blob: ed8ff73e1a3a529ddc85fb2202072e366687d037 [file] [log] [blame]
/*
* Copyright (C) 2013-2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "DFGCommon.h"
#if ENABLE(FTL_JIT)
#include "B3BasicBlockInlines.h"
#include "B3CCallValue.h"
#include "B3FrequentedBlock.h"
#include "B3Procedure.h"
#include "B3SwitchValue.h"
#include "B3Width.h"
#include "FTLAbbreviatedTypes.h"
#include "FTLAbstractHeapRepository.h"
#include "FTLCommonValues.h"
#include "FTLSelectPredictability.h"
#include "FTLState.h"
#include "FTLSwitchCase.h"
#include "FTLTypedPointer.h"
#include "FTLValueFromBlock.h"
#include "FTLWeight.h"
#include "FTLWeightedTarget.h"
#include "HeapCell.h"
#include "JITCompilation.h"
#include <wtf/OrderMaker.h>
#include <wtf/StringPrintStream.h>
// FIXME: remove this once everything can be generated through B3.
IGNORE_WARNINGS_BEGIN("missing-noreturn")
ALLOW_UNUSED_PARAMETERS_BEGIN
namespace JSC {
namespace DFG {
struct Node;
} // namespace DFG
namespace B3 {
class FenceValue;
class SlotBaseValue;
} // namespace B3
namespace FTL {
enum Scale { ScaleOne, ScaleTwo, ScaleFour, ScaleEight, ScalePtr };
class Output : public CommonValues {
public:
Output(State&);
~Output();
void initialize(AbstractHeapRepository&);
void setFrequency(double value)
{
m_frequency = value;
}
LBasicBlock newBlock();
LBasicBlock insertNewBlocksBefore(LBasicBlock nextBlock)
{
LBasicBlock lastNextBlock = m_nextBlock;
m_nextBlock = nextBlock;
return lastNextBlock;
}
void applyBlockOrder();
LBasicBlock appendTo(LBasicBlock, LBasicBlock nextBlock);
void appendTo(LBasicBlock);
void setOrigin(DFG::Node* node) { m_origin = node; }
B3::Origin origin() { return B3::Origin(m_origin); }
LValue framePointer();
B3::SlotBaseValue* lockedStackSlot(uint64_t bytes);
LValue constBool(bool value);
LValue constInt32(int32_t value);
LValue alreadyRegisteredWeakPointer(DFG::Graph& graph, JSCell* cell)
{
ASSERT(graph.m_plan.weakReferences().contains(cell));
return constIntPtr(bitwise_cast<intptr_t>(cell));
}
LValue alreadyRegisteredFrozenPointer(DFG::FrozenValue* value)
{
RELEASE_ASSERT(value->value().isCell());
return constIntPtr(bitwise_cast<intptr_t>(value->cell()));
}
template<typename T>
LValue constIntPtr(T* value)
{
static_assert(!std::is_base_of<HeapCell, T>::value, "To use a GC pointer, the graph must be aware of it. Use gcPointer instead and make sure the graph is aware of this reference.");
if (sizeof(void*) == 8)
return constInt64(bitwise_cast<intptr_t>(value));
return constInt32(bitwise_cast<intptr_t>(value));
}
template<typename T>
LValue constIntPtr(T value)
{
if (sizeof(void*) == 8)
return constInt64(static_cast<intptr_t>(value));
return constInt32(static_cast<intptr_t>(value));
}
LValue constInt64(int64_t value);
LValue constDouble(double value);
LValue phi(LType);
template<typename... Params>
LValue phi(LType, ValueFromBlock, Params... theRest);
template<typename VectorType>
LValue phi(LType, const VectorType&);
void addIncomingToPhi(LValue phi, ValueFromBlock);
template<typename... Params>
void addIncomingToPhi(LValue phi, ValueFromBlock, Params... theRest);
template<typename... Params>
void addIncomingToPhiIfSet(LValue phi, Params... theRest);
LValue opaque(LValue);
LValue add(LValue, LValue);
LValue sub(LValue, LValue);
LValue mul(LValue, LValue);
LValue div(LValue, LValue);
LValue chillDiv(LValue, LValue);
LValue mod(LValue, LValue);
LValue chillMod(LValue, LValue);
LValue neg(LValue);
LValue doubleAdd(LValue, LValue);
LValue doubleSub(LValue, LValue);
