blob: 8e85f58caf49df9f52da7ba3db1ac05b32a40bde [file] [log] [blame]
/*
* Copyright (C) 2011, 2012 Apple Inc. All Rights Reserved.
* Copyright (C) 2014 Raspberry Pi Foundation. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "MemoryPressureHandler.h"
#if OS(LINUX)
#include <errno.h>
#include <fcntl.h>
#include <malloc.h>
#include <sys/eventfd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <wtf/MainThread.h>
#include <wtf/MemoryFootprint.h>
#include <wtf/linux/CurrentProcessMemoryStatus.h>
#include <wtf/text/WTFString.h>
#if USE(GLIB)
#include <glib-unix.h>
#include <wtf/glib/RunLoopSourcePriority.h>
#endif
#define LOG_CHANNEL_PREFIX Log
namespace WTF {
// Disable memory event reception for a minimum of s_minimumHoldOffTime
// seconds after receiving an event. Don't let events fire any sooner than
// s_holdOffMultiplier times the last cleanup processing time. Effectively
// this is 1 / s_holdOffMultiplier percent of the time.
// If after releasing the memory we don't free at least s_minimumBytesFreedToUseMinimumHoldOffTime,
// we wait longer to try again (s_maximumHoldOffTime).
// These value seems reasonable and testing verifies that it throttles frequent
// low memory events, greatly reducing CPU usage.
static const Seconds s_minimumHoldOffTime { 5_s };
static const Seconds s_maximumHoldOffTime { 30_s };
static const size_t s_minimumBytesFreedToUseMinimumHoldOffTime = 1 * MB;
static const unsigned s_holdOffMultiplier = 20;
static const char* s_cgroupMemoryPressureLevel = "/sys/fs/cgroup/memory/memory.pressure_level";
static const char* s_cgroupEventControl = "/sys/fs/cgroup/memory/cgroup.event_control";
#if USE(GLIB)
typedef struct {
GSource source;
gpointer fdTag;
GIOCondition condition;
} EventFDSource;
static const unsigned eventFDSourceCondition = G_IO_IN | G_IO_HUP | G_IO_ERR | G_IO_NVAL;
static GSourceFuncs eventFDSourceFunctions = {
nullptr, // prepare
nullptr, // check
// dispatch
[](GSource* source, GSourceFunc callback, gpointer userData) -> gboolean
{
EventFDSource* eventFDSource = reinterpret_cast<EventFDSource*>(source);
unsigned events = g_source_query_unix_fd(source, eventFDSource->fdTag) & eventFDSourceCondition;
if (events & G_IO_HUP || events & G_IO_ERR || events & G_IO_NVAL)
return G_SOURCE_REMOVE;
gboolean returnValue = G_SOURCE_CONTINUE;
if (events & G_IO_IN)
returnValue = callback(userData);
g_source_set_ready_time(source, -1);
return returnValue;
},
nullptr, // finalize
nullptr, // closure_callback
nullptr, // closure_marshall
};
#endif
MemoryPressureHandler::EventFDPoller::EventFDPoller(int fd, WTF::Function<void ()>&& notifyHandler)
: m_fd(fd)
, m_notifyHandler(WTFMove(notifyHandler))
{
#if USE(GLIB)
m_source = adoptGRef(g_source_new(&eventFDSourceFunctions, sizeof(EventFDSource)));
g_source_set_priority(m_source.get(), RunLoopSourcePriority::MemoryPressureHandlerTimer);
g_source_set_name(m_source.get(), "WTF: MemoryPressureHandler");
if (!g_unix_set_fd_nonblocking(m_fd.value(), TRUE, nullptr)) {
LOG(MemoryPressure, "Failed to set eventfd nonblocking");
return;
}
EventFDSource* eventFDSource = reinterpret_cast<EventFDSource*>(m_source.get());
eventFDSource->fdTag = g_source_add_unix_fd(m_source.get(), m_fd.value(), static_cast<GIOCondition>(eventFDSourceCondition));
g_source_set_callback(m_source.get(), [](gpointer userData) -> gboolean {
static_cast<EventFDPoller*>(userData)->readAndNotify();
return G_SOURCE_REMOVE;
}, this, nullptr);
g_source_attach(m_source.get(), nullptr);
#else
m_thread = Thread::create("WTF: MemoryPressureHandler",
[this] {
readAndNotify();
});
#endif
}
MemoryPressureHandler::EventFDPoller::~EventFDPoller()
{
m_fd = std::nullopt;
#if USE(GLIB)
g_source_destroy(m_source.get());
#else
m_thread->detach();
#endif
}
static inline bool isFatalReadError(int error)
{
#if USE(GLIB)
// We don't really need to read the buffer contents, if the poller
// notified us, but read would block or is no longer available, is
// enough to trigger the memory pressure handler.
