfNotHeapBigInt(bucketGPR));
// bucket is HeapBigInt.
slowPathCases.append(m_jit.branchIfHeapBigInt(keyGPR));
loopAround.append(m_jit.jump());
// bucket is String.
bucketIsString.link(&m_jit);
loopAround.append(m_jit.branchIfNotString(keyGPR));
slowPathCases.append(m_jit.jump());
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
if (!loopAround.empty())
loopAround.link(&m_jit);
m_jit.add32(TrustedImm32(1), indexGPR);
m_jit.jump().linkTo(loop, &m_jit);
if (!slowPathCases.empty()) {
slowPathCases.link(&m_jit);
silentSpillAllRegisters(indexGPR);
if (node->child1().useKind() == MapObjectUse)
callOperation(operationJSMapFindBucket, resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), mapGPR, keyGPR, hashGPR);
else
callOperation(operationJSSetFindBucket, resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), mapGPR, keyGPR, hashGPR);
silentFillAllRegisters();
m_jit.exceptionCheck();
done.append(m_jit.jump());
}
notPresentInTable.link(&m_jit);
if (node->child1().useKind() == MapObjectUse)
m_jit.move(TrustedImmPtr::weakPointer(m_jit.graph(), vm().sentinelMapBucket()), resultGPR);
else
m_jit.move(TrustedImmPtr::weakPointer(m_jit.graph(), vm().sentinelSetBucket()), resultGPR);
done.link(&m_jit);
cellResult(resultGPR, node);
break;
}
case GetMapBucketHead:
compileGetMapBucketHead(node);
break;
case GetMapBucketNext:
compileGetMapBucketNext(node);
break;
case LoadKeyFromMapBucket:
compileLoadKeyFromMapBucket(node);
break;
case LoadValueFromMapBucket:
compileLoadValueFromMapBucket(node);
break;
case ExtractValueFromWeakMapGet:
compileExtractValueFromWeakMapGet(node);
break;
case SetAdd:
compileSetAdd(node);
break;
case MapSet:
compileMapSet(node);
break;
case WeakMapGet:
compileWeakMapGet(node);
break;
case WeakSetAdd:
compileWeakSetAdd(node);
break;
case WeakMapSet:
compileWeakMapSet(node);
break;
case StringSlice: {
compileStringSlice(node);
break;
}
case ToLowerCase: {
compileToLowerCase(node);
break;
}
case NumberToStringWithRadix: {
compileNumberToStringWithRadix(node);
break;
}
case NumberToStringWithValidRadixConstant: {
compileNumberToStringWithValidRadixConstant(node);
break;
}
case IsObject: {
compileIsObject(node);
break;
}
case IsCallable: {
compileIsCallable(node, operationObjectIsCallable);
break;
}
case IsConstructor: {
compileIsConstructor(node);
break;
}
case IsCellWithType: {
compileIsCellWithType(node);
break;
}
case IsTypedArrayView: {
compileIsTypedArrayView(node);
break;
}
case TypeOf: {
compileTypeOf(node);
break;
}
case Flush:
break;
case Call:
case TailCall:
case TailCallInlinedCaller:
case Construct:
case CallVarargs:
case TailCallVarargs:
case TailCallVarargsInlinedCaller:
case CallForwardVarargs:
case ConstructVarargs:
case ConstructForwardVarargs:
case TailCallForwardVarargs:
case TailCallForwardVarargsInlinedCaller:
case CallEval:
case DirectCall:
case DirectConstruct:
case DirectTailCall:
case DirectTailCallInlinedCaller:
emitCall(node);
break;
case VarargsLength: {
compileVarargsLength(node);
break;
}
case LoadVarargs: {
compileLoadVarargs(node);
break;
}
case ForwardVarargs: {
compileForwardVarargs(node);
break;
}
case CreateActivation: {
compileCreateActivation(node);
break;
}
case PushWithScope: {
compilePushWithScope(node);
break;
}
case CreateDirectArguments: {
compileCreateDirectArguments(node);
break;
}
case GetFromArguments: {
compileGetFromArguments(node);
break;
}
case PutToArguments: {
compilePutToArguments(node);
break;
}
case GetArgument: {
compileGetArgument(node);
break;
}
case CreateScopedArguments: {
compileCreateScopedArguments(node);
break;
}
case CreateClonedArguments: {
compileCreateClonedArguments(node);
break;
}
case CreateArgumentsButterfly: {
compileCreateArgumentsButterfly(node);
break;
}
case CreateRest: {
compileCreateRest(node);
break;
}
case NewFunction:
case NewGeneratorFunction:
case NewAsyncGeneratorFunction:
case NewAsyncFunction:
compileNewFunction(node);
break;
case SetFunctionName:
compileSetFunctionName(node);
break;
case InById:
compileInById(node);
break;
case InByVal:
compileInByVal(node);
break;
case HasPrivateName:
compileHasPrivateName(node);
break;
case HasPrivateBrand:
compileHasPrivateBrand(node);
break;
case HasOwnProperty: {
SpeculateCellOperand object(this, node->child1());
GPRTemporary uniquedStringImpl(this);
GPRTemporary temp(this);
GPRTemporary hash(this);
GPRTemporary structureID(this);
GPRTemporary result(this);
std::optional<SpeculateCellOperand> keyAsCell;
std::optional<JSValueOperand> keyAsValue;
GPRReg keyGPR;
if (node->child2().useKind() == UntypedUse) {
keyAsValue.emplace(this, node->child2());
keyGPR = keyAsValue->gpr();
} else {
ASSERT(node->child2().useKind() == StringUse || node->child2().useKind() == SymbolUse);
keyAsCell.emplace(this, node->child2());
keyGPR = keyAsCell->gpr();
}
GPRReg objectGPR = object.gpr();
GPRReg implGPR = uniquedStringImpl.gpr();
GPRReg tempGPR = temp.gpr();
GPRReg hashGPR = hash.gpr();
GPRReg structureIDGPR = structureID.gpr();
GPRReg resultGPR = result.gpr();
speculateObject(node->child1());
MacroAssembler::JumpList slowPath;
switch (node->child2().useKind()) {
case SymbolUse: {
speculateSymbol(node->child2(), keyGPR);
m_jit.loadPtr(MacroAssembler::Address(keyGPR, Symbol::offsetOfSymbolImpl()), implGPR);
break;
}
case StringUse: {
speculateString(node->child2(), keyGPR);
m_jit.loadPtr(MacroAssembler::Address(keyGPR, JSString::offsetOfValue()), implGPR);
slowPath.append(m_jit.branchIfRopeStringImpl(implGPR));
slowPath.append(m_jit.branchTest32(
MacroAssembler::Zero, MacroAssembler::Address(implGPR, StringImpl::flagsOffset()),
MacroAssembler::TrustedImm32(StringImpl::flagIsAtom())));
break;
}
case UntypedUse: {
slowPath.append(m_jit.branchIfNotCell(JSValueRegs(keyGPR)));
auto isNotString = m_jit.branchIfNotString(keyGPR);
m_jit.loadPtr(MacroAssembler::Address(keyGPR, JSString::offsetOfValue()), implGPR);
slowPath.append(m_jit.branchIfRopeStringImpl(implGPR));
slowPath.append(m_jit.branchTest32(
MacroAssembler::Zero, MacroAssembler::Address(implGPR, StringImpl::flagsOffset()),
MacroAssembler::TrustedImm32(StringImpl::flagIsAtom())));
auto hasUniquedImpl = m_jit.jump();
isNotString.link(&m_jit);
slowPath.append(m_jit.branchIfNotSymbol(keyGPR));
m_jit.loadPtr(MacroAssembler::Address(keyGPR, Symbol::offsetOfSymbolImpl()), implGPR);
hasUniquedImpl.link(&m_jit);
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
// Note that we don't test if the hash is zero here. AtomStringImpl's can't have a zero
// hash, however, a SymbolImpl may. But, because this is a cache, we don't care. We only
// ever load the result from the cache if the cache entry matches what we are querying for.
