blob: a52e8a32360ab5ff02f21d329db97106d8e7a2cc [file] [log] [blame]
/*
* Copyright (C) 2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef B3Value_h
#define B3Value_h
#if ENABLE(B3_JIT)
#include "AirArg.h"
#include "B3Effects.h"
#include "B3Opcode.h"
#include "B3Origin.h"
#include "B3Type.h"
#include "B3ValueKey.h"
#include <wtf/CommaPrinter.h>
#include <wtf/FastMalloc.h>
#include <wtf/Noncopyable.h>
namespace JSC { namespace B3 {
class BasicBlock;
class CheckValue;
class Procedure;
class JS_EXPORT_PRIVATE Value {
WTF_MAKE_NONCOPYABLE(Value);
WTF_MAKE_FAST_ALLOCATED;
public:
typedef Vector<Value*, 3> AdjacencyList;
static const char* const dumpPrefix;
static bool accepts(Opcode) { return true; }
virtual ~Value();
unsigned index() const { return m_index; }
// Note that the opcode is immutable, except for replacing values with Identity or Nop.
Opcode opcode() const { return m_opcode; }
Origin origin() const { return m_origin; }
Value*& child(unsigned index) { return m_children[index]; }
Value* child(unsigned index) const { return m_children[index]; }
Value*& lastChild() { return m_children.last(); }
Value* lastChild() const { return m_children.last(); }
unsigned numChildren() const { return m_children.size(); }
// This computes the type using the opcode.
Type type() const { return m_type; }
// This is useful when lowering. Note that this is only valid for non-void values.
Air::Arg::Type airType() const { return Air::Arg::typeForB3Type(type()); }
AdjacencyList& children() { return m_children; }
const AdjacencyList& children() const { return m_children; }
void replaceWithIdentity(Value*);
void replaceWithNop();
void dump(PrintStream&) const;
void deepDump(PrintStream&) const;
// This is how you cast Values. For example, if you want to do something provided that we have a
// ArgumentRegValue, you can do:
//
// if (ArgumentRegValue* argumentReg = value->as<ArgumentRegValue>()) {
// things
// }
//
// This will return null if this opcode() != ArgumentReg. This works because this returns nullptr
// if T::accepts(opcode()) returns false.
template<typename T>
T* as();
template<typename T>
const T* as() const;
// What follows are a bunch of helpers for inspecting and modifying values. Note that we have a
// bunch of different idioms for implementing such helpers. You can use virtual methods, and
// override from the various Value subclasses. You can put the method inside Value and make it
// non-virtual, and the implementation can switch on opcode. The method could be inline or not.
// If a method is specific to some Value subclass, you could put it in the subclass, or you could
// put it on Value anyway. It's fine to pick whatever feels right, and we shouldn't restrict
// ourselves to any particular idiom.
bool isConstant() const;
bool isInteger() const;
virtual Value* negConstant(Procedure&) const;
virtual Value* addConstant(Procedure&, int32_t other) const;
virtual Value* addConstant(Procedure&, const Value* other) const;
virtual Value* subConstant(Procedure&, const Value* other) const;
virtual Value* mulConstant(Procedure&, const Value* other) const;
virtual Value* checkAddConstant(Procedure&, const Value* other) const;
virtual Value* checkSubConstant(Procedure&, const Value* other) const;
virtual Value* checkMulConstant(Procedure&, const Value* other) const;
virtual Value* checkNegConstant(Procedure&) const;
virtual Value* divConstant(Procedure&, const Value* other) const; // This chooses ChillDiv semantics for integers.
virtual Value* bitAndConstant(Procedure&, const Value* other) const;
virtual Value* bitOrConstant(Procedure&, const Value* other) const;
virtual Value* bitXorConstant(Procedure&, const Value* other) const;
virtual Value* shlConstant(Procedure&, const Value* other) const;
virtual Value* sShrConstant(Procedure&, const Value* other) const;
virtual Value* zShrConstant(Procedure&, const Value* other) const;
virtual Value* bitwiseCastConstant(Procedure&) const;
virtual TriState equalConstant(const Value* other) const;
virtual TriState notEqualConstant(const Value* other) const;
virtual TriState lessThanConstant(const Value* other) const;
virtual TriState greaterThanConstant(const Value* other) const;
virtual TriState lessEqualConstant(const Value* other) const;
virtual TriState greaterEqualConstant(const Value* other) const;
virtual TriState aboveConstant(const Value* other) const;
virtual TriState belowConstant(const Value* other) const;
virtual TriState aboveEqualConstant(const Value* other) const;
virtual TriState belowEqualConstant(const Value* other) const;
// If the value is a comparison then this returns the inverted form of that comparison, if
// possible. It can be impossible for double comparisons, where for example LessThan and
// GreaterEqual behave differently. If this returns a value, it is a new value, which must be
// either inserted into some block or deleted.
