blob: ec88c35b575e0615a85d17b7af5ee15bdd92eda9 [file] [log] [blame]
/*
Copyright (C) 2007 Krzysztof Kowalczyk <kkowalczyk@gmail.com>
Copyright (C) 2004, 2005, 2006 Nikolas Zimmermann <wildfox@kde.org>
2004, 2005, 2006 Rob Buis <buis@kde.org>
2005, 2007 Apple Inc. All Rights reserved.
2007 Alp Toker <alp@atoker.com>
2008 Dirk Schulze <krit@webkit.org>
2011, 2020 Igalia S.L.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
aint with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "Path.h"
#if USE(CAIRO)
#include "CairoUniquePtr.h"
#include "CairoUtilities.h"
#include "FloatRect.h"
#include "GraphicsContextCairo.h"
#include <math.h>
#include <wtf/MathExtras.h>
#include <wtf/text/WTFString.h>
namespace WebCore {
Path::Path()
: m_elements(Vector<PathElement>())
{
}
Path::Path(RefPtr<cairo_t>&& path)
: m_path(WTFMove(path))
{
}
Path::~Path() = default;
Path::Path(Path&&) = default;
Path& Path::operator=(Path&&) = default;
Path::Path(const Path& other)
{
if (other.isNull())
return;
cairo_t* cr = ensureCairoPath();
cairo_matrix_t ctm;
cairo_get_matrix(other.m_path.get(), &ctm);
cairo_set_matrix(cr, &ctm);
CairoUniquePtr<cairo_path_t> pathCopy(cairo_copy_path(other.m_path.get()));
cairo_append_path(cr, pathCopy.get());
m_elements = other.m_elements;
}
cairo_t* Path::ensureCairoPath()
{
if (!m_path)
m_path = adoptRef(cairo_create(adoptRef(cairo_image_surface_create(CAIRO_FORMAT_A8, 1, 1)).get()));
return m_path.get();
}
Path& Path::operator=(const Path& other)
{
if (&other == this)
return *this;
if (other.isNull()) {
m_path = nullptr;
m_elements = Vector<PathElement>();
return *this;
}
clear();
cairo_t* cr = ensureCairoPath();
cairo_matrix_t ctm;
cairo_get_matrix(other.m_path.get(), &ctm);
cairo_set_matrix(cr, &ctm);
CairoUniquePtr<cairo_path_t> pathCopy(cairo_copy_path(other.m_path.get()));
cairo_append_path(cr, pathCopy.get());
m_elements = other.m_elements;
return *this;
}
void Path::clear()
{
if (isNull())
return;
cairo_identity_matrix(m_path.get());
cairo_new_path(m_path.get());
m_elements = Vector<PathElement>();
}
bool Path::isEmptySlowCase() const
{
return !cairo_has_current_point(m_path.get());
}
FloatPoint Path::currentPointSlowCase() const
{
// FIXME: Is this the correct way?
double x;
double y;
cairo_get_current_point(m_path.get(), &x, &y);
return FloatPoint(x, y);
}
void Path::translate(const FloatSize& p)
{
cairo_translate(ensureCairoPath(), -p.width(), -p.height());
if (!m_elements)
return;
for (auto& element : m_elements.value()) {
switch (element.type) {
case PathElement::Type::MoveToPoint:
case PathElement::Type::AddLineToPoint:
element.points[0].move(p);
break;
case PathElement::Type::AddQuadCurveToPoint:
element.points[0].move(p);
element.points[1].move(p);
break;
case PathElement::Type::AddCurveToPoint:
element.points[0].move(p);
element.points[1].move(p);
element.points[2].move(p);
break;
case PathElement::Type::CloseSubpath:
break;
}
}
}
void Path::appendElement(PathElement::Type type, Vector<FloatPoint, 3>&& points)
{
PathElement element;
element.type = type;
switch (type) {
case PathElement::Type::MoveToPoint:
case PathElement::Type::AddLineToPoint:
element.points[0] = points[0];
break;
case PathElement::Type::AddQuadCurveToPoint:
element.points[0] = points[0];
element.points[1] = points[1];
break;
case PathElement::Type::AddCurveToPoint:
element.points[0] = points[0];
element.points[1] = points[1];
element.points[2] = points[2];
break;
case PathElement::Type::CloseSubpath:
break;
}
m_elements->append(WTFMove(element));
}
void Path::moveToSlowCase(const FloatPoint& p)
{
cairo_move_to(ensureCairoPath(), p.x(), p.y());
if (m_elements)
appendElement(PathElement::Type::MoveToPoint, { p });
}
void Path::addLineToSlowCase(const FloatPoint& p)
{
cairo_line_to(ensureCairoPath(), p.x(), p.y());
if (m_elements)
appendElement(PathElement::Type::AddLineToPoint, { p });
}
void Path::addRect(const FloatRect& rect)
{
cairo_rectangle(ensureCairoPath(), rect.x(), rect.y(), rect.width(), rect.height());
if (!m_elements)
return;
FloatPoint point(rect.location());
appendElement(PathElement::Type::MoveToPoint, { point });
point.move(rect.width(), 0);
appendElement(PathElement::Type::AddLineToPoint, { point });
point.move(0, rect.height());
appendElement(PathElement::Type::AddLineToPoint, { point });
point.move(-rect.width(), 0);
appendElement(PathElement::Type::AddLineToPoint, { point });
appendElement(PathElement::Type::CloseSubpath, { });
if (cairo_has_current_point(m_path.get()))
appendElement(PathElement::Type::MoveToPoint, { currentPointSlowCase() });
}
void Path::addQuadCurveToSlowCase(const FloatPoint& controlPoint, const FloatPoint& point)
{
double x, y;
double x1 = controlPoint.x();
double y1 = controlPoint.y();
double x2 = point.x();
double y2 = point.y();
cairo_t* cr = ensureCairoPath();
cairo_get_current_point(cr, &x, &y);
cairo_curve_to(cr,
x + 2.0 / 3.0 * (x1 - x), y + 2.0 / 3.0 * (y1 - y),
x2 + 2.0 / 3.0 * (x1 - x2), y2 + 2.0 / 3.0 * (y1 - y2),
x2, y2);
if (m_elements)
appendElement(PathElement::Type::AddQuadCurveToPoint, { controlPoint, point });
}
void Path::addBezierCurveToSlowCase(const FloatPoint& controlPoint1, const FloatPoint& controlPoint2, const FloatPoint& controlPoint3)
{
cairo_curve_to(ensureCairoPath(), controlPoint1.x(), controlPoint1.y(),
controlPoint2.x(), controlPoint2.y(), controlPoint3.x(), controlPoint3.y());
if (m_elements)
appendElement(PathElement::Type::AddCurveToPoint, { controlPoint1, controlPoint2, controlPoint3 });
}
void Path::addArcSlowCase(const FloatPoint& p, float r, float startAngle, float endAngle, bool anticlockwise)
{
m_elements = std::nullopt;
cairo_t* cr = ensureCairoPath();
float sweep = endAngle - startAngle;
const float twoPI = 2 * piFloat;
if ((sweep <= -twoPI || sweep >= twoPI)
&& ((anticlockwise && (endAngle < startAngle)) || (!anticlockwise && (startAngle < endAngle)))) {
if (anticlockwise)
cairo_arc_negative(cr, p.x(), p.y(), r, startAngle, startAngle - twoPI);
else
cairo_arc(cr, p.x(), p.y(), r, startAngle, startAngle + twoPI);
cairo_new_sub_path(cr);
cairo_arc(cr, p.x(), p.y(), r, endAngle, endAngle);
} else {
if (anticlockwise)
cairo_arc_negative(cr, p.x(), p.y(), r, startAngle, endAngle);
else
cairo_arc(cr, p.x(), p.y(), r, startAngle, endAngle);
}
}
static inline float areaOfTriangleFormedByPoints(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& p3)
{
return p1.x() * (p2.y() - p3.y()) + p2.x() * (p3.y() - p1.y()) + p3.x() * (p1.y() - p2.y());
}
void Path::addArcTo(const FloatPoint& p1, const FloatPoint& p2, float radius)
{
// FIXME: Why do we return if the path is empty? Can't a path start with an arc?
if (isEmpty())
return;
double x0, y0;
cairo_get_current_point(m_path.get(), &x0, &y0);
FloatPoint p0(x0, y0);
// Draw only a straight line to p1 if any of the points are equal or the radius is zero
// or the points are collinear (triangle that the points form has area of zero value).