// So we either get super lucky and use zero for the hash and somehow collide with the entity
// we're looking for, or we realize we're comparing against another entity, and go to the
// slow path anyways.
m_jit.load32(MacroAssembler::Address(implGPR, UniquedStringImpl::flagsOffset()), hashGPR);
m_jit.urshift32(MacroAssembler::TrustedImm32(StringImpl::s_flagCount), hashGPR);
m_jit.load32(MacroAssembler::Address(objectGPR, JSCell::structureIDOffset()), structureIDGPR);
m_jit.add32(structureIDGPR, hashGPR);
m_jit.and32(TrustedImm32(HasOwnPropertyCache::mask), hashGPR);
if (hasOneBitSet(sizeof(HasOwnPropertyCache::Entry))) // is a power of 2
m_jit.lshift32(TrustedImm32(getLSBSet(sizeof(HasOwnPropertyCache::Entry))), hashGPR);
else
m_jit.mul32(TrustedImm32(sizeof(HasOwnPropertyCache::Entry)), hashGPR, hashGPR);
ASSERT(vm().hasOwnPropertyCache());
m_jit.move(TrustedImmPtr(vm().hasOwnPropertyCache()), tempGPR);
slowPath.append(m_jit.branchPtr(MacroAssembler::NotEqual,
MacroAssembler::BaseIndex(tempGPR, hashGPR, MacroAssembler::TimesOne, HasOwnPropertyCache::Entry::offsetOfImpl()), implGPR));
m_jit.load8(MacroAssembler::BaseIndex(tempGPR, hashGPR, MacroAssembler::TimesOne, HasOwnPropertyCache::Entry::offsetOfResult()), resultGPR);
m_jit.load32(MacroAssembler::BaseIndex(tempGPR, hashGPR, MacroAssembler::TimesOne, HasOwnPropertyCache::Entry::offsetOfStructureID()), tempGPR);
slowPath.append(m_jit.branch32(MacroAssembler::NotEqual, tempGPR, structureIDGPR));
auto done = m_jit.jump();
slowPath.link(&m_jit);
silentSpillAllRegisters(resultGPR);
callOperation(operationHasOwnProperty, resultGPR, TrustedImmPtr::weakPointer(m_graph, m_graph.globalObjectFor(node->origin.semantic)), objectGPR, keyGPR);
silentFillAllRegisters();
m_jit.exceptionCheck();
done.link(&m_jit);
m_jit.or32(TrustedImm32(JSValue::ValueFalse), resultGPR);
jsValueResult(resultGPR, node, DataFormatJSBoolean);
break;
}
case CountExecution:
m_jit.add64(TrustedImm32(1), MacroAssembler::AbsoluteAddress(node->executionCounter()->address()));
break;
case SuperSamplerBegin:
m_jit.add32(TrustedImm32(1), MacroAssembler::AbsoluteAddress(bitwise_cast<void*>(&g_superSamplerCount)));
break;
case SuperSamplerEnd:
m_jit.sub32(TrustedImm32(1), MacroAssembler::AbsoluteAddress(bitwise_cast<void*>(&g_superSamplerCount)));
break;
case ForceOSRExit: {
terminateSpeculativeExecution(InadequateCoverage, JSValueRegs(), nullptr);
break;
}
case InvalidationPoint:
emitInvalidationPoint(node);
break;
case CheckTraps:
compileCheckTraps(node);
break;
case Phantom:
case Check:
case CheckVarargs:
DFG_NODE_DO_TO_CHILDREN(m_jit.graph(), node, speculate);
noResult(node);
break;
case PhantomLocal:
// This is a no-op.