LValue doubleMul(LValue, LValue);
LValue doubleDiv(LValue, LValue);
LValue doubleMod(LValue, LValue);
LValue doubleNeg(LValue value) { return neg(value); }
LValue bitAnd(LValue, LValue);
LValue bitOr(LValue, LValue);
LValue bitXor(LValue, LValue);
LValue shl(LValue, LValue shiftAmount);
LValue aShr(LValue, LValue shiftAmount);
LValue lShr(LValue, LValue shiftAmount);
LValue bitNot(LValue);
LValue logicalNot(LValue);
LValue ctlz32(LValue);
LValue doubleAbs(LValue);
LValue doubleCeil(LValue);
LValue doubleFloor(LValue);
LValue doubleTrunc(LValue);
LValue doubleUnary(DFG::Arith::UnaryType, LValue);
LValue doubleStdPow(LValue base, LValue exponent);
LValue doublePowi(LValue base, LValue exponent);
LValue doubleSqrt(LValue);
LValue doubleLog(LValue);
LValue doubleToInt(LValue);
LValue doubleToInt64(LValue);
LValue doubleToUInt(LValue);
LValue signExt32To64(LValue);
LValue signExt32ToPtr(LValue);
LValue zeroExt(LValue, LType);
LValue zeroExtPtr(LValue value) { return zeroExt(value, B3::Int64); }
LValue intToDouble(LValue);
LValue unsignedToDouble(LValue);
LValue castToInt32(LValue);
LValue doubleToFloat(LValue);
LValue floatToDouble(LValue);
LValue bitCast(LValue, LType);
LValue fround(LValue);
LValue load(TypedPointer, LType);
LValue store(LValue, TypedPointer);
B3::FenceValue* fence(const AbstractHeap* read, const AbstractHeap* write);
LValue load8SignExt32(TypedPointer);
LValue load8ZeroExt32(TypedPointer);
LValue load16SignExt32(TypedPointer);
LValue load16ZeroExt32(TypedPointer);
LValue load32(TypedPointer pointer) { return load(pointer, B3::Int32); }
LValue load64(TypedPointer pointer) { return load(pointer, B3::Int64); }
LValue loadPtr(TypedPointer pointer) { return load(pointer, B3::pointerType()); }
LValue loadFloat(TypedPointer pointer) { return load(pointer, B3::Float); }
LValue loadDouble(TypedPointer pointer) { return load(pointer, B3::Double); }
LValue store32As8(LValue, TypedPointer);
LValue store32As16(LValue, TypedPointer);
LValue store32(LValue value, TypedPointer pointer)
{
ASSERT(value->type() == B3::Int32);
return store(value, pointer);
}
LValue store64(LValue value, TypedPointer pointer)
{
ASSERT(value->type() == B3::Int64);
return store(value, pointer);
}
LValue storePtr(LValue value, TypedPointer pointer)
{
ASSERT(value->type() == B3::pointerType());
return store(value, pointer);
}
LValue storeFloat(LValue value, TypedPointer pointer)
{
ASSERT(value->type() == B3::Float);
return store(value, pointer);
}
LValue storeDouble(LValue value, TypedPointer pointer)
{
ASSERT(value->type() == B3::Double);
return store(value, pointer);
}
enum LoadType {
Load8SignExt32,
Load8ZeroExt32,
Load16SignExt32,
Load16ZeroExt32,
Load32,
Load64,
LoadPtr,
LoadFloat,
LoadDouble
};
LValue load(TypedPointer, LoadType);
enum StoreType {
Store32As8,
Store32As16,
Store32,
Store64,
StorePtr,
StoreFloat,
StoreDouble
};
LValue store(LValue, TypedPointer, StoreType);
LValue addPtr(LValue value, ptrdiff_t immediate = 0)
{
if (!immediate)
return value;
return add(value, constIntPtr(immediate));
}
// Construct an address by offsetting base by the requested amount and ascribing
// the requested abstract heap to it.
TypedPointer address(const AbstractHeap& heap, LValue base, ptrdiff_t offset = 0)
{
return TypedPointer(heap, addPtr(base, offset));
}
// Construct an address by offsetting base by the amount specified by the field,
// and optionally an additional amount (use this with care), and then creating
// a TypedPointer with the given field as the heap.