Value* invertedCompare(Procedure&) const;
bool hasInt32() const;
int32_t asInt32() const;
bool isInt32(int32_t) const;
bool hasInt64() const;
int64_t asInt64() const;
bool isInt64(int64_t) const;
bool hasInt() const;
int64_t asInt() const;
bool isInt(int64_t value) const;
bool hasIntPtr() const;
intptr_t asIntPtr() const;
bool isIntPtr(intptr_t) const;
bool hasDouble() const;
double asDouble() const;
bool isEqualToDouble(double) const; // We say "isEqualToDouble" because "isDouble" would be a bit equality.
bool hasNumber() const;
template<typename T> bool representableAs() const;
template<typename T> T asNumber() const;
// Booleans in B3 are Const32(0) or Const32(1). So this is true if the type is Int32 and the only
// possible return values are 0 or 1. It's OK for this method to conservatively return false.
bool returnsBool() const;
bool isNegativeZero() const;
TriState asTriState() const;
bool isLikeZero() const { return asTriState() == FalseTriState; }
bool isLikeNonZero() const { return asTriState() == TrueTriState; }
Effects effects() const;
// This returns a ValueKey that describes that this Value returns when it executes. Returns an
// empty ValueKey if this Value is impure. Note that an operation that returns Void could still
// have a non-empty ValueKey. This happens for example with Check operations.
ValueKey key() const;
// Makes sure that none of the children are Identity's. If a child points to Identity, this will
// repoint it at the Identity's child. For simplicity, this will follow arbitrarily long chains
// of Identity's.
void performSubstitution();
protected:
virtual void dumpChildren(CommaPrinter&, PrintStream&) const;
virtual void dumpMeta(CommaPrinter&, PrintStream&) const;
private:
friend class Procedure;
// Checks that this opcode is valid for use with B3::Value.
#if ASSERT_DISABLED
static void checkOpcode(Opcode) { }
#else
static void checkOpcode(Opcode);
#endif
protected:
enum CheckedOpcodeTag { CheckedOpcode };
// Instantiate values via Procedure.
// This form requires specifying the type explicitly:
template<typename... Arguments>
explicit Value(unsigned index, CheckedOpcodeTag, Opcode opcode, Type type, Origin origin, Value* firstChild, Arguments... arguments)
: m_index(index)
, m_opcode(opcode)
, m_type(type)
, m_origin(origin)
, m_children{ firstChild, arguments... }
{
}
// This form is for specifying the type explicitly when the opcode has no children:
explicit Value(unsigned index, CheckedOpcodeTag, Opcode opcode, Type type, Origin origin)
: m_index(index)
, m_opcode(opcode)
, m_type(type)
, m_origin(origin)
{
}
// This form is for those opcodes that can infer their type from the opcode and first child:
template<typename... Arguments>
explicit Value(unsigned index, CheckedOpcodeTag, Opcode opcode, Origin origin, Value* firstChild)
: m_index(index)
, m_opcode(opcode)
, m_type(typeFor(opcode, firstChild))
, m_origin(origin)
, m_children{ firstChild }
{
}
// This form is for those opcodes that can infer their type from the opcode and first and second child:
template<typename... Arguments>
explicit Value(unsigned index, CheckedOpcodeTag, Opcode opcode, Origin origin, Value* firstChild, Value* secondChild, Arguments... arguments)
: m_index(index)
, m_opcode(opcode)
, m_type(typeFor(opcode, firstChild, secondChild))
, m_origin(origin)
, m_children{ firstChild, secondChild, arguments... }
{
}
// This form is for those opcodes that can infer their type from the opcode alone, and that don't
// take any arguments:
explicit Value(unsigned index, CheckedOpcodeTag, Opcode opcode, Origin origin)
: m_index(index)
, m_opcode(opcode)
, m_type(typeFor(opcode, nullptr))
, m_origin(origin)
{
}
// Use this form for varargs.
explicit Value(unsigned index, CheckedOpcodeTag, Opcode opcode, Type type, Origin origin, const AdjacencyList& children)
: m_index(index)
, m_opcode(opcode)
, m_type(type)
, m_origin(origin)
, m_children(children)
{
}
explicit Value(unsigned index, CheckedOpcodeTag, Opcode opcode, Type type, Origin origin, AdjacencyList&& children)
: m_index(index)
, m_opcode(opcode)
, m_type(type)
, m_origin(origin)
, m_children(WTF::move(children))
{
}
// This is the constructor you end up actually calling, if you're instantiating Value
// directly.
template<typename... Arguments>
explicit Value(unsigned index, Opcode opcode, Arguments&&... arguments)
: Value(index, CheckedOpcode, opcode, std::forward<Arguments>(arguments)...)
{
checkOpcode(opcode);
}
private:
friend class CheckValue; // CheckValue::convertToAdd() modifies m_opcode.
static Type typeFor(Opcode, Value* firstChild, Value* secondChild = nullptr);
// This group of fields is arranged to fit in 64 bits.
unsigned m_index;
Opcode m_opcode;
Type m_type;
Origin m_origin;
AdjacencyList m_children;
public:
BasicBlock* owner { nullptr }; // computed by Procedure::resetValueOwners().
};
class DeepValueDump {
public:
DeepValueDump(const Value* value)
: m_value(value)
{
}
void dump(PrintStream& out) const
{
if (m_value)
m_value->deepDump(out);
else
out.print("<null>");
}
private:
const Value* m_value;
};
inline DeepValueDump deepDump(const Value* value)
{
return DeepValueDump(value);
}
} } // namespace JSC::B3
#endif // ENABLE(B3_JIT)
#endif // B3Value_h