noResult(node);
break;
case LoopHint:
compileLoopHint(node);
break;
case Unreachable:
unreachable(node);
break;
case StoreBarrier:
case FencedStoreBarrier: {
compileStoreBarrier(node);
break;
}
case HasIndexedProperty: {
SpeculateStrictInt32Operand index(this, m_graph.varArgChild(node, 1));
GPRTemporary result(this, Reuse, index);
compileHasIndexedProperty(node, operationHasIndexedProperty, scopedLambda<std::tuple<GPRReg, GPRReg>()>([&] { return std::make_pair(index.gpr(), result.gpr()); }));
unblessedBooleanResult(result.gpr(), node);
break;
}
case GetPropertyEnumerator: {
compileGetPropertyEnumerator(node);
break;
}
case EnumeratorNextUpdateIndexAndMode: {
compileEnumeratorNextUpdateIndexAndMode(node);
break;
}
case EnumeratorNextExtractMode: {
compileEnumeratorNextExtractMode(node);
break;
}
case EnumeratorNextExtractIndex: {
compileEnumeratorNextExtractIndex(node);
break;
}
case EnumeratorNextUpdatePropertyName: {
compileEnumeratorNextUpdatePropertyName(node);
break;
}
case EnumeratorGetByVal: {
compileEnumeratorGetByVal(node);
break;
}
case EnumeratorInByVal: {
compileEnumeratorInByVal(node);
break;
}
case EnumeratorHasOwnProperty: {
compileEnumeratorHasOwnProperty(node);
break;
}
case ProfileType: {
compileProfileType(node);
break;
}
case ProfileControlFlow: {
BasicBlockLocation* basicBlockLocation = node->basicBlockLocation();
basicBlockLocation->emitExecuteCode(m_jit);
noResult(node);
break;
}
case LogShadowChickenPrologue: {
compileLogShadowChickenPrologue(node);
break;
}
case LogShadowChickenTail: {
compileLogShadowChickenTail(node);
break;
}
case MaterializeNewObject:
compileMaterializeNewObject(node);
break;
case CallDOM:
compileCallDOM(node);
break;
case CallDOMGetter:
compileCallDOMGetter(node);
break;
case CheckJSCast:
case CheckNotJSCast:
compileCheckJSCast(node);
break;
case ExtractCatchLocal: {
compileExtractCatchLocal(node);
break;
}
case ClearCatchLocals:
compileClearCatchLocals(node);
break;
case DataViewGetFloat:
case DataViewGetInt: {
SpeculateCellOperand dataView(this, node->child1());
GPRReg dataViewGPR = dataView.gpr();
speculateDataViewObject(node->child1(), dataViewGPR);
SpeculateInt32Operand index(this, node->child2());
GPRReg indexGPR = index.gpr();
GPRTemporary temp1(this);
GPRReg t1 = temp1.gpr();
GPRTemporary temp2(this);
GPRReg t2 = temp2.gpr();
std::optional<SpeculateBooleanOperand> isLittleEndianOperand;
if (node->child3())
isLittleEndianOperand.emplace(this, node->child3());
GPRReg isLittleEndianGPR = isLittleEndianOperand ? isLittleEndianOperand->gpr() : InvalidGPRReg;
DataViewData data = node->dataViewData();
m_jit.zeroExtend32ToWord(indexGPR, t2);
if (data.byteSize > 1)
m_jit.add64(TrustedImm32(data.byteSize - 1), t2);
#if USE(LARGE_TYPED_ARRAYS)
speculationCheck(OutOfBounds, JSValueRegs(), node,
m_jit.branch32(MacroAssembler::LessThan, indexGPR, TrustedImm32(0)));
m_jit.load64(MacroAssembler::Address(dataViewGPR, JSArrayBufferView::offsetOfLength()), t1);
#else
// No need for an explicit check against 0 here, negative indices are caught by the comparison with length right after
m_jit.load32(MacroAssembler::Address(dataViewGPR, JSArrayBufferView::offsetOfLength()), t1);
#endif
speculationCheck(OutOfBounds, JSValueRegs(), node,
m_jit.branch64(MacroAssembler::AboveOrEqual, t2, t1));
m_jit.loadPtr(JITCompiler::Address(dataViewGPR, JSArrayBufferView::offsetOfVector()), t2);
cageTypedArrayStorage(dataViewGPR, t2, false);
m_jit.zeroExtend32ToWord(indexGPR, t1);
auto baseIndex = JITCompiler::BaseIndex(t2, t1, MacroAssembler::TimesOne);
if (node->op() == DataViewGetInt) {
switch (data.byteSize) {
case 1:
if (data.isSigned)
m_jit.load8SignedExtendTo32(baseIndex, t2);
else
m_jit.load8(baseIndex, t2);
strictInt32Result(t2, node);
break;
case 2: {
auto emitLittleEndianLoad = [&] {
if (data.isSigned)
m_jit.load16SignedExtendTo32(baseIndex, t2);
else
m_jit.load16(baseIndex, t2);
};
auto emitBigEndianLoad = [&] {
m_jit.load16(baseIndex, t2);
m_jit.byteSwap16(t2);
if (data.isSigned)
m_jit.signExtend16To32(t2, t2);
};
if (data.isLittleEndian == TriState::False)
emitBigEndianLoad();
else if (data.isLittleEndian == TriState::True)
emitLittleEndianLoad();
else {
RELEASE_ASSERT(isLittleEndianGPR != InvalidGPRReg);
auto isBigEndian = m_jit.branchTest32(MacroAssembler::Zero, isLittleEndianGPR, TrustedImm32(1));
emitLittleEndianLoad();
auto done = m_jit.jump();
isBigEndian.link(&m_jit);
emitBigEndianLoad();
done.link(&m_jit);
}
strictInt32Result(t2, node);
break;
}
case 4: {
m_jit.load32(baseIndex, t2);
if (data.isLittleEndian == TriState::False)
m_jit.byteSwap32(t2);
else if (data.isLittleEndian == TriState::Indeterminate) {
RELEASE_ASSERT(isLittleEndianGPR != InvalidGPRReg);
auto isLittleEndian = m_jit.branchTest32(MacroAssembler::NonZero, isLittleEndianGPR, TrustedImm32(1));
m_jit.byteSwap32(t2);