if ((p1.x() == p0.x() && p1.y() == p0.y()) || (p1.x() == p2.x() && p1.y() == p2.y()) || !radius
|| !areaOfTriangleFormedByPoints(p0, p1, p2)) {
cairo_line_to(m_path.get(), p1.x(), p1.y());
if (m_elements)
appendElement(PathElement::Type::AddLineToPoint, { p1 });
return;
}
FloatPoint p1p0((p0.x() - p1.x()),(p0.y() - p1.y()));
FloatPoint p1p2((p2.x() - p1.x()),(p2.y() - p1.y()));
float p1p0_length = std::hypot(p1p0.x(), p1p0.y());
float p1p2_length = std::hypot(p1p2.x(), p1p2.y());
double cos_phi = (p1p0.x() * p1p2.x() + p1p0.y() * p1p2.y()) / (p1p0_length * p1p2_length);
// all points on a line logic
if (cos_phi == -1) {
cairo_line_to(m_path.get(), p1.x(), p1.y());
if (m_elements)
appendElement(PathElement::Type::AddLineToPoint, { p1 });
return;
}
if (cos_phi == 1) {
// add infinite far away point
unsigned int max_length = 65535;
double factor_max = max_length / p1p0_length;
FloatPoint ep((p0.x() + factor_max * p1p0.x()), (p0.y() + factor_max * p1p0.y()));
cairo_line_to(m_path.get(), ep.x(), ep.y());
if (m_elements)
appendElement(PathElement::Type::AddLineToPoint, { ep });
return;
}
m_elements = std::nullopt;
float tangent = radius / tan(acos(cos_phi) / 2);
float factor_p1p0 = tangent / p1p0_length;
FloatPoint t_p1p0((p1.x() + factor_p1p0 * p1p0.x()), (p1.y() + factor_p1p0 * p1p0.y()));
FloatPoint orth_p1p0(p1p0.y(), -p1p0.x());
float orth_p1p0_length = std::hypot(orth_p1p0.x(), orth_p1p0.y());
float factor_ra = radius / orth_p1p0_length;
// angle between orth_p1p0 and p1p2 to get the right vector orthographic to p1p0
double cos_alpha = (orth_p1p0.x() * p1p2.x() + orth_p1p0.y() * p1p2.y()) / (orth_p1p0_length * p1p2_length);
if (cos_alpha < 0.f)
orth_p1p0 = FloatPoint(-orth_p1p0.x(), -orth_p1p0.y());
FloatPoint p((t_p1p0.x() + factor_ra * orth_p1p0.x()), (t_p1p0.y() + factor_ra * orth_p1p0.y()));
// calculate angles for addArc
orth_p1p0 = FloatPoint(-orth_p1p0.x(), -orth_p1p0.y());
float sa = acos(orth_p1p0.x() / orth_p1p0_length);
if (orth_p1p0.y() < 0.f)
sa = 2 * piDouble - sa;
// anticlockwise logic
bool anticlockwise = false;
float factor_p1p2 = tangent / p1p2_length;
FloatPoint t_p1p2((p1.x() + factor_p1p2 * p1p2.x()), (p1.y() + factor_p1p2 * p1p2.y()));
FloatPoint orth_p1p2((t_p1p2.x() - p.x()),(t_p1p2.y() - p.y()));
float orth_p1p2_length = sqrtf(orth_p1p2.x() * orth_p1p2.x() + orth_p1p2.y() * orth_p1p2.y());
float ea = acos(orth_p1p2.x() / orth_p1p2_length);
if (orth_p1p2.y() < 0)
ea = 2 * piDouble - ea;
if ((sa > ea) && ((sa - ea) < piDouble))
anticlockwise = true;
if ((sa < ea) && ((ea - sa) > piDouble))
anticlockwise = true;
cairo_line_to(m_path.get(), t_p1p0.x(), t_p1p0.y());
addArc(p, radius, sa, ea, anticlockwise);
}
void Path::addEllipse(FloatPoint point, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise)
{
m_elements = std::nullopt;
cairo_t* cr = ensureCairoPath();
cairo_save(cr);
cairo_translate(cr, point.x(), point.y());
cairo_rotate(cr, rotation);
cairo_scale(cr, radiusX, radiusY);
if (anticlockwise)
cairo_arc_negative(cr, 0, 0, 1, startAngle, endAngle);
else
cairo_arc(cr, 0, 0, 1, startAngle, endAngle);
cairo_restore(cr);
}
void Path::addEllipse(const FloatRect& rect)
{
m_elements = std::nullopt;
cairo_t* cr = ensureCairoPath();
cairo_save(cr);
float yRadius = .5 * rect.height();
float xRadius = .5 * rect.width();
cairo_translate(cr, rect.x() + xRadius, rect.y() + yRadius);
cairo_scale(cr, xRadius, yRadius);
cairo_arc(cr, 0., 0., 1., 0., 2 * piDouble);
cairo_restore(cr);
}
void Path::addPath(const Path& path, const AffineTransform& transform)
{
if (path.isNull())
return;
cairo_matrix_t matrix = toCairoMatrix(transform);
if (cairo_matrix_invert(&matrix) != CAIRO_STATUS_SUCCESS)
return;
m_elements = std::nullopt;
cairo_t* cr = path.cairoPath();
cairo_save(cr);
cairo_transform(cr, &matrix);
CairoUniquePtr<cairo_path_t> pathCopy(cairo_copy_path(cr));
cairo_restore(cr);
cairo_append_path(ensureCairoPath(), pathCopy.get());
}
void Path::closeSubpath()
{
cairo_close_path(ensureCairoPath());
if (m_elements) {
appendElement(PathElement::Type::CloseSubpath, { });
if (cairo_has_current_point(m_path.get()))
appendElement(PathElement::Type::MoveToPoint, { currentPointSlowCase() });
}
}
FloatRect Path::boundingRectSlowCase() const
{
double x0, x1, y0, y1;
if (m_elements && m_elements.value().size() == 1 && m_elements.value()[0].type == PathElement::Type::MoveToPoint) {
FloatPoint p = m_elements.value()[0].points[0];
return FloatRect(p.x(), p.y(), 0, 0);
}
cairo_path_extents(m_path.get(), &x0, &y0, &x1, &y1);
return FloatRect(x0, y0, x1 - x0, y1 - y0);
}
FloatRect Path::strokeBoundingRect(const Function<void(GraphicsContext&)>& strokeStyleApplier) const
{
// Should this be isEmpty() or can an empty path have a non-zero origin?