return error != EAGAIN && error != EWOULDBLOCK;
#else
return true;
#endif
}
void MemoryPressureHandler::EventFDPoller::readAndNotify() const
{
if (!m_fd) {
LOG(MemoryPressure, "Invalidate eventfd.");
return;
}
uint64_t buffer;
if (read(m_fd.value(), &buffer, sizeof(buffer)) == -1) {
if (isFatalReadError(errno)) {
LOG(MemoryPressure, "Failed to read eventfd.");
return;
}
}
m_notifyHandler();
}
inline void MemoryPressureHandler::logErrorAndCloseFDs(const char* log)
{
if (log)
LOG(MemoryPressure, "%s, error : %m", log);
if (m_eventFD) {
close(m_eventFD.value());
m_eventFD = std::nullopt;
}
if (m_pressureLevelFD) {
close(m_pressureLevelFD.value());
m_pressureLevelFD = std::nullopt;
}
}
bool MemoryPressureHandler::tryEnsureEventFD()
{
if (m_eventFD)
return true;
// Try to use cgroups instead.
int fd = eventfd(0, EFD_CLOEXEC);
if (fd == -1) {
LOG(MemoryPressure, "eventfd() failed: %m");
return false;
}
m_eventFD = fd;
fd = open(s_cgroupMemoryPressureLevel, O_CLOEXEC | O_RDONLY);
if (fd == -1) {
logErrorAndCloseFDs("Failed to open memory.pressure_level");
return false;
}
m_pressureLevelFD = fd;
fd = open(s_cgroupEventControl, O_CLOEXEC | O_WRONLY);
if (fd == -1) {
logErrorAndCloseFDs("Failed to open cgroup.event_control");
return false;
}
char line[128] = {0, };
if (snprintf(line, sizeof(line), "%d %d low", m_eventFD.value(), m_pressureLevelFD.value()) < 0
|| write(fd, line, strlen(line) + 1) < 0) {
logErrorAndCloseFDs("Failed to write cgroup.event_control");
close(fd);
return false;
}
close(fd);
return true;
}
void MemoryPressureHandler::install()
{
if (m_installed || m_holdOffTimer.isActive())
return;
if (!tryEnsureEventFD())
return;
m_eventFDPoller = std::make_unique<EventFDPoller>(m_eventFD.value(), [this] {
// FIXME: Current memcg does not provide any way for users to know how serious the memory pressure is.
// So we assume all notifications from memcg are critical for now. If memcg had better inferfaces
// to get a detailed memory pressure level in the future, we should update here accordingly.
bool critical = true;
if (ReliefLogger::loggingEnabled())
LOG(MemoryPressure, "Got memory pressure notification (%s)", critical ? "critical" : "non-critical");
setUnderMemoryPressure(critical);
if (isMainThread())
respondToMemoryPressure(critical ? Critical::Yes : Critical::No);
else
RunLoop::main().dispatch([this, critical] { respondToMemoryPressure(critical ? Critical::Yes : Critical::No); });
});
if (ReliefLogger::loggingEnabled() && isUnderMemoryPressure())
LOG(MemoryPressure, "System is no longer under memory pressure.");
setUnderMemoryPressure(false);
m_installed = true;
}
void MemoryPressureHandler::uninstall()
{
if (!m_installed)
return;
m_holdOffTimer.stop();
m_eventFDPoller = nullptr;
if (m_pressureLevelFD) {
close(m_pressureLevelFD.value());
m_pressureLevelFD = std::nullopt;
// Only close the eventFD used for cgroups.
if (m_eventFD) {
close(m_eventFD.value());
m_eventFD = std::nullopt;
}
}
m_installed = false;
}
void MemoryPressureHandler::holdOffTimerFired()
{
install();
}
void MemoryPressureHandler::holdOff(Seconds seconds)
{
m_holdOffTimer.startOneShot(seconds);
}
static size_t processMemoryUsage()
{
ProcessMemoryStatus memoryStatus;
currentProcessMemoryStatus(memoryStatus);
return (memoryStatus.resident - memoryStatus.shared);
}
void MemoryPressureHandler::respondToMemoryPressure(Critical critical, Synchronous synchronous)
{
uninstall();
MonotonicTime startTime = MonotonicTime::now();
int64_t processMemory = processMemoryUsage();
releaseMemory(critical, synchronous);
int64_t bytesFreed = processMemory - processMemoryUsage();
Seconds holdOffTime = s_maximumHoldOffTime;
if (bytesFreed > 0 && static_cast<size_t>(bytesFreed) >= s_minimumBytesFreedToUseMinimumHoldOffTime)
holdOffTime = (MonotonicTime::now() - startTime) * s_holdOffMultiplier;
holdOff(std::max(holdOffTime, s_minimumHoldOffTime));
}
void MemoryPressureHandler::platformReleaseMemory(Critical)
{
#ifdef __GLIBC__
malloc_trim(0);
#endif
}
std::optional<MemoryPressureHandler::ReliefLogger::MemoryUsage> MemoryPressureHandler::ReliefLogger::platformMemoryUsage()
{
size_t physical = 0;
auto footprint = memoryFootprint();
if (footprint)
physical = footprint.value();
return MemoryUsage {processMemoryUsage(), physical};
}
void MemoryPressureHandler::setMemoryPressureMonitorHandle(int fd)
{
ASSERT(!m_eventFD);
m_eventFD = fd;
}
} // namespace WTF
#endif // OS(LINUX)