isLittleEndian.link(&m_jit);
}
if (data.isSigned)
strictInt32Result(t2, node);
else
strictInt52Result(t2, node);
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
} else {
FPRTemporary result(this);
FPRReg resultFPR = result.fpr();
switch (data.byteSize) {
case 4: {
auto emitLittleEndianCode = [&] {
m_jit.loadFloat(baseIndex, resultFPR);
m_jit.convertFloatToDouble(resultFPR, resultFPR);
};
auto emitBigEndianCode = [&] {
m_jit.load32(baseIndex, t2);
m_jit.byteSwap32(t2);
m_jit.move32ToFloat(t2, resultFPR);
m_jit.convertFloatToDouble(resultFPR, resultFPR);
};
if (data.isLittleEndian == TriState::True)
emitLittleEndianCode();
else if (data.isLittleEndian == TriState::False)
emitBigEndianCode();
else {
RELEASE_ASSERT(isLittleEndianGPR != InvalidGPRReg);
auto isBigEndian = m_jit.branchTest32(MacroAssembler::Zero, isLittleEndianGPR, TrustedImm32(1));
emitLittleEndianCode();
auto done = m_jit.jump();
isBigEndian.link(&m_jit);
emitBigEndianCode();
done.link(&m_jit);
}
break;
}
case 8: {
auto emitLittleEndianCode = [&] {
m_jit.loadDouble(baseIndex, resultFPR);
};
auto emitBigEndianCode = [&] {
m_jit.load64(baseIndex, t2);
m_jit.byteSwap64(t2);
m_jit.move64ToDouble(t2, resultFPR);
};
if (data.isLittleEndian == TriState::True)
emitLittleEndianCode();
else if (data.isLittleEndian == TriState::False)
emitBigEndianCode();
else {
RELEASE_ASSERT(isLittleEndianGPR != InvalidGPRReg);
auto isBigEndian = m_jit.branchTest32(MacroAssembler::Zero, isLittleEndianGPR, TrustedImm32(1));
emitLittleEndianCode();
auto done = m_jit.jump();
isBigEndian.link(&m_jit);
emitBigEndianCode();
done.link(&m_jit);
}
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
doubleResult(resultFPR, node);
}
break;
}
case DateGetInt32OrNaN:
case DateGetTime:
compileDateGet(node);
break;
case DataViewSet: {
SpeculateCellOperand dataView(this, m_graph.varArgChild(node, 0));
GPRReg dataViewGPR = dataView.gpr();
speculateDataViewObject(m_graph.varArgChild(node, 0), dataViewGPR);
SpeculateInt32Operand index(this, m_graph.varArgChild(node, 1));
GPRReg indexGPR = index.gpr();
std::optional<SpeculateStrictInt52Operand> int52Value;
std::optional<SpeculateDoubleOperand> doubleValue;
std::optional<SpeculateInt32Operand> int32Value;
std::optional<FPRTemporary> fprTemporary;
GPRReg valueGPR = InvalidGPRReg;
FPRReg valueFPR = InvalidFPRReg;
FPRReg tempFPR = InvalidFPRReg;
DataViewData data = node->dataViewData();
Edge& valueEdge = m_graph.varArgChild(node, 2);
switch (valueEdge.useKind()) {
case Int32Use:
int32Value.emplace(this, valueEdge);
valueGPR = int32Value->gpr();
break;
case DoubleRepUse:
doubleValue.emplace(this, valueEdge);
valueFPR = doubleValue->fpr();
if (data.byteSize == 4) {
fprTemporary.emplace(this);
tempFPR = fprTemporary->fpr();
}
break;
case Int52RepUse:
int52Value.emplace(this, valueEdge);
valueGPR = int52Value->gpr();
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
GPRTemporary temp1(this);
GPRReg t1 = temp1.gpr();
GPRTemporary temp2(this);
GPRReg t2 = temp2.gpr();
GPRTemporary temp3(this);
GPRReg t3 = temp3.gpr();
std::optional<SpeculateBooleanOperand> isLittleEndianOperand;
if (m_graph.varArgChild(node, 3))
isLittleEndianOperand.emplace(this, m_graph.varArgChild(node, 3));
GPRReg isLittleEndianGPR = isLittleEndianOperand ? isLittleEndianOperand->gpr() : InvalidGPRReg;
m_jit.zeroExtend32ToWord(indexGPR, t2);
if (data.byteSize > 1)
m_jit.add64(TrustedImm32(data.byteSize - 1), t2);
#if USE(LARGE_TYPED_ARRAYS)
speculationCheck(OutOfBounds, JSValueRegs(), node,
m_jit.branch32(MacroAssembler::LessThan, indexGPR, TrustedImm32(0)));
m_jit.load64(MacroAssembler::Address(dataViewGPR, JSArrayBufferView::offsetOfLength()), t1);
#else
// No need for an explicit check against 0 here, negative indices are caught by the comparison with length right after
m_jit.load32(MacroAssembler::Address(dataViewGPR, JSArrayBufferView::offsetOfLength()), t1);
#endif
speculationCheck(OutOfBounds, JSValueRegs(), node,
m_jit.branch64(MacroAssembler::AboveOrEqual, t2, t1));
m_jit.loadPtr(JITCompiler::Address(dataViewGPR, JSArrayBufferView::offsetOfVector()), t2);
cageTypedArrayStorage(dataViewGPR, t2, false);
m_jit.zeroExtend32ToWord(indexGPR, t1);
auto baseIndex = JITCompiler::BaseIndex(t2, t1, MacroAssembler::TimesOne);
if (data.isFloatingPoint) {
RELEASE_ASSERT(valueFPR != InvalidFPRReg);
if (data.byteSize == 4) {
RELEASE_ASSERT(tempFPR != InvalidFPRReg);
m_jit.convertDoubleToFloat(valueFPR, tempFPR);
auto emitLittleEndianCode = [&] {
m_jit.storeFloat(tempFPR, baseIndex);
};
auto emitBigEndianCode = [&] {
m_jit.moveFloatTo32(tempFPR, t3);
m_jit.byteSwap32(t3);
m_jit.store32(t3, baseIndex);
};
if (data.isLittleEndian == TriState::False)
emitBigEndianCode();
else if (data.isLittleEndian == TriState::True)
emitLittleEndianCode();
else {