TypedPointer address(LValue base, const AbstractHeap& field, ptrdiff_t offset = 0)
{
return address(field, base, offset + field.offset());
}
LValue baseIndex(LValue base, LValue index, Scale, ptrdiff_t offset = 0);
TypedPointer baseIndex(const AbstractHeap& heap, LValue base, LValue index, Scale scale, ptrdiff_t offset = 0)
{
return TypedPointer(heap, baseIndex(base, index, scale, offset));
}
TypedPointer baseIndex(IndexedAbstractHeap& heap, LValue base, LValue index, JSValue indexAsConstant = JSValue(), ptrdiff_t offset = 0, LValue mask = nullptr)
{
return heap.baseIndex(*this, base, index, indexAsConstant, offset, mask);
}
TypedPointer absolute(const void* address);
LValue load8SignExt32(LValue base, const AbstractHeap& field) { return load8SignExt32(address(base, field)); }
LValue load8ZeroExt32(LValue base, const AbstractHeap& field) { return load8ZeroExt32(address(base, field)); }
LValue load16SignExt32(LValue base, const AbstractHeap& field) { return load16SignExt32(address(base, field)); }
LValue load16ZeroExt32(LValue base, const AbstractHeap& field) { return load16ZeroExt32(address(base, field)); }
LValue load32(LValue base, const AbstractHeap& field) { return load32(address(base, field)); }
LValue load64(LValue base, const AbstractHeap& field) { return load64(address(base, field)); }
LValue loadPtr(LValue base, const AbstractHeap& field) { return loadPtr(address(base, field)); }
LValue loadDouble(LValue base, const AbstractHeap& field) { return loadDouble(address(base, field)); }
void store32As8(LValue value, LValue base, const AbstractHeap& field) { store32As8(value, address(base, field)); }
void store32As16(LValue value, LValue base, const AbstractHeap& field) { store32As16(value, address(base, field)); }
void store32(LValue value, LValue base, const AbstractHeap& field) { store32(value, address(base, field)); }
void store64(LValue value, LValue base, const AbstractHeap& field) { store64(value, address(base, field)); }
void storePtr(LValue value, LValue base, const AbstractHeap& field) { storePtr(value, address(base, field)); }
void storeDouble(LValue value, LValue base, const AbstractHeap& field) { storeDouble(value, address(base, field)); }
// FIXME: Explore adding support for value range constraints to B3. Maybe it could be as simple as having
// a load instruction that guarantees that its result is non-negative.
// https://bugs.webkit.org/show_bug.cgi?id=151458
void ascribeRange(LValue, const ValueRange&) { }
LValue nonNegative32(LValue loadInstruction) { return loadInstruction; }
LValue load32NonNegative(TypedPointer pointer) { return load32(pointer); }
LValue load32NonNegative(LValue base, const AbstractHeap& field) { return load32(base, field); }
LValue load64NonNegative(LValue base, const AbstractHeap& field) { return load64(base, field); }
LValue equal(LValue, LValue);
LValue notEqual(LValue, LValue);
LValue above(LValue, LValue);
LValue aboveOrEqual(LValue, LValue);
LValue below(LValue, LValue);
LValue belowOrEqual(LValue, LValue);
LValue greaterThan(LValue, LValue);
LValue greaterThanOrEqual(LValue, LValue);
LValue lessThan(LValue, LValue);
LValue lessThanOrEqual(LValue, LValue);
LValue doubleEqual(LValue, LValue);
LValue doubleEqualOrUnordered(LValue, LValue);
LValue doubleNotEqualOrUnordered(LValue, LValue);
LValue doubleLessThan(LValue, LValue);
LValue doubleLessThanOrEqual(LValue, LValue);
LValue doubleGreaterThan(LValue, LValue);
LValue doubleGreaterThanOrEqual(LValue, LValue);
LValue doubleNotEqualAndOrdered(LValue, LValue);
LValue doubleLessThanOrUnordered(LValue, LValue);
LValue doubleLessThanOrEqualOrUnordered(LValue, LValue);
LValue doubleGreaterThanOrUnordered(LValue, LValue);
LValue doubleGreaterThanOrEqualOrUnordered(LValue, LValue);
LValue isZero32(LValue);
LValue notZero32(LValue);
LValue isZero64(LValue);
LValue notZero64(LValue);
LValue isNull(LValue value) { return isZero64(value); }
LValue notNull(LValue value) { return notZero64(value); }
LValue testIsZero32(LValue value, LValue mask) { return isZero32(bitAnd(value, mask)); }
LValue testNonZero32(LValue value, LValue mask) { return notZero32(bitAnd(value, mask)); }
LValue testIsZero64(LValue value, LValue mask) { return isZero64(bitAnd(value, mask)); }
LValue testNonZero64(LValue value, LValue mask) { return notZero64(bitAnd(value, mask)); }
LValue testIsZeroPtr(LValue value, LValue mask) { return isNull(bitAnd(value, mask)); }
LValue testNonZeroPtr(LValue value, LValue mask) { return notNull(bitAnd(value, mask)); }
LValue select(LValue value, LValue taken, LValue notTaken, SelectPredictability = SelectPredictability::NotPredictable);
// These are relaxed atomics by default. Use AbstractHeapRepository::decorateFencedAccess() with a
// non-null heap to make them seq_cst fenced.
