blob: ef02a1e83fcdc3a5b9b841b05866ab98960bf81c [file] [log] [blame]
/*
* Copyright (C) 2006, 2007 Eric Seidel <eric@webkit.org>
* Copyright (C) 2015 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "PathTraversalState.h"
#include "GeometryUtilities.h"
#include <wtf/MathExtras.h>
#include <wtf/Vector.h>
namespace WebCore {
static const float kPathSegmentLengthTolerance = 0.00001f;
static inline float distanceLine(const FloatPoint& start, const FloatPoint& end)
{
return std::hypot(end.x() - start.x(), end.y() - start.y());
}
struct QuadraticBezier {
QuadraticBezier() { }
QuadraticBezier(const FloatPoint& s, const FloatPoint& c, const FloatPoint& e)
: start(s)
, control(c)
, end(e)
{
}
bool operator==(const QuadraticBezier& rhs) const
{
return start == rhs.start
&& control == rhs.control
&& end == rhs.end;
}
float approximateDistance() const
{
return distanceLine(start, control) + distanceLine(control, end);
}
bool split(QuadraticBezier& left, QuadraticBezier& right) const
{
left.control = midPoint(start, control);
right.control = midPoint(control, end);
FloatPoint leftControlToRightControl = midPoint(left.control, right.control);
left.end = leftControlToRightControl;
right.start = leftControlToRightControl;
left.start = start;
right.end = end;
return !(left == *this) && !(right == *this);
}
FloatPoint start;
FloatPoint control;
FloatPoint end;
};
struct CubicBezier {
CubicBezier() { }
CubicBezier(const FloatPoint& s, const FloatPoint& c1, const FloatPoint& c2, const FloatPoint& e)
: start(s)
, control1(c1)
, control2(c2)
, end(e)
{
}
bool operator==(const CubicBezier& rhs) const
{
return start == rhs.start
&& control1 == rhs.control1
&& control2 == rhs.control2
&& end == rhs.end;
}
float approximateDistance() const
{
return distanceLine(start, control1) + distanceLine(control1, control2) + distanceLine(control2, end);
}
bool split(CubicBezier& left, CubicBezier& right) const
{
FloatPoint startToControl1 = midPoint(control1, control2);
left.start = start;
left.control1 = midPoint(start, control1);
left.control2 = midPoint(left.control1, startToControl1);
right.control2 = midPoint(control2, end);
right.control1 = midPoint(right.control2, startToControl1);
right.end = end;
FloatPoint leftControl2ToRightControl1 = midPoint(left.control2, right.control1);
left.end = leftControl2ToRightControl1;
right.start = leftControl2ToRightControl1;
return !(left == *this) && !(right == *this);
}
FloatPoint start;
FloatPoint control1;
FloatPoint control2;
FloatPoint end;
};
// FIXME: This function is possibly very slow due to the ifs required for proper path measuring
// A simple speed-up would be to use an additional boolean template parameter to control whether
// to use the "fast" version of this function with no PathTraversalState updating, vs. the slow
// version which does update the PathTraversalState. We'll have to shark it to see if that's necessary.
// Another check which is possible up-front (to send us down the fast path) would be to check if
// approximateDistance() + current total distance > desired distance
template<class CurveType>
static float curveLength(const PathTraversalState& traversalState, const CurveType& originalCurve, FloatPoint& previous, FloatPoint& current)
{
static const unsigned curveStackDepthLimit = 20;
CurveType curve = originalCurve;
Vector<CurveType, curveStackDepthLimit> curveStack;
float totalLength = 0;
while (true) {
float length = curve.approximateDistance();
CurveType leftCurve;
CurveType rightCurve;
if ((length - distanceLine(curve.start, curve.end)) > kPathSegmentLengthTolerance && curveStack.size() < curveStackDepthLimit && curve.split(leftCurve, rightCurve)) {
curve = leftCurve;
curveStack.append(rightCurve);
continue;
}
totalLength += length;
if (traversalState.action() == PathTraversalState::Action::VectorAtLength) {
previous = curve.start;
current = curve.end;
if (traversalState.totalLength() + totalLength > traversalState.desiredLength())
break;
}
if (curveStack.isEmpty())
break;
curve = curveStack.last();
curveStack.removeLast();
}
if (traversalState.action() != PathTraversalState::Action::VectorAtLength) {
ASSERT(curve.end == originalCurve.end);
previous = curve.start;
current = curve.end;
}
return totalLength;
}
PathTraversalState::PathTraversalState(Action action, float desiredLength)
: m_action(action)
, m_desiredLength(desiredLength)
{
ASSERT(action != Action::TotalLength || !desiredLength);
}
void PathTraversalState::closeSubpath()
{
m_totalLength += distanceLine(m_current, m_start);
m_current = m_start;
}
void PathTraversalState::moveTo(const FloatPoint& point)
{
m_previous = m_current = m_start = point;
}
void PathTraversalState::lineTo(const FloatPoint& point)
{
m_totalLength += distanceLine(m_current, point);
m_current = point;
}
void PathTraversalState::quadraticBezierTo(const FloatPoint& newControl, const FloatPoint& newEnd)
{
m_totalLength += curveLength<QuadraticBezier>(*this, QuadraticBezier(m_current, newControl, newEnd), m_previous, m_current);
}
void PathTraversalState::cubicBezierTo(const FloatPoint& newControl1, const FloatPoint& newControl2, const FloatPoint& newEnd)
{
m_totalLength += curveLength<CubicBezier>(*this, CubicBezier(m_current, newControl1, newControl2, newEnd), m_previous, m_current);
}
bool PathTraversalState::finalizeAppendPathElement()
{
if (m_action == Action::TotalLength)
return false;
if (m_action == Action::SegmentAtLength) {
if (m_totalLength >= m_desiredLength)
m_success = true;
return m_success;
}
ASSERT(m_action == Action::VectorAtLength);
if (m_totalLength >= m_desiredLength) {
float slope = FloatPoint(m_current - m_previous).slopeAngleRadians();
float offset = m_desiredLength - m_totalLength;
m_current.move(offset * cosf(slope), offset * sinf(slope));
if (!m_isZeroVector && !m_desiredLength)
m_isZeroVector = true;
else {
m_success = true;
m_normalAngle = rad2deg(slope);
}
}
m_previous = m_current;
return m_success;
}
bool PathTraversalState::appendPathElement(PathElement::Type type, const FloatPoint* points)
{
switch (type) {
case PathElement::Type::MoveToPoint:
moveTo(points[0]);
break;
case PathElement::Type::AddLineToPoint:
lineTo(points[0]);
break;
case PathElement::Type::AddQuadCurveToPoint:
quadraticBezierTo(points[0], points[1]);
break;
case PathElement::Type::AddCurveToPoint:
cubicBezierTo(points[0], points[1], points[2]);
break;
case PathElement::Type::CloseSubpath:
closeSubpath();
break;
}
return finalizeAppendPathElement();
}
bool PathTraversalState::processPathElement(PathElement::Type type, const FloatPoint* points)
{
if (m_success)
return true;
if (m_isZeroVector) {
PathTraversalState traversalState(*this);
m_success = traversalState.appendPathElement(type, points);
m_normalAngle = traversalState.m_normalAngle;
return m_success;
}
return appendPathElement(type, points);
}
}