RELEASE_ASSERT(isLittleEndianGPR != InvalidGPRReg);
auto isBigEndian = m_jit.branchTest32(MacroAssembler::Zero, isLittleEndianGPR, TrustedImm32(1));
emitLittleEndianCode();
auto done = m_jit.jump();
isBigEndian.link(&m_jit);
emitBigEndianCode();
done.link(&m_jit);
}
} else {
RELEASE_ASSERT(data.byteSize == 8);
RELEASE_ASSERT(valueFPR != InvalidFPRReg);
auto emitLittleEndianCode = [&] {
m_jit.storeDouble(valueFPR, baseIndex);
};
auto emitBigEndianCode = [&] {
m_jit.moveDoubleTo64(valueFPR, t3);
m_jit.byteSwap64(t3);
m_jit.store64(t3, baseIndex);
};
if (data.isLittleEndian == TriState::False)
emitBigEndianCode();
else if (data.isLittleEndian == TriState::True)
emitLittleEndianCode();
else {
RELEASE_ASSERT(isLittleEndianGPR != InvalidGPRReg);
auto isBigEndian = m_jit.branchTest32(MacroAssembler::Zero, isLittleEndianGPR, TrustedImm32(1));
emitLittleEndianCode();
auto done = m_jit.jump();
isBigEndian.link(&m_jit);
emitBigEndianCode();
done.link(&m_jit);
}
}
} else {
switch (data.byteSize) {
case 1:
RELEASE_ASSERT(valueEdge.useKind() == Int32Use);
RELEASE_ASSERT(valueGPR != InvalidGPRReg);
m_jit.store8(valueGPR, baseIndex);
break;
case 2: {
RELEASE_ASSERT(valueEdge.useKind() == Int32Use);
RELEASE_ASSERT(valueGPR != InvalidGPRReg);
auto emitLittleEndianCode = [&] {
m_jit.store16(valueGPR, baseIndex);
};
auto emitBigEndianCode = [&] {
m_jit.move(valueGPR, t3);
m_jit.byteSwap16(t3);
m_jit.store16(t3, baseIndex);
};
if (data.isLittleEndian == TriState::False)
emitBigEndianCode();
else if (data.isLittleEndian == TriState::True)
emitLittleEndianCode();
else {
RELEASE_ASSERT(isLittleEndianGPR != InvalidGPRReg);
auto isBigEndian = m_jit.branchTest32(MacroAssembler::Zero, isLittleEndianGPR, TrustedImm32(1));
emitLittleEndianCode();
auto done = m_jit.jump();
isBigEndian.link(&m_jit);
emitBigEndianCode();
done.link(&m_jit);
}
break;
}
case 4: {
RELEASE_ASSERT(valueEdge.useKind() == Int32Use || valueEdge.useKind() == Int52RepUse);
auto emitLittleEndianCode = [&] {
m_jit.store32(valueGPR, baseIndex);
};
auto emitBigEndianCode = [&] {
m_jit.zeroExtend32ToWord(valueGPR, t3);
m_jit.byteSwap32(t3);
m_jit.store32(t3, baseIndex);
};
if (data.isLittleEndian == TriState::False)
emitBigEndianCode();
else if (data.isLittleEndian == TriState::True)
emitLittleEndianCode();
else {
RELEASE_ASSERT(isLittleEndianGPR != InvalidGPRReg);
auto isBigEndian = m_jit.branchTest32(MacroAssembler::Zero, isLittleEndianGPR, TrustedImm32(1));
emitLittleEndianCode();
auto done = m_jit.jump();
isBigEndian.link(&m_jit);
emitBigEndianCode();
done.link(&m_jit);
}
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
noResult(node);
break;
}
#if ENABLE(FTL_JIT)
case CheckTierUpInLoop: {
MacroAssembler::Jump callTierUp = m_jit.branchAdd32(
MacroAssembler::PositiveOrZero,
TrustedImm32(Options::ftlTierUpCounterIncrementForLoop()),
MacroAssembler::AbsoluteAddress(&m_jit.jitCode()->tierUpCounter.m_counter));
MacroAssembler::Label toNextOperation = m_jit.label();
Vector<SilentRegisterSavePlan> savePlans;
silentSpillAllRegistersImpl(false, savePlans, InvalidGPRReg);
BytecodeIndex bytecodeIndex = node->origin.semantic.bytecodeIndex();
addSlowPathGeneratorLambda([=, this]() {
callTierUp.link(&m_jit);
silentSpill(savePlans);
callOperation(operationTriggerTierUpNowInLoop, &vm(), TrustedImm32(bytecodeIndex.asBits()));
silentFill(savePlans);
m_jit.jump().linkTo(toNextOperation, &m_jit);
});
break;
}
case CheckTierUpAtReturn: {
MacroAssembler::Jump done = m_jit.branchAdd32(
MacroAssembler::Signed,
TrustedImm32(Options::ftlTierUpCounterIncrementForReturn()),
MacroAssembler::AbsoluteAddress(&m_jit.jitCode()->tierUpCounter.m_counter));
silentSpillAllRegisters(InvalidGPRReg);
callOperation(operationTriggerTierUpNow, &vm());
silentFillAllRegisters();
done.link(&m_jit);
break;
}
case CheckTierUpAndOSREnter: {
ASSERT(!node->origin.semantic.inlineCallFrame());
GPRTemporary temp(this);
GPRReg tempGPR = temp.gpr();
BytecodeIndex bytecodeIndex = node->origin.semantic.bytecodeIndex();
auto triggerIterator = m_jit.jitCode()->tierUpEntryTriggers.find(bytecodeIndex);
DFG_ASSERT(m_jit.graph(), node, triggerIterator != m_jit.jitCode()->tierUpEntryTriggers.end());
JITCode::TriggerReason* forceEntryTrigger = &(m_jit.jitCode()->tierUpEntryTriggers.find(bytecodeIndex)->value);
static_assert(!static_cast<uint8_t>(JITCode::TriggerReason::DontTrigger), "the JIT code assumes non-zero means 'enter'");
static_assert(sizeof(JITCode::TriggerReason) == 1, "branchTest8 assumes this size");
MacroAssembler::Jump forceOSREntry = m_jit.branchTest8(MacroAssembler::NonZero, MacroAssembler::AbsoluteAddress(forceEntryTrigger));
MacroAssembler::Jump overflowedCounter = m_jit.branchAdd32(
MacroAssembler::PositiveOrZero,
TrustedImm32(Options::ftlTierUpCounterIncrementForLoop()),
MacroAssembler::AbsoluteAddress(&m_jit.jitCode()->tierUpCounter.m_counter));
