blob: 375081b3e6fac2f5fc3648e4b4d21f3f433b4a55 [file] [log] [blame]
/*
* Copyright (C) 2012 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "LayerFragment.h"
#include "RenderFragmentContainerSet.h"
#include "RenderMultiColumnFlow.h"
#include <wtf/Vector.h>
namespace WebCore {
// RenderMultiColumnSet represents a set of columns that all have the same width and height. By combining runs of same-size columns into a single
// object, we significantly reduce the number of unique RenderObjects required to represent columns.
//
// A simple multi-column block will have exactly one RenderMultiColumnSet child. A simple paginated multi-column block will have three
// RenderMultiColumnSet children: one for the content at the bottom of the first page (whose columns will have a shorter height), one
// for the 2nd to n-1 pages, and then one last column set that will hold the shorter columns on the final page (that may have to be balanced
// as well).
//
// Column spans result in the creation of new column sets as well, since a spanning fragment has to be placed in between the column sets that
// come before and after the span.
class RenderMultiColumnSet final : public RenderFragmentContainerSet {
WTF_MAKE_ISO_ALLOCATED(RenderMultiColumnSet);
public:
RenderMultiColumnSet(RenderFragmentedFlow&, RenderStyle&&);
RenderBlockFlow* multiColumnBlockFlow() const { return downcast<RenderBlockFlow>(parent()); }
RenderMultiColumnFlow* multiColumnFlow() const { return static_cast<RenderMultiColumnFlow*>(fragmentedFlow()); }
RenderMultiColumnSet* nextSiblingMultiColumnSet() const;
RenderMultiColumnSet* previousSiblingMultiColumnSet() const;
// Return the first object in the flow thread that's rendered inside this set.
RenderObject* firstRendererInFragmentedFlow() const;
// Return the last object in the flow thread that's rendered inside this set.
RenderObject* lastRendererInFragmentedFlow() const;
// Return true if the specified renderer (descendant of the flow thread) is inside this column set.
bool containsRendererInFragmentedFlow(const RenderObject&) const;
void setLogicalTopInFragmentedFlow(LayoutUnit);
LayoutUnit logicalTopInFragmentedFlow() const { return isHorizontalWritingMode() ? fragmentedFlowPortionRect().y() : fragmentedFlowPortionRect().x(); }
void setLogicalBottomInFragmentedFlow(LayoutUnit);
LayoutUnit logicalBottomInFragmentedFlow() const { return isHorizontalWritingMode() ? fragmentedFlowPortionRect().maxY() : fragmentedFlowPortionRect().maxX(); }
LayoutUnit logicalHeightInFragmentedFlow() const { return isHorizontalWritingMode() ? fragmentedFlowPortionRect().height() : fragmentedFlowPortionRect().width(); }
unsigned computedColumnCount() const { return m_computedColumnCount; }
LayoutUnit computedColumnWidth() const { return m_computedColumnWidth; }
LayoutUnit computedColumnHeight() const { return m_computedColumnHeight; }
bool columnHeightComputed() const { return m_columnHeightComputed; }
void setComputedColumnWidthAndCount(LayoutUnit width, unsigned count)
{
m_computedColumnWidth = width;
m_computedColumnCount = count;
}
LayoutUnit heightAdjustedForSetOffset(LayoutUnit height) const;
void updateMinimumColumnHeight(LayoutUnit height) { m_minimumColumnHeight = std::max(height, m_minimumColumnHeight); }
LayoutUnit minimumColumnHeight() const { return m_minimumColumnHeight; }
unsigned forcedBreaksCount() const { return m_contentRuns.size(); }
void clearForcedBreaks();
void addForcedBreak(LayoutUnit offsetFromFirstPage);
// (Re-)calculate the column height. This is first and foremost needed by sets that are to
// balance the column height, but even when it isn't to be balanced, this is necessary if the
// multicol container's height is constrained. If |initial| is set, and we are to balance, guess
// an initial column height; otherwise, stretch the column height a tad. Return true if column
// height changed and another layout pass is required.
bool recalculateColumnHeight(bool initial);
// Record space shortage (the amount of space that would have been enough to prevent some
// element from being moved to the next column) at a column break. The smallest amount of space
// shortage we find is the amount with which we will stretch the column height, if it turns out
// after layout that the columns weren't tall enough.
void recordSpaceShortage(LayoutUnit spaceShortage);
void updateLogicalWidth() override;
void prepareForLayout(bool initial);
// Begin laying out content for this column set. This happens at the beginning of flow thread
// layout, and when advancing from a previous column set or spanner to this one.
void beginFlow(RenderBlock* container);
// Finish laying out content for this column set. This happens at end of flow thread layout, and
// when advancing to the next column set or spanner.
void endFlow(RenderBlock* container, LayoutUnit bottomInContainer);
// Has this set been flowed in this layout pass?