if (isNull())
return FloatRect();
if (strokeStyleApplier) {
GraphicsContextCairo gc(m_path.get());
strokeStyleApplier(gc);
}
double x0, x1, y0, y1;
cairo_stroke_extents(m_path.get(), &x0, &y0, &x1, &y1);
return FloatRect(x0, y0, x1 - x0, y1 - y0);
}
bool Path::contains(const FloatPoint& point, WindRule rule) const
{
if (isNull() || !std::isfinite(point.x()) || !std::isfinite(point.y()))
return false;
cairo_fill_rule_t cur = cairo_get_fill_rule(m_path.get());
cairo_set_fill_rule(m_path.get(), rule == WindRule::EvenOdd ? CAIRO_FILL_RULE_EVEN_ODD : CAIRO_FILL_RULE_WINDING);
bool contains = cairo_in_fill(m_path.get(), point.x(), point.y());
cairo_set_fill_rule(m_path.get(), cur);
return contains;
}
bool Path::strokeContains(const FloatPoint& point, const Function<void(GraphicsContext&)>& strokeStyleApplier) const
{
ASSERT(strokeStyleApplier);
if (isNull())
return false;
{
GraphicsContextCairo graphicsContext(m_path.get());
strokeStyleApplier(graphicsContext);
}
return cairo_in_stroke(m_path.get(), point.x(), point.y());
}
void Path::applySlowCase(const PathApplierFunction& function) const
{
if (m_elements) {
for (const auto& element : m_elements.value())
function(element);
return;
}
CairoUniquePtr<cairo_path_t> pathCopy(cairo_copy_path(m_path.get()));
cairo_path_data_t* data;
PathElement pathElement;
for (int i = 0; i < pathCopy->num_data; i += pathCopy->data[i].header.length) {
data = &pathCopy->data[i];
switch (data->header.type) {
case CAIRO_PATH_MOVE_TO:
pathElement.type = PathElement::Type::MoveToPoint;
pathElement.points[0] = FloatPoint(data[1].point.x, data[1].point.y);
function(pathElement);
break;
case CAIRO_PATH_LINE_TO:
pathElement.type = PathElement::Type::AddLineToPoint;
pathElement.points[0] = FloatPoint(data[1].point.x, data[1].point.y);
function(pathElement);
break;
case CAIRO_PATH_CURVE_TO:
pathElement.type = PathElement::Type::AddCurveToPoint;
pathElement.points[0] = FloatPoint(data[1].point.x, data[1].point.y);
pathElement.points[1] = FloatPoint(data[2].point.x, data[2].point.y);
pathElement.points[2] = FloatPoint(data[3].point.x, data[3].point.y);
function(pathElement);
break;
case CAIRO_PATH_CLOSE_PATH:
pathElement.type = PathElement::Type::CloseSubpath;
function(pathElement);
break;
}
}
}
FloatRect Path::fastBoundingRectSlowCase() const
{
return boundingRect();
}
void Path::transform(const AffineTransform& transform)
{
cairo_matrix_t matrix = toCairoMatrix(transform);
cairo_matrix_invert(&matrix);
cairo_transform(ensureCairoPath(), &matrix);
if (!m_elements)
return;
for (auto& element : m_elements.value()) {
switch (element.type) {
case PathElement::Type::MoveToPoint:
case PathElement::Type::AddLineToPoint:
element.points[0] = transform.mapPoint(element.points[0]);
break;
case PathElement::Type::AddQuadCurveToPoint:
element.points[0] = transform.mapPoint(element.points[0]);
element.points[1] = transform.mapPoint(element.points[1]);
break;
case PathElement::Type::AddCurveToPoint:
element.points[0] = transform.mapPoint(element.points[0]);
element.points[1] = transform.mapPoint(element.points[1]);
element.points[2] = transform.mapPoint(element.points[2]);
break;
case PathElement::Type::CloseSubpath:
break;
}
}
}
bool Path::isNull() const
{
return !m_path;
}
} // namespace WebCore
#endif // USE(CAIRO)