MacroAssembler::Label toNextOperation = m_jit.label();
Vector<SilentRegisterSavePlan> savePlans;
silentSpillAllRegistersImpl(false, savePlans, tempGPR);
unsigned streamIndex = m_stream->size();
m_jit.jitCode()->bytecodeIndexToStreamIndex.add(bytecodeIndex, streamIndex);
addSlowPathGeneratorLambda([=, this]() {
forceOSREntry.link(&m_jit);
overflowedCounter.link(&m_jit);
silentSpill(savePlans);
callOperation(operationTriggerOSREntryNow, tempGPR, &vm(), TrustedImm32(bytecodeIndex.asBits()));
if (savePlans.isEmpty())
m_jit.branchTestPtr(MacroAssembler::Zero, tempGPR).linkTo(toNextOperation, &m_jit);
else {
MacroAssembler::Jump osrEnter = m_jit.branchTestPtr(MacroAssembler::NonZero, tempGPR);
silentFill(savePlans);
m_jit.jump().linkTo(toNextOperation, &m_jit);
osrEnter.link(&m_jit);
}
m_jit.emitRestoreCalleeSaves();
m_jit.farJump(tempGPR, GPRInfo::callFrameRegister);
});
break;
}
#else // ENABLE(FTL_JIT)
case CheckTierUpInLoop:
case CheckTierUpAtReturn:
case CheckTierUpAndOSREnter:
DFG_CRASH(m_jit.graph(), node, "Unexpected tier-up node");
break;
#endif // ENABLE(FTL_JIT)
case FilterCallLinkStatus:
case FilterGetByStatus:
case FilterPutByStatus:
case FilterInByStatus:
case FilterDeleteByStatus:
case FilterCheckPrivateBrandStatus:
case FilterSetPrivateBrandStatus:
m_interpreter.filterICStatus(node);
noResult(node);
break;
case LastNodeType:
case EntrySwitch:
case InitializeEntrypointArguments:
case Phi:
case Upsilon:
case ExtractOSREntryLocal:
case AssertInBounds:
case CheckInBounds:
case CheckInBoundsInt52:
case ArithIMul:
case MultiGetByOffset:
case MultiPutByOffset:
case MultiDeleteByOffset:
case FiatInt52:
case CheckBadValue:
case BottomValue:
case PhantomNewObject:
case PhantomNewFunction:
case PhantomNewGeneratorFunction:
case PhantomNewAsyncFunction:
case PhantomNewAsyncGeneratorFunction:
case PhantomNewInternalFieldObject:
case PhantomCreateActivation:
case PhantomNewRegexp:
case GetMyArgumentByVal:
case GetMyArgumentByValOutOfBounds:
case GetVectorLength:
case PutHint:
case CheckStructureImmediate:
case MaterializeCreateActivation:
case MaterializeNewInternalFieldObject:
case PutStack:
case KillStack:
case GetStack:
case PhantomCreateRest:
case PhantomSpread:
case PhantomNewArrayWithSpread:
case PhantomNewArrayBuffer:
case IdentityWithProfile:
case CPUIntrinsic:
DFG_CRASH(m_jit.graph(), node, "Unexpected node");
break;
}
if (!m_compileOkay)
return;
if (node->hasResult() && node->mustGenerate())
use(node);
}
void SpeculativeJIT::moveTrueTo(GPRReg gpr)
{
m_jit.move(TrustedImm32(JSValue::ValueTrue), gpr);
}
void SpeculativeJIT::moveFalseTo(GPRReg gpr)
{
m_jit.move(TrustedImm32(JSValue::ValueFalse), gpr);
}
void SpeculativeJIT::blessBoolean(GPRReg gpr)
{
m_jit.or32(TrustedImm32(JSValue::ValueFalse), gpr);
}
void SpeculativeJIT::convertAnyInt(Edge valueEdge, GPRReg resultGPR)
{
JSValueOperand value(this, valueEdge, ManualOperandSpeculation);
GPRReg valueGPR = value.gpr();
JITCompiler::Jump notInt32 = m_jit.branchIfNotInt32(valueGPR);
m_jit.signExtend32ToPtr(valueGPR, resultGPR);
JITCompiler::Jump done = m_jit.jump();
notInt32.link(&m_jit);
silentSpillAllRegisters(resultGPR);
callOperation(operationConvertBoxedDoubleToInt52, resultGPR, valueGPR);
silentFillAllRegisters();
DFG_TYPE_CHECK(
JSValueRegs(valueGPR), valueEdge, SpecInt32Only | SpecAnyIntAsDouble,
m_jit.branch64(
JITCompiler::Equal, resultGPR,
JITCompiler::TrustedImm64(JSValue::notInt52)));
done.link(&m_jit);
}
void SpeculativeJIT::speculateAnyInt(Edge edge)
{
if (!needsTypeCheck(edge, SpecInt32Only | SpecAnyIntAsDouble))
return;
GPRTemporary temp(this);
convertAnyInt(edge, temp.gpr());
}
void SpeculativeJIT::speculateInt32(Edge edge, JSValueRegs regs)
{
DFG_TYPE_CHECK(regs, edge, SpecInt32Only, m_jit.branchIfNotInt32(regs));
}
void SpeculativeJIT::speculateDoubleRepAnyInt(Edge edge)
{
if (!needsTypeCheck(edge, SpecAnyIntAsDouble))
return;
SpeculateDoubleOperand value(this, edge);
FPRReg valueFPR = value.fpr();
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationConvertDoubleToInt52, resultGPR, valueFPR);
DFG_TYPE_CHECK(
JSValueRegs(), edge, SpecAnyIntAsDouble,
m_jit.branch64(
JITCompiler::Equal, resultGPR,
JITCompiler::TrustedImm64(JSValue::notInt52)));
}
void SpeculativeJIT::compileArithRandom(Node* node)
{
JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
GPRTemporary temp1(this);
GPRTemporary temp2(this);
GPRTemporary temp3(this);
FPRTemporary result(this);
m_jit.emitRandomThunk(globalObject, temp1.gpr(), temp2.gpr(), temp3.gpr(), result.fpr());
doubleResult(result.fpr(), node);
}
void SpeculativeJIT::compileStringCodePointAt(Node* node)
{
// We emit CheckArray on this node as we do in StringCharCodeAt node so that we do not need to check SpecString here.
// And CheckArray also ensures that this String is not a rope.