LValue atomicXchgAdd(LValue operand, TypedPointer pointer, B3::Width);
LValue atomicXchgAnd(LValue operand, TypedPointer pointer, B3::Width);
LValue atomicXchgOr(LValue operand, TypedPointer pointer, B3::Width);
LValue atomicXchgSub(LValue operand, TypedPointer pointer, B3::Width);
LValue atomicXchgXor(LValue operand, TypedPointer pointer, B3::Width);
LValue atomicXchg(LValue operand, TypedPointer pointer, B3::Width);
LValue atomicStrongCAS(LValue expected, LValue newValue, TypedPointer pointer, B3::Width);
template<typename VectorType>
LValue call(LType type, LValue function, const VectorType& vector)
{
B3::CCallValue* result = m_block->appendNew<B3::CCallValue>(m_proc, type, origin(), function);
result->appendArgs(vector);
return result;
}
LValue call(LType type, LValue function) { return m_block->appendNew<B3::CCallValue>(m_proc, type, origin(), function); }
LValue call(LType type, LValue function, LValue arg1) { return m_block->appendNew<B3::CCallValue>(m_proc, type, origin(), function, arg1); }
template<typename... Args>
LValue call(LType type, LValue function, LValue arg1, Args... args) { return m_block->appendNew<B3::CCallValue>(m_proc, type, origin(), function, arg1, args...); }
template<typename Function, typename... Args>
LValue callWithoutSideEffects(B3::Type type, Function function, LValue arg1, Args... args)
{
static_assert(!std::is_same<Function, LValue>::value);
return m_block->appendNew<B3::CCallValue>(m_proc, type, origin(), B3::Effects::none(),
constIntPtr(tagCFunctionPtr<void*, OperationPtrTag>(function)), arg1, args...);
}
// FIXME: Consider enhancing this to allow the client to choose the target PtrTag to use.
// https://bugs.webkit.org/show_bug.cgi?id=184324
template<typename FunctionType>
LValue operation(FunctionType function) { return constIntPtr(tagCFunctionPtr<void*, OperationPtrTag>(function)); }
LValue operation(FunctionPtr<OperationPtrTag> function) { return constIntPtr(function.executableAddress()); }
void jump(LBasicBlock);
void branch(LValue condition, LBasicBlock taken, Weight takenWeight, LBasicBlock notTaken, Weight notTakenWeight);
void branch(LValue condition, WeightedTarget taken, WeightedTarget notTaken)
{
branch(condition, taken.target(), taken.weight(), notTaken.target(), notTaken.weight());
}
// Branches to an already-created handler if true, "falls through" if false. Fall-through is
// simulated by creating a continuation for you.
void check(LValue condition, WeightedTarget taken, Weight notTakenWeight);
// Same as check(), but uses Weight::inverse() to compute the notTakenWeight.
void check(LValue condition, WeightedTarget taken);
template<typename VectorType>
void switchInstruction(LValue value, const VectorType& cases, LBasicBlock fallThrough, Weight fallThroughWeight)
{
B3::SwitchValue* switchValue = m_block->appendNew<B3::SwitchValue>(m_proc, origin(), value);
switchValue->setFallThrough(B3::FrequentedBlock(fallThrough));
for (const SwitchCase& switchCase : cases) {
int64_t value = switchCase.value()->asInt();
B3::FrequentedBlock target(switchCase.target(), switchCase.weight().frequencyClass());
switchValue->appendCase(B3::SwitchCase(value, target));
}
}
void entrySwitch(const Vector<LBasicBlock>&);
void ret(LValue);
void unreachable();
void appendSuccessor(WeightedTarget);
B3::CheckValue* speculate(LValue);
B3::CheckValue* speculateAdd(LValue, LValue);
B3::CheckValue* speculateSub(LValue, LValue);
B3::CheckValue* speculateMul(LValue, LValue);
B3::PatchpointValue* patchpoint(LType);
void trap();
ValueFromBlock anchor(LValue);
void incrementSuperSamplerCount();
void decrementSuperSamplerCount();
#if PLATFORM(COCOA)
#pragma mark - States
#endif
B3::Procedure& m_proc;
DFG::Node* m_origin { nullptr };
LBasicBlock m_block { nullptr };
LBasicBlock m_nextBlock { nullptr };
AbstractHeapRepository* m_heaps;
double m_frequency { 1 };
private:
OrderMaker<LBasicBlock> m_blockOrder;
};
template<typename... Params>
inline LValue Output::phi(LType type, ValueFromBlock value, Params... theRest)
{
LValue phiNode = phi(type);
addIncomingToPhi(phiNode, value, theRest...);
return phiNode;
}
template<typename VectorType>
inline LValue Output::phi(LType type, const VectorType& vector)
{
LValue phiNode = phi(type);
for (const ValueFromBlock& valueFromBlock : vector)
addIncomingToPhi(phiNode, valueFromBlock);
return phiNode;
}
template<typename... Params>
inline void Output::addIncomingToPhi(LValue phi, ValueFromBlock value, Params... theRest)
{
addIncomingToPhi(phi, value);
addIncomingToPhi(phi, theRest...);
}
ALLOW_UNUSED_PARAMETERS_END
IGNORE_WARNINGS_END
} } // namespace JSC::FTL
#endif // ENABLE(FTL_JIT)