bool hasBeenFlowed() const { return logicalBottomInFragmentedFlow() != RenderFragmentedFlow::maxLogicalHeight(); }
bool requiresBalancing() const;
LayoutPoint columnTranslationForOffset(const LayoutUnit&) const;
void paintColumnRules(PaintInfo&, const LayoutPoint& paintOffset) override;
enum ColumnHitTestTranslationMode {
ClampHitTestTranslationToColumns,
DoNotClampHitTestTranslationToColumns
};
LayoutPoint translateFragmentPointToFragmentedFlow(const LayoutPoint & logicalPoint, ColumnHitTestTranslationMode = DoNotClampHitTestTranslationToColumns) const;
void updateHitTestResult(HitTestResult&, const LayoutPoint&) override;
LayoutRect columnRectAt(unsigned index) const;
unsigned columnCount() const;
protected:
void addOverflowFromChildren() override;
private:
bool isRenderMultiColumnSet() const override { return true; }
void layout() override;
LogicalExtentComputedValues computeLogicalHeight(LayoutUnit logicalHeight, LayoutUnit logicalTop) const override;
void paintObject(PaintInfo&, const LayoutPoint&) override { }
LayoutUnit pageLogicalWidth() const override { return m_computedColumnWidth; }
LayoutUnit pageLogicalHeight() const override { return m_computedColumnHeight; }
LayoutUnit pageLogicalTopForOffset(LayoutUnit offset) const override;
LayoutUnit logicalHeightOfAllFragmentedFlowContent() const override { return logicalHeightInFragmentedFlow(); }
void repaintFragmentedFlowContent(const LayoutRect& repaintRect) override;
void collectLayerFragments(LayerFragments&, const LayoutRect& layerBoundingBox, const LayoutRect& dirtyRect) override;
void adjustFragmentBoundsFromFragmentedFlowPortionRect(LayoutRect& fragmentBounds) const override;
VisiblePosition positionForPoint(const LayoutPoint&, const RenderFragmentContainer*) override;
const char* renderName() const override;
LayoutUnit calculateMaxColumnHeight() const;
LayoutUnit columnGap() const;
LayoutUnit columnLogicalLeft(unsigned) const;
LayoutUnit columnLogicalTop(unsigned) const;
LayoutRect fragmentedFlowPortionRectAt(unsigned index) const;
LayoutRect fragmentedFlowPortionOverflowRect(const LayoutRect& fragmentedFlowPortion, unsigned index, unsigned colCount, LayoutUnit colGap);
LayoutUnit initialBlockOffsetForPainting() const;
enum ColumnIndexCalculationMode {
ClampToExistingColumns, // Stay within the range of already existing columns.
AssumeNewColumns // Allow column indices outside the range of already existing columns.
};
unsigned columnIndexAtOffset(LayoutUnit, ColumnIndexCalculationMode = ClampToExistingColumns) const;
void setAndConstrainColumnHeight(LayoutUnit);
// Return the index of the content run with the currently tallest columns, taking all implicit
// breaks assumed so far into account.
unsigned findRunWithTallestColumns() const;
// Given the current list of content runs, make assumptions about where we need to insert
// implicit breaks (if there's room for any at all; depending on the number of explicit breaks),
// and store the results. This is needed in order to balance the columns.
void distributeImplicitBreaks();
LayoutUnit calculateBalancedHeight(bool initial) const;
unsigned m_computedColumnCount; // Used column count (the resulting 'N' from the pseudo-algorithm in the multicol spec)
LayoutUnit m_computedColumnWidth; // Used column width (the resulting 'W' from the pseudo-algorithm in the multicol spec)
LayoutUnit m_computedColumnHeight;
LayoutUnit m_availableColumnHeight;
bool m_columnHeightComputed;
// The following variables are used when balancing the column set.
LayoutUnit m_maxColumnHeight; // Maximum column height allowed.
LayoutUnit m_minSpaceShortage; // The smallest amout of space shortage that caused a column break.
LayoutUnit m_minimumColumnHeight;
// A run of content without explicit (forced) breaks; i.e. a flow thread portion between two
// explicit breaks, between flow thread start and an explicit break, between an explicit break
// and flow thread end, or, in cases when there are no explicit breaks at all: between flow flow
// thread start and flow thread end. We need to know where the explicit breaks are, in order to
// figure out where the implicit breaks will end up, so that we get the columns properly
// balanced. A content run starts out as representing one single column, and will represent one
// additional column for each implicit break "inserted" there.
class ContentRun {
public:
ContentRun(LayoutUnit breakOffset)
: m_breakOffset(breakOffset)
, m_assumedImplicitBreaks(0) { }
unsigned assumedImplicitBreaks() const { return m_assumedImplicitBreaks; }
void assumeAnotherImplicitBreak() { m_assumedImplicitBreaks++; }
LayoutUnit breakOffset() const { return m_breakOffset; }
// Return the column height that this content run would require, considering the implicit
// breaks assumed so far.
LayoutUnit columnLogicalHeight(LayoutUnit startOffset) const { return ceilf(float(m_breakOffset - startOffset) / float(m_assumedImplicitBreaks + 1)); }
private:
LayoutUnit m_breakOffset; // Flow thread offset where this run ends.
unsigned m_assumedImplicitBreaks; // Number of implicit breaks in this run assumed so far.
};
Vector<ContentRun, 1> m_contentRuns;
};
} // namespace WebCore
SPECIALIZE_TYPE_TRAITS_RENDER_OBJECT(RenderMultiColumnSet, isRenderMultiColumnSet())