SpeculateCellOperand string(this, node->child1());
SpeculateStrictInt32Operand index(this, node->child2());
StorageOperand storage(this, node->child3());
GPRTemporary scratch1(this);
GPRTemporary scratch2(this);
GPRTemporary scratch3(this);
GPRReg stringGPR = string.gpr();
GPRReg indexGPR = index.gpr();
GPRReg storageGPR = storage.gpr();
GPRReg scratch1GPR = scratch1.gpr();
GPRReg scratch2GPR = scratch2.gpr();
GPRReg scratch3GPR = scratch3.gpr();
m_jit.loadPtr(CCallHelpers::Address(stringGPR, JSString::offsetOfValue()), scratch1GPR);
m_jit.load32(CCallHelpers::Address(scratch1GPR, StringImpl::lengthMemoryOffset()), scratch2GPR);
// unsigned comparison so we can filter out negative indices and indices that are too large
speculationCheck(Uncountable, JSValueRegs(), nullptr, m_jit.branch32(CCallHelpers::AboveOrEqual, indexGPR, scratch2GPR));
// Load the character into scratch1GPR
auto is16Bit = m_jit.branchTest32(CCallHelpers::Zero, CCallHelpers::Address(scratch1GPR, StringImpl::flagsOffset()), TrustedImm32(StringImpl::flagIs8Bit()));
CCallHelpers::JumpList done;
m_jit.load8(CCallHelpers::BaseIndex(storageGPR, indexGPR, CCallHelpers::TimesOne, 0), scratch1GPR);
done.append(m_jit.jump());
is16Bit.link(&m_jit);
m_jit.load16(CCallHelpers::BaseIndex(storageGPR, indexGPR, CCallHelpers::TimesTwo, 0), scratch1GPR);
// This is ok. indexGPR must be positive int32_t here and adding 1 never causes overflow if we treat indexGPR as uint32_t.
m_jit.add32(CCallHelpers::TrustedImm32(1), indexGPR, scratch3GPR);
done.append(m_jit.branch32(CCallHelpers::AboveOrEqual, scratch3GPR, scratch2GPR));
m_jit.and32(CCallHelpers::TrustedImm32(0xfffffc00), scratch1GPR, scratch2GPR);
done.append(m_jit.branch32(CCallHelpers::NotEqual, scratch2GPR, CCallHelpers::TrustedImm32(0xd800)));
m_jit.load16(CCallHelpers::BaseIndex(storageGPR, scratch3GPR, CCallHelpers::TimesTwo, 0), scratch3GPR);
m_jit.and32(CCallHelpers::TrustedImm32(0xfffffc00), scratch3GPR, scratch2GPR);
done.append(m_jit.branch32(CCallHelpers::NotEqual, scratch2GPR, CCallHelpers::TrustedImm32(0xdc00)));
m_jit.lshift32(CCallHelpers::TrustedImm32(10), scratch1GPR);
m_jit.getEffectiveAddress(CCallHelpers::BaseIndex(scratch1GPR, scratch3GPR, CCallHelpers::TimesOne, -U16_SURROGATE_OFFSET), scratch1GPR);
done.link(&m_jit);
strictInt32Result(scratch1GPR, m_currentNode);
}
void SpeculativeJIT::compileDateGet(Node* node)
{
SpeculateCellOperand base(this, node->child1());
GPRReg baseGPR = base.gpr();
speculateDateObject(node->child1(), baseGPR);
auto emitGetCodeWithCallback = [&] (ptrdiff_t cachedDoubleOffset, ptrdiff_t cachedDataOffset, auto* operation, auto callback) {
JSValueRegsTemporary result(this);
FPRTemporary temp1(this);
FPRTemporary temp2(this);
JSValueRegs resultRegs = result.regs();
FPRReg temp1FPR = temp1.fpr();
FPRReg temp2FPR = temp2.fpr();
CCallHelpers::JumpList slowCases;
m_jit.loadPtr(CCallHelpers::Address(baseGPR, DateInstance::offsetOfData()), resultRegs.payloadGPR());
slowCases.append(m_jit.branchTestPtr(CCallHelpers::Zero, resultRegs.payloadGPR()));
m_jit.loadDouble(CCallHelpers::Address(baseGPR, DateInstance::offsetOfInternalNumber()), temp1FPR);
m_jit.loadDouble(CCallHelpers::Address(resultRegs.payloadGPR(), cachedDoubleOffset), temp2FPR);
slowCases.append(m_jit.branchDouble(CCallHelpers::DoubleNotEqualOrUnordered, temp1FPR, temp2FPR));
m_jit.load32(CCallHelpers::Address(resultRegs.payloadGPR(), cachedDataOffset), resultRegs.payloadGPR());
callback(resultRegs.payloadGPR());
m_jit.boxInt32(resultRegs.payloadGPR(), resultRegs);
addSlowPathGenerator(slowPathCall(slowCases, this, operation, NeedToSpill, ExceptionCheckRequirement::CheckNotNeeded, resultRegs, &vm(), baseGPR));
jsValueResult(resultRegs, node);
};
auto emitGetCode = [&] (ptrdiff_t cachedDoubleOffset, ptrdiff_t cachedDataOffset, auto* operation) {
emitGetCodeWithCallback(cachedDoubleOffset, cachedDataOffset, operation, [] (GPRReg) { });
};
switch (node->intrinsic()) {
case DatePrototypeGetTimeIntrinsic: {
FPRTemporary result(this);
FPRReg resultFPR = result.fpr();
m_jit.loadDouble(CCallHelpers::Address(baseGPR, DateInstance::offsetOfInternalNumber()), resultFPR);
doubleResult(resultFPR, node);
break;
}
// We do not have any timezone offset which affects on milliseconds.
// So Date#getMilliseconds and Date#getUTCMilliseconds have the same implementation.
case DatePrototypeGetMillisecondsIntrinsic:
case DatePrototypeGetUTCMillisecondsIntrinsic: {
JSValueRegsTemporary result(this);
FPRTemporary temp1(this);
FPRTemporary temp2(this);
FPRTemporary temp3(this);
JSValueRegs resultRegs = result.regs();
FPRReg temp1FPR = temp1.fpr();
FPRReg temp2FPR = temp2.fpr();
FPRReg temp3FPR = temp3.fpr();
m_jit.moveTrustedValue(jsNaN(), resultRegs);
m_jit.loadDouble(CCallHelpers::Address(baseGPR, DateInstance::offsetOfInternalNumber()), temp1FPR);
auto isNaN = m_jit.branchIfNaN(temp1FPR);
static const double msPerSecondConstant = msPerSecond;
m_jit.loadDouble(TrustedImmPtr(&msPerSecondConstant), temp2FPR);
m_jit.divDouble(temp1FPR, temp2FPR, temp3FPR);
m_jit.floorDouble(temp3FPR, temp3FPR);
m_jit.mulDouble(temp3FPR, temp2FPR, temp3FPR);
m_jit.subDouble(temp1FPR, temp3FPR, temp1FPR);
m_jit.truncateDoubleToInt32(temp1FPR, resultRegs.payloadGPR());
m_jit.boxInt32(resultRegs.payloadGPR(), resultRegs);
isNaN.link(&m_jit);
jsValueResult(resultRegs, node);
break;
}
case DatePrototypeGetFullYearIntrinsic:
emitGetCode(DateInstanceData::offsetOfGregorianDateTimeCachedForMS(), DateInstanceData::offsetOfCachedGregorianDateTime() + GregorianDateTime::offsetOfYear(), operationDateGetFullYear);
break;
case DatePrototypeGetUTCFullYearIntrinsic:
emitGetCode(DateInstanceData::offsetOfGregorianDateTimeUTCCachedForMS(), DateInstanceData::offsetOfCachedGregorianDateTimeUTC() + GregorianDateTime::offsetOfYear(), operationDateGetUTCFullYear);
break;
case DatePrototypeGetMonthIntrinsic:
emitGetCode(DateInstanceData::offsetOfGregorianDateTimeCachedForMS(), DateInstanceData::offsetOfCachedGregorianDateTime() + GregorianDateTime::offsetOfMonth(), operationDateGetMonth);
break;
case DatePrototypeGetUTCMonthIntrinsic:
emitGetCode(DateInstanceData::offsetOfGregorianDateTimeUTCCachedForMS(), DateInstanceData::offsetOfCachedGregorianDateTimeUTC() + GregorianDateTime::offsetOfMonth(), operationDateGetUTCMonth);
break;
case DatePrototypeGetDateIntrinsic:
emitGetCode(DateInstanceData::offsetOfGregorianDateTimeCachedForMS(), DateInstanceData::offsetOfCachedGregorianDateTime() + GregorianDateTime::offsetOfMonthDay(), operationDateGetDate);
break;
case DatePrototypeGetUTCDateIntrinsic:
emitGetCode(DateInstanceData::offsetOfGregorianDateTimeUTCCachedForMS(), DateInstanceData::offsetOfCachedGregorianDateTimeUTC() + GregorianDateTime::offsetOfMonthDay(), operationDateGetUTCDate);
break;
case DatePrototypeGetDayIntrinsic:
emitGetCode(DateInstanceData::offsetOfGregorianDateTimeCachedForMS(), DateInstanceData::offsetOfCachedGregorianDateTime() + GregorianDateTime::offsetOfWeekDay(), operationDateGetDay);
break;
case DatePrototypeGetUTCDayIntrinsic:
emitGetCode(DateInstanceData::offsetOfGregorianDateTimeUTCCachedForMS(), DateInstanceData::offsetOfCachedGregorianDateTimeUTC() + GregorianDateTime::offsetOfWeekDay(), operationDateGetUTCDay);
break;
case DatePrototypeGetHoursIntrinsic:
emitGetCode(DateInstanceData::offsetOfGregorianDateTimeCachedForMS(), DateInstanceData::offsetOfCachedGregorianDateTime() + GregorianDateTime::offsetOfHour(), operationDateGetHours);
break;
case DatePrototypeGetUTCHoursIntrinsic:
emitGetCode(DateInstanceData::offsetOfGregorianDateTimeUTCCachedForMS(), DateInstanceData::offsetOfCachedGregorianDateTimeUTC() + GregorianDateTime::offsetOfHour(), operationDateGetUTCHours);
break;
case DatePrototypeGetMinutesIntrinsic:
emitGetCode(DateInstanceData::offsetOfGregorianDateTimeCachedForMS(), DateInstanceData::offsetOfCachedGregorianDateTime() + GregorianDateTime::offsetOfMinute(), operationDateGetMinutes);
break;
case DatePrototypeGetUTCMinutesIntrinsic:
emitGetCode(DateInstanceData::offsetOfGregorianDateTimeUTCCachedForMS(), DateInstanceData::offsetOfCachedGregorianDateTimeUTC() + GregorianDateTime::offsetOfMinute(), operationDateGetUTCMinutes);
break;
case DatePrototypeGetSecondsIntrinsic:
emitGetCode(DateInstanceData::offsetOfGregorianDateTimeCachedForMS(), DateInstanceData::offsetOfCachedGregorianDateTime() + GregorianDateTime::offsetOfSecond(), operationDateGetSeconds);
break;
case DatePrototypeGetUTCSecondsIntrinsic:
emitGetCode(DateInstanceData::offsetOfGregorianDateTimeUTCCachedForMS(), DateInstanceData::offsetOfCachedGregorianDateTimeUTC() + GregorianDateTime::offsetOfSecond(), operationDateGetUTCSeconds);
break;
case DatePrototypeGetTimezoneOffsetIntrinsic: {
emitGetCodeWithCallback(DateInstanceData::offsetOfGregorianDateTimeCachedForMS(), DateInstanceData::offsetOfCachedGregorianDateTime() + GregorianDateTime::offsetOfUTCOffsetInMinute(), operationDateGetTimezoneOffset, [&] (GPRReg offsetGPR) {
m_jit.neg32(offsetGPR);
});
break;
}
case DatePrototypeGetYearIntrinsic: {
emitGetCodeWithCallback(DateInstanceData::offsetOfGregorianDateTimeCachedForMS(), DateInstanceData::offsetOfCachedGregorianDateTime() + GregorianDateTime::offsetOfYear(), operationDateGetYear, [&] (GPRReg yearGPR) {
m_jit.sub32(TrustedImm32(1900), yearGPR);
});
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
#endif
} } // namespace JSC::DFG
#endif